A Fitness Function for Computer-Generated Music using Genetic
Algorithms

MANUEL ALFONSECA, MANUEL CEBRIAN and ALFONSO ORTEGA
Escuela Politécnica Superior
Tomas y Valiente, 11
Universidad Autonoma de Madrid
28049 Madrid SPAIN
{Manuel.Alfonseca, Manuel.Cebrian, Alfonso.Ortega} (@uam.es

Abstract: - This paper describes the use of genetic algorithms for the automatic generation of music, by
means of a fitness function computed with the normalized compression distance. Different recombination
procedures are tested. The computer music generated tries to recover the style of a selected human author. In
spite of the simplicity of the algorithm, the procedure obtains interesting results.

Keywords: - Evolutionary Computation, Coding and Information Theory, Genetic Algorithms, Computer

Generated Music, Classification, Clustering

Acknowledgement: - This work has been sponsored by the Spanish Ministry of Science and Technology

(MCYT), project number TIC2002-01948.

1. Introduction

The automatic generation of musical compositions
is a long standing, multi disciplinary area of
interest and research in computer science, with
over thirty years history at its back [1-7].

Our group is interested in the simulation of
complex systems by means of formal models,
their equivalence and their design, not only by
hand, but also by means of automatic processes,
such as genetic programming [8-9].

This paper is organized thus: the second section
provides a short introduction to musical concepts
needed to better understand the remainder, with a
description of the restrictions applied in our
experiments and an enumeration of different ways
of representing music. The third section explains
the normalized compression distance, which has
been used to compute the distance of the results of
the genetic algorithm from the target musical
pieces. The fourth section describes the genetic
algorithm we have used for music generation. In
the fifth and sixth sections we describe our
experiments, where we have compared the use of
one or two target guides, and four different
recombination procedures for the genetic
algorithm. Finally, the last section presents our
conclusions and possibilities for future work.

2. Musical representation:
restrictions

Melody, rhythm and harmony are considered the
three fundamental elements in music. In the
experiments performed in this paper, we shall
restrict ourselves to melody, leaving the
management of rhythm and harmony as future
objectives. In this way, we can forget about
different instruments (parts and voices) and focus
on monophonic music: a single performer
executing, at most, a single note on a piano at a
given point in time. Melody consists of a series of
musical sounds (notes) or silences (rests) with
different lengths and stresses, arranged in
succession in a particular rhythmic pattern, to
form a recognizable unit.

In Western music, the names of the notes belong
to the set {A, B, C, D, E, F, G}. These letters
represent musical pitches and correspond to the
white keys on the piano. The black keys on the
piano are considered as modifications of the white
key notes, and are called sharp or flat notes. From
left to right, the key that follows a white key is its
sharp key, while the previous key is its flat key.
To indicate a modification, a symbol is added to
the white key name (as in A# or A+ to represent A
sharp, or in Bb or B-, which represent B flat). The

interested reader can find an amusing simulation
of a virtual keyboard at [10]. The distance from a
note to its flat or sharp notes is called a “half step”
and is the smallest unit of pitch used in the piano,
where every pair of two adjacent keys are
separated by a half step, no matter their color.
Two consecutive half steps are called a whole
step. Instruments different from the piano may
generate additional notes; in fact, flat and sharp
notes may not coincide; also, in different musical
traditions (such as Arab or Hindu music)
additional notes exist. However, in these
experiments, we shall restrict to the Western piano
lay-up, thus simplifying the problem to just 88
different notes separated by half steps. An interval
may be defined as the number of half steps
between two notes.

Notes and rests have a length (a duration in time).
There are seven different standard lengths (from
1, corresponding to a whole or round note, to
1/64), each of which has duration double than the
next. Their names are: whole, half, quarter,
quaver, semi-quaver, quarter-quaver and half
quarter-quaver. Intermediate durations can be
obtained by means of dots or periods. The
complete specification of notes and silences
includes their lengths.

A piece of music can be represented in several

different, but equivalent ways:

e With the traditional Western bi-dimensional
graphic notation on a pentagram.

e By a set of character strings: notes are
represented by letters (A-G), silence by a P,
sharp and flat alterations by + and — signs, and
the lengths of notes by a number (0 would
represent a whole note, 1 a half note, and so
on). Adding a period provides intermediate
lengths. Additional codes define the tempo,
the octave and the performance style (normal,
legato or staccato). Polyphonic music is
represented with sets of parallel strings.

