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Abstract

This paper revises a few existing methods to comfractal dimensions, underlines their dependemcy o
the graphical properties of the curves, and propcsed discusses a new method, based on the
representation of fractals by means of Lindenmaystems, that makes use of the structure of the L
systems to compute the fractal dimension. The noeithamplemented in Prolog and its limitations and
usefulness are discussed.

Introduction

The concept of dimension is very old and seems aasl evident. We live in a space with three
dimensions: length, width and depth. Some of th¢eaib in our environment are approximately
bi-dimensional: a sheet of paper, a picture, aetdbp... Others have a single prevalent dimension:
distant road, a pencil line drawn on paper... Whatcall dimension may sometimes be defined as the
number of directions in which movement is allowed.

Things appear very clear and elegant: dimensioescansecutive integers: 0 (a point), 1 (a line}a2
surface), 3 (a volume), with no doubtful cases. Bietre are some, as Mandelbrot proved in his famous
book on fractals [1]. Depending on the size ofdbserver, a ball of thread can be considered as:

e A point (zero dimensions) if the observer is vamgke (a mountain, a planet) or very far.

* A sphere (three dimensions) if the observer is aralple to the size of the ball (as a human being)
and is located near the ball.

e Atwisted line (one dimension) if the observernsadler than the ball (an ant) and very near it.

* Atwisted cylinder (three dimensions) if the obseris much smaller than the ball (a bacterium).

« Aset of isolated points (zero dimensions) if thase&rver is even smaller and can see the atoms.

* A set of spheres (three dimensions), if the obs&rgeze is comparable to the atoms.

e And so forth.

In 1890, the Italian mathematician Giuseppe Pea&fimed a curve with several strange propertieschwhi
was called anonstrous curve. It is a line (therefore appears to be one-dinmad), but it fills a square (in
the sense that it goes through every point in thea) and therefore could be considered
two-dimensional. Another curious property of thiswe is that it has no tangent or derivative at point.

There are many other famous monstrous curves,astie one devised by Helge von Koch in 1904, with
a shape that reminds a snowflake. As the Peane citifvas no derivative at any point, and its |tundg is
infinite, even though its size is limited. Its dingon seems to be larger than one, although it doeéll

the plane, and thus cannot reach two.

In 1919, H. Hausdorff proposed a new definitiondahension, applicable to those doubtful cases, to
distinguish them from normal surfaces and linesthVidis definition, monstrous curves in the plang/ma
have a fractional dimension, between one and toisTPeano's curve has a Hausdorff dimension of 2,
and von Koch's snowflake has a Hausdorff dimensfon



log(4)
log(3)

= 1, 2618595071429. ..

Other alternative definitions of dimension were gsed along the twentieth century [2-3]. Most are
similar to the Hausdorff dimension and have theesaaiue in many cases, but differ in details aret&p
circumstances. Let us mention the Hausdorff-Begichwdimension, the Minkowsky dimension and the
box-counting dimension. Most of them are caliemttal dimensions and used in different situations.

The namefractal, introduced in 1975 by Mandelbrot [1,4], appliesdbjects that have some special
properties, such as self-similarity (containingiespf themselves), underivability at every poartd/or a
fractal dimension greater than their integer topumal dimension. They are appropriate for the
description of natural shapes, and have been useassfully to code and compress images [5-7].

Fractals have been generated or represented leyafiffmeans, such as fractional Brownian movements,
recursive mathematical families of equations (sashthose that generate the Mandelbrot set) and
recursive transformations (generators) appliedntondial shape (the initiator). This paper is isted
only in the latter.

L systems, devised in 1968 by Aristid Lindenmay&rdre also called parallel derivation grammarsi an
differ from Chomsky grammars because derivatiamissequential (a single rule is applied at evégp)s
but parallel (as many rules as possible are appliedery step).

L systems are very appropriate to represent fradigcts obtained by means of recursive transfoomsit
[9]. The initiator maps to the axiom of the L systdhe generator becomes the production rulesgvthé
recursive applications of the generator to theiatut correspond to the successive derivationshef t
axiom. The fractal corresponds to the limit of therd derived from the axiom when the number of
derivations tends to infinity. Something else i®aed, however: a graphic interpretation that makes
possible to convert each of the words generatetidy. system into a visible graphic object.

