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Abstract—The problem of Mission Planning for a large num-
ber of Unmanned Air Vehicles (UAV) can be formulated as a
Temporal Constraint Satisfaction Problem (TCSP). It consists on
a set of locations that should visit in different time windows, and
the actions that the vehicle can perform based on its features such
as the payload, speed or fuel capacity. In this paper, a temporal
constraint model is implemented and tested by performing
Backtracking search in several missions where its complexity has
been incrementally modified. The experimental phase consists on
two different phases. On the one hand, several mission simulations
containing (n) UAVs using different sensors and characteristics
located in different waypoints, and (m) requested tasks varying
mission priorities have been carried out. On the other hand, the
second experimental phase uses a backtracking algorithm to look
through the whole solutions space to measure the scalability of
the problem. This scalability has been measured as a relation
between the number of tasks to be performed in the mission and
the number of UAVs needed to perform it.

Keywords—Unmanned Aircraft Systems, Mission Planning,
Temporal Constraint Satisfaction Problems, Backtracking

I. INTRODUCTION

Unmanned Aircraft Systems (UAS) can take advantage
of planning techniques where the application domain can be
defined as the process of generating tactical goals for a team of
Unmanned Air Vehicles (UAVs). Nowadays, these vehicles are
controlled remotely from ground control stations by humans
operators who use legacy mission planning systems.

Mission planning for UAS can be defined as the process
of planning the locations to visit (waypoints) and the actions
that the vehicle can perform (loading/dropping a load, taking
videos/pictures, acquiring information), typically over a time
period. These planning problems can be solved using different
methods such as Mixed-Integer Lineal Programming (MILP)
[1], Simulated Annealing [2], Auction algorithms [3], etc.
Usually, these methods are the best way to find the optimal
solutions but, as the number of restrictions increase, the com-
plexity grows exponentially because it is a NP-hard problem.

Other modern approaches formulate the mission planning
problem as a Constraint Satisfaction Problem (CSP) [4], where
the tactic mission is modelled and solved using constraint
satisfaction techniques. Our work will deal with multiple UAVs

that must perform one or more tasks in a set of waypoints and
in specific time windows. The solution plans obtained should
fulfill all the constraints given by the different components and
capabilities of the UAVs involved over the time periods given.
Therefore a Temporal Constraint Satisfaction Problem (TCSP)
representation is needed.

There are several functional CSP modellers and solvers,
such as Gecode [5], Opturion-CPX [6] or Choco [7], among
others. Some of them are pretty efficient, such as Gecode,
which has been used in many research projects in last the years
[8] [9]. In this paper, we model a mission planning problem
as a TCSP for a team of UAVs, using Gecode as the CSP
modeller to program the constraints of the problem, and solve
them using Backtracking (BT) search. The scalability of the
problem is analysed as the number of tasks and UAVs increase,
paying special attention to whether tasks collide in time or not.

The rest of the paper is structured as follows: section
IT shows the state of the art in the aforementioned topics
of Mission Planing and CSPs. Section III describes how a
Misison is defined in the UAV domain. Section IV is focused
on the modellization of the problem as a TCSP. Sections V and
VI explains the experiments performed and the experimental
results obtained. Finally, the last section presents the final
analysis and conclusions of this work.

II. RELATED WORK
A. Mission Planning

Planning has been an area of research in Artificial In-
telligence (AI) for over three decades. A variety of tasks
including robotics [10][11], web-based information gathering
[12][13][14], autonomous agents [15][16][17] and mission
control [18] have benefited from planning techniques.

In the literature there are some attempts to implement UAS
guidance systems that achieve mission planning and decision
making. Doherty [19] presents an architectural framework for
mission planning and execution monitoring, using temporal
action logic (TAL) for reasoning about actions and changes;
and its integration into a fully deployed unmanned helicopter.

