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Chapter 1

Introduction

The concept of distance between probability measures has been largely studied because of its

numerous applications in Probability Theory, Information Theory, Bioinformatics and Statistics.

In Statistics, probability measures are used in a variety of applications, such as hypothesis

testing, density estimation or Markov chain monte carlo. We will focus on hypothesis testing,

also named homogeneity testing. The goal in hypothesis testing is to accept or reject the null

hypothesis H0 : P = Q, versus the alternative hypothesis H1 : P 6= Q, for a class of probability

distributions P and Q. For this purpose we will define a metric γ such that testing the null

hypothesis is equivalent to testing for γ(P,Q) = 0. We are specially interested in testing for

independence between random vectors, which is a particular case of hypothesis testing, using

P = PX,Y and Q = PX · PY . Detecting dependences, especially non-linear ones, is a difficult

problem in practice.

In this work we will introduce in detail three different types of independence tests. Two of

them are tests in the literature, which can be derived from their corresponding homogeneity

tests. One of the aims of this work is to order and summarize the published research on these

tests. The third one is a novel independence test that has been developed during this Master

Thesis.

In the first part of the work, which is composed of Chapters 2 to 5, we introduce a ho-

mogeneity test that consist in making embeddings of the original variables through non-linear

transformations, into Hilbert spaces with reproducing kernel (RKHS). We first define RKHS’s

and analyse their properties. We then describe how probability distributions can be embedded

into these spaces and explain how these embeddings can be used to characterize equality of

the distributions. The homogeneity test that uses these embeddings is called Maximum Mean

Discrepancy (MMD). We introduce also some estimators of the test and their asymptotic be-

haviour. Finally the original homogeneity test is adapted to define a test of independence. The

independence test is a homogeneity test in which one compares the joint distribution of the

variables with the product of the marginals. Finally we introduce other previous independence

test which also uses kernel embeddings, but from another point of view. We show that both test

are actually the same, although their formulation and estimators are different.
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The second part of the work comprises Chapters 6 and 7. In the Chapter 6 we introduce

a homogeneity test based on the energy distance, which is defined as a weighted L2 distance

between probability distributions. The original definition of the test uses the Euclidean distance.

This definition can be extended to general metric spaces. However, one needs to introduce some

restrictions to the metric to ensure that the test characterizes equality of the distributions. In

Chapter 7 we describe an independence test whose formulation is similar than the homogeneity

one. However it is not the homogeneity test applied to the joint and the product distributions.

Subsequently we introduce some estimators of the statistic of this independence test and their

properties.

In the third part of this thesis, composed by Chapters 8 and 9, we derive relations between

these methods. For instance, energy distance can be interpreted as MMD for a special choice of

the kernel. To establish this equivalence between both homogeneity tests, we need to generalize

the quantities used in the original tests. The equivalence is established through these general-

izations. At the end of the first chapter we present a set of novel observations and results that

do not appear before in the literature, which are interesting specially from a practical point of

view. The second chapter is similar to the first one, but it establish the connection between the

generalized independence methods.

In the final part of this report we introduce the new independence test developed in this work.

This test is based on estimating the non-linear dependence between two variables through the

non-Gaussianity of their one-dimensional projections. The theoretical justification of the test

is given for the case of Gaussian marginals. Whether an extension to general distributions is

possible remains unproven. We then introduce a novel way to characterize independence of the

random variables through random projections.

Finally, we carry out some experiments, to compare the power of the proposed tests with

other state-of-art independence tests.
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Chapter 2

Reproducing Kernel Hilbert Spaces

(RKHS)

RKHS’s are a special type of Hilbert spaces, having a kernel that meets the reproducing property.

These type of kernels are called reproducing kernels, and give the name to the spaces. These

Hilbert spaces have some relevant applications in statistics, particularly in the field of statistical

learning theory. The reason is that every function in an RKHS can be written as the limit of a

linear combination of the kernel function with one free argument.

In addition to this, in the next chapter we will define a homogeneity test based on embeddings

of probability distributions on RKHS’s. The distance between distributions corresponds then

to the distance between their corresponding embeddings. We will see that the unit ball of an

RKHS is a rich enough space so that the expression for the discrepancy vanishes only if the two

probability distributions are equal. At the same time it is restrictive enough for the empirical

estimate at the discrepancy to converge quickly to its population counterpart as the sample size

increases.

RKHS’s are also practically useful in machine learning, for example when trying to make

predictions by optimizing over a function f in a Hilbert space H. RKHS’s have an advantage

over common Hilbert spaces, because if ‖fn − f‖ → 0, where ‖ · ‖ is the distance derived from

the inner product, then fn(x)→ f(x) for all x.

2.1 Definitions and principal properties

The classical theory of statistics is well developed for the linear case. However real world

problems often require nonlinear methods. Detecting nonlinear dependencies is often important

to make successful predictions. A possible way to take advantage of our knowledge of linear

procedures is to transform the data into a different space so that nonlinear dependencies are

transformed into linear ones. We will refer to this new space, typically high dimensional, as the

feature space. Hilbert spaces H are often used as feature space, because they provide powerful

3



mathematical tools and intuitive geometric concepts. That is, we can transform the original data

into a Hilbert space to equip it with a geometrical structure. A typical example to illustrate

this is when the data are a set of books, which are not easy to compare. We can measure

some characteristic of the books, as the number of words, the number of chapters, etc., and to

translate them to a Hilbert space where we have a distance defined.

The first step is to map the data from X , the original space, to the feature space.

Definition 1. The function φ that maps the data to the feature space, a Hilbert space H,

φ : X −→ H
x 7→ φ(x)

is known as a feature map.

Since we are working with Hilbert spaces, we can also define kernel functions in terms of the

inner product in H:

Definition 2. A function that represents a dot product defined on a feature space is called a

kernel function.

Then, we can rewrite the dot product of the space in terms of this mapping:

k : X × X −→ R
(x, x′) 7→ k(x, x′) = 〈φ(x), φ(x′)〉

Theoretically, the function k can also go to the complex numbers C, but for most applications

R is enough.

As we have said, in the feature space our estimation methods are linear. Thus if we are able

to formulate them in terms of kernel evaluations, we never have to work explicitly in the high

dimensional feature space. This idea underlies the well known classification algorithm called

Support Vector Machine (SVM).

Now we will impose some restrictions to the kernel functions, to define a new class of kernels

with more interesting properties.

Definition 3. A function k is a reproducing kernel of the Hilbert space H if and only if it

satisfies:

1. k(x, .) ∈ H, ∀x ∈ X .

2. Reproducing property: 〈f, k(x, .)〉 = f(x), ∀f ∈ H and ∀x ∈ X .

The name of ”reproducing property” comes from the fact that the value of the function f at

the point x is reproduced by the inner product of f and k. From this definition it is clear that:

Proposition 1. If k is a reproducing kernel, then k(x, x′) = 〈k(x, .), k(x′, .)〉, ∀(x, x′) ∈ X ×X .
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Using the canonical feature map φ(x) = k(x, ·), we see that a reproducing kernel is a kernel

in the sense of Definition 2. Then we can also define a special type of Hilbert spaces based on

these kernels:

Definition 4. A Hilbert space of real-valued functions which possesses a reproducing kernel is

called a reproducing kernel Hilbert space (RKHS). Besides, the canonical feature map φ

of an RKHS is defined in terms of the reproducing kernel k,

φ(x) = k(x, ·).

This means that the kernel has one argument fixed as x and the second is free, so x is

associated with a function in H. Some examples of RKHS’s and its corresponding kernels are:

• H = {f |f(0) = 0, f absolutely continuous and f ′ ∈ L2(0, 1)}, with f ′ the derivative of f

almost everywhere, and L2(0, 1) the set of square integrable complex valued functions with

support in (0, 1), is a Hilbert space with inner product:

〈f, g〉H =

∫ 1

0
f ′ḡ′dλ,

where λ is the Lebesgue measure and ḡ denotes the complex conjugate of the function g.

In fact this is an example of Sobolev space. For a general domain X ⊂ Rn, these spaces

are defined as:

W k,p(X ) = {f ∈ Lp(X ) | Dαf ∈ Lp(X ),∀α ∈ Nn such that |α| ≤ k},

where Dαf is the multi-index partial derivative of f , that is, for α = (α1, . . . , αn):

Dαf =
∂|α|f

∂xα1
1 . . . ∂xαnn

,

where |α| = α1 + . . . + αn and k is called the order of the space. In this example we

are using X = [0, 1] and H = W 1,2([0, 1]). This Hilbert space has reproducing kernel

k(x, x′) = min(x, x′). The weak derivative (generalization of the concept of the derivative

for functions not assumed differentiable, f(x) =
∫ x

0 f
′(u)du) of min(., x) is 1(0,x) so it

satisfies the reproducing property:

〈f, k(x, .)〉H =

∫ x

0
f ′(x)dλ(x) = f(x).

• H = H1(R) = {f | f absolutely continuous and f, f ′ ∈ L2(R)} , where f ′ is the derivative

of f almost everywhere, is a Hilbert space with inner product:

〈f, g〉H =

∫
R

(fg + f ′g′)dλ.

A simple integration by parts shows that H has reproducing kernel k(x, x′) = 1
2e
−|x−x′|.

For more examples and the proof of the reproducing property of the second example the

reader can see [2], Section 1.2.
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2.2 Characterizing reproducing kernels

Now that the basic definitions and properties of an RKHS have been introduced, the natural

question is when a complex-valued function k defined on X × X is a reproducing kernel. We

will present an important characterization of this kind of functions, which can be used also to

connect RKHS’s with other spaces, such as the Hilbert space generated by a random process.

The main part of this section has been obtained from [2], Sections 1.2 and 1.3, and [3], Section

4.2. First we need the following definition:

Definition 5. A function k : X × X −→ C is called a positive type function (or positive

definite function) if ∀n ≥ 1, ∀(α1, . . . , αn) ∈ Cn and ∀(x1, . . . , xn) ∈ X n:

n∑
i=1

n∑
j=1

αiᾱjk(xi, xj) ≥ 0. (2.1)

If k is a real positive definite function according to this definition, it is automatically symmet-

ric, because the values αi are complex. Therefore we will not indicate the symmetry condition in

the following statements. Besides, we will see that being a positive definite function is equivalent

to being a reproducing kernel.

Theorem 1. A kernel in a Hilbert space H is positive definite.

Proof. The result easily follows from the definition of kernel and the properties of the dot

product:

n∑
i=1

n∑
j=1

αiᾱjk(xi, xj) =

n∑
i=1

n∑
i=1

αiᾱj〈φ(xi), φ(xj)〉H

=

n∑
i=1

n∑
j=1

〈αiφ(xi), αjφ(xj)〉H

= 〈
n∑
i=1

αiφ(xi),

n∑
j=1

αjφ(xj)〉H

=
∥∥∥ n∑
i=1

αiφ(xi)
∥∥∥2

H
≥ 0

In principle, being positive definite is a necessary but not sufficient condition for a function

to be a kernel. Since a reproducing kernel is also a kernel, we have proved that:

Reproducing kernel −→ Kernel −→ Positive definite

Remarkably, the reverse direction also holds, that means, every positive definite function is

a reproducing kernel. But first we will enunciate a simple lemma that is needed for the proof:

6



Lemma 1. Any bilinear function f : R2 → R such that f(x, x) ≥ 0, satisfies the Cauchy-

Schwartz inequality, i.e., |f(x, y)|2 ≤ f(x, x)f(y, y).

Proof. We will calculate the value f(x− αy, x− αy) ≥ 0, where α ∈ R:

f(x− αy, x− αy) = f(x, x) + α2f(y, y)− 2αf(x, y).

Consider now two separate cases:

• f(y, y) 6= 0: We take the value α = f(x,y)
|f(x,y)| t where t ∈ R. Now the product is:

f(x− αy, x− αy) = f(x, x) +

(
f(x, y)

|f(x, y)|
t

)2

f(y, y)− 2
f(x, y)

|f(x, y)|
tf(x, y)

= f(x, x) +
(f(x, y))2

|f(x, y)|2
t2f(y, y)− 2

(f(x, y))2

|f(x, y)|
t

= f(x, x) + t2f(y, y)− 2t|f(x, y)| ≥ 0.

This is a quadratic equation in t, so its solution is:

t =
2|f(x, y)| ±

√
4|f(x, y)|2 − 4f(x, x)f(y, y)

2f(y, y)
.

But the parabola is always above zero, so it does not have two different real roots. This

means that the square root of the solution is less or equal zero, i.e.:

4|f(x, y)|2 − 4f(x, x)f(y, y) ≤ 0 =⇒ |f(x, y)|2 ≤ f(x, x)f(y, y).

• f(y, y) = 0: In this case the product becomes as

f(x− αy, x− αy) = f(x, x)− 2αf(x, y) ≥ 0 =⇒ f(x, x) ≥ 2αf(x, y).

Since the inequality holds for any value of α, f(x, y) must be zero.

Theorem 2. (Moore-Aronszajn) Every positive definite function k is the kernel of a unique

RKHS H.

Proof. We define the space generated by the function k:

Hk ≡
{ N∑
i=1

aik(·, xi) for N ∈ N, aj ∈ R, xj ∈ X , j = 1, . . . , N
}
. (2.2)

Now we take two functions f and g from Hk of the form:

f ≡
∑n

i=1 αik(·, xi), g ≡
∑m

j=1 βjk(·, x̃j).

7



We can define the function:

〈f, g〉 ≡
n∑
i=1

m∑
j=1

αiβjk(x̃j , xi). (2.3)

This definition is independent of the representation that we have chosen for f , since it can

be written as:

〈f, g〉 =

m∑
j=1

βj

n∑
i=1

αik(x̃j , xi) =

m∑
j=1

βjf(x̃j).

k is symmetric because, from (2.1), it is a real positive definite function with complex pa-

rameters αi, as we mentioned before. Thus the definition (2.3) is also independent of the

representation of g:

〈f, g〉 =

n∑
i=1

αi

m∑
j=1

βjk(x̃j , xi) =

n∑
i=1

αi

m∑
j=1

βjk(xi, x̃j) =

n∑
i=1

αig(xi). (2.4)

Then 〈f, g〉 depends on f and g only through their values. This function is bilinear and

symmetric, and since k is positive definite, 〈f, f〉 ≥ 0. Moreover if f = 0 then 〈f, f〉 = 0. To

show that (2.3) is an inner product space we only need to prove that if 〈f, f〉 = 0 then f = 0. By

the previous lemma, we know that the Cauchy-Schwartz inequality holds under these conditions.

So if we get a function f such that 〈f, f〉 = 0, then taking g(x) = k(·, x) in Equation (2.4) we

get:

|f(x)|2 =
∣∣∣ n∑
i=1

αik(·, xi)
∣∣∣2 = |〈f, k(·, x)〉|2 ≤ 〈f, f〉 〈k(·, x), k(·, x)〉 = 0, ∀x ∈ X .

Then we have that 〈·, ·〉 is a dot product in Hk, so that it is a pre-Hilbert space. It is also a

metric space with the metric defined by the norm:

‖f‖Hk =
n∑

i,j=1

αiαjk(xi, xj).

It is well known that any metric space can be completed uniquely. So we denote as H the

completion of Hk and as ϕ : Hk → H the corresponding isometric embedding. Then H is a

Hilbert space and:

k(x, y) = 〈k(·, x), k(·, y)〉Hk = 〈ϕ(k(·, x)), ϕ(k(·, y))〉H.

Therefore if we define the feature map as φ(x) = ϕ(k(·, x)) we get that k is a kernel in

H. Now we will prove that k is actually a reproducing kernel. We use Equation (2.4) with

g = k(·, x):

〈f, k(·, x)〉Hk = 〈f, g〉Hk =

n∑
i=1

αig(xi) =

n∑
i=1

αik(xi, x) = f(x),

since k is symmetric. This means that k meets the reproducing property.

8



The main part of this proof is taken from [4] (Theorem 4.16 page 118). This theorem ensures

that the kernel is unique, although the feature map is not. It also shows that being a reproducing

kernel is equivalent to the property of being a positive definite function. So we have that any

positive definite function is a kernel in some Hilbert space and we need not to specify explicitly

the spaces.

Reproducing kernel // Kernel // Positive definite
��

Moreover, this theorem states that any kernel function is in fact a reproducing kernel of

some RKHS. This theorem also gives us a way to build RKHS spaces, using positive definite

functions as reproducing kernels.

There is an alternative definition of RKHS that allows us to prove some interesting properties,

with many computational applications.

Definition 6. H is an RKHS if the evaluation operator δx, defined as δx(f) = f(x) ∈ R for

f ∈ H, is bounded ∀x ∈ X , i.e., there exists λx ≥ 0 such that:

|f(x)| = |δx(f)| ≤ λx‖f‖H ∀f ∈ H.

It is clear from this definition that the property of RKHS’s mentioned in the introduction of

the chapter holds, that is, convergence in the RKHS norm implies convergence at every point.

|fn(x)− f(x)| = |δx(fn − f)| ≤ λx‖fn − f‖H, ∀fn, f ∈ H.

It is easy to see that this property does not hold for all Hilbert spaces. For example it fails

to hold on L2(X ). This property is really useful in machine learning, when trying to make

predictions by optimizing over f ∈ H.

Now we have to see that both definitions of RKHS’s are actually equivalent. But first let

enunciate a well-known theorem that is needed for the proof.

Theorem 3. (Riesz Representation Theorem) If T is a bounded linear operator on a Hilbert

space H, then there exists some g ∈ H such that ∀f ∈ H:

T (f) = 〈f, g〉H, .

Theorem 4. H has bounded linear evaluation operators, δx, if and only if H has a reproducing

kernel.

Proof. (=⇒) By the Riesz’s Representation Theorem, since δx is a bounded linear operator,

there exists ϕx ∈ H such that δx(f) = 〈f, ϕx〉. Using the definition of δx we have that:

f(x) = 〈f, ϕx〉,

9



which is the reproducing property. So ϕy(x) = k(x, y) is a reproducing kernel andH is an RKHS.

(⇐=) The kernel k of our space meets the reproducing property, 〈f, k(x, .)〉 = f(x). Hence,

using the Cauchy-Schwarz inequality:

|δx(f)| = |f(x)|

= |〈f, k(x, .)〉H|

≤ ‖f‖H‖k(x, .)‖H

= ‖f‖H〈k(x, .), k(x, .)〉
1
2
H

= ‖f‖Hk(x, x)
1
2

Then it is sufficient to take λx = k(x, x)
1
2 to ensure that the evaluation operator is bounded.

Moreover, in the Cauchy-Schwartz inequality, the bound is reached when f(·) = k(·, x), and

then ‖δx‖ = k(x, x)
1
2 .

Another important practical question is to determine whether a given function belongs to

a given RKHS. We know that any function of the RKHS is a linear combination of kernels, or

a limit of such combinations (limits of Cauchy sequences). So, roughly speaking, a necessary

condition for a function to belong to an RKHS is to be at least as smooth as the kernel.

In this chapter we have introduced the basic definitions and properties about RKHS’s and

their kernel functions. Now we will use them to define a homogeneity test based on embeddings

of probability measures in these spaces. Later we will define also its corresponding independence

test.
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Chapter 3

Maximum Mean Discrepancy

(MMD)

RKHS’s can be used to define a homogeneity test, that can be interpreted in terms of the

embeddings of the probability measures on one such space. When the homogeneity test is

applied to the joint distribution and the product of the marginals yields an independence test,

which is the main subject of this work.

The test consists in maximizing a measure of discrepancy between functions that belong to a

certain family F . As said earlier, such family should be rich enough to ”detect” all the possible

differences between the two probability measures. However, F should be small, so that it is

possible to consistently estimate the test statistic with a reasonable sample size. RKHS’s will

help us to find such functional family F .

3.1 Definition of MMD

We will start defining the measure of discrepancy between distribution functions in terms of

embeddings in an RKHS. Let X and Y be random variables defined in some metric space X
with probability measures P and Q respectively. Given two samples of these variables, obtained

from P and Q independently and identically distributed (i.i.d.), we want to determine whether

P 6= Q. The goal is to define a non negative discrepancy γ that takes the value zero if and only

if P = Q.

We will base our development in the following lemma. We denote the space of bounded

continuous functions on X by C(X ):

Lemma 2. The Borel probability measures P and Q are equal if and only if Ef(X) = Ef(Y ),

∀f ∈ C(X ).

We set a general definition for the statistic, using a yet unspecified function class F .

Definition 7. Let F be a class of functions f : X → R, the Maximum Mean Discrepancy

11



(MMD) based on F is

γ(P,Q) = MMD(F ,P,Q) ≡ sup
f∈F
{Ef(X)− Ef(Y )}. (3.1)

Such F should be rich enough so that the expression for the MMD vanishes only if both

probability distributions are equal (as we will see in Example 1 of Section 3.3). At the same

time it should be restrictive enough for the empirical estimate to converge quickly as the sample

size increases. As shown by Lemma 2, the class C(X ) is rich enough, but too large for the finite

sample setting. RKHS’s will help us to find a suitable class of functions.