Two different families of graphic interpretationtlosystems have been used: turtle graphics antbrvec
graphics. In a previous paper [10] we have provédctal-equivalence theorem between two families o
L systems, one associated with a turtle graphitsrpretation, the other with vector graphics. Tive t
families are interesting because most of the fladtathe literature can be represented by meatisenf.
Our theorem makes it possible to focus here otetgraphics without a significant loss of geneyalit

In another previous paper [11], we have describpcebminary version of the algorithm presentedeher
written in APL2. The current paper, however, camtaa full treatment of the different special cabed
may arise, which would make our definition of fi@adimension invalid or divergent. We also consiher
detail the problems due to the fact that a fractave may be self-overlapping. The algorithm isoals
applied to a new class of fractals, defined by &tems with more than one non-trivial symbol. Mokt o
the examples in this paper are different, and Heeen chosen to demonstrate these new and probtemati
cases. Finally, a version of the algorithm is pded that has been written in PROLOG, rather thabh2AP

Calculating the fractal dimension of self similar curves

A wide spectrum of techniques has been used tmaithe fractal dimension of self similar curves
[12-14]. We shall mention here two of the most imtaot.

Ruler dimension estimation

This method computes the fractal dimension of a s a function of two measurements taken while
walking the fractal line in a number of discretepst. We will take as unity the distance between the
beginning and the end of the fractal line to bekexdl The first measurement is the length of the step
used orpitch length, which must be constant during the whole walk. $heond is the number of steps
needed to reach the end of the walk by followirgftiactal curve, N(j.

We call O, the number for which the following relation holds:



Npy=p

If we take logarithms in both sides of this equatioe get:
log(N(p,)) =-D, Uog(p,)

The fractal dimension is the limit of,Pwhen ptends to zero.

0, = nm[""g(N(p'»j
log(p))

Box dimension estimation.

This method computes the fractal dimension of a s a function of two measurements taken while
covering the fractal line by a number of discredads. If we call N(d) the number of boxes of lineare

d necessary to cover a set of points distributea two-dimensional plane, the box dimension israbfi

as the exponentin the equation

N(d)= d™™
If we take logarithms in both sides of this equatiee get:

log(N(d)) = -D, og(d)

The fractal dimension is defined as the limit gfthen d tends to zero.

. Iim(_log(N(d))j
d-0+ |Og(d)

There is a wide set of variations to this simplbesne. Some of them assign a weight to each box
depending on the number of points it contains.eladtof counting the number of boxes, another vanat
estimates the information entropy for the set okd®p where the number of points is considered the
information.

Alternative ways of calculating the box dimensichange the shape and the nature of the set of boxes
Square shaped boxes are usually used to defingritie but they can be placed at any position and
orientation. Families of concentric circular boxéth increasing radius are used too.

Calculating the fractal dimension from the equivalent L system

All the techniques described in the previous paxplys try to measure the fractal dimension as a rati
between how much the curve grows in length and imaxeh it advances. We have tried to reach the same
result by operating directly on the L system thgtresents the fractal curve, without performing any
graphical representation.

Each word in the derivation represents a givenigardtion of the recursive generation of the frhcta
curve. The production rules embody the alloweddsf@mation between configurations. Therefore, the
growth of the words is related to the correspondjrath of the curve. The graphic interpretatiortha

L system makes it possible to assign bi-dimensigpabrdinates to the letters in each word. Onceehe

co-ordinates have been computed, it is straightioswio obtain the distance between different points
These distances may be used as a measure of hdwthaucurve grows in length. Performing operations
on strings should be an easier method of comptii@dractal dimension than the computation of atlim



Theturtle graphicsinter pretation

As stated before, two different graphic interpiietag may be used to relate a given L system taetdt
curve. We have proved elsewhere [10] the equivalesfctwo wide families of systems in both sets.
Therefore, in this paper we will consider only tlietle graphics interpretation. A fractal generabsd
means of the vector graphics interpretation magdseverted by our algorithm to an equivalent L syste
that uses the turtle graphics interpretation.

Created in 1980 by Seymour Papert [15], turtle hiegp describe the trail left by an invisible "tetl
whose state at every instant is defined by itstipssand the direction it is looking to. The statethe
turtle changes as it moves a step forward, or dates a given angle in the same position.

Turtle graphics interpretations come in differentdls of complexity. The version we are using hetbe
following:

2k
« The angle step of the turtle @ =——, where k and n are two integers.
n

* The alphabet of the L System can be expressedasithn of the four disjoint subsets: N, D, M,
{+,-.(,)}- Each symbol in the alphabet is graphigahterpreted thus:

e +increases the turtle angle by

» - decreases the turtle angledoy

e ( stacks the current position and orientation efttirtle.

« ) moves the turtle invisibly to the position andeotation stacked at the top of the stack and jtops

« Ain N leaves the turtle state unchanged. We will & a non-graphic letter.

