
Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Multiple Classifier Systems: 9th International Workshop, MCS 2010, Cairo,
Egypt, April 7-9, 2010. Proceedings. Lecture Notes in Computer Science,

Volumen 5997. Springer 2010. 104-113.

DOI: http://dx.doi.org/10.1007/978-3-642-12127-2_11

Copyright: © 2010 Springer-Verlag

El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/978-3-642-12127-2_11

A double pruning algorithm for classification

ensembles

Vı́ctor Soto, Gonzalo Mart́ınez-Muñoz, Daniel Hernández-Lobato, and Alberto
Suárez

Universidad Autónoma de Madrid, EPS, Calle Francisco Tomás y Valiente, 11,
Madrid 28049 Spain

Abstract. This article introduces a double pruning algorithm that can
be used to reduce the storage requirements, speed-up the classification
process and improve the performance of parallel ensembles. A key el-
ement in the design of the algorithm is the estimation of the class la-
bel that the ensemble assigns to a given test instance by polling only
a fraction of its classifiers. Instead of applying this form of dynamical
(instance-based) pruning to the original ensemble, we propose to apply
it to a subset of classifiers selected using standard ensemble pruning
techniques. The pruned subensemble is built by first modifying the or-
der in which classifiers are aggregated in the ensemble and then selecting
the first classifiers in the ordered sequence. Experiments in benchmark
problems illustrate the improvements that can be obtained with this
technique. Specifically, using a bagging ensemble of 101 CART trees as a
starting point, only the 21 trees of the pruned ordered ensemble need to
stored in memory. Depending on the classification task, on average, only
5 to 12 of these 21 classifiers are queried to compute the predictions. The
generalization performance achieved by this double pruning algorithm is
similar to pruned ordered bagging and significantly better than standard
bagging.

Key words: ensemble pruning, instance-based pruning, ensemble learn-
ing, decision trees

1 Introduction

There is extensive empirical evidence that combining the predictions of comple-
mentary classifiers is a successful strategy to build robust classification systems
with good generalization performance [1–3]. The main disadvantages of ensemble
methods are the difficulties in the interpretation of the decisions of the ensemble
and their large computational requirements. In particular, the training cost, the
storage needs and the time of prediction increase linearly with the number of
classifiers that are included in the ensemble. If the errors of the classifiers in
the ensemble were uncorrelated, averaging over larger ensembles should improve
the accuracy of the predictions, because the errors of a given classifier would
be compensated by the correct predictions of other classifiers in the ensemble.

2 Authors Suppressed Due to Excessive Length

In practice, the ensemble members tend to make errors in the same examples.
Nonetheless, in a wide range classification problems, the accuracy of parallel
ensembles, such as bagging, improves with the number of classifiers that are in-
cluded in the ensemble. However, larger ensembles have larger storage needs and
longer times of prediction. To alleviate these shortcomings, different ensemble
pruning methods can be used [4–13]. The goal of these methods is to reduce
the memory requirements and to speed-up the classification process while main-
taining or, if possible, improving the level of accuracy of the original ensemble.
Most ensemble pruning methods replace the original ensemble by a represen-
tative subset of predictors. Besides needing less storage space and predicting
faster, pruned subensembles can actually outperform the original classification
ensembles from which they are extracted [5–8, 10].

Using a different approach, the time needed for prediction using a parallel
ensemble, such as bagging [14], can be reduced by a dynamical pruning method
called instance-based (IB) pruning [11]. In IB pruning the number of classifiers
that need to be queried to estimate the final ensemble prediction is determined
for each instance separately. Assuming that simple majority voting is used, it is
possible to estimate the final decision by querying only a subset of the classifiers
in the ensemble. Given a test instance that needs to be classified, the aggregation
of the outputs of the ensemble members is halted when the probability that
the remaining predictions do not change the current majority class is above a
specified confidence level α. Since the overhead needed to determine whether the
aggregation process should be halted is negligible, the reduction in the number
of queries directly translates in a speed-up of the classification process. This
method does not reduce the storage requirements, because all the classifiers
in the original ensemble need to be available for potential queries. Since the
differences in prediction are below the threshold 1 − α, the differences between
the errors of the dynamically pruned ensemble and of the original ensemble are
also necessarily below 1 − α. Therefore, the generalization performance of the
ensemble is only slightly modified by IB-pruning.