3.2 Hilbert Space Embeddings

As we have already said, we need to specify a class of functions F in Equation (3.1), by resorting

to RKHS’s. Henceforth we will use as F the unit ball in a reproducing kernel Hilbert space H,

as proposed in [1], which is rich enough but not too large. Then we will rewrite MMD in terms

of kernel embeddings of probability measures. We will start extending the notion of feature map

φ to the embedding of a probability distribution.

Lemma 3. If the kernel k is measurable and E
√
k(X,X) <∞, where X is a random variable

with distribution P, then there exists µP ∈ H such that

Ef(X) = 〈f, µP〉 for all f ∈ H.

Proof. We define the linear operator TPf ≡ Ef(X) for all f ∈ F . This operator TP is bounded

under the assumptions of the lemma. It can be proved using the Jensen and Cauchy-Schwartz

inequalities and the reproducing property:

|TPf | = |Ef(X)| ≤ E|f(X)| = E|〈f, k(·, X)〉H|

≤ ‖f‖HE〈k(·, X), k(·, X)〉1/2H = ‖f‖HE
√
k(X,X) < ∞.

Then, using the Riesz representation theorem applied to TP, there exists a µP ∈ H such that

TPf = 〈f, µP〉H.

We can use this lemma to define the embedding:

Definition 8. For a probability distribution P we define the mean embedding of P as an

element µP ∈ H such that

Ef(X) = 〈f, µP〉H, for all f ∈ H.

This type of embeddings of probability measures in RKHS’s have been widely studied. We

can obtain more information about the embedding µP using the reproducing property of k. If

we set f = φ(t) = k(t, ·), we obtain that µP(t) = 〈µP, k(t, ·)〉H = E k(t,X). In other words:

12



Remark 1. The mean embedding of P is the expectation under P of the canonical feature map.

Now we express the MMD based on the unit ball F = { f ∈ H : ‖f‖H ≤ 1 } as a function

of the mean embeddings in the RKHS H.

Lemma 4. Assume that the mean embeddings µP and µQ exist (e.g. under the assumptions of

Lemma 3), then:

MMD(F ,P,Q) = ‖µP − µQ‖H.

Proof. We have only to apply the definition of this operator MMD and the previous property

which says that Ek(·, X) = Eφ(X) = µP:

MMD(F ,P,Q) = sup
‖f‖H≤1

{Ef(X)− Ef(Y )}

= sup
‖f‖H≤1

{〈f, µP〉H − 〈f, µQ〉H}

= sup
‖f‖H≤1

〈f, µP − µQ〉H

= ‖µP − µQ‖H

The last equality can be proved from the following inequalities.

(≤) This way can be deduced from the Cauchy-Schwarz inequality:

sup
‖f‖H≤1

〈f, µP − µQ〉H ≤ sup
‖f‖H≤1

|〈f, µP − µQ〉H| ≤ sup
‖f‖H≤1

‖f‖H‖µP − µQ‖H ≤ ‖µP − µQ‖H.

(≥) Taking f =
µP−µQ
‖µP−µQ‖ ∈ H, with ‖f‖H = 1:

sup
‖f‖H≤1

〈f, µP − µQ〉H ≥
〈 µP − µQ
‖µP − µQ‖H

, µP − µQ
〉
H

= ‖µP − µQ‖H.

In practice it is common to use the square of the MMD because it has an unbiased estimator,

as mentioned in [5], and also because it can be expressed in terms of expectations of the kernel.

This link will help us to write estimators of this quantity and to connect this method with others

that will be introduced later.

Proposition 2. If the random variables X and Y are independent with distributions P and Q
respectively, and X ′, Y ′ are independent copies of X and Y , the reproducing property of k leads

to:

MMD2(F ,P,Q) = Ek(X,X ′) + Ek(Y, Y ′)− 2Ek(X,Y ). (3.2)

Proof. We start with the properties of the inner product, where X,X ′ ∼ P and Y, Y ′ ∼ Q:

MMD2(F ,P,Q) = ‖µP − µQ‖2H

13



=
∥∥∥Ek(·, X)− Ek(·, Y )

∥∥∥2

H

=
〈
Ek(·, X)− Ek(·, Y ),Ek(·, X ′)− Ek(·, Y ′)

〉
H

=
〈
Ek(·, X),Ek(·, X ′)

〉
H

+
〈
Ek(·, Y ),Ek(·, Y ′)

〉
H

−2
〈
Ek(·, X),Ek(·, Y )

〉
H

For the operator TPf = Ef(X) defined in the proof of the lemma 3, we have proved that:

TPf = 〈f, µP〉H = 〈f,Ek(·, X)〉H.

If we apply this property using f = Ek(·, Y ) we have:

Ek(X,Y ) = 〈Ek(·, Y ),Ek(·, X)〉H.

Using it in the previous development of MMD we obtain (3.2).

The square of the MMD can also be expressed in integral form:

Remark 2. The previous Equation (3.2) leads to:

MMD2(F ,P,Q) =

∫ ∫
X
k(x, y)d(P−Q)(x)d(P−Q)(y). (3.3)

Proof. Writing the expectations in Proposition 2 as integrals:

MMD2(F ,P,Q) = Ek(X,X ′) + Ek(Y, Y ′)− 2Ek(X,Y )

=

∫ ∫
X
k(x, x′)dP(x)dP(x′) +

∫ ∫
X
k(y, y′)dQ(y)dQ(y′)

−2

∫ ∫
X
k(x, y)dP(x)dQ(y)

=

∫ ∫
X
k(x, y)d(P−Q)(x)(P−Q)(y).

These last two expressions of MMD are useful in later proofs. MMD has been defined in

terms of reproducing kernel embeddings. However we still do not know whether it can be used

to characterize equality of distributions or not. That is, whether the chosen family of functions

F is sufficiently rich.
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3.3 Characteristic kernels and RKHS’s

Using the definitions and properties of MMD derived in the previous section, the next step is

to determine whether the function γk(P,Q) = MMD(F ,P,Q) is a metric. That is, whether

MMD(F ,P,Q) = 0 if and only if P = Q. By Lemma 4, this is equivalent to proving that the

mean embedding is injective. This property depends on the particular RKHS considered. There

are some spaces where it does not hold, as the next example, given in [6], shows.

Example 1. A polynomial kernel of degree two cannot distinguish between all distributions. For

example, using k(x, y) = (1+xT y)2, x, y ∈ Rd, we have to integrate k(x, y) = 1+xT yyTx+2xT y

in Equation (3.3). Let γ2
k(P,Q) = MMD2(F ,P,Q), then:

γ2
k(P,Q) =

∫
Rd

∫
Rd

(1 + xT yyTx+ 2xT y)d(P−Q)(x)d(P−Q)(y)

=

∫
Rd

∫
Rd

d(P−Q)(x)d(P−Q)(y) +

∫
Rd

∫
Rd

(xT yyTx)d(P−Q)(x)d(P−Q)(y)

+2

∫
Rd

∫
Rd

(xT y)d(P−Q)(x)d(P−Q)(y)

= 0 + I1 + 2I2

Let mP be the mean of the distribution P and mQ the mean of Q. The covariance matrix for

P is ΣP = E[XXT ]−mPm
T
P which implies E[XXT ] = ΣP +mPm

T
P . The integrals are:

I1 =

∫
Rd
xT
(∫

Rd
(yyT )d(P−Q)(y)

)
xd(P−Q)(x)

=

∫
Rd
xT
(
ΣP +mPm

T
P − ΣQ −mQm

T
Q
)
xd(P−Q)(x)

=
∥∥ΣP +mPm

T
P − ΣQ −mQm

T
Q
∥∥2

F
,

where ‖ · ‖F is the Frobenius norm of a matrix:

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

|ai,j |2,

being A = (ai,j) a n×m matrix. For the second integral:

I2 =

∫
Rd

(xT )d(P−Q)(x)

∫
Rd

(y)d(P−Q)(y)

= (mP −mQ)T · (mP −mQ)

=
∥∥mP −mQ

∥∥2

2

Combining these expressions we get:

γk(P,Q) =
(∥∥ΣP − ΣQ +mPm

T
P −mQm

T
Q
∥∥2

F
+ 2
∥∥mP −mQ

∥∥2

2

)1/2
.
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In consequence γk(P,Q) = 0 if and only if mP = mQ and ΣP = ΣQ. Therefore a test based

on a embedding on this RKHS cannot distinguish between two distributions with the same mean

and variance but different moments of order higher than two.

The kernels that have the property of γk being a metric received a special name.

Definition 9. A reproducing kernel k is a characteristic kernel if the induced γk is a metric.

Definition 10. H is a characteristic RKHS if its reproducing kernel k is characteristic.

In [1] it is given a sufficient condition for an RKHS to be characteristic. This is not the most

up-to-date condition, but it is quite simple to prove.

Theorem 5. If X is a compact metric space, k is continuous and H is dense in C(X ) with

respect to the supremum norm, then H is characteristic.

Proof. Being characteristic means that MMD(F ,P,Q) = 0 if and only if P = Q.

(=⇒) By Lemma 2, P = Q if and only if Ef(X) = Ef(Y ) for all f ∈ C(X ), where X ∼ P
and Y ∼ Q. So this will be the target of the proof. As H is dense in C(X ) with respect to the

supremum norm:

∀ε > 0, f ∈ C(X ), ∃g ∈ H : ‖f − g‖∞ < ε.

Now we will develop the difference between these expectations, using Jensen’s inequality and

the expression of the supremum norm

|Ef(X)− Ef(Y )| = |(Ef(X)− Eg(X)) + (Eg(X)− Eg(Y )) + (Eg(Y )− Ef(Y ))|

≤ |Ef(X)− Eg(X)|+ |Eg(X)− Eg(Y )|+ |Eg(Y )− Ef(Y )|

= |E[f(X)− g(X)]|+ |〈g, µP − µQ〉H|+ |E[g(Y )− f(Y )]|

≤ E|f(X)− g(X)|+ |〈g, µP − µQ〉H|+ E|g(Y )− f(Y )|

≤ ‖f − g‖∞ + |〈g, µP − µQ〉H|+ ‖f − g‖∞

≤ |〈g, µP − µQ〉H|+ 2ε.

By Lemma 4 we know that if MMD(F ,P,Q) = 0 then µP = µQ. Hence:

|Ef(X)− Ef(Y )| ≤ 2ε,

for all ε > 0 and f ∈ C(X ), which implies that the expectations are equal.

(⇐=) It is clear from the definition of MMD.

In practice it is difficult to verify the denseness condition, and the restriction of X being

compact implies that γk induces a metric only between probabilities with compact support. We

will give a less restrictive condition (obtained from [6]), for which we need the following property

of functions.

16



Definition 11. If X is a topological space, a measurable and bounded kernel k is said to be

integrally strictly positive definite if∫ ∫
X
k(x, y)dµ(x)dµ(y) > 0

for all finite non-zero signed Borel measures µ defined on X .

Clearly, if a kernel k is integrally strictly positive definite, then it is strictly positive. However

the converse is not true. A sufficient condition for characteristic kernels is:

Theorem 6. If k is an integrally strictly positive definite kernel on X , then k is characteristic.

To simplify the proof we will use the following lemma, whose proof is basically the one of

the theorem. It establishes a necessary and sufficient condition for a kernel to ensure that its

corresponding γk is characteristic. Besides, this condition is closely related to the definition of

integrally strictly positive function.

Lemma 5. Let k be measurable and bounded on X , γk is not a metric if and only if there exists

a finite non-zero signed Borel measure µ that satisfies:

1. µ(X ) = 0.

2.
∫ ∫
X k(x, y)dµ(x)dµ(y) = 0,

Proof. (=⇒) We have some P 6= Q such that γk(P,Q) = 0. We define µ = P − Q, which is a

finite non-zero signed Borel measure that satisfies µ(X ) = 0 (Condition 1). It also satisfies the

condition 2 since using Equation (3.3):

0 = γ2
k(P,Q) =

∫ ∫
X
k(x, y)d(P−Q)(x)(P−Q)(y)

=

∫ ∫
X
k(x, y)dµ(x)dµ(y)

(⇐=) We have a Borel measure µ that satisfies the two conditions of the lemma. By the Jordan

decomposition theorem for signed measures, there exist unique positive measures µ+ and µ−,

mutually singular, such that µ = µ+ − µ−. By Condition 1 we have that µ+(X ) = µ−(X ) ≡ α.

Now we will define two different probability distributions P and Q such that γk(P,Q) = 0. Let:

P = µ+

α and Q = µ−

α .

Clearly P 6= Q, as they are mutually singular, and µ = α(P−Q). By (3.3) and the Condition 2:

γ2
k(P,Q) =

∫ ∫
X
k(x, y)d(P−Q)(x)(P−Q)(y)

=
1

α2

∫ ∫
X
k(x, y)dµ(x)dµ(y)

=
0

α2
= 0
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Now the proof of the theorem is almost direct.

Proof. (Theorem 6) By the definition of integrally strictly positive definite kernel we have that∫ ∫
X
k(x, y)dν(x)dν(y) > 0,

for any finite non-zero signed Borel measure ν. This means that there does not exist a finite

non-zero signed Borel measure that satisfies the condition 2 in Lemma 5. Therefore, by the

same Lemma 5, γk is a metric and then k is characteristic.

This condition of Theorem 6 is clearly easier to check than the previous ones of Theorem 5,

which involve denseness conditions and impose excessive restrictions. The definition of integrally

strictly positive definite arises intuitively from the condition to ensure that a set of vectors of

a finite dimensional vector space are linearly independent. It is possible to determine whether

the vectors {x1, . . . , xn} are linearly independent by analyzing their Gram matrix. The Gram

matrix is a n × n matrix, given by the dot product of the vectors, Gi,j = 〈xi, xj〉. This kind

of matrix is always positive definite. If the vectors are independent, then it is strictly positive

definite. We do not want to determine whether a set of vectors are linearly independent, but

to see if two probability distributions are the same, and both checks involve analysing scalar

products. Then the integrally positive type definition could be seen as a generalization of the

finite definition of strictly positive definite matrix.

We already have the homogeneity test well defined, but we will analyse it a bit more in the

next section, before going into the practical applications as two-sample test.

3.4 Another interpretation of MMD

The MMD can be also expressed in terms of the characteristic functions of P and Q. This can

be useful for independence tests, where characteristic functions are often used.

Definition 12. Given a probability distribution P and a random variable X ∼ P, the charac-

teristic function of P is:

ΦP(t) = E[eitX ].

Before using these functions to rewrite the MMD discrepancies, we need to define the positive

definite condition for a general function defined on Rd:

Definition 13. A function f : Rd → R is positive definite if ∀n ≥ 1 and ∀(x1, . . . , xn) ∈ Rd

the matrix A = (aij)
n
i,j=1, where aij = f(xi − xj), is positive semi-definite, i.e.:

x>Ax ≥ 0 , ∀x ∈ Rd.

Proposition 3 shows how the MMD can be rewritten in terms of characteristic functions if

the kernel is translation invariant.
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Proposition 3. Let X = Rd and k(x, y) = ψ(x−y), where ψ : Rd → R is a bounded, continuous

positive definite function. Then, for any P,Q,

γk(P,Q) =

√∫
Rd
|ΦP(w)− ΦQ(w)|2dµ(w) ≡ ‖ΦP − ΦQ‖L2(Rd,µ),

where ΦP and ΦQ are the characteristic functions of P and Q respectively, and µ is a finite

non-negative Borel measure on Rd.

We need Bochner’s theorem to prove this result:

Theorem 7. (Bochner) A continuous function f : Rd → R is positive definite if and only if it

is the Fourier transform of a finite nonnegative Borel measure µ on Rd:

f(x) =

∫
Rd
e−ix

Twdµ(w), x ∈ Rd.

Proofs of this theorem can be found, for example, in [7] or [8].

Proof. (Proposition 3) We will calculate again γ2
k using the equation (3.3). First we will use

Bochner’s theorem for ψ(·). We will also use Fubini’s theorem to exchange the order of the

integrals.

γ2
k(P,Q) =

∫ ∫
Rd
ψ(x− y)d(P−Q)(x)d(P−Q)(y)

=

∫ ∫ (∫
Rd
e−i(x−y)Twdµ(w)

)
d(P−Q)(x)d(P−Q)(y)

=

∫
Rd

(∫
e−ix

Twd(P−Q)(x)

)(∫
eiy

Twd(P−Q)(y)

)
dµ(w)

=

∫
Rd

(ΦP(w)− ΦQ(w))
(

ΦP(w)− ΦQ(w)
)

dµ(w)

=

∫
Rd
|ΦP(w)− ΦQ(w)|2dµ(w)

This property shows that γk is a weighted L2-distance between the characteristic functions

ΦP and ΦQ. The weights are given by the Fourier transform of ψ. This property will help us

to relate MMD, and its corresponding independence test, with other tests based on weighted

distances between characteristic functions.
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Chapter 4

Application to two-sample test

We have found discrepancies to determine whether two probability distributions are equal. To

apply them to real problems we must be able to estimate them with finite samples. Then we

need sample estimators of the MMD statistic. To determine whether the differences observed

in the MMD are statistically significant, we also need to analyze the asymptotic behaviour of

these estimators under the null hypothesis. This chapter uses material from [1], [6] and [9].

4.1 Some MMD estimators

A direct estimator for the general expression of the MMD (3.1) in a general function class

F can be obtained by replacing the population expectations with the sample means. Given

observations x = {x1, . . . , xn} and y = {y1, . . . , ym} i.i.d. from P and Q, respectively:

MMDb(F , x, y) = sup
f∈F

(
1

n

n∑
i=1

f(xi)−
1

m

m∑
i=1

f(yi)

)
.

However if F belongs to a specific RKHS, the squared MMD can be computed using Equation

(3.2) of Proposition 2:

MMD2(F ,P,Q) = EX,X′k(X,X ′) + EY,Y ′k(Y, Y ′)− 2EX,Y k(X,Y ),

where X and X ′ are independent random variables with distribution P, and Y and Y ′ inde-

pendent random variables with distribution Q. An unbiased statistic can be obtained from this

expression using two U-statistics and a sample mean for the last term:

MMD2
u(F , x, y) =

1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(xi, xj) +
1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(yi, yj) (4.1)

− 2

nm

n∑
i=1

m∑
j=1

k(xi, yj).

If the two samples have the same size, m = n, they can be put together in one sample
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z = {z1, . . . , zn} from the random variable Z = (X,Y ) ∼ P×Q. Then if we define:

h(zi, zj) ≡ k(xi, xj) + k(yi, yj)− k(xi, yj)− k(xj , yi).

We can build an unbiased estimate of the squared MMD, simpler than (4.1).

MMD2
u(F , x, y) =

1

n(n− 1)

n∑
i=1

n∑
j 6=i

h(zi, zj).

This estimator is actually a U-statistic. Its value can be negative, since we have removed

the terms h(zi, zi) to avoid artificial correlations between observations. By [10] (Section 5.1.4),

we know that Equation (4.1) corresponds to the minimum variance estimator for samples of the

same size, n = m. However it is easy to see that the previous estimator is almost identical to

the minimum variance one. The only difference is that the cross-terms k(xi, yi) are present in

the minimum variance estimator:

MMD2
u(F , x, y) =

1

n(n− 1)

n∑
i=1

n∑
j 6=i

(k(xi, xj) + k(yi, yj)− k(xi, yj)− k(xj , yi))

=
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(yi, yj)

− 2

n(n− 1)

n∑
i=1

n∑
j 6=i

k(xi, yj).

This estimator MMD2
u is the most commonly used in practice. We will determine its asymp-

totic behaviour in the following section.

4.2 Asymptotic distribution of MMD

Finally we will analyse asymptotic behaviour of the unbiased statistic MMD2
u(F , x, y). We will

use a new kernel k̃ between feature space mappings from which the mean embeddings of P and

Q has been subtracted:

Definition 14. The centered kernel is defined, for x, y ∈ X , as:

k̃(x, y) ≡ 〈φ(x)− µP, φ(y)− µQ〉H.

The centered kernel can be written in terms of the original kernel k, using the reproducing

property of k and recalling that the feature map, φ : X → H, can be written has φ(x) = k(x, ·).
Given two random variables X ∼ P and Y ∼ Q:

k̃(x, y) = 〈φ(x)− µP, φ(y)− µQ〉H

= 〈φ(x), φ(y)〉H − 〈µP, φ(y)〉H − 〈φ(x), µQ〉H + 〈µP, µQ〉H
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= k(x, y)− 〈Eφ(X), φ(y)〉H − 〈φ(x),Eφ(Y )〉H + 〈Eφ(X),Eφ(Y )〉H

= k(x, y)− Ek(X, y)− Ek(x, Y ) + Ek(X,Y ). (4.2)

It is easy to see from this equation that if k is bounded, then the centered kernel is square

integrable, i.e. k̃ ∈ L2(X × X ,P × Q). Now we can obtain the asymptotic distribution of the

statistic under the null hypothesis H0 which assumes that P = Q. We will assume two conditions

on the convergence of the samples sizes:

lim
n,m→∞

n

n+m
= ρx lim

n,m→∞

m

n+m
= ρy = 1− ρx,

for some ρx ∈ (0, 1).