A similar project, called ReSSAC (Search and Rescue
by Cooperative Autonomous System), was carried out by



the French Aerospace Lab (ONERA) for search and rescue
scenarios [20]. The problem was modelled using the Markov
Decision Process (MDP) framework and dynamic program-
ming algorithms for the mission planning. Konigsbuch [21]
extends this model and integrates it in a robotic helicopter.

Finally, German Aerospace Centre (DLR) also developed a
mission management system based on the behavior paradigm
[22] which has been integrated onboard the ARTIS helicopter
and validated in different scenarios, including waypoints fol-
lowing and search and track missions.

An essential concept in Mission Planning is cooperation
or collaboration, which occurs at a higher level when various
UASs work together in a common mission sharing data and
controlling actions together. Besides, techniques and algo-
rithms for cooperative missions can be divided into two main
categories: cooperative perception and cooperative mission
planning and decision-making [23].

Regarding cooperative mission planning, there are few con-
tributions that deal with multi UAS problems in a deliberative
paradigm (cooperative task assignment and mission planning).
A mission planner should provide a list of assignment tasks
where each task is assigned to an available vehicle that should
perform this task. This assignment is based on information
about the tasks and the capabilities of the vehicles. Bethke et
al. [24] propose an algorithm for cooperative task assignment
that extends the receding-horizon task assignment (RHTA) al-
gorithm [25] developed at MIT. The modified RHTS algorithm
solves an optimization problem to select the optimal sequence
of tasks for each UAS. Another approach by Kvarnstrom
et al. [26] propose a new mission planning algorithm for
collaborative UAS based on combining ideas from forward-
chaining planning with partial-order planning, leading to a
new hybrid partial-order forward-chaining (POFC) framework
that meets the requirements on centralization, abstraction, and
distribution found in realistic emergency services settings.

B. Constraint Satisfaction Problems

A mission can be described as a set of goals that are
achieved by performing some task with a group of resources
over a period of time. The whole problem can be summed up
in finding the correct schedule of resource-task assignments
that satisfies the proposed constraints, like a CSP that can be
defined as [27]:

e A set of variables V = vy, ,v,

e  for each variable, a finite set of possible values D; (its
domain)

e and a set of constraints C; restricting the values that
variables can simultaneously take

In a CSP, the states are defined by the values of the
variables and the goal test specifies the constraints that the
values must obey. Many kind of designs and scheduling
problems can be expressed as CSPs.

Typically, a CSP is represented as a graph, with the
pair <Variables,Values> in the nodes and the constraints in
the edges, although there are other representations as those
presented in [28][29][30] for Ant Colony Optimization and

videogames. There are many studied methods to search the
space of solutions for CSPs, such as BT, Backjumping (BJ)
or look-ahead techniques (i.e. Forward Checking (FC) [31]).
These algorithms are usually combined with other techniques
like consistency techniques [32] (domain consistency, arc
consistency or path consistency) to modify the CSP and ensure
its local consistency conditions.

BT [33] is a method of solving CSP by incrementally
extending a partial solution that specifies consistent values for
some of the variables, towards a complete solution, and by re-
peatedly choosing a value for another variable consistent with
the values in the current partial solution. If a partial solution
violates any of the constraints, backtracking is performed to
the most recently instantiated variable that still has alternatives
available. BT is strictly better than random generate-and-test
algorithm, however, its running complexity for most nontrivial
problems is exponential.

A TCSP is a particular class of CSP where variables rep-
resent times (time points, time intervals or durations) and con-
straints represent sets of allowed temporal relations between
them [34]. Different classes of constraints are characterized
by the underlying set of basic temporal relations (BTR). Most
types of TCSPs can be represented with Point Algebra (PA),
with BTR = {@, <, =,>,<,>,7}.

In the related literature, Mouhoub [35] proved that on real-
time or Maximal TCSPs (MTCSPs), the best methods for solv-
ing them were Min-Conflict-Random-Walk (MCRW) in the
case of under-constrained and middle-constrained problems,
and Tabu search and Steepest-Descent-Random-Walk (SDRW)
in the over-constrained case. He also developed a temporal
model, TemPro [36], which was based on interval algebra, to
translate an application involving temporal information into a
CSP.