« Fin D moves the turtle one step forward, in thedion of its current angle, leaving a visiblgltra
We will call F adraw letter.

< fin M moves the turtle one step forward, in theedtion of its current angle, with no visible tralVe
will call f a move letter.

In summary: a given fractal may be represented bsms of two components: an L system, and a turtle
interpretation, with a given angle step. The leraftithe step (the scale) is reduced at every désivan
the appropriate way, so that the curve always desupe same space.

A string under a turtle graphics interpretatioisagd to beangle-invariant if the directions of the turtle at
the beginning and the end of the string are thees&kte call AIDOL éngle-invariant DOL) the set of the
DOL systems such that the right-hand side of &lirtfules is an angle-invariant string. In the daling we
will restrict ourselves to AIDOL systems.

Fractal curvesrepresented by a single symbol

The fractal curves described in this section camepeesented by an L system which contains a single
draw symbol and no move or non-graphic symbols. groeluction set, therefore, consists of a single, ru
apart from the trivial rules for symbols +, -, (dan

Informally, the algorithm takes advantage of the that the right side of the only applicable rptevides
a symbolic description of the fractal generatoriclttan thus be completely described by a singiegst
Our algorithm computes two numbers: the first is lgngth N of the visible walk that follows the dtal
generator (equal in principle to the number of dsgmmbols in the generator string, but see belowe T
second is the distance d in a straight line froendfart to the end point of the walk, measurediithet step
units (this number can also be deduced from tleg3trThe fractal dimension would then be:

_ log(N)
~ log(d)

The scale reduction at every derivation will bebstizat, starting with an axiom equal to the leftesbf



the only rule, the distance between the origin #redend of the graphical representation of thegtris
always the same.

The example given below illustrates the use ofaligerithm.

The PDOL scheme

F::= F+F-F+F
+ 1=+

with axiom F--F--F, and a turtle graphic interptita, where {F} is a draw symbol, and the step arigl
60 degrees, represents the fractal whose fifthvdgoin appears in figure 1 (von Koch snowflake ejrv

Figure 1: Von Koch snowflake curve, a well-known example of a fractal with a fractional
dimension.
The only string to be considered is

F+F- - F+F

This string describes the fractal generator. Thabar of steps along the walk (N) is the numberraird
symbols in the string, 4 in this case. The distadcbetween the extreme points of the generator,
computable from the string by applying to it thelaiinterpretation, is 3. Therefore, the dimens&n

log(4)
D= ——2= 1,2618595071429. . .

log(3)
in accord with the results obtained by other methsgecified by Mandelbrot in reference [1], page 4
Problemsin the previous definition
e The distanca in the denominator may be zero. Computed by oundite, D becomes zero.

Example: the PDOL scheme

F = F+F+F+F+
+o=+

with a step angle of 90 degrees. We will excluds¢hcases, because they do not usually give rise to
fractal curves, but to the same figure indefinitelpeated (in the example, a square).

e The distanca in the denominator may be one. Computed by ourdtanD becomes infinite.

Example: the PDOL scheme
F ::= F+F++F++F+
+1 =+

with a step angle of 60 degrees. We shall alsaueectheses cases because in every step of denivatio
the curve expands and is not limited to a finitacsp therefore it is not a fractal in the stricise

e The length N of the visible walk may not be equatiie number of draw symbols in the generator



string. This may happen in two ways:

The turtle graphic associated to the string pass@® than once along a set of points with a
non-zero measure, as in the PDOL scheme:

F 1= FHFF+++F++F- FR+++F++F- - F
+o=+

with a step angle of 45 degrees and axiom F++F+H-Figure 2 represents the generator of the
corresponding fractal curve and its third derivati@ur algorithm has been refined to take this
case into account, is such a way that the apptepvislue of N is computed, where such sets of
points are counted only once. This means that afigevof N may be non-integer, as in this case,
where its value is not 10 (the number of F in thing), but 9.4142... (8 plus the square root of
2).

Figure 2: A curve obtained from a generator that passestwice through the same set of paints.

The turtle graphic associated to a derivation ef 4tring passes more than once along a set of
points with a non-zero measure, as in the PDOLmehe

F ::= F+FF-F-FF+F
=+

with a step angle of 90 degrees and axiom F+F+Fdure 3 represents the generator of the
corresponding fractal curve and its fourth derivatiln this case, we replace the definition of
fractal dimension we are using by:

D= lim log(N)
log(d)

where the limit is taken on the string of derivadrom axiom F. Our algorithm computes this
case by taking a certain number of derivations|uhg& quotient converges. The resulting
dimension is approximately equal to 1.6, rathenth&7, as computed from the string.