Theorem 8. Under H0 the statistics MMD2
u converges in distribution according to:

(m+ n)MMD2
u(F , x, y)

d−→
∞∑
i=1

λi

[(
ρ−1/2
x Zi − ρ−1/2

y Z̃i

)2
− 1

ρxρy

]
,

where Zi, Z̃i ∼ N(0, 1) are all independent and λi are the eigenvalues of the centered kernel

integral operator defined by k̃, that is,∫
X
k̃(x, y)ψi(x)dP(x) = λiψi(y), for i = 1, 2, . . . ,

being ψi the corresponding eigenfunctions.

Proof. The null hypothesis means that X,Y ∼ P. First we write the expression of the unbiased

estimator MMD2
u in terms of the centered kernel, using Equation (4.2), where now Z,Z ′ ∼ P:

MMD2
u(F , x, y) =

1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(xi, xj) +
1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(yi, yj)

− 2

nm

n∑
i=1

m∑
j=1

k(xi, yj)

=
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(
k̃(xi, xj) + EZk(x, Z) + EZk(Z, y)− EZ,Z′k(Z,Z ′)

)
+

1

m(m− 1)

m∑
i=1

m∑
j 6=i

(
k̃(yi, yj) + EZk(x, Z) + EZk(Z, y)− EZ,Z′k(Z,Z ′)

)
−

2

nm

n∑
i=1

m∑
j=1

(
k̃(xi, yj) + EZk(x, Z) + EZk(Z, y)− EZ,Z′k(Z,Z ′)

)

=
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k̃(xi, xj) +
1

m(m− 1)

m∑
i=1

m∑
j 6=i

k̃(yi, yj)

− 2

nm

n∑
i=1

m∑
j=1

k̃(xi, yj). (4.3)
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We define now the operator D
k̃

: L2(P)→ F satisfying:

D
k̃
g(x) ≡

∫
X
k̃(x, x′)g(x′)dP(x′).

According to [11] (Theorem VI.23), this operator is compact if and only if k̃ is square

integrable under P. And it is well known that the eigenfunctions of a compact operator form

an orthonormal basis of the space. Thus we can write the centered kernel as a function of the

eigenfunctions ψi:

k̃(x, y) =

∞∑
i=1

λiψi(x)ψi(y),

where the convergence of the sum is in L2(X×X ,P×P). It is easy to prove that the eigenfunctions

have zero mean and are uncorrelated, using that the U-statistics of Equation (4.3) in k̃(xi, xj)

are degenerate
(

i.e. EX k̃(X, y) = 0
)

. Now we can compute the asymptotic distribution of each

sum in equation (4.3):

1

n

n∑
i=1

n∑
j 6=i

k̃(xi, xj) =
1

n

n∑
i=1

n∑
j 6=i

∞∑
k=1

λkψk(xi)ψk(xj)

=
1

n

∞∑
k=1

λk

( n∑
i=1

ψk(xi)

)2

−
n∑
i=1

ψ2
k(xi)


d−→

∞∑
k=1

λk(Z
2
k − 1),

where Zk ∼ N(0, 1) are i.i.d., and the convergence is in distribution, which can be proved using

that Ψi ⊥ Ψj and EXΨi(X) = 0. In addition to this, by [11] (Theorem VI.22) we know that∑
λ2
i < ∞, and then it can be shown that the sum

∑∞
k=1 λk(Z

2
k − 1) converges almost surely

(For example, via Kolmogorov’s inequality: P (maxSk ≥ µ) ≤ 1
µ2
V ar(Sn), for 1 ≤ k ≤ n). It

can be done also for the other two terms of the equation:

1

m

m∑
i=1

m∑
j 6=i

k̃(yi, yj)
d−→

∞∑
k=1

λk(Z̃
2
k − 1),

1√
nm

n∑
i=1

m∑
j=1

k̃(xi, yj)
d−→

∞∑
k=1

λkZkZ̃k,

where Z̃k ∼ N(0, 1) independent of the Zk. It only remains to multiply the statistic by (n+m)

and to substitute the expressions for ρx and ρy. Full details of this proof can be seen in [1]

(Appendix B).

From the theorem it is clear that, if n = m, then the statistics converges according to:

nMMD2
u(F , x, y)

d−→
∞∑
i=1

λi

[(
Zi − Z̃i

)2
− 2

]
d
= 2

∞∑
i=1

λi(Xi − 1),
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where X1, X2, . . . ≡ χ2
1, since Zi − Z̃i ∼ N(0, 2).

A natural question is why it is needed to center the kernel. Following section 5.5 of [10], the

variances of any of the three statistics that appear in Equation (4.1) are:

ζ1x = V arX(EX′k(X,X ′)) = V arX(µP(X))

ζ1y = V arY (EY ′k(Y, Y ′)) = V arY (µQ(Y ))

ζ11 = V arX(EY k(X,Y )) = V arX(µQ(X)) ζ12 = V arY (EXk(X,Y )) = V arY (µP(Y )),

since the last term is a U-statistic of two samples, and the other two are only of one sample. All

these variances are strictly positive, which means that any of the three statistics converges to

a Normal distribution. But the third distribution depends on the previous two, so we can not

ensure that the resulting distribution is also normal. Therefore we should use a variation of the

original kernel k such that:

V arX(EX′ k̃(X,X ′)) = 0.

Thus we can apply the degenerate case of [10], to avoid the sum of normal distributions.

One possibility is to force that EX′ k̃(·, X ′) = 0, using for example:

EX′ k̃(·, X ′) = EX′k(·, X ′)− µP(·) = 0.

The expression of the centered kernel can be obtained from this one using some simple tricks.

In addition, we can see the MMD density under both the null and alternative hypotheses by

approximating it empirically. The left-hand side of Figure 4.1 shows the empirical distribution

under H0, with P and Q Gaussians with unit standard deviation, obtained by using 100 samples

from each. We see that in fact it is a mixture of χ2 distributions, as we have proved before. The

right-hand side shows the empirical distribution under the alternative hypothesis H1. There, P
is a Gaussian distribution with unit standard deviation, and Q is another Gaussian distribution

with standard deviation 5, using 100 samples from each. In both cases, the histograms have

been obtained using 2000 independent instances of the MMD to compute them.
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Figure 4.1: Empirical density of MMD2
u under H0 and H1.
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Chapter 5

Application to independence test

Consider the random variables X ∼ P and Y ∼ Q, whose joint distribution is PXY . One way

to test the independence between these variables is to determine whether the joint probability

measure PXY is equal to the product of the marginals PQ. In the previous chapters we have

seen that the MMD between two distributions is equal to zero only when the two distributions

are equal. Therefore:

MMD(F ,PXY ,PQ) = 0 if and only if X and Y are independent.

To characterize this independence test we need to introduce a new RKHS, which is a tensor

product of the RKHS’s in which the marginal distributions of the random variables are embed-

ded. Let X and Y be two topological spaces and let k and l be kernels on these spaces, with

respective RKHS H and G. Let us denote as ν((x, y), (x′, y′)) a kernel on the product space

X ×Y with RKHS Hν . This space is known as the tensor product space H×G. Tensor product

spaces are defined as follows:

Definition 15. The tensor product of Hilbert spaces H1 and H2 with inner products 〈·, ·〉1 and

〈·, ·〉2 is defined as the completion of the space H1 ×H2 with inner product 〈·, ·〉1〈·, ·〉2, extended

by linearity. The resulting space is also a Hilbert space.

In the following lemma we give a particular expression for the kernel of the product space:

Lemma 6. A kernel ν in the tensor product space H× G can be defined as:

ν((x, y), (x′, y′)) = k(x, x′)l(y, y′).

Proof. This proof is taken from [4] (Lemma 4.6, page 114). To show that k(x, x′)l(y, y′) is a

kernel on the product space, we need to express it as the dot product between feature maps.

We denote the feature maps to H and G by φ and ψ respectively.

ν((x, y), (x′, y′)) = k(x, x′)l(y, y′)

= 〈φ(x), φ(x′)〉H〈ψ(y), ψ(y′)〉G
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= 〈(φ(x), ψ(y)), (φ(x′), ψ(y′))〉Hν ,

which shows that (φ, ψ) : X × Y → H⊗ G is in fact a feature map of k(x, x′)l(y, y′).

Now we need to define the mean embeddings of these two probability measures. For clarity’s

sake we will introduce new notation for the expectations with respect to the marginals and the

joint distribution.

EXf(X) =

∫
f(x)dP(x)

EY f(Y ) =

∫
f(y)dQ(y)

EXY f(X,Y ) =

∫
f(x, y)dPXY (x, y).

Using this notation, the mean embedding of PXY and of PQ are:

µPXY = EXY ν((X,Y ), ·)

µPQ = EXEY ν((X,Y ), ·).

In terms of these embeddings:

MMD(F ,PXY ,PQ) = ‖µPXY − µPQ‖Hν .

All the estimators of the previous chapter can be applied, but now the kernel is ν, the

one corresponding to the product space. In the following section we will give an alternative

formulation of this test in terms of generalized covariances between distances.

5.1 Hilbert Schmidt Independence Criterion (HSIC)

In this section, obtained mainly from [12], we will introduce an alternative formulation of the

MMD independence test, based on the simplest criterion for testing linear independence, the

covariance. To this end we need to introduce the cross-covariance operators for elements of

general Hilbert spaces. First, let us define a new product between elements of two separable

Hilbert spaces H and G.

Definition 16. Let h ∈ H, g ∈ G. The tensor product operator h⊗ g : G → H is defined as:

(h⊗ g)(f) = 〈g, f〉Gh , for all f ∈ G.

We will see two important properties of this product, which will be useful for future proofs.

First we will introduce a norm for linear operators.
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Definition 17. Let C : G → H be a linear operator between the RKHS’s G and H. The

Hilbert-Schmidt norm (HS) of C is defined as

‖C‖HS =

√∑
i,j

〈Cvj , ui〉2H,

provided that the sum converges, where {ui} and {vj} are orthonormal bases of H and G respec-

tively.

In terms of this norm, we define a class of operators.

Definition 18. A linear operator C : G → H is called a Hilbert-Schmidt operator if its HS

norm exists.

In fact, the set of Hilbert-Schmidt operators, HS, is a separable Hilbert space with inner

product

〈C,D〉HS =
∑
i,j

〈Cvj , ui〉H〈Dvj , ui〉H.

The tensor product operator belongs to this Hilbert space, because its HS norm is finite.

This can be deduced from the first point of the following proposition.

Proposition 4. The tensor product between f ∈ H, g ∈ G satisfies:

1. The HS norm of f ⊗ g is:

‖f ⊗ g‖HS = ‖f‖H‖g‖G . (5.1)

2. The tensor product satisfies the distributive property,

(f + h)⊗ (g + k) = f ⊗ g + f ⊗ k + h⊗ g + h⊗ k,

for all h ∈ H and k ∈ G.

Proof. 1. We use that the representations of each of these functions in their corresponding

basis are f =
∑

i〈f, ui〉Hui and g =
∑

j〈g, vj〉Gvj . We also use Parseval Equality, which

says that ‖f‖2H =
∑

i |〈f, ui〉H|2, and respectively for g.

‖f ⊗ g‖2HS =
∑
i,j

〈(f ⊗ g)vj , ui〉2H

=
∑
i,j

〈〈g, vj〉Gf, ui〉2H

=
∑
i,j

〈f, ui〉2H〈g, vj〉2G

=
∑
i

|〈f, ui〉H|2
∑
j

|〈g, vj〉G |2
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= ‖f‖2H‖g‖2G .

Since these last two norms are finite, the HS norm of f⊗g is also finite. Hence the operator

f ⊗ g is a Hilbert-Schmidt operator on G.

2. The proof is direct applying the definition:

((f + h)⊗ (g + k))(·) = 〈g + k, ·〉G(f + h)

= (〈g, ·〉G + 〈k, ·〉G)(f + h)

= 〈g, ·〉Gf + 〈k, ·〉Gf + 〈g, ·〉Gh+ 〈k, ·〉Gh

= f ⊗ g + f ⊗ k + h⊗ g + h⊗ k.

Let φ denote the feature map from X to the RKHS H. Similarly let ψ the feature map from

Y to the RKHS G.

Definition 19. The cross-covariance operator associated with PXY is the linear operator

CXY : G → H defined as:

CXY = EXY [(φ(X)− µP)⊗ (ψ(Y )− µQ)] . (5.2)

Using the distributive property of the tensor product, Equation (5.2) can be also expressed

as:

CXY = EXY [(φ(X)− µP)⊗ (ψ(Y )− µQ)] = EXY [φ(X)⊗ ψ(Y )]− µP ⊗ µQ. (5.3)

Now we define an independence criterion based on the Hilbert-Schmidt norm of this covari-

ance operator.

Definition 20. We define the Hilbert-Schmidt Independence Criterion (HSIC) for PXY
as the squared HS norm of the associated cross-covariance operator:

HSIC(PXY ,H,G) = ‖CXY ‖2HS . (5.4)

This quantity characterizes independence when the kernels of the RKHS’s are characteristics,

that is, when the embeddings of probability measures in these spaces are injective.

Proposition 5. Given two random variables X ∼ P and Y ∼ Q, with joint distribution PXY ,

and two RKHS’s H and G with characteristic kernels k and l, then HSIC(PXY ,H,G) = 0 if

and only if PXY = PQ, i.e. if X and Y are independent.

The proof of this proposition is deferred to Section 8.1. This derivation uses a generalization

of kernel embeddings for signed measures.

In addition to this, we can express HSIC in terms of kernels k and l, from H and G respec-

tively. This helps us to formulate estimators of this independence criterion.
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Lemma 7. If we denote X,X ′ ∼ P and Y, Y ′ ∼ Q then:

HSIC(PXY ,H,G) = EXY EX′Y ′k(X,X ′)l(Y, Y ′) + EXEY EX′EY ′k(X,X ′)l(Y, Y ′)

−2EXY EX′EY ′k(X,X ′)l(Y, Y ′). (5.5)

Proof. We will use the expression for the HS-norm of the tensor product (5.1) and the previous

expression obtained for the cross-covariance operator (5.3). First, we will simplify the notation

of CXY :

CXY = EXY [φ(X)⊗ ψ(Y )]− µP ⊗ µQ = C̃XY −MXY .

Using this notation:

‖CXY ‖2HS = 〈C̃XY −MXY , C̃X′Y ′ −MX′Y ′〉HS

= 〈C̃XY , C̃X′Y ′〉HS + 〈MXY , MX′Y ′〉HS − 2〈C̃XY , MX′Y ′〉HS

We will calculate these products one by one.

〈C̃XY , C̃X′Y ′〉HS = 〈EXY [φ(X)⊗ ψ(Y )] , EX′Y ′
[
φ(X ′)⊗ ψ(Y ′)

]
〉HS

= EXY EX′Y ′‖φ(X)⊗ ψ(Y )‖2HS

= EXY EX′Y ′‖φ(X)‖2H‖ψ(Y )‖2G

= EXY EX′Y ′〈φ(X), φ(X ′)〉H〈ψ(Y ), ψ(Y ′)〉G

= EXY EX′Y ′k(X,X ′)l(Y, Y ′).

〈MXY , MX′Y ′〉HS = 〈µP ⊗ µQ , µP ⊗ µQ〉HS

= ‖µP ⊗ µQ‖2HS

= ‖µP‖2H‖µQ‖2G

= 〈µP, µP〉H〈µQ, µQ〉G

= 〈EXk(X, ·),EX′k(X ′, ·)〉H〈EY l(Y, ·),EY ′ l(Y ′, ·)〉G

= EXEY EX′EY ′〈k(X, ·), k(X ′, ·)〉H〈l(Y, ·), l(Y ′, ·)〉G

= EXEY EX′EY ′k(X,X ′)l(Y, Y ′)

〈C̃XY , MX′Y ′〉HS = 〈EXY [φ(X)⊗ ψ(Y )] , µP ⊗ µQ〉HS

= 〈EXY [φ(X)⊗ ψ(Y )] , EX′φ(X ′)⊗ EY ′ψ(Y ′)〉HS
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= EXY EX′EY ′〈φ(X)⊗ ψ(Y ), φ(X ′)⊗ ψ(Y ′)〉HS

= EXY EX′EY ′〈φ(X), φ(X ′)〉H〈ψ(Y ), ψ(Y ′)〉G

= EXY EX′EY ′k(X,X ′)l(Y, Y ′).

Expression (5.5) can be derived putting together these partial results.

Now we include one of the biased estimators of the HSIC value, based on this lemma, which

has an easy formulation. Given two samples x and y of the same length n:

HSICb =
1

n2
trace(KHLH),

where Kij = k(xi, xj), Lij = l(yi, yj), being k and l the kernels of H and G respectively. Also

H = I − 1
m11>, where 1 is an n× 1 vector of ones. This estimator is obtained by substituting

V-statistics in the previous HSIC formula and operating with the resulting expression. Other

estimators and their asymptotic behaviour can be consulted in [13].

5.2 Equivalence between HSIC and MMD

In this section we prove the equivalence of the HSIC test in terms of the HS norm of the cross

covariance operator and in terms of the MMD between PXY and PQ.

Theorem 9. The squared MMD quantity between the joint distribution PXY and the product of

its marginals is equal to the Hilbert-Schmidt norm of the covariance operator between RKHSs:

MMD2(F ,PXY ,PQ) = HSIC(PXY ,H,G).

Proof. This proof has been obtained using [9] and [14]. We will use the expression of the MMD

given in Lemma 7 and properties of the tensor product kernel ν given in Lemma 6:

MMD2(F ,PXY ,PQ) = ‖µPXY − µPQ‖
2
Hν

= ‖EXY ν((X,Y ), ·)− EXEY ν((X,Y ), ·)‖2Hν

= ‖EXY k(X, ·)l(Y, ·)− EXEY k(X, ·)l(Y, ·)‖2HH⊗G

= ‖EXY k(X, ·)l(Y, ·)− EXk(X, ·)EY l(Y, ·)‖2HH⊗G

= 〈EXY k(X, ·)l(Y, ·) , EX′Y ′k(X ′, ·)l(Y ′, ·)〉HH⊗G
+〈EXk(X, ·)EY l(Y, ·) , EX′k(X ′, ·)EY ′ l(Y ′, ·)〉HH⊗G
−2〈EXY k(X, ·)l(Y, ·) , EX′k(X ′, ·)EY ′ l(Y ′, ·)〉HH⊗G

= EXY EX′Y ′k(X,X ′)l(Y, Y ′) + EXEY EX′EY ′k(X,X ′)l(Y, Y ′)
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−2EXY EX′EY ′k(X,X ′)l(Y, Y ′).

This is the expression for HSIC obtained in Lemma 7.

That is, both test are equivalent, although their formulation and estimators are different. In

the next two chapters we will introduce a different type of homogeneity and independence tests,

using a different approach. In Chapter 8 we will show how this new type of tests are related to

tests based on embeddings in RKHS’s.
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Chapter 6

Energy distance

In this chapter we describe a homogeneity test, introduced in [15]. This test will be used in

the next chapter to formulate another independence test. This test is one of the most popular

nowadays, because of its power and the fact that it does not depend on any parameter. In

Chapter 8 we will show that this method is actually a particular case of the one introduced in

the previous chapters, the MMD, for a special choice of the kernel.

In the first part of this chapter, we derive the basic homogeneity test, the energy distance.

We need to introduce some theory to prove that it is a homogeneity test, i.e., that it vanishes

if and only if both distributions are equal. In the second part of this chapter we generalize the

energy distance to cover the cases in which the first moments are not finite.

6.1 Definitions and principal properties

One of the simplest distances we can define between two distributions F and G is the L2 one,

although it has the drawback that the distribution of its natural estimate is not distribution-free.

That is, the distribution of the estimate depends on the distribution F under the null hypothesis.

