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1. Introduction

The automatic generation of musical compositions
is a long standing, multi disciplinary area of
interest and research in computer science, with
over thirty years history at its back.

Some of the current approaches try to simulate
how the musicians play [1] or improvise [2],
while others do not deal with the time spent in the
process. Many of them apply models and
procedures of Theoretical Computer Science
(cellular automata [3], parallel derivation
grammars [1], or evolutionary programming [4-
7]) to the generation of complex compositions.
The models are then assigned a musical meaning.
In some cases, the music may be automatically
found (composed) by means of genetic
programming.

Our group is interested in the simulation of
complex systems by means of formal models,
their equivalence and their design, not only by
hand, but also by means of automatic processes,
such as genetic programming.

2. A brief introduction to musical
parameters

In the following paragraphs, some essential
musical theory concepts will be reviewed.

Melody, rhythm and harmony are considered the
three fundamental elements in music.

Melody is a series of musical silences (rests) and
sounds (or notes) with different lengths and
stresses, arranged in succession in a particular
rhythmic pattern, to form a recognizable unit.

Notes' names belong to the set {A, B, C, D, E, F,
G}. These letters represent musical pitches and
correspond to the white keys on the piano. The
black keys on the piano are considered as
modifications of the white key notes, and are
called sharp or flat notes. From left to right, the
key that follows a white key is its sharp key, while
the previous key is its flat key. To indicate a
modification, a symbol is added to the white key
name (as in A# or A+ to represent A sharp, or in
B b or B-, which represent B flat). The interested
reader can find an amusing simulation of a virtual
keyboard at [8].



The distance from a note to its flat or sharp notes
is called "a half step" and is the smallest unit of
pitch used in the piano, where every pair of two
adjacent keys are separated by a half step, no
matter their color. Two consecutive half steps are
called a whole step.

Notes and rests have a length (a duration in time).
There are seven different standard lengths (from
1, corresponding to a whole or round note, to
1/64), each of which has double duration than the
next. Their names are: whole, half, quarter,
quaver, semi-quaver, quarter-quaver and half
quarter-quaver. The complete specification of
notes and silences includes their lengths.

An interval may be defined as the number of half
steps between two notes.

3. The normalized compression
distance

The search for a universal metric has been one for
a long time of the main objectives of clustering
theory. The availability of such a metric would
make it possible to apply the same algorithms to
widely different clustering problems: to name a
few, the classification of music, texts or gene
sequences.

In particular, genetic algorithms need to define
fitness functions that make it possible to compare
many different individuals, those subject to
simulated evolution, and classify them according
to their degree of adaptation to the environment.

In many cases, these fitness functions have to
compute the distance of each individual (or one of
its properties) to a desired goal. Let's suppose that
we want to generate a composition that resembles
a Mozart symphony; in this situation we can
elaborate a natural fitness measure: an individual
(representing a composition) has a high fitness if
it shares many features with one (or more) of the
Mozart's symphonies. The problem now is how to
select those features and their respective metrics.
Surprisingly, there exists a universal similarity
metric that summarizes all the possible features:
the normalized information distance [9]. It is
universal in the following sense: if any metric
measures a small distance between two objects,
then the normalized information distance also
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measures a small distance between the same
objects; thus, it minorizes every computable
metric. The normalized information distance is
mathematically defined as follows:

_ maxtKx|y)L K(v]))
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where K(X|Y) is the conditional Kolmogorov

complexity of the string X given the string Y,
whose value is the length of the shortest program
(for some universal machine) which, when run on

input Y, outputs the string X. K(X)is the

degenerate case K (xIA) , where A is the empty
string; see [10] for a detailed exposition of the
appropriate  algorithmic information theory.
Unfortunately, both the conditional and the
unconditional complexities happen to be
incomputable functions.

In [11] a computable estimate of the normalized
information distance is presented
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where C(X) is the Ilength resulting of
compressing X with compressor C,and Xy is

the concatenation of X and Y. Li and Sleep have
reported that this metric, together with a nearest
neighbour classifier, outperforms some of the
finest (and much more complex) algorithms for
clustering music by genre [12]. Some earlier
researchers have also reported a great success in
clustering tasks with the same metric [13]. These
results suggest that the normalized compression
distance, although not achieving the universality
of its incomputable predecessor, works finely to
extracting shared features between two musical
pieces.