* By numbering (1 to 88) the pitches of the
notes in the piano keyboard. Another number
can represent the length of the note as a
multiple of the minimum unit of time. A voice
in a piece of music would be a series of
integer pairs representing notes and lengths.
Note 0 would represent a silence. Polyphonic
music may be represented by means of
parallel sets of integer pairs.

* Other coding systems are used to keep and
reproduce music in a computer or a recording
system, with or without compression, such as
wave sampling, MIDI, MP3, etc.

In our experiments, we represent melodies by the
second and third notation systems.

3. The normalized compression
distance

The search for a universal metric has been, for a
long time, one of the main objectives of cluster
theory. The availability of such a metric would
make it possible to apply the same algorithms to
widely different clustering problems, such as the
classification of music, texts, gene sequences, and
so forth.

In particular, genetic algorithms need to define
fitness functions to compare different individuals,
subject to simulated evolution, and classify them
according to their degree of adaptation to the
environment.

In many cases, fitness functions compute the
distance from each individual (or one of its
properties) to a desired goal. Let's suppose that we
want to generate a composition that resembles a
Mozart symphony; in this situation, we can
elaborate a natural fitness measure: an individual
(representing a composition) has a high fitness if
it shares many features with one (or more) of the
Mozart's symphonies. The problem is how to
select those features and their respective metrics.

Surprisingly, there exists a universal similarity
metric that summarizes all the possible features:
the normalized information distance [11]. 1t is
universal in the sense that, when any metric
measures a small distance between two given
objects, the normalized information distance also
measures a small distance between the same two
objects; thus, it is at least as good as any other
computable metric. The normalized information
distance is mathematically defined as follows:

_ maxtKx y).K(v])/
d(x.y)= max{Kx).K(y);

where K(X|Y) is the conditional Kolmogorov

complexity of string X given string Y, whose
value would be the length of the shortest program
(for some universal machine) which, when run on

input string Y, outputs string X. K(X)is the

degenerate case K(xIa) , where A is the empty
string; see [12] for a detailed exposition of the
appropriate algorithmic information theory.
Unfortunately, both the conditional and the
unconditional complexities happen to be
incomputable functions.

In [13] a computable estimate of the normalized
information distance is presented

a0 y_ Cley) =minfdx).C(y);
T AT BTN

Where C(X) is the length obtained by
compressing X with compressor C, and XY is

the concatenation of X and Y. Li and Sleep have
reported that this metric, together with a nearest
neighbour or a cladistic classifier, outperforms
some of the finest (more complex) algorithms for
clustering music by genre [14]. Earlier researchers
have also reported a great success in clustering
tasks with the same metric [15]. These results
suggest that the normalized compression distance,
although not achieving the universality of its
incomputable predecessor, works well to extract
features shared between two musical pieces.

It remains to choose the compressor used to

estimate d. Li and Sleep compute C(x) by
counting the number of blocks generated by the

LZ78 compression algorithm [16] for an input .
In our initial experiments, we used both the LZ78
and LZ77 algorithms, and found that LZ77
performs better, which agrees with [17]; therefore,
LZ77 has been used as our reference compressor
in all the experimental results presented in this

paper.

4. The genetic algorithm used to
generate music

Our genetic algorithm generates music coded as
pairs of integers, the third format described in

section 2, which is specially fitted for our purpose.
This notation can then be transformed to a note
string (the second format) for reproduction. We
also decided, in this first set of experiments, to
apply the genetic algorithm only to the relative
pitches of the notes in the melody (i.e. we only
consider the relative pitch envelope), ignoring the
absolute pitches and the note lengths, because our
own studies and other’s [14] suggest that a given
piece of music remains recognizable when the
lengths of its notes are replaced by random
lengths, while the opposite doesn’t happen (the
piece becomes completely unrecognizable if its
notes are replaced by a random set, while
maintaining their lengths).

The proposed genetic algorithm scheme is now
described. It includes a previous pre-process step,
made of the following parts:
* One or more musical pieces are selected as
targets or guides for music generation.
Q={w,} 1N
All the wy must be coded in the same way,
as pairs of integers, as described above.
* The individuals in the population are coded
in the same way as the guides.
* The following fitness function is used:

_ 1
Slx)= —Z (o)

where d (x, y) was defined in section 3. By

maximizing f (X) (minimizing the sum of the
distances), we expect to maximize the number
of features shared by the evolving individuals

with the guide set. For example, if {2 were
the set of Mozart's symphonies, an individual
with a high fitness should resemble (when
played) a Mozart symphony.