However, we can extend this distance easily to higher dimensions, having the property of being

rotation invariant. Then energy distances can be derived as a variation of the L2 distance, given

by the following proposition:

Proposition 6. Let F and G be two CDFs of the independent random variables X and Y

respectively, and X ′, Y ′ two iid copies of them, then:

2

∫ ∞
−∞

(F (x)−G(x))2dx = 2E|X − Y | − E|X −X ′| − E|Y − Y ′|. (6.1)

Proof. The idea of this proof has been obtained from [16]. We will start analysing the ex-

pectations of the right hand side. We will use that for any positive random variable Z > 0,

EZ =
∫∞

0 P(Z > z)dz. We can apply this fact to |X − Y |, and then use Fubini’s theorem:

E|X − Y | =

∫ ∞
0

P(|X − Y | > u)du
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=

∫ ∞
0

P(X − Y > u)du+

∫ ∞
0

P(X − Y < −u)du

=

∫ ∞
0

∫ ∞
−∞

P(X − Y > u|Y = y)dG(y)du+

∫ ∞
0

∫ ∞
−∞

P(X − Y < −u|X = x)dF (x)du

=

∫ ∞
−∞

∫ ∞
0

P(X − Y > u|Y = y)dudG(y) +

∫ ∞
−∞

∫ ∞
0

P(X − Y < −u|X = x)dudF (x)

=

∫ ∞
−∞

∫ ∞
0

P(X > u+ y)dudG(y) +

∫ ∞
−∞

∫ ∞
0

P(Y > u+ x)dudF (x).

Now we use the change of variables z = u + y for the first integral, and w = u + x for the

second one, and apply Fubini again:

E|X − Y | =

∫ ∞
−∞

∫ ∞
y

P(X > z)dzdG(y) +

∫ ∞
−∞

∫ ∞
x

P(Y > w)dwdF (x)

=

∫ ∞
−∞

P(X > z)

∫ z

−∞
dG(y)dz +

∫ ∞
−∞

P(Y > w)

∫ x

−∞
dF (x)dw

=

∫ ∞
−∞

P(X > z)P(Y < z)dz +

∫ ∞
−∞

P(Y > w)P(X < w)dw

=

∫ ∞
−∞

[(1− F (z))G(z) + (1−G(z))F (z)] dz

= −2

∫ ∞
−∞

F (z)G(z)dz + EY + EX.

Similarly, taking G = F in the previous development:

E|X −X ′| = −2

∫ ∞
−∞

F 2(z)dz + 2EX.

Equivalently, for the last expectation:

E|Y − Y ′| = −2

∫ ∞
−∞

G2(z)dz + 2EY.

The equality (6.1) can be obtained readily combining these partial results.

The expression of the right hand side of the last proposition can be directly extended to

the d-dimensional case by replacing the absolute value with a norm. Furthermore, the resulting

expression is rotation invariant and scale equivariant since it only depends on the distance

between points.

Definition 21. Let X and Y be random variables in Rd, if E‖X‖d + E‖Y ‖d <∞, the energy

distance between X and Y is defined as:

E(X,Y ) = 2E‖X − Y ‖d − E‖X −X ′‖d − E‖Y − Y ′‖d, (6.2)
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where X ′ and Y ′ are i.i.d. copies of X and Y respectively.

In dimensions greater that one, we do not have the equivalence between this distance and

the differences between cumulative distribution functions.

The energy distance can be also defined in terms of the characteristic functions. In fact, it

can be seen as a weighted L2 distance between characteristic functions, as states the following

proposition. This shows that the energy distance is actually a homogeneity statistic, since the

characteristic functions are equal if and only if both distributions are the same. Using the same

notation as in Definition 12:

Proposition 7. Given two independent d-dimensional random variables X and Y , with distri-

butions P and Q respectively and such that E‖X‖d + E‖Y ‖d < ∞, the energy distance between

them can be written as:

E(X,Y ) =
1

cd

∫
Rd

|ΦP(t)− ΦQ(t)|2

‖t‖d+1
d

dt, (6.3)

where

cd =
π
d+1
2

Γ
(
d+1

2

) , (6.4)

being Γ(.) the gamma function.

To prove this proposition for general distributions we need the following lemma. This is

important and widely used for this kind of proofs because it allows to translate characteristic

functions into expectations of the random variables. We have obtained the lemma and the proof

from [15]. We will present here a simpler version than the one presented in the mentioned paper.

Lemma 8. For all x ∈ Rd, then: ∫
Rd

1− cos(tx)

‖t‖d+1
d

dt = cd‖x‖d,

where tx is the inner product of t and x and cd is the constant (6.4).

Proof. We can apply an orthogonal transformation to the variable t of the integral, because

orthogonal transformations preserve lengths of vectors and angles between them. That is, the

value of the integral will be the same. In particular we will apply t → z = (z1, z2, . . . , zd) ∈ Rd

such that z1 = tx
‖x‖d . Therefore we have that ‖t‖d = ‖z‖d and tx = z1‖x‖d. We will also change

the variables s = z‖x‖d. Then s1 = z1‖x‖d and the determinant of its Jacobian matrix is ‖x‖−dd .∫
Rd

1− cos(tx)

‖t‖d+1
d

dt =

∫
Rd

1− cos(z1‖x‖d)
‖z‖d+1

d

dz

=

∫
Rd

1− cos(s1)(
‖s‖d
‖x‖d

)d+1

1

‖x‖dd
ds
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= ‖x‖d
∫
Rd

1− cos(s1)

‖s‖d+1
d

ds

= ‖x‖d
π
d+1
2

Γ
(
d+1

2

) = ‖x‖dcd.

The integrals of this lemma at the points t = 0 and t =∞ are meant in the principal value

sense, that is:

lim
ε→0

∫
Rd\{εSd−1+ε−1Sd−1}

· ,

where Sd−1 is the unit ball centered at 0 in Rd and Sd−1 is its complement. Therefore, the

integral of the energy distance is also meant in this sense. Now we can prove the previous

proposition:

Proof. (Proposition 7) Let ΦP(·) denote the complex conjugate of the characteristic function.

We can rewrite the numerator of the integral, using the properties of complex numbers and sines

and cosines:

|ΦP(t)− ΦQ(t)|2 = (ΦP(t)− ΦQ(t))(ΦP(t)− ΦQ(t))

= (ΦP(t)− ΦQ(t))(ΦP(t)− ΦQ(t))

= ΦP(t)ΦP(t)− ΦP(t)ΦQ(t)− ΦQ(t)ΦP(t) + ΦQ(t)ΦQ(t)

= E
[
eitXe−itX

′
]
− E

[
eitXe−itY

]
− E

[
eitY e−itX

]
+ E

[
eitY e−itY

′
]

= E
[
eit(X−X

′) − eit(Y−X) − eit(X−Y ) + eit(Y−Y
′)
]

= E
[
cos(t(X −X ′)) + i sin(t(X −X ′))− cos(t(Y −X))− i sin(t(Y −X))

− cos(t(X − Y ))− i sin(t(X − Y )) + cos(t(Y − Y ′)) + i sin(t(Y − Y ′))
]

= E
[
cos(t(X −X ′))− 2 cos(t(Y −X)) + cos(t(Y − Y ′)) + i sin(t(X −X ′))

+i sin(t(Y − Y ′))
]

= E
[
cos(t(X −X ′))− 2 cos(t(Y −X)) + cos(t(Y − Y ′))

+i(sin(tX) cos(tX ′)− cos(tX) sin(tX ′))

+i(sin(tY ) cos(tY ′)− cos(tY ) sin(tY ′))
]

= E
[
cos(t(X −X ′))− 2 cos(t(Y −X)) + cos(t(Y − Y ′))

]
= E

[
2(1− cos(t(Y −X)))− (1− cos(t(X −X ′)))− (1− cos(t(Y − Y ′)))

]
.
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Now we write the complete integral and apply Fubini and the previous lemma:∫
Rd

|ΦP(t)− ΦQ(t)|2

‖t‖d+1
d

dt =

∫
Rd

(
E [2(1− cos(t(Y −X)))− (1− cos(t(X −X ′)))]

‖t‖d+1
d

− E [1− cos(t(Y − Y ′))]
‖t‖d+1

d

)
dt

= 2E

[∫
Rd

1− cos(t(Y −X))

‖t‖d+1
d

dt

]
− E

[∫
Rd

1− cos(t(X −X ′))
‖t‖d+1

d

dt

]

−E

[∫
Rd

1− cos(t(Y − Y ′))
‖t‖d+1

d

dt

]

= 2E [cd‖Y −X‖d]− E
[
cd‖X −X ′‖d

]
− E

[
cd‖Y − Y ′‖d

]
= cd

(
2E‖X − Y ‖d − E‖X −X ′‖d − E‖Y − Y ′‖d

)
= cdE(X,Y ).

It is clear that the energy distance only vanishes when the distributions are equal, since

this is equivalent to have equal characteristic functions. To design a test of independence, an

extension of the energy distance needs to be given for distributions of two variables. One of the

possible extensions will be carried out in Chapter 7

6.2 Generalized energy distance

In this section the energy distance will be generalized to any metric space, and also to distribu-

tions with infinite first moments. We will start with a remark about the origin of the weights. As

we have just seen, the energy distance can be expressed as a weighted L2-distance between char-

acteristic functions. It is possible to define other distance by using a different weight function

w(t). For simplicity we will assume that the weight function is a continuous, strictly positive

function which satisfies: ∫
|ΦP(t)− ΦQ(t)|2w(t) <∞,

where ΦP and ΦQ are the characteristic functions of the probability distributions P and Q
respectively. We will analyse the simplest case, when the distributions are defined on R. If we

want this new distance to be scale equivariant, it has to satisfy ∀a ∈ R:∫
|ΦP(at)− ΦQ(at)|2w(t)dt = |a|

∫
|ΦP(t)− ΦQ(t)|2w(t)dt.

Making the change of variables s = at in this expression:∫
|ΦP(s)− ΦQ(s)|2w(s/a)

|a|
ds = |a|

∫
|ΦP(t)− ΦQ(t)|2w(t)dt.
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That is, the weight function has to satisfy that w(t)
|a| = |a|w(at). If we denote w(1) ≡ c, we

have that w
(

1
a

)
= ca2 (using at = 1). That is, we obtain that the weight function should be

w(t) = c
|t|d+1 , which is exactly the one of the energy distance. It has no sense to talk about

rotational invariance in R. However, is can be proved that the only scale and rotation invariant

weighted L2-distance between characteristic functions is the energy distance.

Up to now we have used the euclidean distance in the definition of the energy distance

(see (6.2)). In an arbitrary metric space with distance function δ, the energy distance can be

extended as:

Eδ(X,Y ) = 2E[δ(X,Y )]− E[δ(X,X ′)]− E[δ(Y, Y ′)],

whenever these expectations exist. However, in general metric spaces Eδ(X,Y ) does not nec-

essarily vanish only when the random variables have the same distribution. We will discuss a

similar generalization in Section 8.2, which will be necessary to connect these ideas with the

MMD methods of the previous chapters. Nevertheless, it is possible to impose restrictions on

the distance function so that it characterises equality of the distributions. First we need some

additional results and concepts.

Definition 22. Let X be a nonempty set. We say that h : X × X → R is a negative type

function, or negative definite function, if ∀n ≥ 1, ∀(α1, . . . , αn) ∈ Cn such that
∑n

i=1 αi = 0,

and ∀(x1, . . . , xn) ∈ X n:
n∑
i=1

n∑
j=1

αiαjh(xi, xj) ≤ 0. (6.5)

Moreover, h is said to be strictly negative definite if the inequality in the definition is

strict, whenever x1, . . . , xn are distinct and at least one of the α1, . . . , αn does not vanish. This

definition has an equivalent continuous version:

Definition 23. Let X be a metric space. We say that h : X × X → R is strictly negative

definite if it satisfies, for some probability measure µ such that
∫
X α(x)dµ(x) = 0:∫

X

∫
X
h(x, y)α(x)α(y)dµ(x)dµ(y) ≤ 0,

and equality holds if and only if α(x) = 0 almost sure for µ.

We will now state an interesting result about this kind of functions:

Proposition 8. The Euclidean distance h(x, y) = ‖x− y‖d is strictly negative definite.

The proof of this proposition can be seen in the Appendix of [17] (Proof of Proposition

1). From the definition of energy distance (see (6.2)) and in view of this proposition, it is

straightforward to see that the energy distance can be written as a combination of expectations

of a strictly negative definite function h,

E(X,Y ) = 2Eh(X,Y )− Eh(X,X ′)− Eh(Y, Y ′). (6.6)

We will see that this characteristic of δ (or h in the last equation) of being negative definite

is which gives to the energy distance the property of vanishing only when the distributions are

equal.
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Proposition 9. Given a strictly negative definite distance function δ, Eδ(X,Y ) ≥ 0 and it

vanishes if and only if both random variables have the same distribution.

Proof. This proof has been obtained from the discussion in [17]. Let P and Q denote the

distributions of X and Y respectively. Now let µ be an arbitrary probability measure that

dominates the previous ones: If µ(A) = 0 for some measurable set A, then P(A) = Q(A) = 0

(P,Q� µ). Define,

α(x) =
dP
dµ

(x)− dQ
dµ

(x),

by their Radon-Nikodym derivatives. Then it is clear that
∫
X α(x)dµ(x) = 0, because P and Q

are probability measures. From the fact that the function δ is negative definite and symmetric:

Eδ(X,Y ) = 2Eδ(X,Y )− Eδ(X,X ′)− Eδ(Y, Y ′)

= 2

∫
δ(x, y)dP(x)dQ(y)−

∫
δ(x, x′)dP(x)dP(x′)−

∫
δ(y, y′)dQ(y)dQ(y′)

=

∫
δ(x, y)dP(x)dQ(y)−

∫
δ(x, y)dP(x)dP(y)

+

∫
δ(x, y)dP(y)dQ(x)−

∫
δ(x, y)dQ(x)dQ(y)

= −
∫
δ(x, y)dP(x) [dP(y)− dQ(y)] +

∫
δ(x, y)dQ(x) [dP(y)− dQ(y)]

= −
∫
δ(x, y) [dP(x)− dQ(x)] [dP(y)− dQ(y)]

= −
∫
δ(x, y)α(x)dµ(x)α(y)dµ(y) ≥ 0.

And, by the definition of strictly negative, the equality holds only when α(x) = 0 a.s., that

is, when P = Q.

Clearly this property holds for the original energy distance, when δ(x, y) = ‖x−y‖d. We had

already seen it by using its interpretation as the L2 distance between characteristic functions.

This interpretation is not possible when we are using another distance function, hence the need

of a different proof.

Furthermore, many important distributions do not have finite expectations, as it is imposed

in the original definition of the energy distance. The following proposition gives a way to

generalize the energy distance for such cases:

Proposition 10. Let X and Y be independent d-dimensional random variables with character-

istic functions ΦP and ΦQ. If E|X|α <∞ and E|Y |α <∞, for some 0 < α ≤ 2, then:

• For 0 < α < 2,

Eα(X,Y ) ≡ 2E‖X − Y ‖αd − E‖X −X ′‖αd − E‖Y − Y ′‖αd =
1

C(d, α)

∫
Rd

|ΦP(t)− ΦQ(t)|2

|t|d+α
dt,
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where

C(d, α) = 2πd/2
Γ(1− α

2 )

α2αΓ
(
d+α

2

) .
• E2(X,Y ) = 2|EX − EY |2.

These statements show that Eα(X,Y ) ≥ 0 with equality to zero if and only if the variables

are equally distributed, for 0 < α < 2. But clearly the property does not hold for α = 2. A

proof of this proposition can be consulted in [15] (Proof of Proposition 2). The proof of the first

point when α = 1 is given in Proposition 7.
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Chapter 7

Energy test of independence

In this chapter we will develop a new independence test by using similar arguments as for the

energy distance. But now we have to use probability distributions depending on two vectors

which can have different dimensions, because we want to measure the distance between the joint

distribution and the product of the marginals. This new test is named distance covariance.

It should not be confused with the covariance of the distances between the original vectors,

although there is a connection between these quantities. Its name comes from the fact that it is

a generalization of the classical product-moment covariance. In fact the test is almost equivalent

to squared Pearson’s covariance for some particular probability distributions, as we will see at

the end of the first section.

In that first section we will introduce the distance covariance test, and its normalized version,

the distance correlation. We will analyse some properties of the test, such as its relation with

the covariance of the distances and its value for some particular distributions. In the second part

of the chapter, we will introduce some estimators of energy statistics. It includes the estimators

of the energy distance and of the distance covariance.

7.1 Distance Covariance

We will start by defining the independence test. Consider the random vectors X and Y , with

dimensions dx and dy and distributions PX and PY respectively. Let ΦPX and ΦPY denote their

characteristic functions, and ΦPXY the characteristic function of the joint distribution. X and

Y are independent if and only if ΦPXΦPY = ΦPXY . The covariance energy test is based on

measuring a distance between these functions.

First we need to generalize the energy distance expression, Equation (6.3), to the case in

which the functions f and g depend on vectors of different dimension. As in the previous chapter,

this expression is obtained from a weighted L2-distance, imposing rotation invariance and scale

equivariance, along with some necessary technical conditions. The energy distance is:
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Edx,dy(X,Y ) =
1

cdxcdy

∫
Rdx+dy

|ΦP(t, s)− ΦQ(t, s)|2

‖t‖dx+1
dx
‖s‖dy+1

dy

dtds,

where cd is defined in (6.4). The distance covariance is defined by replacing ΦP and ΦQ in

the previous formula with characteristic functions of the joint distribution and the product of

the marginals respectively.

Definition 24. The distance covariance (dCov) between random vectors X and Y , with

E‖X‖dx + E‖Y ‖dy <∞, is the nonnegative number ν(X,Y ) defined by:

ν2(X,Y ) = ‖ΦPXY (t, s)− ΦPX (t)ΦPY (s)‖2w =
1

cdxcdy

∫
Rdx+dy

|ΦPXY (t, s)− ΦPX (t)ΦPY (s)|2

‖t‖dx+1
dx
‖s‖dy+1

dy

dtds.

As in the original definition of energy distance, the weight function w is unique, imposing

rotation invariance and scale equivariance. The proof of this fact can be found in Section 3

of [18]. However, it is clear that this expression is not equivalent to apply the energy distance

test to the joint distribution and the product of the marginals, when we put together both

variables X and Y in a single vector of dimension dx + dy. In fact, the relation between both

methods is not direct. We will see the connection between them in Section 9.2.

By the definition of the norm it is clear that ν2(X,Y ) ≥ 0 and it vanishes if and only if

the vectors are independent. We can define also the distance correlation using the previous

definition.

Definition 25. The distance correlation (dCor) between random vectors X and Y , with

E‖X‖dx + E‖Y ‖dy <∞, is the nonnegative number R(X,Y ) defined by:

R2(X,Y ) =


ν2(X,Y )√
ν2(X)ν2(Y )

if ν2(X)ν2(Y ) > 0

0 if ν2(X)ν2(Y ) = 0,

where ν2(X,X) = ν2(X) is the distance variance.

The distance covariance, like the energy distance, can be expressed using expectations. Using

the notation introduced in the HSIC chapter:

Lemma 9. Let (X,Y ), (X ′, Y ′), (X ′′, Y ′′) ∼ PXY be iid copies of (X,Y ), it holds that:

ν2(X,Y ) = EXY EX′Y ′‖X −X ′‖dx‖Y − Y ′‖dy + EXEX′‖X −X ′‖dxEY EY ′′‖Y − Y ′′‖dy
−2EXY

[
EX′‖X −X ′‖dxEY ′′‖Y − Y ′′‖dy

]
. (7.1)

The details of the derivation of this expression can be found in the proof of Theorem 8 of [19].

This proof is similar to the one of Proposition 7, rewriting the characteristic functions in terms

of cosines.

From these definitions it is clear that the distance covariance is not the covariance of dis-

tances, however both quantities are related:
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Proposition 11. Distance covariance can be expressed in terms of Pearson’s covariance of

distances:

ν2(X,Y ) = Cov(‖X −X ′‖dx , ‖Y − Y ′‖dy)− 2Cov(‖X −X ′‖dx , ‖Y − Y ′′‖dy).

Proof. Applying Lemma 9, and exchanging (Y − Y ′) and (Y − Y ′′) when they are alone in an

expectation:

ν2(X,Y ) = EXY EX′Y ′‖X −X ′‖dx‖Y − Y ′‖dy + EXEX′‖X −X ′‖dxEY EY ′′‖Y − Y ′′‖dy
−2EXY

[
EX′‖X −X ′‖dxEY ′′‖Y − Y ′′‖dy

]
= EXY EX′Y ′‖X −X ′‖dx‖Y − Y ′‖dy − EXEX′‖X −X ′‖dxEY EY ′‖Y − Y ′‖dy

+EXEX′‖X −X ′‖dxEY EY ′‖Y − Y ′‖dy + EXEX′‖X −X ′‖dxEY EY ′′‖Y − Y ′′‖dy
−2EXY

[
EX′‖X −X ′‖dxEY ′‖Y − Y ′′‖dy

]
= Cov(‖X −X ′‖dx , ‖Y − Y ′‖dy) + 2EXEX′‖X −X ′‖dxEY EY ′‖Y − Y ′‖dy
−2EXY

[
EX′‖X −X ′‖dxEY ′′‖Y − Y ′′‖dy

]
= Cov(‖X −X ′‖dx , ‖Y − Y ′‖dy) + 2EXEX′‖X −X ′‖dxEY EY ′′‖Y − Y ′′‖dy
−2EXY

[
EX′‖X −X ′‖dxEY ′′‖Y − Y ′′‖dy

]
= Cov(‖X −X ′‖dx , ‖Y − Y ′‖dy)− 2Cov(‖X −X ′‖dx , ‖Y − Y ′′‖dy).