The theoretical analysis of majority voting on which IB-pruning is grounded
relies on the fact that in parallel ensembles the individual classifiers are gener-
ated under the same conditions and independently of each other. The goal of this
investigation is to determine whether IB-pruning can be also used in sequential
ensembles. When the ensemble is sequential, the classifier that is added at one
point in the sequence depends on the classifiers that have been included in the
ensemble up to that point. As a result, one introduces correlations among classi-
fiers, which can result in biases in the estimation of the final ensemble prediction
on the basis of the outputs of the initial classifiers in the sequence. The results of
experiments on benchmark classification problems carried out in this investiga-
tion show that the biases introduced by IB-pruning can cause some distortions
in the estimation of the error rate of the complete ensemble when ordered aggre-
gation is used. By contrast, IB-pruning is remarkably effective when it is used
to halt the aggregation process not in the complete ordered ensemble, but in
the subensemble that is obtained by selecting the first ≈ 20% classifiers in the

A double pruning algorithm for classification ensembles 3

reordered sequence. We conjecture that the reason for this different behavior is
related to the properties of ordered bagging. The curves that trace the depen-
dence of the error rate on the size of the ordered ensemble exhibit a minimum
at intermediate ensemble sizes. This means that the first and the last classifiers
included in the ordered bagging ensemble have rather different properties. As a
matter of fact, the last classifiers that are included in the ordered sequence cause
a deterioration instead of an improvement of the error rate. In consequence, es-
timations based on the first classifiers in the ensemble can be very different from
the final decision, which takes into account all the classifiers in the ensemble.
By contrast, in the second case, the test error rate monotonically decreases with
the size of the ensemble, which implies that the trends detected in the output of
the first classifiers tend to be reinforced by the subsequent predictions.

In summary, we propose a double pruning algorithm, in which dynamical IB-
pruning is applied to a pruned bagging ensemble built with ordered aggregation.
The method combines the advantages of pruning by ordered aggregation and
instance-based pruning; namely the generalization performance of the ensemble
is improved, the storage requirements are reduced, because only the classifiers
in the pruned ensemble need to be stored in memory, and, finally, the efficiency
classification process is significantly ameliorated, not only because the number of
classifiers of the pruned ensemble is smaller, but also because IB-pruning speeds
up the prediction of the class label for individual instances.

The paper is organized as follows: Section 2 provides a review of ordered ag-
gregation. The dynamical pruning algorithm IB-pruning is described in Section
3. Section 4 summarizes the results of experiments on benchmark classification
tasks that demonstrate the effectiveness of the double pruning algorithm pro-
posed. Finally, the conclusions of this work are exposed in Section 5.

2 Ensemble pruning based on ordered aggregation

A possible approach to ensemble pruning is to select from the original ensemble
a subset of representative classifiers whose combined performance is equivalent
or better than the complete ensemble. There are two sources of difficulties in the
realization of this goal. The first handicap is that the selection of classifiers has to
be based on estimates on the training data. However, the objective is to identify a
subensemble that has good generalization performance. Even if we can compute
accurate estimates of the generalization accuracy on the basis of the training data
only, finding the optimal subensemble is a computationally expensive problem
that involves comparing all the possible 2T − 1 non-empty subensembles that
can be extracted from the original ensemble. A feasible approach is to use a
greedy strategy based on modifying the order in which classifiers are aggregated
in the ensemble [6, 15, 10]. Starting from an initial pool of classifiers, in which
no particular ordering for combination is specified, ordered aggregation builds
a nested sequence of ensembles of increasing size by incorporating at each step
the classifier that improves the performance of the enlarged ensemble the most.
The first classifier in the sequence is generally the one with the lowest training