The remaining steps of the genetic algorithm are:

1. The program generates a random population of
64 vectors of N pairs of integers, where N is
the length of the first piece of music in the
guide set. The first integer in each pair is in the
[24,48] interval, the second in the [1,16]
interval. Each vector represents a genotype.

2. The fitness of the genotypes is computed as the
distance to the guide set, measured by means
of the normalized compression distance.

3. The genotypes are ordered by their increasing
distance to the guide set.

4. If the goal distance has been reached, the
program stops. The notes in the target
genotype are paired with a function of the
lengths of the guide piece(s).

5. The 16 genotypes with least fitness are
removed. The 16 genotypes with most fitness
are paired randomly. Each pair generates a pair
of children, a copy of the parents modified by
four genetic operations. The children are added
to the population to make again 64, and their
fitness is computed as in step 2.

6. Go to step 3.

The four genetic operations mentioned in the
algorithm are:

* Recombination (applied to 100% generated
genotypes). The genotypes of both parents are
combined using different procedures to
generate the genotypes of the progeny.
Different recombination procedures have been
tested in this set of experiments to find the best
combination.

* Mutation (one mutation was applied to every
generated genotype, although this rate may be
modified in different experiments). It consists
of replacing a random element of the vector by
a random integer in the same interval.

* Fusion (applied to a certain percentage of the
generated genotypes, which in our experiments
was varied between 5 and 10). The genotype is
replaced by a catenation of itself with a piece
randomly broken from either itself or its
brother’s genotype.

» Elision (applied to a certain percentage of the
generated genotypes, in our experiments
between 2 and 5). One integer in the vector (in
a random position) is eliminated.

The last two operations, together with some
recombination procedures, allow longer or shorter
genotypes to be obtained from the original N
element vectors.

5. Testing different numbers of guide
pieces

In our first experiments, we selected the simplest
recombination procedure and tested the effect of
varying the number of guide pieces and the
functions that generate the lengths of the notes in
the best output pieces. First, we used as the guide
a single piece of music, Yankee Doodle,
represented by the following string:

M2T203L2C+4C+4D+4F4C+4F4D+402G+403
CH+4C+4D+4F4C+3C4P4C+4C+4D+4F4F+4F4D
+4C+4C402G+4A+403C4C+3C+4P402A+4.03
C5.02A+4G+4A+403C4C+H4P402G+H4.A+5.G+4
F+4F3G+4P4A+4.03C5.02A+4G+4A+403C4C
+402A+4G+403C+4C4D+4C+3C+3

In this case, the fitness function was
straightforward: the objective was to minimize the
normalized compression distance of the vectors of
note intervals of the evolving individuals to the
corresponding vector in the guide piece. After
applying the genetic algorithm, the succession of
notes obtained was completed by adding length
information in the following way: each note was
assigned the length of the note in the same
position in the guide piece (the guide piece was
shortened or circularly extended, if needed, to
make it the same length as the generated piece,
which could be shorter or longer). In successive
executions of the algorithm, we obtained different
melodies at different distances from the guide. It
was observed that a lower distance made the
generated music more recognizable to the ear, as
related to the guide piece. For instance, the
distance to the guide of the following generated
piece is 0.43:

T503D+202G+203C+2C+2D+2F2F+2F2E2C2
D2E202F1D2E2D2C2D2E2F+2G2G2A2B203C
202B203D2E102F2D+2F2.G3.G+2F2D+2G+2F
+2E2F+2.F3.C+2C2D+1C+2C+2A+2.03C3.C+2
02G+2A+2G+2F+203D+2B203D+2C+2

The number of generations needed to reach a
given distance to the guide depends on the guide
length and the random seed used in each
experiment, and follows an approximate Poisson
curve, as shown in figure 1, which represents the
result of one experiment.

I I I I I
o jalule] 1000

I 1 I
15C0 2002

Figure 1. Number of generations needed to reach a given distance to the target.

In our second experiment, we used two
simultaneous guide pieces: Beguin the Beguine,
and My heart belongs to daddy, both by Cole
Porter. In this case, the fitness function to be
minimized was the sum of the normalized
compression distances of the note intervals of the
evolving individuals to the note intervals of the
two guide pieces.