We will now analyse a particular case, motivated by the use of the distance covariance in

classification problems. Let (X,Y ) be a vector such that Y ∼ Bernoulli(p). We will see an

expression of the distance covariance in this case. This result is taken from [20]:

Theorem 10. The distance covariance ν2(X,Y ) can be calculated as:

ν2(X,Y ) = −2E[(Y − p)(Y ′ − p)‖X −X ′‖d],

where X ′ and Y ′ denote independent copies of X and Y .

Using simple computations we can see that, up to constants, the squared classical covariance

is similar to this expression. The only change is that the value ‖X −X ′‖d is squared. First we

will analyse the classical covariance for this case:

ρ2(X,Y ) = E2[(X − EX)(Y − EY )]

= E[X(Y − p)]E[X ′(Y ′ − p)]

= E[(Y − p)(Y ′ − p)XX ′].
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Now we will see that the modified distance covariance is equal to this one, up to constants:

−2E[(Y − p)(Y ′ − p)‖X −X ′‖2d] = −2E[(Y − p)(Y ′ − p)X2]− 2E[(Y − p)(Y ′ − p)X ′2]

+4E[(Y − p)(Y ′ − p)XX ′]

= −2E[Y ′ − p]E[(Y − p)X2
t ]− 2E[Y − p]E[(Y ′ − p)X ′2]

+4E[(Y − p)(Y ′ − p)XX ′]

= 4E[(Y − p)(Y ′ − p)XX ′]

= 4ρ2(X,Y ).

The only difference between ν2 and 4ρ2 is that we use ‖X −X ′‖d instead of ‖X −X ′‖2d.

In this section we have introduced the distance covariance independence test. The statistic

of this test only depends on the distances between the variables. In the next section we will

introduce some empirical estimators. In contrast to HSIC, one does not need to select a particular

kernel or adjust any parameters. As will be shown in the chapter on experiments, the test in

general performs well, on spite of the fact that it does not adapt to the data.

7.2 Energy statistics

In this section we will give some estimators for both energy distance and distance covariance,

to apply these test in practice. We will focus on the second type, since we are interested on

testing independence. We will analyse also the asymptotic behaviour of the statistics and some

interesting properties. We will start with a estimator of the energy distance, which is a test of

homogeneity. Given two independent random samples x = (x1, . . . , xn) and y = (y1, . . . , ym),

the two sample energy statistic corresponding to E(X,Y ) (see (6.2)) is:

En,m(x, y) =
2

nm

n∑
i=1

m∑
j=1

‖xi − yj‖ −
1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖ −
1

m2

m∑
i=1

m∑
j=1

‖yi − yj‖.

Obtaining the asymptotic distribution of this statistic is quite simple by applying the theory

of [10]. The previous expression can be rewritten as a general V-statistic in terms of a kernel h:

En,m(x, y) =
1

n2m2

n∑
i=1

m∑
j=1

n∑
k=1

m∑
l=1

h(xi, yj ;xk, yl),

where the kernel is given by:

h(xi, yj ;xk, yl) = |xi − yj |+ |xk − yl| − |xi − xk| − |yj − yl|.

Then using the same notation as in the mentioned book for a generalized statistic for two

samples and under the null hypothesis (both samples have the same distribution):

h11(z) = EXEY EY ′h(z, Y ;X,Y ′)
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= EY |z − Y |+ EXEY |X − Y | − EX |z −X| − EY EY ′ |Y − Y ′|

= EX |z −X|+ EY ′EY |Y ′ − Y | − EX |z −X| − EY EY ′ |Y − Y ′| = 0,

h12(w) = EXEX′EY h(X,w;X ′, Y )

= EX |X − w|+ EXEY |X − Y | − EXEX′ |X −X ′| − EY |y − Y |

= EY |Y − w|+ EXEX′ |X −X ′| − EXEX′ |X −X ′| − EY |y − Y | = 0,

since we can interchange all the random variables in the expectations. Then it is clear that:

ξ11 = V arX(h11(X)) = 0 and ξ12 = V arY (h12(Y )) = 0.

Therefore the statistic for testing homogeneity is Tn,m = nm
n+mEn,m. The asymptotic distri-

bution of this statistic is:

Tn,m =
nm

n+m
En,m

d−→
∞∑
i=1

λiZ
2
i ,

where λi are the eigenvalues associated with the kernel h, and Zi are independent χ2
1 random

variables. The distribution of the statistic under the null hypothesis depends on the distributions

of X and Y , through the kernel h. Therefore, it should be implemented using a permutation test.

More details about this statistic and the consistence of the permutation test can be consulted

in the Appendix of [21].

An estimator of the distance covariance can be obtained directly from Equantion (7.1). For

a random sample (x, y) = {(x1, y1) . . . , (xn, yn)} of iid random vectors generated from the joint

distribution of X in Rdx and Y in Rdy , we obtain:

ν2
n(x, y) =

1

n2

n∑
i,j=1

‖xi − xj‖dx‖yi − yj‖dy +
1

n2

n∑
i,j=1

‖xi − xj‖dx
1

n2

n∑
i,j=1

‖yi − yj‖dy

− 2

n3

n∑
i=1

 n∑
j=1

‖xi − xj‖dx
n∑
j=1

‖yi − yj‖dy

 .

This estimate is costly to compute. It is possible to derive a different estimator of the

distance covariance. First, we get the Euclidean distance matrix of each sample, computing all

the pairwise distances between sample observations:

(aij) = (‖xi − xj‖dx), (bkl) = (‖yk − yl‖dy).

The entries of these matrices are centered, so that their row and column means are zero.

Then it can be efficiently computed.

Aij = aij + āi· − ā·j + ā··, for i, j = 1, . . . , n,

where

āi· =
1
n

∑n
k=1 aik, ā·j = 1

n

∑n
k=1 akj , ā·· =

1
n2

∑n
k=1

∑n
l=1 akl.
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The other centered matrix Bkl is defined in a similar manner. In terms of these centered

matrices the sample distance covariance ν2
n(x, y) is:

ν2
n(x, y) =

1

n2

n∑
i=1

n∑
j=1

AijBij .

Finally the distance correlation is:

R2
n(x, y) =


ν2n(x,y)√
ν2n(x)ν2n(y)

if ν2
n(x)ν2

n(y) > 0

0 if ν2
n(x)ν2

n(y) = 0,

where:

ν2
n(x) = ν2

n(x, x) =
1

n2

n∑
i=1

n∑
j=1

A2
ij ,

ν2
n(y) = ν2

n(y, y) =
1

m2

m∑
i=1

m∑
j=1

B2
ij .

It can be shown that these statistics converge almost surely to the population when the

random vectors have finite first moments.

Theorem 11. If E‖X‖+ E‖Y ‖ <∞, then

lim
n→∞

ν2
n(x, y)

a.s.
= ν2(X,Y ).

Proof. The complete proof of this theorem can be found in Theorem 2 of [22]. Here we present

an outline of the proof. First, we need other result, Theorem 1 of [22], which establishes another

natural estimator of the distance covariance that uses the original definition as L2 distance

between characteristic functions.

ν2
n(x, y) = ‖Φn

PXY (t, s)− Φn
PX (t)Φn

PX (s)‖2w,

where PXY is the joint distribution of X ∼ PX and Y ∼ PY . The empirical characteristic

functions are defined as:

Φn
PXY (t, s) = 1

n

∑n
k=1 e

itxk+isyk , Φn
PX (t) = 1

n

∑n
k=1 e

itxk , Φn
PY (s) = 1

n

∑n
k=1 e

isyk .

Actually txk ≡ 〈t, xk〉, but we use the simplified notation. Then we can define:

ξn(t, s) =
1

n

n∑
k=1

eitxk+isyk − 1

n

n∑
k=1

eitxk
1

n

n∑
k=1

eisyk ,

and it is clear that ν2
n(t, s) = ‖ξn(t, s)‖2w. After elementary computations we can check that this

quantity can be rewritten as:

ξn(t, s) =
1

n

n∑
k=1

uk(t)vk(s)−
1

n

n∑
k=1

uk(t)
1

n

n∑
k=1

vk(s),
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where uk(t) = eitxk − ΦPX (t) and vk(s) = eisyk − ΦPY (s). We now define an integration region

which allows us to bound the weight function:

D(δ) =

{
(t, s)

∣∣∣ 1 ≤ |t|dx , |s|dy ≤
1

δ

}
,

for any δ > 0. We then define a new random variable in this region:

ν2
n,δ = ‖ξnχD(δ)‖

2
w =

∫
D(δ)
|ξ2
n|dw,

where χD(δ) is the indicator function of the set D(δ). As we have mentioned, the weight

function is bounded on this region for a fixed δ. Then νn,δ is combination of V-statistics of

bounded random variables. Hence by the strong law of large numbers for V-statistics we have:

ν2
n,δ

a.s
−−−−→
n→∞

∥∥(ΦPXY − ΦPXΦPY )χD(δ)

∥∥2

w

a.s
−−−−→
δ→0

ν2.

Now it only remains to prove that:

lim sup
δ→0

lim sup
n→∞

∣∣ν2
n,δ − ν2

∣∣ a.s= 0.

This is accomplished by decomposing the expression into four integrals, one for each integration

region, |t|dx < δ, |t|dx > 1
δ , |s|dy < δ and |s|dy > 1

δ , and operating with the exponential functions

of uk and vk.

Now that we have a consistent estimator for the distance covariance, we can analyse its

distribution under the null and alternative hypotheses. On the one hand, under independence,

nν2
n(x, y) converges in distribution to the quadratic form

∑∞
i=1 λiZ

2
i , where Zi are independent

standard normal variables, and {λi}ni=1 are nonnegative constants that depend on the joint

distribution of the vectors. A proof can be found in Theorem 5 of [22], which uses a procedure

similar to that of the previous proposition. It defines a sequence of random variables using the

same integration region D(δ) and checks the convergence of the characteristic functions. On

the other hand, under dependence, nν2
n(x, y) → ∞ as n goes to infinity. Therefore a test that

rejects independence for large values of the sample distance covariance is consistent.

In addition, we can see the ν2
n density under both the null and alternative hypotheses by

approximating it empirically. The left-hand side of Figure 7.1 shows the empirical distribution

under H0, with X and Y independent Gaussians variables with unit standard deviation, obtained

by using 100 samples from each. The right-hand side shows the empirical distribution under

the alternative hypothesis H1. There, X is a Gaussian variable with unit standard deviation

and Y = X2, using 100 samples. In both cases, the histograms have been obtained using 2000

independent instances of the ν2
n to compute them.

We will analyse another property of this estimate. This distance covariance estimate is

asymptotically unbiased. This means that Eν2
n(x, y) → ν2(X,Y ), in the limit when n goes to

infinity. Without making any assumption on the random vectors X and Y , the expected value

of the statistic is:

E[ν2
n(x, y)] =

(n− 1)(n− 2)2

n3
ν2(X,Y ) +

2(n− 1)2

n2
α− (n− 1)(n− 2)

n2
βγ,
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Figure 7.1: Empirical density of ν2
n under H0 and H1.

where

α = E[‖X −X ′‖dx‖Y − Y ′‖dy ], β = E‖X −X ′‖dx and γ = E‖Y − Y ′‖dy .

In the limit n → ∞, the last two terms vanish, and the constant of the distance covariance

goes to one. Using this expression we can build another estimator that is unbiased for any n.

We first replace the expressions α and βγ for their unbiased estimators:

α̂ = 1
n(n−1)

∑n
i=1

∑n
j=1 aijbij , β̂γ = 1

n(n−1)(n−2)(n−3)

∑n
i,j=1

∑
k,l/∈(i,j) aijbkl.

Then an unbiased estimator for ν2(X,Y ) is given by:

U2
n(x, y) =

1

(n− 1)(n− 2)2

n3ν2
n(x, y)− 2

n

n∑
i,j=1

aijbij +
1

n(n− 3)

n∑
i,j=1

∑
k,l/∈(i,j)

aijbkl

 .

But this quantity depends on ν2
n(x, y), which should be also calculated. Furthermore, it

exists a simpler and faster computing formula for an unbiased estimator, given by:

U2
n(x, y) =

1

n(n− 1)

n∑
i,j=1

aijbij +

n∑
i,j=1

aij(b̄·· − 2b̄i· − 2b̄·j + 2bij)

n(n− 1)(n− 2)(n− 3)
− 2

n∑
i,j=1

aij(b̄i· − bij)
n(n− 1)(n− 2)

.

All these results have been obtained from [15], although the technical developments are not

included since they are out of the scope of this work. Being unbiased is a desirable property, but

in practice it is usually used the first estimator based on the euclidean distance matrices. We

have not analysed the energy distance estimators in depth since this work is mainly focused on

independence tests. Nevertheless, in the same reference cited in this paragraph, the complete

theory of energy distance is presented, and several statistics for different problems are formulated.
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Chapter 8

Equivalence between MMD and

energy distance

The goal of this chapter is to establish a relation between the MMD (Proposition 2):

MMD2(F ,P,Q) = Ek(X,X) + Ek(Y, Y ′)− 2Ek(X,Y ),

and the energy distance (Definition 21):

E(X,Y ) = 2E‖X − Y ‖d − E‖X −X ′‖d − E‖Y − Y ′‖d.

This two expressions are strikingly similar. However, they have been derived in a very

different ways. To connect them, they need to be generalized. In particular, we will define

the general energy distance in terms of semimetrics of negative type. Then we will establish a

relation between kernels and these semimetrics, which will help us to connect both generalized

tests. This part of the work has been obtained mainly from [14]. Finally we will analyse the

practical implications of this result, applying it to other research areas. The observations and

results presented in this last part of the chapter are new in the literature.

First of all, we will introduce some notation that will help us to summarize the conditions

on the measures needed to formulate the theorems presented in this chapter.

M(X ) ≡ {ν | ν is a finite signed Borel measure on X},

M1
+(X ) ≡ {ν | ν is a Borel probability measure on X}.

8.1 Kernel embedding of signed measures

It is not possible to establish a direct relation between the MMD and energy distance homo-

geneity test. We have seen that both methods can be understood as L2 distances between

characteristic functions. However, we can not find a direct correspondence using the original

definitions of the tests because the weight function of energy distance is not integrable. Neverthe-

less, as will be shown in this chapter, generalized versions of these tests are actually equivalent.
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Let us start with the MMD. In the first part of this work we have presented the notion of kernel

embedding of probability measures. These embeddings can be generalized by defining them on a

more general class of measures, not only on probability ones. In this section we will also describe

some properties of this new types of embeddings, which will be useful in later proofs.

In previous chapters we have defined the kernel embeddings as µP =
∫
k(x, ·)dP(x) =

Ek(X, ·), where X ∼ P. We will now extend this definition to finite signed Borel measures

on X . It means, with the previous notation for the classification of the measures, that we will

use ν ∈M(X ) instead of P ∈M1
+(X ). Then if k is a kernel on X we define:

Definition 26. Let ν ∈ M(X ). The kernel embedding of ν into the RKHS Hk is µν ∈ Hk
such that, for all f ∈ Hk: ∫

f(x)dν(x) = 〈f, µν〉Hk .

As before, the embedding can be defined also as µν =
∫
k(x, ·)dν(x). With this definition

it is possible to give the proof of Proposition 5, which was pending from Section 5.1. This

proposition states that the HSIC criterion characterizes independence when the kernels of the

corresponding RKHS’s are characteristic.

Proof. (Proposition 5) We need an alternative interpretation of this criterion. If we denote the

feature maps of the RKHS’s as φ and ψ and define the finite signed measure:

θ = PXY − PQ,

it is possible to rewrite the cross-covariance operator as:

CXY =

∫
X×Y

ψ(y)⊗ φ(x)dθ(x, y).

Then we will prove that CXY = 0 if and only if PXY = PQ.

(=⇒) θ is a signed measure on X ×Y, therefore to see that θ = 0, it is enough to check that

θ(A×B) = 0 for all Borel sets A ∈ B(X ) and B ∈ B(Y), where B(·) denote the Borel σ-algebras

of the spaces. We start defining a finite signed Borel measure for every f ∈ H and B ∈ B(Y):

νf (B) =

∫
X×Y
〈φ(x), f〉HχB(y)dθ(x, y)

=

∫
X×B
〈φ(x), f〉Hdθ(x, y),

where χB(·) is the indicator of the set B. From the last expression, we can interpret 〈φ(x), f〉H
as the Radon-Nikodym derivative of νf with respect to θ. That is:

〈φ(x), f〉H =
∂νf
∂θ

.

We can write the embedding of this measure νf on G:

µνf =

∫
Y
l(y, ·)dνf (y) =

∫
Y
ψ(y)dνf (y)
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=

∫
X×Y

ψ(y)〈φ(x), f〉Hdθ(x, y)

=

∫
X×Y

(ψ(y)⊗ φ(x))(f)dθ(x, y)

=

(∫
X×Y

ψ(y)⊗ φ(x)dθ(x, y)

)
(f)

= CXY (f) = 0,

where we have used the definition of the tensor product operator. Since the kernel l is charac-

teristic, the embedding is injective. This implies that νf = 0 for all f ∈ H. Therefore, by the

definition of the reproducing kernel k:∫
X×Y
〈φ(x), ·〉HχB(y)dθ(x, y) =

∫
X×Y

k(x, ·)χB(y)dθ(x, y)

=

∫
X×Y

φ(x)χB(y)dθ(x, y) = 0.

The last expression can be interpreted as the kernel embedding to H of the finite signed

measure νB(A) = θ(A×B):

µνB =

∫
X
φ(x)dνB(x) =

∫
X×Y

φ(x)χB(y)dθ(x, y) = 0.

Since the kernel k is characteristic, this embedding is injective and then νB(A) = θ(A× B)

is zero for every Borel sets A and B. Thus PXY = PQ.

(⇐=) PXY = PQ is equivalent to θ = 0. Then it is clear that the cross-covariance operator

is also zero.

In addition to his, if k is bounded, µν exists for all ν ∈ M(X ). This property is equivalent

to the one given for probability measures. However, if k is not bounded, there will always exist

measures for which the integral
∫
k(x, ·)dν(x) diverges. Henceforth we will assume that the

kernels are continuous, and hence measurable, but not necessarily bounded. This means that

embeddings will not be defined for some measures. Then we need to define a new group of

measures for which the embeddings are well defined.

M θ
k (X ) ≡

{
ν ∈M(X )

∣∣∣ ∫ kθ(x, x)d|ν|(x) <∞
}
, with θ > 0.

These spaces have some interesting properties, depending on the value of θ, which will be

useful in a little while for some proofs.

Proposition 12. Let θ1, θ2 > 0 and θ1 ≤ θ2, then M θ2
k (X ) ⊆M θ1

k (X ).

Proposition 13. The kernel embedding µν is well defined for all ν ∈M0.5
k (X ).
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Proof. This proof is similar to the one of Lemma 3. We first define the operator Tνf =∫
f(x)dν(x), for all f ∈ Hk. Using Jensen and Cauchy-Schwartz inequalities and the repro-

ducing property of k it is possible to show that this operator is bounded under the assumptions

of the statement:

|Tνf | ≤ ‖f‖Hk
∫ √

k(x, x)d|ν|(x) <∞.

Applying the Riesz representation theorem to Tν we know that there exists a µν ∈ Hk such

that Tνf = 〈f, µν〉Hk .

This generalization of the kernel embeddings allows us to define a more general MMD test

and will help us to establish a correspondence with the energy distance. Actually, the relation

will not be in terms of the original energy distance, but with another generalization, which will

be defined in the next section.

8.2 Energy distance with negative type semimetrics

We will now generalize the energy distance test. Although the formulation of this test is simpler

that the MMD, its generalization requires more previous knowledge. We will introduce the

notion of semimetric of negative type, and use it to give a more general version of the energy

distance, similar to the one described in Section 6.2. A semimetric is similar to a distance

function but it is not required to satisfy the triangle inequality:

Definition 27. Let X be a nonempty set, ρ : X × X → R+ is a semimetric on X if:

1. ρ(x, x′) = 0 if and only if x = x′,

2. ρ(x, x′) = ρ(x′, x).

Also (X , ρ) is said to be a semimetric space.