Putting it all together, we present the following
scheme for the automatic generation of music:

1. Select one or more musical pieces as the
guides for music generation.

Q={w, }1N



All the (3 must be coded in the same way.

2. Code the population's individuals with the
same coding as the guides.

3. Use the following fitness function:

_ 1
fx)= —Z (o)

We expect that, by maximizing f(X), we will
maximize the number of features shared by the
evolving individuals with the guide set. For

example, if €2 were the set of Mozart's
symphonies, an individual with a high fitness
should resemble (when played) a Mozart
symphony.

It remains to choose the compressor used to

estimate a Li and Sleep compute C((X) by
counting the number of blocks generated by the

LZ78 parsing algorithm [14] for an input & . In
our initial experiments, we used both the LZ78
and LZ77 algorithms, and found that LZ77
performs better, which agrees with [15]; therefore,
LZ77 has been used as our reference compressor
in all the experimental results presented in this

paper.

4. A genetic algorithm that generates
music

A piece of music can be represented in several
different, but equivalent ways:

*  With the traditional Western bi-dimensional
graphic notation on a pentagram.

* With a set of strings interpreted in the
following way: the notes are represented by
letters (A-G), silence by a P, sharp and flat
alterations by + and — signs, and the lengths of
notes by a number (i.e. 0 would represent a
whole note, 1 a half note, and so on).
Intermediate lengths can be indicated by
inserting a period. Additional codes can
define the tempo and the octave, whether the
notes must be executed in a normal way (or
legato or staccato), and so forth. Polyphonic
music may be represented by means of
parallel strings.
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* By numbering consecutively the pitches of all
the notes in the piano keyboard, and
representing each by its number (1 to 88). The
length of each note can be represented by a
number indicating a multiple of the minimum
unit of time or a sub-multiple of the round
note. A piece of music can be represented by
a series of integer pairs. The first number in
each pair is the note, the second its length.
Note 0 can represent a silence. Polyphonic
music may be represented by means of
parallel sets of integer pairs.

¢ Other coding systems are used to keep and
reproduce music in a computer, such as MIDI,
MP3, et cetera.

In our experiments, we decided to represent music
by means of the second and third notation systems
indicated above. In fact, the genetic algorithm
generates music coded as pairs of integers, a
format specially fitted for that purpose. This
notation can then be transformed to a note string
for reproduction purposes. We also decided to
start with monophonic music, leaving harmony
for a later phase and working only with melodies.
Finally, we took the decision to apply the genetic
algorithm only to the relative pitches of the notes
in the melody (i.e. we only consider the relative
pitch envelope), ignoring the absolute pitches and
the note lengths, because our own studies and
other’s [12] suggest that a given piece of music
remains recognizable when the lengths of its notes
are replaced by random lengths, while the
opposite doesn’t happen (the piece becomes
completely unrecognizable if its notes are
replaced by a random set, while maintaining their
lengths).

The scheme for the genetic algorithm is as
follows:

1. Provide one or more pre-written pieces of
music, which will be used as the guide set for
the algorithm. These pieces will be expressed
as N pairs of integers, as described above.
Provide also a goal distance to the guide piece
of music (a minimum distance that, on being
reached, will make the goal fulfilled).

2. Generate a random population of 64 vectors of
N pairs of integers. The first integer in each



pair is in the [24,48] interval, the second in the
[1,16] interval. Each vector represents a
genotype.

3. Compute the fitness of every genotype as the
distance to the guide set, measured by means
of the normalized compression distance
(algorithm LZ77).

4. Order the 64 genotypes by increasing distance
to the guide set.

5. If the lowest distance is less or equal to the
goal distance, stop and return the notes in the
corresponding genotype, paired with the
lengths in the guide piece(s) of music.