Figure 3: A curvethat passestwice through the same set of points, although its generator does not.

Fractal curvesrepresented by several equivalent symbols

Our algorithm is also immediately applicable toghd. systems with more than one rule, where all the



right parts of the rules give rise to identicaktad dimensions. Let us see a couple of examples:

« The PDOL scheme

- GtF+G
+F- G F+
o=y

okl

A

with axiom F, and a turtle graphic interpretatiomere {F,G} are draw symbols, and the step angle
is 60 degrees, represents the fractal whose ifiestderivations appear in figure 4.

TRy

Figure 4. A fractal curverepresented by two ruleswith the same derived dimension.

In this example, there are two strings to be carsid:

- GtF+G
+F- G F+

Applying our algorithm to each of them, we obtdire tsame estimation of the fractal dimension,
1.58496... Therefore, the fractal dimension of cheresponding curve must be the same, in accord
with Mandelbrot results [1].

¢ The PDOL scheme

> T
no
.
.
+
+
T

with axiom A--A--A--A--A--A, and a turtle graphimterpretation, where A is a hon-graphic symbol,
F is a draw symbol, and the step angle is 30 degmevides another way to represent the Koch
snowflake curve in figure 1, where only one of evevo derivations generates a visible curve.

In this example, there are two strings to be cansid:

+A- - A+
- F++F-

Applying our algorithm to each of them, we obtdie tsame estimation of the fractal dimension,
1,261859... Therefore, the fractal dimension ofdbiresponding curve is again the same.

Alternatively, taking advantage of the fact thaeaf every two steps is invisible, we could conside
the result of the following two step derivation:

F-> +A--A+ -> +-F++F--- - F++F- +

The string +-F++F----F++F-+ can also be considexatkscription of the fractal generator. Applying
our algorithm to it, we again get a result of 1,259...

« The PDOL scheme
P: : =PFU- F+Q+F- PF
Q : =Q+F- PFR++F- - Q+F-
R : =R++F- - QtF- S+++F- - - R++F- -
S: . =S+++F- - - R++F- - T- - F++S+++F- - -
T:: =T- - F++S++F- - - U- F+T- - F++
U : =U F+T- - F++PFU- F+



=g
D=+

.Em

with axiom P++P++P, and a turtle graphic interptien, where F is a graphic symbol,
{P,Q,R,S,T,U} are non-graphic symbols,is the empty string and the step angle is 60 @sgre
provides another way to represent the Koch snoefakve in figure 1.

In this example, the dimension estimated by ouoritlym gives the right dimension for every
symbol after the first iteration: 1,261859...

In this example there are several apparently differules. In fact, the rules are very dissimilar.
After carefully studying them one could state thkofving remarks:

*  The number of symbols in the right side is alwaysas to 8.

»  Four of the eight symbols are graphics.
So the rules are structurally similar.

Thealgorithm

The crucial part of the algorithm is the computatad N, the length of the visible walk followed bye
fractal generator or the sequence of derived strindpere repeated walks are eliminated. To do s,
need to derive an exact unambiguous representatialhthe points in the walk, together with infaation
about the visibility of each step. A typical CaitesX-Y representation is not appropriate, for we a
dealing with irrational numbers for most turtle Engteps, and the precision of real numbers in a
computer is finite, which means that only a subsktrational numbers can be represented. Our
representation takes into account the fact thatuttee approach assures that any point of intdreite

2kn

plane can be reached by a finite sequence of yniegtors taken from a set of n, whefe=—— is
n

the turtle angle step. Thus, taking into accouat Wector addition is commutative, we can represach
point by a set of n integer numbers stating howymaattors of each kind are needed to reach thaut poi
from the origin by following the turtle movementgthout specifying the order of the vectors.

To make the representation unique for every pamtneed to make sure that the walk from the ottigin
the point is minimal. We do this by performing tf@lowing additional computations on the set of
integers that represent a point:

. For every n, we eliminate all n-sided regular polys, represented by sequences of all ones.

. For odd n, we eliminate all smaller regular polygavith a number of sides prime submultiple
of n. They are easily recognized as sequencesas and zeros.

. For even n (where, for every vector in the setpfiposite vector is in the set) we have to be

subtler: a part of any regular polygon with a numbksides an odd prime submultiple of n,
longer than half the polygon, can be replaced tmaller set of vectors going around the
remainder of the polygon in the opposite directidhis can also be done easily by looking at
the sequences of ones and zeros in the point EpedoN.