The semimetric ρ is said to be of negative type if it also meets the equation in Definition

22, that is, ∀n ≥ 1, ∀(x1, . . . , xn) ∈ X n and ∀(α1, . . . , αn) ∈ Cn such that
∑n

i=1 αi = 0:

n∑
i=1

n∑
j=1

αiαjρ(xi, xj) ≤ 0

If ρ is of negative type, ρa with 0 < a < 1 is also of negative type. We can extend Proposition

8 to characterize these types of functions in general Hilbert spaces:

Proposition 14. A function ρ is a semimetric of negative type if and only if there exists a

Hilbert space H and an injective map φ : X → H such that:

ρ(x, x′) = ‖φ(x)− φ(x′)‖2H.

Using these two last properties it is clear that all Euclidean spaces are of negative type.

Furthermore, ρ1/2 is a metric if ρ is a semimetric of negative type. If we want to generalize
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the previous theory about energy distance by using semimetrics we will need a new moment

condition with respect to (w.r.t) a semimetric:

Definition 28. A finite signed Borel measure ν is said to have a finite θ-moment, for θ > 0,

w.r.t. a semimetric ρ of negative type if there exists x0 ∈ X such that:∫
ρθ(x, x0)d|ν|(x) <∞.

We denote this new moment condition in a similar way as the previous ones of this chapter:

M θ
ρ (X ) ≡ {ν ∈M(X ) | ν has finite θ-moment w.r.t ρ}.

We can use this negative type semimetrics to generalize the energy distance, by replacing the

Euclidean distance with a suitable semimetric in its definition. This generalization is similar to

the one made in Section 6.2, where we defined the energy distance in an arbitrary metric space

with distance function δ. Now we will use a semimetric ρ instead of a distance function:

Definition 29. Let (X , ρ) be a semimetric space of negative type, P,Q ∈M1
+(X )∩M1

ρ (X ) and

X,X ′ ∼ P and Y, Y ′ ∼ Q iid. The energy distance w.r.t. ρ between X and Y is:

Eρ(X,Y ) = 2Eρ(X,Y )− Eρ(X,X ′)− Eρ(Y, Y ′). (8.1)

When ρ is the Euclidean metric, the condition of P ∈ M1
ρ (X ) is equivalent to having finite

first moments. If ρ is only a semimetric, and not a metric, we still do not have the tools to show

that the conditions imposed are sufficient to ensure that the expectations exist. This will be

shown in Section 8.4. This general version of the energy distance has an integral form:

Eρ(X,Y ) = −
∫
ρd([P−Q]× [P−Q]). (8.2)

The minus sign means that Eρ(X,Y ) is nonnegative, since ρ is negative definite. In Section

6.2 we proved that this generalization is well defined. From this expression, we see that the semi-

metric used in the original definition of the energy distance is simply the standard d-dimensional

norm, ρE(X,X
′) = ‖X−X ′‖d, if X,X ′ have dimension d. We will use this semimetric in Section

8.5 to establish a equivalence between the original definitions of MMD and energy distance tests.

8.3 Kernels and Semimetrics

To connect the generalized versions of MMD and energy distance we will establish a relation

between reproducing kernels and semimetrics of negative type. Specifically, we will see that

kernels can be defined in terms of semimetrics and vice versa. This means that semimetrics of

negative type and symmetric positive definite kernels are closely related.
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8.3.1 Kernels induced by semimetrics

We will first show how to generate kernels from semimetrics. Then we will see how to derive

semimetrics from the kernels induced from them. Let ρ : X × X → R be a semimetric on

a nonempty set X . The following lemma gives a method to define positive definite functions

taking ρ as starting point:

Lemma 10. Consider a semimetric ρ. Let x0 ∈ X . Define the function k(x, x′) = ρ(x, x0) +

ρ(x′, x0)− ρ(x, x′). The function k is positive definite if and only if ρ is of negative type.

Proof. This proof has been adapted from the one of Lemma 2.1 of [23] (Page 74).

(=⇒) We simply have to apply the definition of positive definite function, ∀n ∈ N, n ≥ 1,

∀{αi}ni=1 ∈ Cn such that
∑n

i=1 αi = 0 and ∀{xi}ni=1 ∈ X n:

n∑
i,j=1

αiαjk(xi, xj) =

n∑
i,j=1

αiαj(ρ(xi, x0) + ρ(xj , x0)− ρ(xi, xj))

=

n∑
i=1

αiρ(xi, x0)

n∑
j=1

αj +
n∑
j=1

αjρ(xj , x0)
n∑
i=1

αi −
n∑

i,j=1

αiαjρ(xi, xj)

= −
n∑

i,j=1

αiαjρ(xi, xj) ≥ 0.

(⇐=) Now we will add the point x0 to the definition of the negative definiteness of ρ and we

will use α0 = −
∑n

i=1 αi, which ensures that the sum of all the parameters is zero.

n∑
i,j=0

αiαjρ(xi, xj) =

n∑
i,j=1

αiαjρ(xi, xj) +

n∑
i=1

αiα0ρ(xi, x0) +

n∑
j=1

α0αjρ(x0, xj) + |α0|2ρ(x0, x0)

=

n∑
i,j=1

αiαjρ(xi, xj) +

n∑
i=1

αi

− n∑
j=1

αj

 ρ(xi, x0)

+
n∑
j=1

(
−

n∑
i=1

αi

)
αjρ(x0, xj) + |α0|20

=

n∑
i,j=0

αiαj (ρ(xi, xj)− ρ(xi, x0)− ρ(x0, xj))

= −
n∑

i,j=0

αiαj(ρ(xi, x0) + ρ(x0, xj)− ρ(xi, xj))

= −
n∑

i,j=0

αiαjk(xi, xj) ≤ 0.

Note that ρ(x0, x0) = 0, since ρ is a semimetric.
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Actually the original lemma says that it is not necessary for ρ to be a semimetric. It is

sufficient that it satisfies ρ(x0, x0) ≥ 0. This can be deduced from the proof if ρ(x0, x0) is not

removed from the development. Then, it is clear that we can build reproducing kernels from

semimetrics of negative type. For convenience we will work with such kernels scaled by 1
2 , since

it will avoid to carry along a 2 in subsequent proofs. Let’s define them explicitly:

Definition 30. Let ρ be a semimetric of negative type on X and x0 ∈ X . The kernel

k(x, x′) =
1

2
[ρ(x, x0) + ρ(x′, x0)− ρ(x, x′)] (8.3)

is the distance-induced kernel (or simply distance kernel), induced by ρ and centered at x0.

In this definition the kernel depends on the center point x0. It is therefore natural to define

a family of kernels induced by the same semimetric by varying this point:

Definition 31. We define the family of distance-induced kernels induced by ρ as:

Kρ =
{1

2
[ρ(x, x0) + ρ(x′, x0)− ρ(x, x′)]

}
x0∈X

.

It can be shown that all the kernels in this family are non-degenerate (i.e. their feature maps

are injective) if ρ is of negative type. There exists a simply way to see it by using the following

proposition. From the equation of Definition 30, the semimetric can be defined in terms of any

of the kernels that it induces:

Proposition 15. Let (X , ρ) be a semimetric space of negative type and k ∈ Kρ, then:

ρ(x, x′) = ‖k(·, x)− k(·, x′)‖2H.

Proof. If we set x = x′ in Equation (8.3) we get:

k(x, x) =
1

2
[ρ(x, x0) + ρ(x, x0)− ρ(x, x)] = ρ(x, x0).

Now we clear the semimetric in (8.3) and use this result:

ρ(x, x′) = ρ(x, x0) + ρ(x′, x0)− 2k(x, x′)

= k(x, x) + k(x′, x′)− 2k(x, x′)

= 〈k(·, x), k(·, x)〉H + 〈k(·, x′), k(·, x′)〉H − 2〈k(·, x), k(·, x′)〉H

= 〈k(·, x)− k(·, x′), k(·, x)− k(·, x′)〉H

= ‖k(·, x)− k(·, x′)‖2H.
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This expression is very similar to the one used to characterize negative definite functions,

by expressing them in terms of injective maps to Hilbert spaces (see Proposition 14). Using

Proposition 14, since ρ is a semimetric of negative type, the map k(·, x) = φ(·) : X → H is

injective. Hence all the kernels in Kρ are non-degenerate.

In view of this proposition, the natural question is if ρ is also a semimetric when the kernel

k involved in the norm does not belong to the family Kρ. This would clarify completely the

connection between kernels and semimetrics of negative type. This is the property that will be

shown in the next subsection.

8.3.2 Semimetrics generated by kernels

We have just established a way to generate kernels from semimetrics of negative type, but in view

of the previous Proposition 15, we can think about generating also semimetrics using kernels.

Corollary 1. Let k be a non-degenerate kernel on X . Then we can define a semimetric ρ of

negative type as:

ρ(x, x′) = ‖k(·, x)− k(·, x′)‖2H.

This result is actually a corollary of Proposition 14. If k is non-degenerate, its characteristic

map is injective, and then we can apply it in the statement of the proposition. This shows that

ρ is effectively a semimetric of negative type. We say then that k generates ρ. It is not the

same as proposition 15, as we have said, since in that previous proposition the kernel k belongs

to Kρ, and now it can be a general one. Moreover, we can see in the aforesaid proposition that

we can write a semimetric depending on any of the kernels of the family Kρ, what leads us to

define a new relation between kernels:

Definition 32. If two kernels generate the same semimetric, we say that they are equivalent

kernels.

It is clear that all the kernels k ∈ Kρ generate ρ. Therefore, they are equivalent kernels.

But, in fact, they are not the only kernels that generates the same semimetric.

Proposition 16. Two kernels k and h on X are equivalent if and only if they can be written

as:

h(x, x′) = k(x, x′) + f(x) + f(x′),

for some function f : X → R.

Proof. (=⇒) If the two kernels are equivalent, they generate the same semimetric, and then:

‖k(·, x)− k(·, x′)‖2H = ‖h(·, x)− h(·, x′)‖2H,

which is equivalent to

k(x, x) + k(x′, x′)− 2k(x, x′) = h(x, x) + h(x′, x′)− 2h(x, x′).
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Manipulating this equation:

h(x, x′) = k(x, x′) +
1

2
[h(x, x) + h(x′, x′)− k(x, x)− k(x, x′)]

= k(x, x′) +
1

2
[h(x, x)− k(x, x)] +

1

2
[h(x′, x′)− k(x, x′)]

= k(x, x′) + f(x) + f(x′).

Therefore, f(x) = 1
2(h(x, x)− k(x, x)).

(⇐=) Let us denote as ρk the semimetric generated by the kernel k. Replacing the kernel in

the previous corollary by the expression of h in the statement:

ρh(x, x′) = ‖h(·, x)− h(·, x′)‖2H

= h(x, x) + h(x′, x′)− 2h(x, x′)

= [k(x, x) + f(x) + f(x)] + [k(x′, x′) + f(x′) + f(x′)]− 2[k(x, x′) + f(x) + f(x′)]

= k(x, x) + k(x′, x′)− 2k(x, x′)

= ρk(x, x
′).

Since k and h need to be positive definite, not all the functions f are valid. We can use, for

exaple, functions from Hk. If g ∈ Hk, we can use f(x) = 1
2‖g‖

2
Hk − g(x) as the function in the

previous proposition to generate equivalent kernels.

The complete relation between kernels and semimetrics can be shown graphically in Figure

8.1. From this figure it is clear that a group of nondegenerated kernels is associated to a single

semimetric of negative type. This group can be seen as an equivalence class. Besides, the group

of distance kernels induced by this semimetric is a proper subset of the equivalence class.

In the next section we will use this correspondence between kernels and semimetrics to

connect the generalizations of the energy distance and the MMD defined in the previous sections.

Later we will also show the relation between the original methods without these generalizations.

8.4 MMD and energy distance

The goal of this chapter is to connect the generalized energy distance and MMD using semimet-

rics of negative type. The first step is to harmonize the requirements for the existence of these

two quantities. On the one hand, in Proposition 13 of Section 8.1 about kernel embeddings of

signed measures, we have seen that a sufficient condition for µν to exist is that ν ∈ M0.5
k (X ).

On the other hand, in Definition 29 of Section 8.2, we have seen that a condition for Eρ(X,Y )
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Figure 8.1: Relationship between kernels and semimetrics. From [14].

to exist is that P,Q ∈M1
+(X )∩M1

ρ (X ), where X ∼ P and Y ∼ Q. We will first find the relation

between the spaces M θ
k (X ) and M θ

ρ (X ) using the relation between kernels and semimetrics.

Proposition 17. Let k be a kernel that generates the semimetric ρ, then M
n/2
k (X ) = M

n/2
ρ (X ),

for all n ∈ N.

Proof.
[
M

n/2
k (X ) ⊆Mn/2

ρ (X )
]

We will prove this direction for a more general case, using θ ≥ 1
2 .

We take ν ∈ M θ
k (X ), which means that

∫
kθ(x, x)d|ν|(x) < ∞. Using the expression of a

semimetric induced by a kernel.∫
ρθ(x, x0)d|ν|(x) =

∫
‖k(·, x)− k(·, x0)‖2θHd|ν|(x)

≤
∫

(‖k(·, x)‖H + ‖k(·, x0)‖H)2θd|ν|(x)

We will now use that the function x2θ is convex:

(xt+ y(1− t))2θ ≤ x2θt+ y2θ(1− t),

for t ∈ [0, 1]. Taking t = 1
2 :(x

2
+
y

2

)2θ
≤ x2θ

2
+
y2θ

2
=⇒ (x+ y)2θ ≤ 22θ

2
(x2θ + y2θ) = 22θ−1(x2θ + y2θ).

Then applying this inequality in the previous integral:∫
ρθ(x, x0)d|ν|(x) ≤ 22θ−1

(∫
‖k(·, x)‖2θHd|ν|(x) +

∫
‖k(·, x0)‖H)2θd|ν|(x)

)

= 22θ−1

(∫
kθ(x, x)d|ν|(x) + kθ(x0, x0)

∫
d|ν|(x)

)

= 22θ−1

(∫
kθ(x, x)d|ν|(x) + |ν|(X )kθ(x0, x0)

)
<∞.
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By the definition of M θ
k (X ), we know that |ν|(X ) <∞.[

M
n/2
k (X ) ⊇Mn/2

ρ (X )
]

The relation can be shown by induction. We will actually prove that

M θ
ρ (X ) ⊆Mn/2

k (X ) for θ ≥ n
2 .

• Let n = 1: Let θ ≥ 1
2 and assume that ν ∈M θ

ρ (X ), which means that
∫
ρθ(x, x0)d|ν|(x) <

∞. We will use first the inverse triangle inequality and later the Jensen’s inequality, since

| · |2θ for θ ≥ 1
2 is a convex function:

∞ >

∫
ρθ(x, x0)d|ν|(x) =

∫
‖k(·, x)− k(·, x0)‖2θHd|ν|(x)

≥
∫ ∣∣‖k(·, x)‖H − ‖k(·, x0)‖H

∣∣2θd|ν|(x)

=

∫ ∣∣k 1
2 (x, x)− k

1
2 (x0, x0)

∣∣2θd|ν|(x)

≥
∣∣∣ ∫ (k 1

2 (x, x)− k
1
2 (x0, x0)

)
d|ν|(x)

∣∣∣2θ
=

∣∣∣ ∫ k
1
2 (x, x)d|ν|(x)− k

1
2 (x0, x0)|ν|(X )

∣∣∣2θ.
It implies that

∫
k

1
2 (x, x)d|ν|(x) is finite, i.e. ν ∈M

1
2
k (X ) and then M θ

ρ (X ) ⊆M1/2
k (X ).

• Assume the statement holds for θ ≥ n−1
2 , that is, M θ

ρ (X ) ⊆ M
(n−1)/2
k (X ). We will prove

it for θ ≥ n
2 . Let ν ∈M θ

ρ (X ) for θ ≥ n
2 and use the same inequalities than before and the

Newton’s binomial formula:∫
ρθ(x, x0)d|ν|(x) =

∫
‖k(·, x)− k(·, x0)‖2θHd|ν|(x)

=

∫
(‖k(·, x)− k(·, x0)‖nH)2θ/n d|ν|(x)

≥
∣∣∣ ∫ (‖k(·, x)‖H − ‖k(·, x0)‖H)n d|ν|(x)

∣∣∣2θ/n

=
∣∣∣ ∫ n∑

i=0

(−1)i
(
n

i

)
‖k(·, x)‖n−iH ‖k(·, x0)‖iHd|ν|(x)

∣∣∣2θ/n

=
∣∣∣ ∫ ‖k(·, x)‖nH +

n∑
i=1

(−1)i
(
n

i

)
‖k(·, x)‖n−iH ‖k(·, x0)‖iHd|ν|(x)

∣∣∣2θ/n

=
∣∣∣ ∫ kn/2(x, x)d|ν|(x) + . . .

+

n∑
i=1

(−1)i
(
n

i

)
ki/2(x0, x0)

∫
k(n−i)/2(x, x)d|ν|(x)

∣∣∣2θ/n.
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Since θ ≥ n
2 ≥

n−1
2 ≥ . . . ≥ 1

2 , all the terms in the last summation are finite. Furthermore,

since ν ∈ M θ
ρ (X ), the first integral of the development is also finite. Therefore, the

first term of the last equation is finite. That is, ν ∈ Mn/2
k (X ), which implies M θ

ρ (X ) ⊆
M

n/2
k (X ).

From this result it is direct to see that if two kernels k1 and k2 are equivalent (they induce

the same semimetric), then M
n/2
k1

(X ) = M
n/2
k2

(X ). The conditions on kernels embeddings can

be expressed in terms of moments w.r.t. ρ. Let µP be the kernel embedding of a probability

measure in the RKHS with kernel k. If ρ is the semimetric generated by k, µP exists for every

P ∈M0.5
ρ (X ) (It has finite half-moment w.r.t. ρ). The MMD between P and Q, γk(P,Q), is well

defined whenever P,Q ∈M0.5
ρ (X ).

The following proposition states that the conditions imposed in the definition of the energy

distance w.r.t. ρ (Definition 29) are sufficient to ensure that the expectations involved exist.

Proposition 18. Let P,Q ∈M1
ρ (X ), then Eρ(X,Y ) <∞.

Proof. Since ρ is a general semimetric, and not necessarily a metric, we can not use the triangle

inequality, which would simplify the proof. We have to prove that:

Eρ(X,Y ) = 2Eρ(X,Y )− Eρ(X,X ′)− Eρ(Y, Y ′) <∞.

Let k be any kernel that generates ρ:

Eρ(X,Y ) = E‖k(·, X)− k(·, Y )‖2H

= E[k(X,X) + k(Y, Y )− 2k(X,Y )]

= Ek(X,X) + Ek(Y, Y )− 2Ek(X,Y ).

The first two terms are finite because P,Q ∈M1
k (X ), since this space is equal to M1

ρ (X ) by the

previous proposition (using n = 2). For the last term we only have to use the Cauchy-Schwarz

inequality:

|k(X,Y )| ≤ k
1
2 (X,X)k

1
2 (Y, Y ).

By Proposition 12 we know that M1
k (X ) ⊂ M

1
2
k (X ), that is, P,Q ∈ M

1
2
k (X ). Therefore the last

term is also finite. The derivation is similar for the remaining two expectations .

We now establish the equivalence between the generalized versions of MMD and energy

distance.

Theorem 12. Let (X , ρ) be a semimetric space of negative type and let k be a kernel that

generates ρ. Then for all P,Q ∈M1
+(X ) ∩M1

ρ (X ) such that X ∼ P and Y ∼ Q:

Eρ(X,Y ) = 2γ2
k(P,Q).
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Proof. In Section 8.2 we have seen that the generalized energy distance can be written in integral

form (Equation (8.2)). Integrating with respect to (P−Q)× (P−Q).

Eρ(X,Y ) = −
∫
ρ(x, y)dν(x)dν(y),

where ν = P − Q. We have also seen an integral form for the Maximum Mean Discrepancy,

Equation (3.2), as:

γ2
k(P,Q) =

∫
k(x, y)dν(x)dν(y).

Also since k generates ρ, we can use that:

ρ(x, y) = ‖k(·, x)− k(·, y)‖2H = k(x, x) + k(y, y)− 2k(x, y).

We can rewritte the energy distance using Equation (8.2). Notice that ν(X ) = P(X ) −
Q(X ) = 1− 1 = 0.

Eρ(X,Y ) = −
∫
ρ(x, y)dν(x)dν(y)

= −
∫

(k(x, x) + k(y, y)− 2k(x, y))dν(x)dν(y)

= −ν(X )

(∫
k(x, x)dν(x) +

∫
k(y, y)dν(y)

)
+ 2

∫
k(x, y)dν(x)dν(y)

= 2

∫
k(x, y)dν(x)dν(y)

= 2γ2
k(P,Q).