A TCSP can perfectly represent an UAS mission as a set
of temporal constraints over the time the tasks in the mission
start and end. Besides the temporal constraints, the problem
has various constraints imposing the proficiency of the UAVs
to perform the tasks.

III. DEFINING UAV MISSION PLANS

A UAS mission can be defined as a number n of tasks to
accomplish for a team of UAVs. A task could be exploring a
specific area or search for an object in a zone, which can be
carry out thanks to the sensors belonging to a particular UAV
as can be seen in Table I. Each task must be performed in a
specific geographic area, in a specific time interval and needs
an amount of payloads to be accomplished.

TABLE I: Different task actions considered

Action Payload Needed

Taking pictures of a zone . Camera EO/IR

. Camera EO/IR

Taking real-time pictures of a zone ~V X
. Communications Equipment

Tracking a zone ° Radar SAR

To perform a mission, there are a number m of UAVs, each
one with some specific characteristics:



e  The fuel consumption rate

e  The maximum reachable speed

e  The minimum cruise speed

e  The maximum and minimum flight altitude

e  Whether it has or not permission to go to restricted
areas

e An amount of capacities or payloads (cameras, radars,
communication equipments, ...) available.

Moreover, in each point in time, each UAV is positioned
at some coordinates and is filled with an amount of fuel.

Therefore, the main goal to solve the problem is to assign
each task with an UAV that is able to perform it, and a start
time of the UAV departure to reach the task area in time. Note
that the UAV could be parked at an airport or in flight after
performing a previous task. For this simple approach, we will
despise the UAV fuel and time costs due to the takeoff and
loiter during tasks development. Figure 1 shows an overview
of the mission planning process.

Resources Info (Input) Mission Info (Input)

Task 1 Task 2 Task 3
Actions 1 || Actions 2 || Actions 3

UAVs Info

Zones Info Sensors Info

Payload Constraints / Time Constraints

Mission Planning

Data Preprocess

Planned Mission (Output)

UAY 1 UAV 2 uAY 3 UAV 4
Task 1 Task 2 Task 3 Task 4
Time Time Time Time

Fig. 1: Mission Planning overview.

IV. MODELLING UAV MISSIONS AS A TCSP

Given the previous definition of mission planning, it is
pretty simple to note that it can be formulated as a schedul-
ing problem with constraints, including particularly temporal
constraints related to the UAV departure times the tasks have
to be performed.

In this approach, the problem domain is modelled as a
TCSP where the main variables are the tasks and their values
will be the UAVs that perform each task and their respective
departure times. Moreover, there are two additional variables,
the fuel cost and distance travelled for each task, that can
be deduced from tasks assignment and UAV characteristics.
The different constraints defined to model this approach are as
follows:

Temporal constraints assuring an UAV does not per-
form two tasks at the same time. Let ¢; be the time the
ith task is completed, and 7; the duration of the task,
i.e. the difference between the end and the start (not
to be confused with the departure) times of the task.
Besides, let k be an UAV that executes two tasks ¢ and
7, where 7 takes place before j, then ¢; must precede
the departure time of k for j. Here, we also define
the distance travelled by k to reach a task ¢ in time,
d—;, and the mean cruise speed the UAV flies to
reach that task, vi_,;. Then the following inequality
must be obeyed:

djoes
ti < tj— v:*? s (1)
—J

To compute the distance, we need to know where the
UAV is located before the start of the task. For this
purpose, we have created a m X n matrix pos of task
to UAV positions, with posy ; denoting the position
of vehicle k before the start of task ¢. Each time an
assignment is done, this matrix is updated changing
the row of the assigned UAYV, so any subsequent to the
task assigned would be the middle point of the area
where the task is developed. With this matrix, we can
compute every distance between two points using the
Haversine formula with the latitude and longitude

laty — lat
dop = 2rgarTH arcsin <\/sin2 (a22al) +

cos(laty) cos(laty) sin® (l(mgglongl) > ?)