4 Authors Suppressed Due to Excessive Length

error. From the subensemble St−1 of size t − 1, the subensemble of size St is
constructed by incorporating a single classifier from the remaining pool of clas-
sifiers. This classifier is selected by maximizing a measure that is expected to be
correlated with the generalization performance of the ensemble. The measures
that are effective for this selection take into account the complementarity of
the classifiers selected, not only their individual accuracy or their diversity. In
this article we use boosting-based ordered bagging [15], which uses the weighted
training error defined in boosting to direct the ordering process. The algorithm
proceeds iteratively by updating the training example weights as in boosting:
the weights of training examples correctly (incorrectly) classified by the last
classifier incorporated into the ensemble are decreased (increased) according the
AdaBoost prescription [16]. The classifier that minimizes the weighted training
error is then incorporated into the ensemble. The results of extensive experimen-
tal evaluation using bagging to generate the initial pool of classifiers show that
early stopping in the aggregation process allows to identify pruned ensembles,
whose size is ≈ 20% of the complete ensemble, which outperform bagging and
retain baggings resilience to noise in the class labels of the examples.

3 Instance-based pruning

Consider a binary classification problem. Assume that we have built a paral-
lel ensemble composed of T classifiers built independently of each other. Each
classifier is induced from the same learning data by repeated applications of a
learning algorithm that involves some form of randomization. Consider an arbi-
trary instance x that needs to be classified. Assume that only t classifiers have
been queried, and that the current (partial) vote count is t1 for class 1 and t2 for
class 2 (t1+t2 = t). Without loss of generality we can assume that t1 ≥ t2. Using
the fact that the classifiers in a parallel ensemble are generated independently
of each other, the probability that the class labels predicted by the subensemble
of size t < T and by the complete ensemble of size T coincide is [11]

P̃(t1, t, T) =

T−t2∑

T1=max{t1,1+⌊T/2⌋}

(T − t)!

(T1 − t1)!(T2 − t2)!

(t1 + 1)T1−t1(t2 + 1)T2−t2

(t+ 2)T−t

(1)
where T1+T2 = T , and (a)n = a(a+1) · · · (a+n−1) is the Pocchammer symbol,
or rising factorial, with a and n nonnegative integers. If it is acceptable that,
with a small probability 1 − α, the predictions of the partially polled ensem-
ble and of the complete ensemble disagree, the voting process can be stopped
when the probability (1) exceeds the specified confidence level α. The final clas-
sification is estimated as the combined decision of the polled classifiers only.
In particular, the querying process can be halted after t classifiers have been
queried, if the vector of class predictions of the current subensemble t⋆1(t;T, α)
is such that P̃(t⋆1, t, T) ≥ α. For an ensemble of T = 101 classifiers and a con-
fidence level α = 99% the first few values of t⋆1(t;T = 101, α = 0.99)/t are
6/6, 7/7, 8/8, 8/9, 9/10, 10/11, 10/12, 11/13, . . .

A double pruning algorithm for classification ensembles 5

4 Experiments

In this section we perform experiments to determine whether IB-pruning can
be used in combination with ordered bagging. In the first set of experiments
IB-pruning is applied to a standard (randomly ordered) bagging ensemble. As
expected, the results of these experiments confirm the effectiveness of IB-pruning
in parallel ensembles. A second batch of experiments show that IB-pruning is
not effective when applied to ordered bagging because of the differences between
the classifiers that appear in the first positions in the ordered ensemble and
those that appear in the last positions. Finally, IB-pruning applied to a pruned
ensemble that is obtained by selecting the first ≈ 20% classifiers in the ordered
bagging ensemble. This last series of experiments illustrates the effectiveness of
IB-pruning on the pruned ensemble in the problems investigated.