The following represents one of the results we
obtained, which happens to be at a distance of
0.67 from the first guide piece, and 0.72 from the
second, while the normalized compression
distance between both guide pieces is 0.81, i.e. the
generated piece was nearer to both guides than
they are among themselves:

T503C+3.D3.02A3.03F+1.F+3.D+3.02G+3.03
C+102G+3.C+3.D+3.D3.F1D+3.C+3.C3.C3.C+3
.D+103C3.D3.F3.D1F3.E3.02G+3.03D+2C202
A+103C3.02A+3.A+3.A+1A+1G+3.E1.F+3.04
C3.03F3.G1.F+3.C+3.D+3.E1G+3.E3.E3.02C3.
D+1C+3.D+3.03C3.C3.G+3.C+1D+2E2F+3.E1.
02B3.03G+3.02C3.C+3.C+1C+3.F3.G3.G1F1D
+3.03C1C3.02A3.D3.A+3.03C1D3.02F+3.F+3.
D3.G3.F103D3.E2D+2E1.D+3.G+3.02D+3.D+1
G3.A3.G+3.03C3.02A1A3.E3.F+3.G3.B3.G1D+
3.D+3.F3.A+3.B103D+3.C+3.F+3.F+1.E3.D+3.
D+3.C202B103D+3.C3.02B203E202A1A2G+
3.G+3.E2.F+3.F3.D+2F1D3.D+3.03F2D+3.F+3.
D102A2G+3.03C+3.G+2F2C+202A2F103F+3.

B2.02F+3.E3.G3.F+1E3.E3.D+3.C+3.03C+1.02
G+1C+3.C+1D+3.F3.A+2G+2G+3.F+1D+2E3D0
D+2F3.D+303G3.D2B202D+203C3C3C3.C20
2B0A3.A3A3.B2.03C3.F+1G3.A+3.G+3F+3A3.
F1.C202G+3.G+3.03G+0A+3.B3.B0B3.02E3A
+3B3.03D3.D3.02A+103D+3F+3F0F+3.D+3F3
G3.G3.G3.G+2A+304C303A3A+2G+002F+3G
+3F+3.F3.F+3.03G+2F+3A3A+3G+3.F+1D+3.C
+3.C3.02A+3.A+0A+3.03C3.02A+3.03C3.C+0
D3.C3.02C3.

To obtain the preceding piece, we completed the
succession of notes generated by the genetic
algorithm with the required length information, in
the following way: each note was assigned the
average lengths of the two notes in the same
position in the two guide pieces (the guide pieces
were shortened or circularly extended to make
them the same length as the generated piece). This
approach happens to provide a more esthetically
appealing result than the one obtained when the
length of only one of the guide pieces is used.

In our third experiment, Chopin preludes numbers
4 and 7 were used as simultaneous guides. The
result came to be at distances of 0.61 and 0.74
from the two guide pieces, which are separated
from one another by a distance of 0.96. The length
of the notes was generated in the same way as in
the preceding experiment. Compared with this, the

piece obtained using as guides two works by Cole
Porter has a distinctly lighter sound.

T503G+2.02A+203G1.02A+103G003F+1.03
C002B2.03D+1.03F+102F+002F+1.02G00O2F
+2.02F1.02E2.02E202E002B1.03C203D+3.0
3D+2.03D+2.03D103C+2.02A+1.02A202G+0
02G+202A103C2.03E203G3.02B2.03D2.03
C104C2.04C202C302D002F102D+002A103
F+1.03G203E2.02F+202B1.02B202B3.02D+
402G+202F102G+102F202F+202A+3.02A+2
.02A+2.02C+102A+2.02A+202A3.02A+2.03
C+2.03F102B202B203C+2.02B2.03B003B1
02B2.03F+1.03G203B202B003C+1.02B003
C+2.

6. Testing different recombination
procedures

In our next set of experiments, we tested the effect
of changing the recombination procedure used by
the genetic algorithm. The following strategies
were used:

o Strategy 1: given a pair of genotypes, (X, X5 ...
x,) and (yi, y» ... Ym), @ random integer is
generated in the interval [0, min(n,m)]. Let it
be i. The resulting recombined genotypes are:
(X1, X2 ov Xty Yis Yit1 - Ym) @0d (Y1, Y2 oo Vit X,
Xi+] ... Xp). This is the base case (the simplest
recombination strategy) which was used in all
the experiments described in the preceding
section.