2

and the Euclidean distance with the altitude

dsp = /d? + (alty — alty)?. 3)

Therefore, if the distance from the position of the UAV
can be computed as the middle point of the area of
the task, we can conclude that:

di—; = t.area.distance(posy, ;) )

Speed window constraints: the mean cruise speed of
the UAV k£ necessary to perform the task ¢ depends
on the speed window vy ma, and vk min by:

Vk,min S Vk—1i S Vk,max (5)

Payload constraints: another constraint is whether an
UAV carries the corresponding payload to perform a
task. Let P denote the payloads available for UAV k
and P; the payloads needed for the task 7 (performed
by k), then:

Pigpkv (6)

Altitude window constraints: an UAV k, with an
altitude window k. and kp_, , performing a task
1 developed in an area with an altitude window A4z
and M., must obey:



TABLE III: Available UAVs

k.hpaw > t.area.hyp,aq @)
Cruise . Restricted .
k hmin < i.area hmzn (8) UAV s Altitude Fuel Initial
. < 1. . peed . zone
1D window window permission consume Fuel
e  Zone permission constraints: another constraint is the 1 90 — 110] km/h | [0.3 — 6.5] km YES 0.159 L/km | 97.52 L
implication that a restricted area has in the tasks to 2 90 — 110 km/h | [0.3 — 6] km NO 0.159 L/km | 5848 L
f Just UAVs with . - 3 [110 — 190] km/h | [0.8 — 10] km YES 0.2 L/km 14023 L
pertorm. Jus § wilh permissions in those areas 7 90 — 110] km/h 0.3 — 6] km YES 0.159 L/km | 47.12L
shall perform the tasks. 3 90 — 110] km/h 0.3 — 6] km NO 0.159 L/km | 10148 L
) ) ) 6 90 — 110] km/h 0.3 — 6] km NO 0.159 L/km | 10137 L
e  Fuel constraints: Finally, we must constraint the fuel 7 90 — 110] km/h 0.3 — 6] km NO 0.159 L/km | 58.15L
cost for each UAV. The fuel cost for an UAV k
performing a task ¢ is f; = k.fuelConsume x UAV ID Payloads available ]
(dg—i + 7i0;), being v; the speed at which the task is e  Camera EO/IR
performed. It obeys the following inequality: 1 e Radar SAR
. Communications Equipment
Z 2
fi < k:fuel (9) . Camera EO/IR
. 3 . Camera EO/IR
€Ty, e  Radar SAR
v M 4 . Camera EO/IR
. ODEL IMPLEMENTATION o Camera EO/IR
. . 5 ° Radar SAR
' Using Gecode, we have modelled the problem explqmed e Communications Equipment
in the previous section. Then, we have designed 10 missions, e Camors BOIR
each one composed by an increasing number of tasks from 6 e  Radar SAR
1 to 10, i.e the first mission has one task; the second, two e  Communications Equipment
tasks; and so on. Table II shows the 10 considered tasks, where 7 e  Camera EO/IR

the first mission will execute task with ID 1; the second will
execute tasks with IDs 1 and 2; and so on. This table shows

the duration of the tasks instead of the start and end times.  tasks. Figure 2a shows an scenario with no time dependencies

These times will be fixed on the next section depending on
the number of dependencies between the tasks.

TABLE II: UAS mission with 10 tasks

Task ID Actions Duration Zone altitude Restricted
window Zone?