All the experiments are performed on twelve binary classification problems
from the UCI repository [17]. The same learning setup is used to make compar-
isons possible. In all cases the results reported are averages over 10 independent
10-fold cross validation estimates. The protocol followed in each execution for
a partition of the data into training and test is as follows: (i) Build a bagging
ensemble composed of T = 101 CART trees [18] using the training set. The
standard settings for the generation of the decision trees are used. The ordering
of the initial ensemble is determined by the order of generation, which is random
in bagging. (ii) Estimate the generalization error in the test set for the whole
ensemble and for the first 21 trees in the randomly ordered ensemble. Apply
IB-pruning to the complete ensemble using α = 99% recording the test error
and the average number of trees used to classify the instances. (iii) Modify the
sequence of aggregation of the trees in the ensemble using boosting-based order-
ing [15]. This method is similar to boosting. However, instead of generating new
classifiers at each step, one selects the classifier from the original ensemble that
minimizes a weighted error on the training set. The weights of the instances
in the formula for the weighted error are specified according to the prescrip-
tion given by boosting. The test error for the ordered bagging using the first
21 trees of the ensemble. This value for the number of selected trees produces
consistently good results in a wide range of datasets [10]. Apply IB-pruning to
ordered bagging ensemble of T = 101 using α = 99%. Compute the average test
error and the average number of classifiers used to classify the instances. (iv)
Finally, apply IB-pruning to the first 21 trees of the ordered ensemble (T = 21
and α = 99%) recording the number of trees and classification error.

The results of applying IB-pruning to bagging are summarized in Table 1. For
each dataset, the table shows the average test error for bagging (BAG101), bag-
ging using the first 21 randomly generated classifiers (BAG21) and IB-pruning
applied to the full bagging ensemble (IB-BAG101). The average number of trees
used to classify each instance in IB-BAG101 is shown in the last column of the
table. The corresponding standard deviations are displayed after the ± sign.
These experiments confirm the results reported in [11]. Table 1 shows that the
generalization error of a bagging ensemble with 101 trees is generally better than
a bagging ensemble composed of 21 classifiers. This also confirms the observa-

6 Authors Suppressed Due to Excessive Length

10 20 30 40 50 60 70 80 90 100
0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

Ensemble size

E
rr

or
 R

at
e

german: error rate

Ordered Bagging
Bagging

10 20 30 40 50 60 70 80 90 100
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Ensemble size

E
rr

or
 R

at
e

sonar: error rate

Ordered Bagging
Bagging

Fig. 1. Test error curves with respect to the number of classifiers for bagging and
bagging ordered using boosting based ordering

Table 1. Results for bagging (best methods are highlighted in boldface)

Test error # trees IB
Problem BAG101 BAG21 IB-BAG101 (α = 99%)

australian 14.5±3.8 14.5±3.8 14.5±3.8 7.4±1.0
breast 4.8±2.8 4.8±2.6 4.8±2.8 8.6±1.3
diabetes 24.9±3.9 24.9±4.0 24.9±3.9 14.3±2.3
german 25.6±3.1 25.9±3.5 25.7±3.1 18.0±2.6
heart 19.6±8.0 19.9±8.0 19.4±7.8 18.5±4.8
horse-colic 17.8±6.3 17.9±6.0 17.7±6.2 9.9±3.0
ionosphere 9.7±4.6 9.8±4.5 9.7±4.5 8.6±1.9
labor 13.4±12.8 14.1±12.9 13.7±12.6 17.7±8.7
liver 31.1±6.2 31.9±6.9 31.1±6.2 21.1±5.2
sonar 25.1±9.7 25.1±9.2 25.0±9.7 19.4±5.4
tic-tac-toe 1.6±1.3 2.2±1.5 1.6±1.3 10.1±1.3
votes 4.4±3.0 4.4±3.0 4.4±3.0 6.1±0.3

tion that increasing the size of parallel ensembles in which the generation of the
individual classifiers involves some form of randomization generally improves the
generalization performance of the ensemble [19]. In contrast, when IB-pruning is
used to determine when to stop querying for the classification of new instances,
a performance comparable to BAG101 is achieved in the studied datasets using
on average a fairly small fraction of the classifiers. In particular, the average
number of trees that need to be queried in IB-BAG101 ranges from 6.1 for Votes
to 21.1 for Liver.