6. From the ordered list of 64 genotypes created
in step 5, remove the 16 genotypes with least
fitness/highest distance (leaving 48) and take
the 16 genotypes with most fitness/lowest
distance. Pair these 16 genotypes randomly to
make 8 pairs. Each pair generates another pair,
a copy of their parents, modified according to
four genetic operations. The new 16 genotypes
are added to the remaining population of 48 to
make again 64, and their fitness is computed as
in step 3.

7. Go to step 4.

The four genetic operations mentioned in the
algorithm are:

* Recombination (applied to 100% generated
genotypes). Given a pair of genotypes, (X, Xz
.. Xp) and (y1, ¥z ... Ym), @ random integer is
generated in the interval [0, min(n,m)]. Let it
be i. The resulting recombined genotypes are:
(X1, X2 o Xty Yis Yitd - Ym) @0d (Y1, Y2 oo Vit X
Xit] oo Xn).

* Mutation (one mutation was applied to every
generated genotype, although this rate may be
modified in different experiments). It consists
of replacing a random element of the vector by
a random integer in the same interval.

* Fusion (applied to a certain percentage of the
generated genotypes, which in our experiments
was varied between 5 and 10). The genotype is
replaced by a catenation of itself with a piece
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randomly broken from either itself or its
brother’s genotype.

» Elision (applied to a certain percentage of the
generated genotypes, in our experiments
between 2 and 5). One integer in the vector (in
a random position) is eliminated.

The last two operations allow longer or shorter
genotypes to be obtained from the original N
element vectors.

In our first experiment, we used as the guide a
single piece of music: Chopin’s seventh prelude,
represented by the following string:

M2T203L2EO4C+3.D403M1BBB1M204F+D+
3. EAM1AAAIM2C+03A+3.B404M1DDD103G
+M2G+3.A404M1C+C+C+103M2EO4C+3.D4
O3M1BBB1M204F+D+3.E405M1C+C+C+104
C+M2C+3.D4M1F+F+F+1M203G+B3.A404M 1
AAALI

After applying the genetic algorithm, we
completed the succession of notes obtained with
length information in the following way: each
note was assigned the length of the note in the
same position in the guide piece (the guide piece
was circularly extended, if needed, to make it the
same length as the generated piece). In successive
executions of the algorithm, we obtained different
melodies at different distances from the guide. It
was observed that a lower distance made the
generated music more recognizable to the ear, as
related to Chopin’s style. For instance, the
distance to the guide of the following generated
piece is 0.39:

T504C103E2.C+3A+1A+1A+002A+103C+2.0
2B303B1B1B0D+1D+2.E3G+104C103E0C+1D
2.F3F1F102B0C+1A+2.B3G+1G+1G+003G+1
G+2.G+302B103E1EOE102B2.03F+3D+1ET1A
0A1A2.

The number of generations needed to reach a
given distance to the guide depends on the guide
length and on the random seed used in each
experiment, and follows an approximate Poisson
curve, as shown in figure 1, that represents the
result of one experiment.
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Figure 1. Number of generations needed to
reach a given distance to the target.

In our second experiment, we used two
simultaneous guide pieces: Beguin the Beguine,
and My heart belongs to daddy, both by Cole
Porter, and minimized the sum of the distances of
the evolving individuals to the two guide pieces.

The following represents one of the results we
obtained, which happens to be at a distance of
0.67 from the first guide piece, and 0.72 from the
second, while the normalized compression
distance between both guide pieces is 0.81, i.e. the
generated piece resulted to be nearer both of the
guides than they are among themselves:

T503C+3.D3.02A3.03F+1.F+3.D+3.02G+3.03
C+102G+3.C+3.D+3.D3.F1D+3.C+3.C3.C3.C+3
.D+103C3.D3.F3.D1F3.E3.02G+3.03D+2C202
A+103C3.02A+3.A+3.A+1A+1G+3.E1.F+3.04
C3.03F3.G1.F+3.C+3.D+3.E1G+3.E3.E3.02C3.
D+1C+3.D+3.03C3.C3.G+3.C+1D+2E2F+3.E1.
02B3.03G+3.02C3.C+3.C+1C+3.F3.G3.G1F1D
+3.03C1C3.02A3.D3.A+3.03C1D3.02F+3.F+3.
D3.G3.F103D3.E2D+2E1.D+3.G+3.02D+3.D+1
G3.A3.G+3.03C3.02A1A3.E3.F+3.G3.B3.G1D+
3.D+3.F3.A+3.B103D+3.C+3.F+3.F+1.E3.D+3.
D+3.C202B103D+3.C3.02B203E202A1A2G+
3.G+3.E2.F+3.F3.D+2F1D3.D+3.03F2D+3.F+3.
D102A2G+3.03C+3.G+2F2C+202A2F103F+3.
B2.02F+3.E3.G3.F+1E3.E3.D+3.C+3.03C+1.02
G+1C+3.C+1D+3.F3.A+2G+2G+3.F+1D+2E3D0
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D+2F3.D+303G3.D2B202D+203C3C3C3.C20

2B0A3.A3A3.B2.03C3.F+1G3.A+3.G+3F+3A3.

F1.C202G+3.G+3.03G+0A+3.B3.B0B3.02E3A
+3B3.03D3.D3.02A+103D+3F+3F0F+3.D+3F3
G3.G3.G3.G+2A+304C303A3A+2G+002F+3G
+3F+3.F3.F+3.03G+2F+3A3A+3G+3.F+1D+3.C
+3.C3.02A+3.A+0A+3.03C3.02A+3.03C3.C+0
D3.C3.02C3.

To obtain the preceding piece, we completed the
succession of notes generated by the genetic
algorithm with the required length information, in
the following way: each note was assigned the
average lengths of the two notes in the same
position in the two guide pieces (the guide pieces
were shortened or circularly extended to make
them the same length as the generated piece). This
approach happened to provide a much more
esthetically appealing result than the one obtained
using the length of only one of the guide pieces.

Finally, in the last experiment presented here, two
pieces by Mozart were used as simultaneous
guides: a few bars of the first movement in
Symphony 40, and a part of the second movement
in sonata KV545. The result, which appears
tantalizingly Mozartian to the ear in some parts,
happens to be at distances of 0.65 and 0.58 from
the two guide pieces, which on the other hand
differ from one another by a distance of 0.90. The
length of the notes was generated in the same way
as in the preceding experiment.

T504G+0F+3B3.A+3A3G+2.G+3B1F1G+1.F3.D
+3D+3D3.C303A+304F2.G+3F1C+1F+2.D+3.F
+2E2D2C+203F2.F+3.G+104C103A3.F3.04F3.
G3F3F3.G3E3G3.B303E3G3.F2.G+3G4G+2A2
04G2G+2G1G+3.F3.G+3.05C304A+3G+3.A+3
A+2.G+3.G3.G3.E3D+303F+3F3F+3.G3.G+3.A
3.A3.G3F+3F+3.D+3.D3.04D3.C+2C+3E203A+
204C+3C203B2G1B104D3.C3.03G3.04D+3G
3D3.D+3D3D+3.D3E3F3.G3.F3.E3F3G103D+3
E3D+3.D+3B3B3.A+3.04F3.G2.G+3A+3.G3

In comparison with this, the piece obtained by
evolution towards the two works by Cole Porter
has a distinctly lighter sound.



4. Conclusions and future work

We have found that the normalized compression
distance is a promising tool to provide genetic
algorithms for automatic music generation with a
measure of the distance to the desired target,
which may be used as an appropriate fitness
function. Some of the generated pieces of music
have a significant similarity to the style of well-
known authors, in spite of the fact that our fitness
function ignores the duration of the notes and
takes into account only the relative pitch
envelope. Our results have been much better than
those we obtained with a different procedure and
fitness function in [16].

In the future we intend to combine our results
with those of other authors [12-13], so as to use as
the target for the genetic algorithm, not just one or
two pieces of music by a given author, but a
cluster of pieces by the same author, in this way
trying to capture the style in a more general way.
We shall also use the information about note
duration in the algorithm.

We shall also try to work with a more standard
and richer system of music representation, such as
MIDI or MP3.
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