1 Taking pictures 25 min [1.5 — 5] km NO
of a zone

2 Tracking a zone 20 min (1.5 — 5] km No

3 Taking real-time 30min | [2.5— 6.15] km YES
pictures of a zone

4 Taking pictures 25 min [0.5 — 3.75] km NO
of a zone

5 Tracking a zone 35 min [0.5 — 3.75] km NO

6 Tfiking real-time 30 min [3.85 — 5] km NO
pictures of a zone

7 Taking real-time 25 min [3.85 — 5] km NO
pictures of a zone

8 Taking real-time 12 min [1.5 — 5] km NO
pictures of a zone

9 Taking pictures 20 min [1.5 — 5] km NO
of a zone

10 Tracking a zone 25 min [2.5 — 6.15] km YES

Different scenarios for solving the missions have been
prepared with an increasing number of UAVs able to perform
the tasks. The tasks contain several constraints, so when the
number of tasks is very high, a high number of UAVs is
also needed, mainly because of the fuel constraints. We have
considered missions with 4 to 7 vehicles available to perform
the tasks (see Table III). For a mission with 4 vehicles, we use
UAVs with IDs 1 to 4; for a mission with 5 vehicles, UAVs
with IDs 1 to 5; and so on.

Then, each scenario has been implemented with different
perspectives based on the time dependencies between the

between tasks, i.e. the tasks do not collide in time. Figure 2b
shows an scenario where each task collides in time with the
previous task, i.e. there are n — 1 dependencies, with n the
number of tasks. Finally, when each task collides in time with
the two previous tasks, i.e. there are 2(n—1)— 1 dependencies,
we have the scenario shown in Figure 2c.

[ I T T T T T T I T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 4.5

Time (hours)

(a) No dependencies

[ I I T T I T T 1
0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0

Time (hours)

(b) Dependency of each task with the previous task.

T UL 1
00 03 05 08 10 13 15 18 20 23
Time (hours)

(c) Dependency of each task with the two previous tasks.

Fig. 2: Three perspectives of the scenarios based on the number
of time dependencies between the tasks.



VI. EXPERIMENTAL RESULTS

BT search implemented by Gecode solver has been used to
solve the missions explained in the previous section, analysing
the runtime spent in the process. This search algorithm per-
forms constraint propagation with different consistency levels
depending on the type of the constraint. For all the developed
constraints in our problem, domain consistency is applied.

Figures 3 and 4 shows the number of solutions and runtime
obtained when the tasks do not collide in time (see Figure
2a). As we can see, the growth of the number of solutions is
nearly exponential as the number of tasks increase. Indeed, the
exponentiality is higher and more appreciable as the number
of UAVs increase. For the runtime, the situation is similar, and
the exponentiality growth is much higher. So it is clear that the
scalability of the problem as the number of variables increase
is exponential.

[—o— 4 UAVs
[~ S UAVs
[ & UAVs

T UAME

100000 150000

solutions

50000
1

o
1

T T T T T
2 4 g 8 10

Tasks

Fig. 3: Number of solutions for missions with 1 to 10 tasks,
where each task has no dependencies with any other, for groups
of 4 to 7 UAVs.
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1.0e+07

runtime ¢msy

A.0e+06
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T T T T T
2 4 g 8 10

0.0e+00
|

Tasks

Fig. 4: Runtime for missions with 1 to 10 tasks, where each
task has no dependencies with any other, for groups of 4 to 7
UAVs.

On the other hand, Figures 5 and 6 shows what happens
when each task collides in time with the previous task (see
Figure 2b). As it can be seen, the growth is still pretty
exponential for both the number of solutions and the runtime,
but much smaller than with no dependencies. We also note
that for less UAVs to perform the tasks, the exponentiality
of the number of solutions disappears. This is because of the
high number of constraints that, in conjunction with the new
temporal constraints due to the tasks dependencies, reduces
the space search and, for a high number of tasks, makes the
problem highly complex.

20000

—— 4 UAVS
—*— & LAV
—— 8 UAVs

T UAVs

10000 14000
| |

solutions

5000
|

0
1

T T T T T
2 4 i} 8 10

Tasks

Fig. 5: Number of solutions for missions with 1 to 10 tasks,
where each task collides in time with the previous, for groups
of 4 to 7 UAVs.

—*— 4 UAVs
—— 5 UAVs
—— 8 UAVs

T UAVS

1000000 1500000
| |

runtime msy

500000
|

0
1

T T T T T
g 8 10

Tasks

Fig. 6: Runtime for missions with 1 to 10 tasks, where each
task collides in time with the previous, for groups of 4 to 7
UAVs.