Let us look at an example: Letbe 60°, which means n=6. The turtle walk defined by

F++F- -F++F++F++F
can be defined by the set of integers: (3,0,2,p,Ivich means that we have to make three stegs wit
angle 0°, two with angle 120°, and one with angl@°2This can be obtained immediately from thengtri
by counting walks according to directions. Sincés mven, we have to reduce polygons. The sequence
(1,0,1,0,1,0), which is included in (3,0,2,0,1 @presents a triangle (a polygon of 3 sides, weigean
odd prime submultiple of n). The sequence can pkced by (0,0,0,0,0,0), the remainder polygorha t
opposite direction. The point representation thesomes (2,0,1,0,0,0). Next, we observe that the
sequence (1,0,1,0,0,0), contained in the lattpresents two sides of a triangle, which can beacsal by
the vector corresponding to the third side in tppasite direction, (0,1,0,0,0,0). Thus, the poadahed
by the above turtle string, can be reduced to @1010,0). Figure 5 shows the original string wailys
those corresponding to the three subsequent repatisms of the end point. The last one is the mméh;
which we will take as the canonical representatibthe end point.



It can easily be proved that this algorithm computerrectly the canonical integer representatiothef
end point of any turtle string. Thus, we can unaubusly locate and eliminate repeated walks (even
parts of turtle movements, as in the example iarég3), simply by comparing any visible turtle steith

all the previous ones and replacing canonical ssrations of end points. A simple algorithm carthie
with a complexity of O(R).

Canonical conversion.

T+cbs(60)

sin(60).______________
Possible vectors.
sin(60)
sin(60)
,,,,,,,,,,,,,,,,,,,,,, ‘
1+os(60) >

Figure5: Obtaining the canonical representation of a point, independent of the path by which it
wasreached.

Prolog implementation of the algorithm

The Prolog predicate in listing 1 computes the thhdimension of the fractal curve defined by an L
system. The predicate receives the following argume

. Left: the left symbol of a rule in the L system.

. Draw: the set of draw symbols.

. Move: the set of move symbols.

. Nograph: the set of non graphic symbols.

. Angle: the angle step of the turtle.

. InitialPoint: the co-ordinates of the initial poiot the curve, usually (0,0).
. N: number of derivations



The predicate returns the result of the computatiorariable FractalDimension.

A set of facts describing the rules of the PDOLesnb must be stated before invoking the predicate
fract al _di nensi on. These facts can be read from a file.

fractal _dinmension ( Left, Draw, Mve, Nograph, Angle,
Initial Point, N, Fractal Di mension) :-

% FI RST THE NTH DERI VATI ON | S OBTAI NED FROM AXI OM ACCORDI NG TO THE PRODUCTI ON %
RULES.
get _nth_derivation_fromaxiom( Left, N, String),

% THEN, THE GRAPHI C | NTERPRETATI ON OF THE RESULTI NG STRI NG | S CALCULATED I N
% ORDER TO GET THE PO NT REACHED.
string_to_end_point ( String, Draw, Move, Nograph,
Angl e, InitialPoint, LastPoint),

% THE EUCLI DEAN DI STANCE BETWEEN BOTH PO NTS |I'S CALCULATED.
di stance(Initial Point, LastPoint, Distance),

% THE EFFECTI VE LENGTH (W THOUT OVERLAPPI NG SEGVENTS)
% DEPI CTED BY THE CURVE | S CALCULATED.
string_to_effective_length(String, Draw, Mve, Nograph,
Angl e, EffectivelLength),

% AND FI NALLY THE FRACTAL DI MENSI ON | S ESTI MATED.
Fractal Dinension is log ( EffectiveLength ) / log ( Distance ).

Listing 1: Prolog predicate to conpute the fractal dinension

Conclusion

The L system that represents a fractal curve withrée graphics interpretation has proved to conta
enough information for the computation of the fehctimension of the curve, for an interesting fanaif
systems. In some cases, the computation may halbe applied to a sequence of derivations, and thus
would be exponentially slow, but this is a consemeeof the inherent exponential grow of fractavest
However, in many other cases it is not necessacpnapute this limit, and the appropriate dimensian

be obtained in one or two steps.

Fractals represented by L systems associated égtarvgraphics interpretation are automaticallyered

by our algorithm, if they are previously convertéml equivalent L systems with a turtle graphics
interpretation, using the algorithm described iemence [10].

In the future, we will try to extend the methodntore complicated turtle graphics interpretationd &
different types of L systems, such as those whalelrules whose left symbols do not lead to theesam

results. The main handicap with these systematstiey are little documented. Most of the fracialthe
literature belong to the same class as the exariptass paper.
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