Table 2 compiles the results of the application of IB-pruning to ordered bag-
ging ensembles. The column labeled BAG101 displays the average and, after the
± symbol, the standard deviation of the test error rate obtained by a bagging
ensemble composed of 101 trees. The second column presents the results of IB-
pruning when applied to the complete ordered bagging ensemble (IB-OB101).
The average number of trees used by IB-OB101 is given in the fifth column.

A double pruning algorithm for classification ensembles 7

Table 2. Results for ordered bagging (best methods are highlighted in boldface)

Test error # trees IB (α = 99%)
Problem BAG101 IB-OB101 OB21 IB-OB21 IB-OB101 IB-OB21

australian 14.5±3.8 14.3±3.9 13.7±3.9 13.7±4.0 11.3±1.7 7.0±0.5
breast 4.8±2.8 4.5±2.6 4.1±2.6 4.0±2.6 8.7±1.2 5.9±0.3
diabetes 24.9±3.9 24.7±4.0 24.3±3.9 24.3±3.9 17.2±2.3 8.7±0.6
german 25.6±3.1 25.2±3.3 24.8±3.7 24.7±3.8 21.1±2.5 9.3±0.6
heart 19.6±8.0 18.9±7.6 18.6±7.2 18.6±7.1 20.2±4.0 9.4±1.0
horse-colic 17.8±6.3 17.5±6.2 16.3±6.6 16.3±6.5 9.8±2.1 6.6±0.7
ionosphere 9.7±4.6 8.5±4.4 7.5±4.2 7.5±4.1 10.9±2.0 6.7±0.6
labor 13.4±12.8 10.0±11.3 8.3±10.0 8.5±10.0 14.8±7.5 7.9±1.9
liver 31.1±6.2 29.5±6.2 28.2±6.5 28.4±6.7 28.0±4.6 11.8±0.9
sonar 25.1±9.7 23.6±9.5 20.2±10.7 20.2±10.7 26.1±5.3 11.2±1.3
tic-tac-toe 1.6±1.3 1.4±1.2 1.4±1.2 1.5±1.2 9.4±1.0 6.5±0.4
votes 4.4±3.0 4.4±3.1 4.7±3.2 4.6±3.2 7.0±0.8 5.6±0.3

The results for a pruned ensemble composed of the first 21 trees of the ordered
bagging ensemble are given in the column labeled OB21. These results show that
the performance of ordered bagging with 21 classifiers is better than that of full
bagging for all the datasets investigated except for Votes. Ordered bagging has
two advantages over bagging: faster classification, because only a small fraction
(≈ 20%) of the original classifiers is used, and, in general, better accuracy in the
test set. Instead of using a fixed number of classifiers, IB-pruning individually
determines the number of classifiers that are needed to estimate the complete
ensemble prediction for each particular instance. When IB-pruning is used in
conjunction with ordered bagging (column IB-OB101 in Table 2), the number
of queried classifiers is generally lower than the 21 trees used in pruned bag-
ging (OB21). However, it is over the number of elements queried by IB-pruning
for randomly ordered bagging (right most column of Table 1). In addition, the
accuracy improvement with respect to bagging is not as ample as the improve-
ment of OB21 over BAG101. This poorer performance is a consequence of the
fact that IB-OB101 is making inference about the predictions of the complete
ensemble on the basis of the predictions of only the first classifiers in the ordered
sequence. These classifiers follow a distribution that is different from the overall
distribution of classifiers in bagging. These results can be understood analyzing
the plots displayed in Fig. 1. The curves depicted trace the dependence of the
test error with the size of the ensemble using bagging and ordered bagging for
the classification tasks German and Sonar. This figure shows that by stopping
the aggregation of classifiers at ≈ 20 − 30% of the total number of elements in
the ensemble, a significant reduction in the classification error is obtained. These
error curves are representative of the general behavior of bagging and ordered
bagging in all the datasets investigated.