When each task collides in time with the two previous tasks
(see Figure 2c), the results in Figures 7 and 8 show that the
growth of the runtime is still exponential, but much smaller
than in the two previous cases. On the other hand, the growth
of the number of solutions has a more polynomial likely



behaviour. We can notice how a great number of constraints
affect the scalability of the solutions of the problem.

1 [~ 4 UAVs
= 5 UAVs
[~ 8 UAVs
- T UAMs

1000 1200

solutions
800
1

GO0
1

400
1

T T T T T
2 4 g 8 10

Tasks

Fig. 7: Number of solutions for missions with 1 to 10 tasks,
where each task collides in time with the two previous, for
groups of 4 to 7 UAVs.

T [ 4uAvs
[~ B UAVs
[~ 8 UAVs

T UAVs

150000

runtime ¢msy
100000

50000
1

T T T T T
2 4 5} 8 10

Tasks

Fig. 8: Runtime for missions with 1 to 10 tasks, where each
task collides in time with the two previous, for groups of 4 to
7 UAVs.

Finally, in Figures 9 and 10 we can see for a group of
6 UAVs, a comparison of the results obtained according to
the number of existing dependencies explained in the three
previous experiments. We can see how the temporal constraints
highly affect the space of solutions of the problem, but also
the runtime necessary to find this new space of solutions.

VII. CONCLUSIONS AND DISCUSSION

The paper presents a model for UAV Mission Planning
based on Temporal Constraint Satisfaction Problems, and a
scalability analysis of this problem as the number of variables
increases. The presented approach defines missions as a set of
tasks to be performed by several UAVs with some capabilities.
The problem is modelled using: (1) temporal constraints to

—— 8 UAVs No Dependencies
—*— 6 UAVs 1 Dependency
— —%— B UAVs 2 Dependencies

60000 100000
|

solutions

20000
|

1]
1

Tasks

Fig. 9: Number of solutions for missions with 1 to 10 tasks
for a group of 6 UAVs, with no dependencies, one dependency
with the previous task or dependencies with the two previous
tasks between them.

—— 8 UAVs No Dependencies
—— @ UAVs 1 Dependency
—%— 6 UAVs 2 Dependencies

Be+0i
1

runtime cms
Ge+0f
|

4e+05
1

2e+06
1

Oe+00
1

T T T T T
2 4 6 8 10

Tasks

Fig. 10: Runtime for missions with 1 to 10 tasks for a group
of 6 UAVs, with no dependencies, one dependency with the
previous task or dependencies with the two previous tasks
between them.

assure that each UAV only performs one task at a time; (2)
logical constraints such as the maximum and minimum altitude
reachable or restricted zone permissions, and (3) resource
constraints, such as the sensors and equipment needed or the
fuel consumption.

From the obtained results, we have observed that the
runtime necessary to search the entire space of solutions by BT
search is exponential as reported in literature. However, as the
number of constraints increases (in this case the dependency
constraints making tasks collide in time), the runtime decreases
highly, but this scalability still resembles exponential. On the
other hand, the number of solutions resembles exponential,
but as the number of dependency constraints increases, the
scalability loses its exponential behaviour and resembles more



polynomial. This is due to the power of a dependency temporal
constraint, which highly reduces the search space of solutions.

Although the runtime needed for exploring the space of
solutions is exponential, we have seen that when there are too
many constraints, as the number of tasks increase, there is a
point where the resources of the available UAVs needed to
supply all the tasks of the mission begin to decrease. In this
situation, the number of solutions begin to decrease despite
the increase of possible assignments due to a higher number
of tasks.

As future lines of work, this model needs to be compared
against other optimization algorithms (such as Branch and
Bound, Genetic Algorithms or Swarm algorithms, among
others) to find feasible solutions without the necessity to
explore the whole search space, which is not possible in a
real scenario. Using these new algorithms, new heuristics to
reduce the complexity of the problem and adapting our current
model, we expect to be able to simulate problems near to real
scenarios.
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