By this theorem it is clear that equivalent kernels have the same Maximum Mean Discrep-

ancy, MMD. We have imposed the condition P,Q ∈ M1
ρ (X ) to ensure the existence of the

energy distance. But the Maximum Mean Discrepancy also exists when P and Q have finite

half-moments w.r.t. ρ, that is, P,Q ∈ M
1
2
ρ (X ). In that case the energy distance can be infinite

and no equivalence can be established.

In Section 6.2, we have seen that the energy distance in a general metric spaces characterises

independence if and only if the metric δ is strict negative definite (Definition 23). This condition

is also necessary when we use semimetrics of negative type. In fact:

Proposition 19. Let k be a kernel that generates ρ. Then ρ is strict negative definite if and

only if k is characteristic to M1
+(X ) ∩M1

k (X ).

Thus, the problem of checking whether a semimetric is of strong negative type is equivalent

to checking whether its associated kernel is characteristic. Since the MMD with the kernel k

is equivalent to the general energy distance with the semimetric ρ, the general energy distance

characterises independence if and only if ρ is strict negative definite.
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8.5 Practical implications

In this section we will present some consequences of the connection established in this chapter

between MMD and energy distance. We will show the equivalence between the original def-

initions of energy distance and MMD. In addition to this, at the end of the section, we will

introduce an improvement of Theorem 2 of [24]. This is not a consequence of Theorem 12, but

is related to semimetrics of negative type.

Let us start by deriving the equivalence between the original MMD and energy distance,

defined in chapters 3 and 6 respectively. We only have to determine the semimetric of negative

type of the original energy distance. Comparing the definition of Eρ with the one of E it is clear

that the semimetric ρE : Rd → R of the original energy distance is:

ρE(x, y) = ‖x− y‖d.

Now we want to determine which kernels produces an MMD equivalent to the energy distance.

In view of the assumptions of Theorem 12 it is clear that both methods will be equal for any

kernel k that generates ρE . As we know the semimetric, we can build the family of kernels

generated by it:

KρE =

{
1

2
[ρE(x, x0) + ρE(x

′, x0)− ρE(x, x′)]
}
x0∈X

=

{
1

2
(‖x− x0‖d + ‖x′ − x0‖d − ‖x− x′‖d)

}
x0∈X

Since all these kernels produces the same value of MMDk, and hence the same value as

energy distance, any equivalent kernel can be chosen. The MMD value is equal to the original

energy distance for any kernel in KρE . However, MMD and energy distance suggest two different

estimates for the same quantity. A natural question is which of these two estimates is better.

That is, which of the estimates approximates better the real value. Specifically, we will compare

the estimators MMD2
u and ν2

n, obtained from the original definitions of MMD and energy

distance, in Sections 4.1 and 7.2 respectively. This theoretical value is difficult to calculate in

general, but we can obtain it at least when the random variables are unidimensional Gaussians.

We will use the expression of the energy distance to make the calculation. If X ∼ N (µ, σX)

and Y ∼ N (µ, σY ), where σX and σY are the standard deviations, the energy distance between

them is equal to:

E(X,Y ) = 2E|X − Y | − E|X −X ′| − E|Y − Y ′|.

We know that:

X − Y ∼ N
(

0,
√
σ2
X + σ2

Y

)
, X −X ′ ∼ N

(
0, σX

√
2
)
, Y − Y ′ ∼ N

(
0, σY

√
2
)
.

To obtain the expectation of the absolute value, we will use that if φZ(z) is the density

function of a Gaussian variable Z ∼ N (µ, σ), then 2φZ(z) is the one of |Z|:

E|Z| =

∫ ∞
0

2z

σ
√

2π
e−

z2

2σ2 dz =
2

σ
√

2π

∫ ∞
0

ze−
z2

2σ2 dz
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Figure 8.2: Mean Square Error to the real value, sample size 50.

=
−2σ√

2π

∫ ∞
0

−z
σ2
e−

z2

2σ2 dz =
−2σ√

2π
e−

z2

2σ2

∣∣∣∣∣
∞

0

= σ

√
2

π
.

Therefore if we apply this expression to the expectations of the energy distance:

E(X,Y ) = 2
√
σ2
X + σ2

Y

√
2

π
− σX

√
2

√
2

π
− σY

√
2

√
2

π

=
2√
π

(√
2(σ2

X + σ2
Y )− σX − σY

)
= 2γ2

k(N (µ, σX),N (µ, σY )).

We have carried out several simulations for this case and the observed behaviour is that as the

sample size increases, both estimates tend to the real value, as expected. But when the sample

size is small, MMD is closer to the real value most of the times, although the difference between

both values is small. For example, in Figure 8.2 we can see the Mean Square Error of both

estimates value when X ∼ N (0, 1) and Y ∼ N (0, 5), with sample size 50 for 500 replications.

We can see that the MSE of the MMD is slightly closer to zero than the one of the energy

distance. However, in Figure 8.3 we can see the results for sample size 200. In this case both

values of the MSE are almost identical.

It is possible that this behaviour only occurs in this case, when the marginal distributions
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Figure 8.3: Mean Square Error to the real value, sample size 200.

of the variables are Gaussian, but it is difficult to obtain theoretical real values for other distri-

butions.

We have shown that the kernels that generate energy distance belong to the family KρE ,
whose elements are similar to the exponent of the Laplacian kernel:

kL(x, y) = e−
‖x−y‖d

σ .

In fact, we can see that the kernels in KρE are a limit of the Lalacian when their width

became large. First, we introduce the family of kernels which are equivalent to the Laplacian

one. To do this, we obtain the semimetric induced by the Laplacian kernel:

ρL(x, y) = e−
‖x−x‖d

σ + e−
‖y−y‖d

σ − 2e−
‖x−y‖d

σ = 2− 2e−
‖x−y‖d

σ .

Therefore, the family of kernels induced by this semimetric is:

KkL =

{
1

2

(
2− 2e−

‖x−x0‖d
σ − 2− 2e−

‖y−y0‖d
σ + 2 + 2e−

‖x−y‖d
σ

)}
x0∈X

=
{

1− e−
‖x−x0‖d

σ − e−
‖y−y0‖d

σ + e−
‖x−y‖d

σ

}
x0∈X

.

We will develop one of these general Laplacian kernels, k̃L(x, y) ∈ KkL , using Taylor series

with respect to 1
σ around the point 0:

k̃L(x, y) = 1− e−‖x−x0‖d
1
σ − e−‖y−y0‖d

1
σ + e−‖x−y‖d

1
σ
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Figure 8.4: Convergence of the value of a scaled Laplacian kernel to the energy distance one as

σ →∞.

= 1−
[
1− 1

σ
‖x− x0‖d +O

(
1

σ2

)]
−
[
1− 1

σ
‖y − x0‖d +O

(
1

σ2

)]
+

[
1− 1

σ
‖x− y‖d +O

(
1

σ2

)]

=
1

σ
(‖x− x0‖d + ‖y − x0‖d − ‖x− y‖d) +O

(
1

σ2

)

=
2

σ
kE(x, y) +O

(
1

σ2

)
,

where kE ∈ KE . That is:

kE(x, y) =
σ

2
k̃L(x, y) +O

(
1

σ

)
.

If we take the limit σ → ∞, the term O
(

1
σ

)
goes to zero, and the remaining term of the

expression has to converge since it is equal to the energy distance kernel. We have checked

empirically that this convergence holds, as we can see in Figure 8.4, where we have used two

random points of R2 to evaluate both kernels. That is, we can interpret the energy distance as

a kernel embedding using a scaled Laplacian kernel with ”infinite” width. In empirical results,

that we will present later, we have observed that the energy distance is smother than MMD. This

can be explained using this relation, because the wider the kernel is, the smother the statistics

in which it is involved are.

We have mentioned that establishing a relation between the original versions of the test poses

some difficulties if we do not use their generalizations in terms of semimetrics of negative type.

However, we have just shown that the original methods are equivalent. The MMD and energy
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distance can be written as L2 distances between characteristic functions:

γ2
k(P,Q) =

∫
Rd
|ΦP(w)− ΦQ(w)|2dµ(w),

E(X,Y ) =
1

cd

∫
Rd

|ΦP(t)− ΦQ(t)|2

‖t‖d+1
d

dt.

At first glance, the main problem that difficulties the connection between these quantities is

that the weight function of the energy distance is not integrable at zero. However, we have seen

that in this limit the energy distance should be understood as Cauchy’s principal value sense.

For instance, if we take d = 1:

lim
ε→0

∫
R\(−ε,ε)

|ΦP(t)− ΦQ(t)|2

t2
dt = lim

ε→0

∫
R

|ΦP(t)− ΦQ(t)|2

t2 + ε2
dt.

With this notation, the weights are integrable in R and the connection can be made without

problems. Moreover, this is what explains the meaning of the kernel of the energy distance,

kE(x, y), as a limit of kernels:

kE(x, y) = lim
σ→∞

σ

2

(
1− e−

‖x−x0‖d
σ − e−

‖y−x0‖d
σ + e−

‖x−y‖d
σ

)
.

In addition, we have found an application of kernels and semimetrics of negative type in a

different problem: dimensionality reduction. A popular technique for reducing the dimension-

ality in comparing two samples from X ∼ P and Y ∼ Q is to analyse distributions of interpoint

comparisons based on a univariate discrepancy function h. The theoretical foundation of this

technique is given in [24]. First, they assume some restrictive conditions for the density func-

tions of the data and the function h. Given X and Y of dimension d with densities f and g, the

conditions are:

•
∫
f2(x)dx,

∫
g2(y)dy <∞,

• The vector 0 is a Lebesgue point of the function u(y) =
∫
Rd g(x+ y)f(x)dx, that is:

lim
r→0+

1

|B(0, r)|

∫
B(0,r)

|u(y)− u(0)|dy = 0,

where B(0, r) is a ball centred at 0 with radius r > 0, and |B(0, r)| is its Lebesgue measure,

• The function h : Rd × Rd → R is nonnegative and continuous,

• h(x, y) = 0 if and only if x = y,

• h(ax+ b, ay + b) = |a|h(x, y) ∀a ∈ R,∀b ∈ Rd.

Then, Theorem 2 of the mentioned article says:
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Theorem 13. Let X,X ′ be iid d-dimensional random variables with density f and cdf F and

let Y, Y ′ be iid d-dimensional variables with density g and cdf G. Assume that the X’s and Y ’s

are independent. If the densities f and g and the function h satisfy the previous conditions,

then:

h(X,X ′)
d
= h(Y, Y ′)

d
= h(X,Y ) if and only if F = G,

where
d
= means that the distributions are equal.

The main problem with this theorem is that it imposes restrictions on the density functions.

Therefore, it is not valid for all the distributions. In practice, the distribution of the data is

often unknown. We can improve the result by using the expectations involved in the MMD

expression, that is applicable to any distribution. The extension of the theorem in terms of

kernels is:

Theorem 14. Let X,X ′ ∼ P iid d-dimensional random variables and let Y, Y ′ ∼ Q be also iid,

independent from the X’s. Given any characteristic kernel k:

Ek(X,X ′) = Ek(Y, Y ′) = Ek(X,Y ) if and only if P = Q.

Proof. We only have to apply the expression of the MMD when the variables are independent:

(=⇒) If all the expectations are equal, then:

γ2
k(P,Q) = Ek(X,X) + Ek(Y, Y ′)− 2Ek(X,Y ) = 0.

And then, as MMD, based on a characteristic kernel, characterizes equality of distributions,

P = Q.

(⇐=) It is clear that if P = Q, all the expectations are equal.

As well as working for every distributions, Theorem 14 involves checking only equality of ex-

pectations, which is much easier than checking the equality of the whole distributions. However,

it imposes more restrictions over the function k than the original theorem. Nevertheless, this

does not pose a problem since we have many well-known characteristic kernels at our disposal.

At the beginning of the chapter we have noticed the similarity between the expressions of

MMD and energy distance. So, we can use also the generalized definition of the energy distance

to write an equivalent theorem:

Theorem 15. Let X,X ′ ∼ P iid d-dimensional random variables and let Y, Y ′ ∼ Q be also iid,

independent from the X’s. Given any strict negative type semimetric ρ:

Eρ(X,X ′) = Eρ(Y, Y ′) = Eρ(X,Y ) if and only if P = Q.

The proof is identical to the previous one but using the energy distance. There are many

examples of this kind of semimetrics, including the Euclidean distance used in the original

definition of the energy distance.
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Chapter 9

HSIC and distance covariance

In this chapter we will carry out similar derivations than in the previous one, but in this case

with the independence tests. Our goal is to establish a relation between the HSIC and the

distance covariance. The first step will be to generalize distance covariance to negative type

semimetrics. Then we will show the equivalence between the generalized methods. Moreover,

this equivalence allows us to find a direct connection between distance covariance and energy

distance.

9.1 Generalizations

Let us start generalizing both methods, as we did for the energy distance and the MMD. As in

the previous chapter, we need to generalize the distance covariance using semimetrics of negative

type. Let (X , ρ) and (Y, τ) be semimetric spaces of negative type. The extended definition for

the distance covariance is:

Definition 33. Let X ∼ P ∈ M2
ρ (X ), Y ∼ Q ∈ M2

τ (Y), with joint distribution PXY . The

generalized squared Distance Covariance between X and Y is:

ν2
ρ,τ (X,Y ) = EXY EX′Y ′ρ(X,X ′)τ(Y, Y ′) + EXEX′ρ(X,X ′)EY EY ′τ(Y, Y ′)

−2EXY
[
EX′ρ(X,X ′)EY ′τ(Y, Y ′)

]
.

As with the energy distance, the moment conditions ensure that the expectations in this

expression are finite.

Proposition 20. Let X ∼ P ∈M2
ρ (X ), Y ∼ Q ∈M2

τ (Y), then νρ,τ (X,Y ) <∞.

Proof. Applying the Cauchy-Schwartz inequality, we can write the square of the first expectation

of the distance covariance as:[
EXY EX′Y ′ρ(X,X ′)τ(Y, Y ′)

]2 ≤
∣∣EXY,X′Y ′ρ(X,X ′)τ(Y, Y ′)

∣∣2
≤ EXY,X′Y ′ρ2(X,X ′)EXY,X′Y ′τ2(Y, Y ′)
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= EXEX′ρ2(X,X ′)EY EY ′τ2(Y, Y ′).

Since P ∈M2
ρ (X ), we know that ∃x0 ∈ X such that:

EXρ2(X,x0) <∞,

and equivalently there exists an y0 for τ . By Proposition 14, we can apply the triangle inequality

to each of the expectations because ρ and τ are of negative type:

EXEX′ρ2(X,X ′) = EXEX′
(
ρ

1
2 (X,X ′)

)4

≤ EXEX′
(
ρ

1
2 (X,x0) + ρ

1
3 (x0, X

′)
)4

= EXρ(X,x0)2 + 4EXρ
1
2 (X,x0)EX′ρ

3
2 (x0, X

′) + 6EXρ(X,x0)EX′ρ(x0, X
′)

+4EXρ
3
2 (X,x0)EX′ρ

1
2 (x0, X

′) + EX′ρ(x0, X
′)2

= 2EXρ(X,x0)2 + 8EXρ
1
2 (X,x0)EXρ

3
2 (X,x0) + 6 [EXρ(X,x0)]2 <∞,

since X and X ′ have the same distribution, and by Propositions 12 and 17 we have that M2
ρ (X ) ⊆

M
3
2
ρ (X ) ⊆ M1

ρ (X ) ⊆ M
1
2
ρ (X ). That is, all the expectations in the expression above are finite.

Equivalently for the expectation of τ . A similar reasoning can be made to show that the

remaining terms of the distance covariance are finite.

This generalized distance covariance can be also expressed in integral form:

ν2
ρ,τ (X,Y ) =

∫
ρτd([PXY − P,Q]× [PXY − P,Q]), (9.1)

where PXY is the joint distribution ofX and Y and ρτ is viewed as a function on (X×Y)×(X×Y).

This generalized distance covariance do not characterizes independence for every ρ and τ .

That is, we may have νρ,τ (X,Y ) = 0 for some different distributions X ∼ P and Y ∼ Q.

Theorem 3.11 of [25] shows that if the semimetrics are of strong negative type, then distance

covariance characterizes independence. This is the same property as for the energy distance.

Using Proposition 19, we can rewrite this restriction in terms of kernel properties. We do not

need to generalize HSIC, because it is already defined for two different kernels.

9.2 Equivalence between methods

We can state a result similar to the previous Theorem 12, now between HSIC and distance

covariance. Let (X , ρ) and (Y, τ) be semimetric spaces of negative type, and let kx and ky be

two kernels on X and Y, with RKHS’s H and G, that generate ρ and τ respectively. The product

of kx and ky kernel in the tensor product space H× G is defined as:

k((x, y), (x′, y′)) = kx(x, x′)ky(y, y
′).

Using this definition:
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Theorem 16. Let X ∼ P ∈M2
ρ (X ), Y ∼ Q ∈M2

τ (Y), with joint distribution PXY . Let k(x, y)

the product kernel of kx(x) and ky(y) that generate ρ and τ respectively, then:

ν2
ρ,τ (X,Y ) = 4HSIC(PXY ,H,G).

Proof. This proof is similar to the one of Theorem 12, which establishes the equivalence between

energy distance and MMD. Define ν = PXY − PQ. We will use that:

ν(X × Y) = PXY (X × Y)− PQ(X × Y) = PXY (X × Y)− P(X )Q(Y) = 1− 1 = 0.

We will also use that ν has zero marginal measures, that is:

νX(x) =

∫
(PXY (x, y)− P(x)Q(y))dy

=

∫
PXY (x, y)dy − P(x)

∫
Q(y)dy

= P(x)− P(x)Q(Y) = 0,

νY (y) =

∫
(PXY (x, y)− P(x)Q(y))dx

=

∫
PXY (x, y)dx−Q(y)

∫
P(x)dx

= Q(y)−Q(y)P(X ) = 0.

This means that
∫
g(x, y, x′, y′)dν(x, y)dν(x′, y′) = 0 if g does not depend on one or more of its

arguments. Let’s use the integral form of the distance covariance, given by Equation (9.1). We

will also use the fact that the semimetrics are generated by the kernels kx and ky and the equiv-

alence between kernel methods, γ2
k(PXY ,PQ) ≡MMD2(F ,PXY ,PQ) = HSIC(PXY ,H,G):

ν2
ρ,τ (X,Y ) =

∫
ρ(x, x′)τ(y, y′)dν(x, y)dν(x′, y′)

=

∫
(kx(x, x) + kx(x′, x′)− 2kx(x, x′))(ky(y, y) + ky(y

′, y′)− 2ky(y, y
′))dν(x, y)dν(x′, y′)

=

∫
k((x, y), (x, y))dν(x, y)dν(x′, y′) +

∫
k((x, y′), k(x, y′))dν(x, y)dν(x′, y′)

−2

∫
k((x, y), (x, y′))dν(x, y)dν(x′, y′) +

∫
k((x′, y), (x′, y))dν(x, y)dν(x′, y′)

+

∫
k((x′, y′), (x′, y′))dν(x, y)dν(x′, y′)− 2

∫
k((x′, y), (x′, y′))dν(x, y)dν(x′, y′)

−2

∫
k((x, y), (x′, y))dν(x, y)dν(x′, y′)− 2

∫
k((x, y′), (x′, y′))dν(x, y)dν(x′, y′)

+4

∫
k((x, y), (x′, y′))dν(x, y)dν(x′, y′)

= ν(X × Y)

(∫
k((x, y), (x, y))dν(x, y) +

∫
k((x′, y′), (x′, y′))dν(x′, y′)

)
+0 + 4

∫
k((x, y), (x′, y′))dν(x, y)dν(x′, y′)
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= 4

∫
k((x, y), (x′, y′))dν(x, y)dν(x′, y′)

= 4γ2
k(PXY ,PQ)

= 4HSIC(PXY ,H,G).

The two integrals that involve the term ν(X × Y) are finite due to the moment conditions on

the marginals, P ∈M2
ρ (X ) = M2

kx
(X ) ⊆Mkx(X ) and Q ∈M2

τ (Y) = M2
ky

(Y) ⊆Mky(Y).

From Theorems 12 and 16, we can establish also a relation between the energy distance and

the distance covariance. From the original definitions of both methods it suggests that they are

closely related, but up to now it is not clear whether the distance covariance is equal to Eρ̃ for

some semimetric ρ̃ on X × Y. We will clarify it in the next corollary of the previous theorem:

Corollary 2. Let (X , ρ) and (Y, τ) be semimetric spaces of negative type, and let X ∼ P ∈
M2
ρ (X ) and Y ∼ Q ∈M2

τ (Y), with joint distribution PXY . Then:

ν2
ρ,τ (X,Y ) = Eρ̃(Z,W ),

where Z ∼ PXY and W ∼ PQ and the semimetric ρ̃
2 is generated by the product kernel k(x, y) =

kx(x)ky(y).