In the final batch of experiments IB-pruning is applied to a pruned ensemble
composed of the first 21 classifiers in ordered bagging. The results of these exper-

8 Authors Suppressed Due to Excessive Length

1 2 3 4 5 6

BAG21
IB−BAG101
BAG101

OB21
IB−OB21

IB−OB101

CD

Fig. 2. Comparison of the different methods using the Nemenyi test. Classification
systems whose performance are not significantly different according to this test (p-
value < 0.05) are connected by a line segment in the diagram.

iments are displayed in the fourth column of Table 2 (IB-OB21). The last column
shows the average number of trees used by IB-OB21. These results, show that
the generalization error of IB-pruning applied to OB-21 is equivalent to that of
OB21 in the problems analyzed. Small variations of one or two tenths of a percent
point both positive and negative can be observed for some datasets. Therefore,
the improvements obtained by IB-OB21 over complete bagging (BAG101) are
of the same magnitude as the improvements obtained by the pruned ensemble
obtained by early stopping in ordered aggregation (OB21). The number of trees
that need to be stored in memory is also reduced from 101 to 21 trees. Finally,
the average number of trees that need to be queried is further reduced by the
application of IB-pruning to the pruned ensemble OB21. Specifically, IB-OB21
employs an average number of trees that ranges from 5.6 (Votes) to 11.8 (Liver).
In summary, the application of IB-pruning to the pruned ensemble obtained from
ordered aggregation (OB21) improves the accuracy and reduces the memory re-
quirements of bagging as much as OB21 does. It has the additional advantage
that it predicts even faster than OB21.

The overall generalization performance of the different ensemble methods in
the classification tasks analyzed is compared using the methodology proposed
by Demšar [20]. Fig. 2 displays the rank of each method averaged over the re-
sults in the different classification tasks. In this diagram, the differences between
methods connected with a horizontal line are not significant according to a Ne-
menyi test (p-value< 0.05). The critical difference (CD=2.2 for 6 methods, 12
dataset and p-value< 0.05) is shown for reference. The best overall performance
corresponds to OB21 and IB-OB21. The performance of these two methods is
equivalent in the classifications tasks investigated. According to this test the
performance of OB21 and IB-OB21 in terms of average rank is significantly bet-
ter than standard bagging. The performances of the remaining methods are not
significantly different from bagging.

A double pruning algorithm for classification ensembles 9

5 Conclusions

In this article we propose to combine two existing pruning strategies to reduce
the computational costs associated with the use of ensembles of classifiers for
prediction and to improve their generalization performance. The first strategy
selects a subset of complementary classifiers from the original ensemble to re-
duce the storage requirements, speed-up the classification process and improve
the generalization performance. The algorithm is based on modifying the order
of aggregation of the classifiers in the ensemble: a nested sequence of ensembles
of increasing size is built by incorporating at each step the classifier that is ex-
pected to improve the classification error the most. The pruned subensemble is
obtained by early stopping in the ordered aggregation process. In this article,
the weighted error function used in boosting is used to guide the ordered aggre-
gation. Nonetheless, other criteria based on the complementarity of the classi-
fiers incorporated in the ensemble can also be used. Experiments in benchmark
classification problems have shown that this strategy can improve the general-
ization error of bagging ensembles by keeping only 20−30% of the classifiers, the
first ones in the ordered sequence. The second strategy, instance-based pruning
(IB-pruning), does not require any manipulation of the ensemble. It is applied
dynamically when a new instance is classified. Using the fact that the classifiers
in a parallel ensemble, such as bagging, are generated independently of each
other, it is possible to compute the probability that the majority class obtained
after having queried t classifiers will not change when the output the remaining
classifiers becomes known. If this probability is above a specified confidence level
α. The application of this method does not reduce the storage requirements (all
the classifiers need to be stored in memory for potential queries), but it leads to
a significant reduction in the average number of queries of ensemble classifiers
without a significant modification of the accuracy of the ensemble.