» Strategy 2: given a pair of genotypes, (X, X5 ...
x,) and (Y1, ¥z ... Ym), two random integers are
generated in the interval [0, n] (let us call them
i, j, 1<j) and another two in the interval [0,m]
(let us call them p, q, p<q). The resulting
recombined genotypes are: (X, Xz ... Xi1, Yps
Ypil oo Yoo Xj» Xjr1 ... Xn) @nd (Y1, Y2 oo Yp-1, Xis
Xit1 oo X1, Yoo Ygit1 - ym)

» Strategy 3: given a pair of genotypes, (X, X; ...
x,) and (yi, y2 ... Ym), four random ordered
integers are generated in the interval [0, n], [0,
m] for each parent genotype. Each genotype is
then cut into the five corresponding pieces,
which are shuffled together (one of them is
reversed). The genotypes of the progeny are
obtained by concatenating five of the pieces in
the shuffled set.

e Strategy 4: similar to the preceding one, but
only three random ordered integers are used to
divide the parent genotypes into four pieces,
which are then joined, shuffled, and used (four
at a time) to generate the genotypes of the

progeny.

The one-point crossing-over strategy 1 has the
property that the lengths of the parent genomes
are invariant under recombination in the progeny.
Since mutation also keeps the length of the
genome, only fusion and elision change it. In fact,
we did notice that, in our preceding experiment,
fusion almost never leads to a fitter genome, while
elision sometimes does, which means that the
version of our genetic algorithm described in the
previous section, which starts with a genome
length copied from one of the target pieces of
music, leads to genome lengths usually reduced
by a little (not much) from their initial value.
Strategies 2, 3 and 4, however, all lead to progeny
genomes with lengths usually quite different from
those of their parents (even when both parent
genomes had the same length), which provides the
population with a much larger genome length
variety than strategy 1.

After performing several experiments we noticed
that, at the beginning of the evolution, the second
recombination strategy converges more quickly
towards the target, but after a certain number of
generations (usually between 150 and 200), the
first and fourth strategies becomes better, while
beyond about 500 generations after the beginning
of the process the first strategy is clearly the best.
Above 1000 generations, the first two strategies
tend to converge, i.e. to obtain similar distances to
the goal after the same number of generations.

This brought us to our fifth and sixth strategies,
which are simple combinations of the four
described above:

* In the first 150 to 200 generations, the
algorithm uses the second strategy (the two
point recombination procedure with four
different crossing-over points between both
parents). During all the remaining generations,
the first strategy is used instead (i.c., the one
point recombination procedure with a single
crossing-over point for both parents).

* In the first 200 generations, the program uses

the second strategy; between generations 200
and 500 it switches to the fourth strategy, and
above 500 generations it uses the first strategy.

The results of the combined strategies are much
better than those of any of the four strategies
applied separately, as shown in table 1. It can be

observed that the first mixed strategy reaches, in
just 600 generations, target distances similar to
those attained by the first two strategies in over
2500 generations. The improvement of the mixed
strategies is therefore quite impressive. On the
other way, the two mixed strategies attain
comparable results.

Nr. of | Strategy 1 | Strategy 2 | Strategy 3 Strategy 4 First mixed
generations strategy
1 0.930 0.930 0.930 0.930 0.930
100 0.782 0.766 0.807 0.791 0.766
200 0.734 0.710 0.756 0.744 0.697
300 0.714 0.692 0.740 0.712 0.676
400 0.702 0.692 0.722 0.704 0.659
500 0.690 0.689 0.722 0.704 0.648
600 0.681 0.683 0.716 0.704 0.643
1000 0.663 0.682

1500 0.658 0.666

2000 0.656 0.658

2500 0.644 0.652

Table 1. A comparison of the performance

0.80

First strategy

0.78

—_

== Mixed strategy
| . | R |

1
4] 1000 2000 3000 4000

Figure 2. Comparison between three different
recombination strategies.

Figure 2 shows a graphical representation of the
results. Figure 3 shows the results of a different
experiment with the same three strategies.

In our analysis of the reasons for this behaviour,
we have come to the conclusion that, with the first
strategy, the population reaches a smaller genetic
variability, where favourable mutations have a
greater probability of appearing. On the other

of five different recombination strategies.

0.9

0.8

First strategy

0.7

Second strategy

i ‘ \ s | ‘ | ‘ | s |
o 200 400 G600 &oo 1000

Figure 3. Performance comparison of another
experiment with the same recombination strategies.

hand, the second strategy generates a much
greater genetic variability, both with respect to
genome lengths and contents, where favourable
mutations are much harder to come by. This
means that, on the long range, the first strategy
should work better than the second, which on the
other hand gets faster results during the first part
of the process, by evolving simultaneously in
many directions and testing widely different
genomes at the same time. Thus, the mixed

strategy makes the best use of both recombination
procedures, which is the reason for its outstanding
performance success.