In the problems investigated, IB-pruning applied to the original (randomly
ordered) bagging ensemble obtains error rates similar to the complete ensemble
and reduces the average number of queries more than the pruned ensemble that
is built by selecting the first 21 classifiers in the ordered ensemble. However, its
accuracy is lower than the pruned ensemble. When IB-pruning is applied to the
complete ordered ensemble its generalization accuracy is better than the com-
plete ensemble. Nevertheless, this accuracy is still inferior to the pruned ordered
ensemble. This is due to the fact that the distribution of the predictions of classi-
fiers that appear first in the ordered ensemble is different from the last classifiers
included. Therefore, one of the basic assumptions of IB does not hold, leading
to suboptimal performance. Finally, when IB-pruning is applied to the pruned
ordered ensemble itself, a significant speed-up is achieved with a performance
that is similar to the pruned ensemble and much better than bagging. The re-
sult is a double pruning algorithm that significantly improves the performance of
bagging, achieving similar accuracy as pruned ordered bagging. Furthermore, it
reduces the memory requirements, because only the classifiers that are selected
in the pruned ordered ensemble need to be accessible for potential queries, and
predicts much faster than standard bagging.

10 Authors Suppressed Due to Excessive Length

References

1. Dietterich, T.G.: Ensemble methods in machine learning. In: Multiple Classifier
Systems: First International Workshop. (2000) 1–15

2. Dietterich, T.G.: An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning 40(2) (2000) 139–157

3. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience (2004)

4. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: Proc. of the
14th International Conference on Machine Learning, Morgan Kaufmann (1997)
211–218

5. Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better
than all. Artificial Intelligence 137(1-2) (2002) 239–263

6. Mart́ınez-Muñoz, G., Suárez, A.: Aggregation ordering in bagging. In: Proc. of
the IASTED International Conference on Artificial Intelligence and Applications,
Acta Press (2004) 258– 263

7. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from
libraries of models. In: Proc. of the 21st International Conference on Machine
Learning, New York, NY, USA, ACM Press (2004) 18

8. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: Ensemble diversity
measures and their application to thinning. Information Fusion 6(1) (2005) 49–62

9. Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite program-
ming. Journal of Machine Learning Research 7 (2006) 1315–1338

10. Mart́ınez-Muñoz, G., Hernández-Lobato, D., Suárez, A.: An analysis of ensemble
pruning techniques based on ordered aggregation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31(2) (2009) 245–259

11. Hernández-Lobato, D., Mart́ınez-Muñoz, G., Suárez, A.: Statistical instance-based
pruning in ensembles of independent classifiers. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31(2) (2009) 364–369

12. Latinne, P., Debeir, O., Decaestecker, C.: Limiting the number of trees in random
forests. In: Multiple Classifier Systems. (2001) 178–187

13. Sharkey, A., Sharkey, N., Gerecke, U., Chandroth, G.: The Test and select approach
to ensemble combination. In: Multiple Classifier Systems. (2000) 30–44

14. Breiman, L.: Bagging predictors. Machine Learning 24(2) (1996) 123–140
15. Mart́ınez-Muñoz, G., Suárez, A.: Using boosting to prune bagging ensembles.

Pattern Recognition Letters 28(1) (2007) 156–165
16. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning

and an application to boosting. In: Proc. of the 2nd European Conference on
Computational Learning Theory. (1995) 23–37

17. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
18. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-

sion Trees. Chapman & Hall, New York (1984)
19. Breiman, L.: Random forests. Machine Learning 45(1) (2001) 5–32
20. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal

of Machine Learning Research 7 (2006) 1–30