7. Conclusions and future work

We prove that the normalized compression
distance is a promising fitness function for genetic
algorithms used in automatic music generation.
Some of the pieces of music thus generated
remind the style of well-known authors, in spite of
the fact that the fitness function only takes into
account the relative pitch envelope. Our results
have been much better than those obtained
previously with a different fitness function [18].

In the future we intend to combine our results
with those of other authors [14-15] to use as the
target for the genetic algorithm, not one or two
pieces of music by a given author, but a cluster of
pieces by the same author, thus trying to capture
the style in a more general way. We also intend to
modify the algorithm to use the information about
note duration.

We shall also work with a standard and richer
system of music representation, such as MIDI.

References:

[1] J. McCormack (1996). Grammar-based music
composition. Complex International, Vol 3.

[2] J. Biles (1994). GenJam: A Genetic Algorithm
for Generating Jazz Solos, Proceedings of the
1994 International Computer Music Conference,
ICMA, pp. 131-137, San Francisco, 1994.

[3] E. Bilotta, P. Pantano, V. Talarico (2000).
Synthetic Harmonies: an approach to musical
semiosis by means of cellular automata,
Leonardo, MIT Press, vol. 35:2, pp. 153-159,
April 2002.

[4] D. Lidov, J. Gabura (1973). A melody writing
algorithm wusing a formal language model,
Computer Studies in the Humanities Vol. 4:3-4,
pp- 138-148, 1973.

[5] P. Laine, M. Kuuskankare (1994). Genetic
Algorithms in Musical Style oriented Generation,
Proceedings of the First IEEE Conference on
Evolutionary Computation, pp 858-862, Orlando,
Florida, vol. 2, 1994.

[6] D. Horowitz (1994). Generating Rhythms with
Genetic Algorithms, Proceedings of the ICMC

1994, pp. 142-143, International Computer Music
Association, Arhus, 1994.

[7] B. Jacob (1995). Composing with Genetic
Algorithms, Proceedings of the 1995
International Computer Music Conference, pp.
452-455, ICMC, Banff Canada, 1995.

[8] Alfonseca, M., Ortega, A., Suarez, A. (2003).
Cellular automata and probabilistic L systems: An
example in Ecology, in Grammars and Automata
for String Processing: from Mathematics and
Computer Science to Biology, and Back, ed. C.
Martin-Vide & V. Mitrana, Taylor & Francis, pp.
111-120. ISBN: 0415298857.

[9] Ortega, A., Abu Dalhoum, A., Alfonseca, M.
(2003). Grammatical evolution to design fractal
curves with a given dimension, /BM Journal of
Research and Development, Vol. 47:4, p. 483-
493, Jul. 2003.

[10] M. Moncur, The www virtual keyboard,
http://www.xmission.com/~mgm/misc/keyboard.h
tml.

[11] M. Li, X. Chen, X. Li, B. Ma and P. Vitanyi
(2003). The similarity metric, Proc. 14th ACM-
SIAM Symposium on Discrete Algorithms, pp.
863-872.

[12] P. and M. Li (1993). An Introduction to
Kolmogorov Complexity and its Applications,
Springer-Verlag.

[13] R. Cilibrasi and P. Vitanyi (2005). Clustering
by Compression, [EEE Trans. Information
Theory, Vol.51 No.4, pp. 1523-1545.

[14] M. Li and R. Sleep (2004). Melody
Classification using a Similarity Metric based on
Kolmogorov Complexity, Sound and Music
Computing.

[15] R. Cilibrasi and P. Vitanyi (2004).
Algorithmic Clustering of Music, Proc. Of the
Fourth Intl. Conf. on Web Delivering of Music
(WEDELMUSIC’04), pp. 49-67, IEEE Computer
Society, ISBN: 0.7695-2157-6.

[16] J. Ziv and A. Lempel (1997). A universal
algorithm for sequential data compression, /[EEE
Transactions on Information Theory, Vol.23:3,
pp. 337-343.

[17] S. R. Kosaraju and G. Manzini (1997). Some
entropic bounds for Lempel-Ziv algorithms, Data
Compression Conference, pp. 446.

[18] A.Ortega, R.Sanchez Alfonso, M.Alfonseca
(2002). Automatic Composition of Music by
means of Grammatical Evolution, APL Quote
Quad (ACM SIGAPL), Vol. 32:4, p. 148-155,
Jun. 2002.