This result can be seen directly applying the previous results which estate the relation

between all the methods. From these results the relation between the different methods is

apparent.

Since we are working in the tensor product space H× G, we could think about distinguish-

ing probability distributions on this space. However, the product kernel k((x, y), (x′, y′)) =

kx(x, x′)ky(y, y
′) may not be characteristic even if kx and ky are characteristic. We can formu-

late a simple example of this behaviour. We assume that kx and ky are bounded, so that we can

consider embeddings of all probability measures. Let kx be a kernel centered at x0 and induced

by the semimetric ρ. This implies that k((x0, y), (x0, y
′)) = kx(x0, x0)ky(y, y

′) = 0. Then for

every two distinct Q1,Q2 ∈ M1
+(Y), we have that γ2

k(δx0Q1, δx0Q2) = 0, where δx0 is the Dirac

delta function. If we assume that ρ and τ are strictly negative definite, νρ,τ characterises inde-

pendence. By Theorem 16, γk also characterises independence, but not equality of probability

measures on the product space. That is, it is easier to distinguish PXY from PQ than two-sample

testing on the product space.

In conclusion, all the methods introduced up to now in this work are closely related. Be-

sides, in the following chapter we will introduce a novel independence test, whose power will

be compared in Chapter 11 with independence tests based on discrepancies introduced in the

previous chapters.
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Chapter 10

Independence test based on

non-Gaussianity

In this chapter we will introduce a class of new independence tests based on measures of non-

Gaussianity. We prove that the proposed tests characterize independence when the marginals

of the random variables are Gaussian. However, we have not been able to extend this derivation

to the general case, when the marginal distributions are non-Gaussian. We will describe the

problems that we have found during this extension. At the end of the chapter we present some

modifications that could be made to the test. In the following chapter we analyse the power

of all the possible considered modifications, and compare them with other independence tests

proposed in the literature.

10.1 Basic idea and theoretical foundation

In this section we will introduce the ideas that lead to the new independence test, and some

theoretical results. The first one is the observation that, in many cases, the sum of two random

variables is more ”Gaussian” if the variables are independent than if they are not. In Figure

10.1 we can see an illustration of this behaviour. Here X ∼ U [−1, 1] and Y = X2 with sample

size 300, scaled later to have zero mean and unit variance. To obtain a sample of observations Ỹ

with the same distribution of Y and independent of X, we permute the sample of Y (formally,

the marginals of X and Y are exchangeable, not independent, but in practice the difference is

not relevant). In this example, we present histograms of the samples as a simple way to asses

the Gaussianity. It is clear that the second sum is much closer to the Gaussian distribution than

the first one.

This idea of analysing the non-Gaussianity of a sum of two variables arises from the central

limit theorem, since the sum of an increasing number of independent variables,with finite vari-

ance, approaches the Gaussian distribution. However this need not be the case if the variables

are dependent. In Section 10.3 (Figure 10.2) we provide an example for which the sum of de-

pendent random variables is less Gaussian than the sum of independent random variables with
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Figure 10.1: Histograms of the sum of two variables, being X ⊥ Ỹ .

the same marginals.

The basis of our analysis is a result given in [27] which links the negentropy, a measure of

non-Gaussianity, with a well known measure of the independence, the mutual information. Let

us start defining this independence criterion, which characterizes independence by measuring the

Kullback-Leibler divergence between the joint distribution and the product of the marginals:

Definition 34. The Kullback-Leibler divergence of two probability function distributions F

and G, with density functions f and g respectively, is defined as:

DKL(F‖G) =

∫ ∞
−∞

f(x) log
f(x)

g(x)
dx.

The Kullback-Leibler divergence is not symmetric. That is, even if DKL(F‖G) = 0 if and

only if f = g, it does not define a distance. The mutual information of two random variables is

defined as follows:

Definition 35. Given two random variables X and Y with distribution functions FX and FY

and joint distribution FXY , we define their mutual information as:

I(X,Y ) = DKL(FXY ‖FXFY ).

This quantity measures the dependence between X and Y . It actually characterizes inde-

pendence:
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Proposition 21. The mutual information is non-negative, I(X,Y ) ≥ 0, and it is zero if and

only if X and Y are independent.

Proof. The first claim can be readily derive applying Jensen’s inequality to the minus logarithm.

I(X,Y ) =

∫ ∞
−∞

∫ ∞
−∞

fXY (x, y) log
fXY (x, y)

fX(x)fY (y)
dxdy

= EXY log
fXY (x, y)

fX(x)fY (y)

= EXY
[
− log

fX(x)fY (y)

fXY (x, y)

]

≥ − logEXY
fX(x)fY (y)

fXY (x, y)

= − log

∫ ∞
−∞

fX(x)fY (y)dxdy

= − log 1 = 0.

For the other one we have to prove both directions, although one of them is direct:

(=⇒) Since fXY is a density function, it is non-negative and its integral is equal to one.

Therefore it can not be zero everywhere. If I(X,Y ) = 0, the logarithm should be zero at least

in the support of fXY .

fXY (x, y)χD(x, y) = fXY (x, y) = fX(x)fY (y)χD(x, y),

where D = supp(fXY ) ⊆ R2 and χD denotes the indicator function of the set D. This means

that if fXY 6= 0, it is equal to the product of the marginals. We now prove that, if the joint

distribution is zero, then the product of the marginals is also zero. For this we will integrate

the expression above with respect to x and y:

fY (y) =
∫∞
−∞ fXY (x, y)dx = fY (y)

∫∞
−∞ fX(x)χD(x, y)dx,

fX(x) =
∫∞
−∞ fXY (x, y)dy = fX(x)

∫∞
−∞ fY (y)χD(x, y)dy.

Then we have that:

1 =
∫∞
−∞ fX(x)χD(x, y)dx ≤

∫∞
−∞ fX(x)dx = 1 ∀y,

1 =
∫∞
−∞ fY (y)χD(x, y)dy ≤

∫∞
−∞ fY (y)dy = 1 ∀x.

This means that supp(fX) ⊆ supp(fXY ) and supp(fY ) ⊆ supp(fXY ), i.e., fXY (x, y) = 0

implies fX(x)fY (y) = 0.

(⇐=) If the variables are independent then fXY (x, y) = fX(x)fY (y), which implies that:

I(X,Y ) =

∫ ∞
−∞

fXY (x, y) log(1)dxdy = 0.
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A measure of non-Gaussianity can be given in terms of the entropy of a random variable:

Definition 36. Let X be a random variable with density function f . The differential entropy,

or simply entropy, of X is:

H(X) = −
∫
f(x) log f(x)dx.

The entropy depends on the distribution of the variable. It can be shown that the Gaussian

distribution maximizes it for a given covariance matrix. In particular, the entropy for a normal

random variable with covariance matrix Σ and any mean vector is equal to log((2πe)n/2|Σ|1/2),

where n is the dimension of the variable. This value is the maximum for any possible distribu-

tion whose covariance matrix is Σ. The Kullback-Leibler divergence between two distribution

functions F and G, with density functions f and g respectively, is:

DKL(F‖G) =

∫
f(x) log(f(x))dx−

∫
f(x) log(g(x))dx

= −H(X)−
∫
f(x) log(g(x))dx, (10.1)

where X ∼ F . The mutual information can be expressed in terms of the entropy as well:

Proposition 22. Let X and Y be two random variables. Let Y⊥ be another random variable

with the same distribution as Y but independent of X. Then, we can rewrite their mutual

information as:

I(X,Y ) = H(X,Y⊥)−H(X,Y ).

Proof. We just have to apply the definition of the mutual information and the previous Equation

(10.1):

I(X,Y ) = −H(X,Y )−
∫
fX,Y (x, y) log(fX(x)fY (y))dxdy

= −H(X,Y )−
∫
fX,Y (x, y) log(fX(x))dxdy −

∫
fX,Y (x, y) log(fY (y))dxdy

= −H(X,Y )−
∫
fX(x) log(fX(x))dx−

∫
fY (y) log(fY (y))dy

= H(X) +H(Y )−H(X,Y ).

Now if we take the other random variable Y⊥, we know that I(X,Y⊥) = 0, because X and

Y⊥ are independent. Therefore, using the fact that the entropy only depends on the distribution

of the variable, we get:

0 = H(X) +H(Y⊥)−H(X,Y⊥) =⇒ H(X) +H(Y ) = H(X,Y⊥).

And it only remains to substitute this in the previous expression.
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The mutual information can be expressed as the sum of two terms: one that measures non-

linear dependences and other linear ones. Define the random vector Z = (X,Y ), with X and Y

the variables whose dependences we want to measure. The linear dependence between X and

Y is determined by the covariance matrix ΣXY . Let ΣZ be the covariance matrix of Z:

ΣZ =

(
ΣX ΣXY

ΣXY ΣY

)
,

where ΣX and ΣY are the covariance matrices of the variables, and ΣXY the matrix with entries

E[(Xi − EXi)(Yj − EYj)]. If the variables X and Ỹ are linearly independent, Σ
XỸ

is the null

matrix, and then, denoting Z̃ = (X, Ỹ ):

Σ
Z̃

=

(
ΣX 0

0 ΣY

)
.

Then we can define:

Definition 37. Given the random vectors Z = (X,Y ) and Z̃ = (X, Ỹ ), where Y, Ỹ have the

same distribution and X and Ỹ are linearly independent. The linear dependence between X and

Y can be measured by:

C(Z) = C(X,Y ) = DKL(N (µZ ,ΣZ)‖N (µZ ,ΣZ̃
)),

where µZ denotes the vector composed of the mean vectors µX and µY of each of the random

variables.

Along the same lines we define another function that measures the non-Gaussianity of a

distribution. Using also the Kullback-Leibler divergence, it quantifies the ”distance” from the

distribution to a Gaussian one with the same mean and covariance matrix.

Definition 38. Given a random vector Z = (X,Y ) with mean vector µ and covariance matrix

Σ, the negentropy of the vector is defined as:

G(Z) = G(X,Y ) = DKL(FXY ‖N (µ,Σ)),

where FXY is the joint distribution.

This quantity depends only on the distribution of the variables and has some desirable

properties. For example it is always non-negative (G(Z) ≥ 0) and invariant with respect to

invertible affine transformations (AZ + b with A an invertible matrix). Since it also depends on

the Kullback-Leibler divergence, we can express it in terms of the entropy, as we did before with

the mutual information. Now we transform it by using Q ≡ N (0,Σ) in the Kullback-Leibler

definition, and hence g(x) = φ(x) = 1
(2π)n/2|Σ|1/2 e

− 1
2

(x−µ)>Σ−1(x−µ), where n is the dimension of

the variable. Actually it is equal to the difference between the entropies of both distributions:

Proposition 23. Let Z be a N (µ,Σ) variable and X be some random variable with the same

mean and variance. Then the negentropy of X is equal to:

G(X) = H(Z)−H(X).
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Proof. We only have to decompose the expression of the Kullback-Leibler divergence like in

Equation (10.1) and operate with the resulting integrals:

G(X) = −H(X)−
∫
Rn
f(x) log

(
1

(2π)n/2|Σ|1/2
e−

1
2

(x−µ)>Σ−1(x−µ)

)
dx

= −H(X) +
1

2

∫
Rn
f(x)(x− µ)>Σ−1(x− µ)dx+ log

(
(2π)n/2|Σ|1/2

)∫
Rn
f(x)dx

= log
(

(2π)n/2|Σ|1/2
)

+
n

2
−H(X)

= log
(

(2π)n/2|Σ|1/2
)

+
1

2
log(en)−H(X)

= log
(

(2πe)n/2|Σ|1/2
)
−H(X)

= H(Z)−H(X).

This result implies that the Gaussian has maximum entropy. Since the negentropy, which is

defined in terms of the Kullback-Leibler divergence, is always non-negative:

H(Z)−H(X) ≥ 0 =⇒ H(Z) ≥ H(X).

Now that we have all the definitions and principal properties of all the needed quantities, we

can introduce the central result on which the test is based, which has been taken from [27]. It

brings to light the relation between non-Gaussianity and linear and nonlinear dependencies of

these variables, through mutual information:

Proposition 24. The mutual information between two random variables X and Y can be ex-

pressed as:

I(X,Y ) = G(X,Y )−G(X)−G(Y ) + C(X,Y ). (10.2)

Proof. For a random variable Z = (X,Y ) with distribution FXY , mean vector µZ and covariance

matrix ΣZ we define the matrix:

Σ
Z̃

=

(
ΣX 0

0 ΣY

)
.

We want to combine the mutual information, which compares a joint distribution with the

product of the marginals, and the negentropy, which compares this joint distribution with a

Gaussian. Then we will measure the Kullback-Leibler divergence between a joint distribution

FXY of two random variables X and Y and a product of two independent Gaussians of the same

dimensions as X and Y respectively. We denote this new product distribution as:

FFXY ∧G ≡ N
(
µZ ,ΣZ̃

)
.

This decomposition can be done by two ways:
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• We will start adjusting to FXY a general product of distributions QXQY , and later we

will transform these QX , QY into Gaussian.

DKL (FXY ‖QXQY ) = DKL (FXY ‖FXFY ) +DKL (FXFY ‖QXQY )

= I(X,Y ) +DKL (FX‖QX) +DKL (FY ‖QY ) ,

where FX and FY are the distribution functions of X and Y respectively. Now if we

take QX = N (µX ,ΣX) and QY = N (µY ,ΣY ) independent, we ensure that the product is

QXQY = N (µZ ,ΣZ̃
). Then we have:

DKL

(
FXY ‖FFXY ∧G

)
= DKL (FXY ‖QXQY )

= I(X,Y ) +DKL (FX‖N (µX ,ΣX)) +DKL (FY ‖N (µY ,ΣY ))

= I(X,Y ) +G(X) +G(Y ).

• Now we will start adjusting a general Gaussian N (µ,Σ) to FXY and later we will express

it as an independent product:

DKK(FXY ‖N (µ,Σ)) = DKL(FXY ‖N (µZ ,ΣZ)) +DKL(N (µZ ,ΣZ)‖N (µ,Σ))

= G(X,Y ) +DKL(N (µZ ,ΣZ)‖N (µ,Σ)).

Taking µ = µZ and Σ = Σ
Z̃

:

DKL

(
FXY ‖FFXY ∧G

)
= DKL

(
FXY ‖N (µZ ,ΣZ̃

)
= G(X,Y ) +DKL(N (µZ ,ΣZ)‖N (µZ ,ΣZ̃

)

= G(X,Y ) + C(X,Y ).

Equating both equations of DKL

(
FXY ‖FFXY ∧G

)
we obtain the result.

Since the mutual information characterizes independence and the term C only detects linear

dependencies, the remainder part of the expression is the measure of the non-linear ones. So we

will analyse this term. If we take another random variable Y⊥ with the same distribution as Y

but independent of X, their mutual information will be zero, and also their linear dependencies.

Then:

G(X,Y⊥)−G(X)−G(Y⊥) = 0 −→ G(X,Y⊥) = G(X) +G(Y⊥).

The negentropy only depends on the distribution, so G(Y ) = G(Y⊥). Then we can rewrite

the mutual information as:

I(X,Y ) = (G(X,Y )−G(X,Y⊥)) + C(X,Y ). (10.3)
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This means that we can measure the non-linear dependencies of the variables by comparing

how Gaussian is the joint distribution with respect to the independent one. This is already close

to the original idea given at the beginning of the section, since it involves the non-Gaussianity

of a joint distribution an its corresponding with independent marginals. In fact, from this

expression we can deduce that:

Theorem 17. Given two uncorrelated random variables XLI and YLI , their joint distribution is

farther from the Gaussian than the joint one of the corresponding independent random variables

with the same marginal distributions X⊥ and Y⊥. That is:

G(XLI , YLI) ≥ G(X⊥, Y⊥).

Proof. It is direct by using Equation (10.3). If the variables are uncorrelated, C(XLI , YLI) = 0.

Therefore, since the mutual information is always equal or greater than zero, we obtain the

result.

However, we still do not have considered the sum of the variables, which was part of the

original idea. To fix it we will analyse the simplest case in the next section, when the distributions

of X and Y are both Gaussian. We will use it to derive a test of independence based on one

dimensional projections of the variables, which we will apply later to arbitrary distributions.

10.2 Gaussian marginals

In this section we will define a new way to compute the non-linear dependencies between two

random variables, instead of using the negentropy. We will develop it only when the marginals

are Gaussian. Without loss of generality, we shall henceforth assume that the random variables

X and Y are standardized. Then their negentropy is zero and the expression of the mutual

information given in Equation (10.2) is:

I(X,Y ) = G(X,Y ) + C(X,Y ).

We will see that we can measure the non-linear dependencies of the sample by computing

the nongaussianity of the projections ρX +
√

1− ρ2Y , for ρ ∈ [−1, 1]. With this change we

recover the sums involved in the original idea of the test. It is also interesting given that it is

always easier to work in one dimension.

Proposition 25. Given two uncorrelated normal random variables, then G(X,Y ) = 0 if and

only if G(ρX +
√

1− ρ2Y ) = 0, ρ ∈ [−1, 1].

Proof. C(X,Y ) = 0 becauseX and Y are uncorrelated, i.e. they do not have linear dependencies.

Since both variables are normal, their mutual information in directly their negentropy.

I(X,Y ) = G(X,Y ).
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(=⇒) We have already proven that the mutual information characterizes the independence.

Therefore G(X,Y ) = 0 implies that the variables are independent. It is well known that if

two normal variables are independent, their linear combinations are also normal. Then ρX +√
1− ρ2Y are normal for all ρ ∈ [−1, 1], which implies that G(ρX +

√
1− ρ2Y ) = 0.

(⇐=) If G(ρX +
√

1− ρ2Y ) = 0 for all ρ, all these linear combinations are normal. Then

by the Cramer-Wold Theorem, which states that a Borel probability measure on Rk is uniquely

determined by the totality of its one-dimensional projections, we obtain the result.

In addition, we know that the non-Gaussianity of the independent pair is equal zero, and

therefore G(ρX +
√

1− ρ2Y⊥) = 0 for all ρ ∈ [−1, 1] when X ⊥ Y⊥. This means that the main

idea of the test presented at the beginning of the previous section holds when the marginals are

Gaussian:

G(ρX +
√

1− ρ2Y ) ≥ G(ρX +
√

1− ρ2Y⊥) = 0. (10.4)

In other words, the linear combination of two independent Gaussian random variables is

more Gaussian than the corresponding one when the variables are not independent (It is clear

since if they are independent their sum is directly a Gaussian).

In view of this last proposition, we have a family of negentropy values, {G(ρX+
√

1− ρ2Y )}ρ∈[−1,1].

We will use the mean as a representative of the family. It is clear from the proof of the proposi-

tion that the result holds also when using the mean over ρ instead of all ρ ∈ [−1, 1]. We could

have used the maximum instead of the mean, but considering the practical results, we decided

to use this definition. That is, we will use the following quantity to measure the non-linear

dependencies:

NLD(X,Y ) =

∫ 1

−1
G(ρX +

√
1− ρ2Y )dρ.

We can use Proposition 23 to rewrite the negentropy of ρX +
√

1− ρ2Y in terms of the

entropy, which gives an easy way to compute it. It is easy to see that the standard deviation of

this sum, denoted by σρ, is equal to
(

1 + 2ρ
√

1− ρ2ρXY

)1/2
, where ρXY is the linear correlation

of the variables (it is equal to the covariance since the variables have unit variance).

G(ρX +
√

1− ρ2Y ) = log(σρ
√

2πe)−H(ρX +
√

1− ρ2Y )

=
1

2
log(σ2

ρ2πe)−H(ρX +
√

1− ρ2Y )

=
1

2
log
(

2πe(1 + 2ρ
√

1− ρ2ρXY )
)
−H(ρX +

√
1− ρ2Y ).

But if we want to use NLD(X,Y ) to substitute the negentropy in the mutual information,

we need to rewrite also the measure for the linear dependencies. That is, we need to obtain a

new expression for C(X,Y ) in terms of the projections. This new expression should be such that

it recovers the mutual information if we sum it with the measure of the non-linear dependencies,

like in Equation (10.2). To do it we will use the expression of the mutual information in terms
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of the entropy, given by Proposition 22. If we make the non-linear dependencies equal to zero,

we will obtain the expression of the linear ones. Using the above formulation for G:

G(ρX +
√

1− ρ2Y ) = 0 =⇒ H(ρX +
√

1− ρ2Y ) =
1

2
log
(

2πe(1 + 2ρ
√

1− ρ2ρXY )
)
.

Therefore, if we substitute this result in the Equation of Proposition 22 we get:

C(ρX +
√

1− ρ2Y ) = H(ρX +
√

1− ρ2Y⊥)−H(ρX +
√

1− ρ2Y )

=
1

2
log(2πe)−

[
1

2
log
(

2πe(1 + 2ρ
√

1− ρ2ρXY )
)]

=
1

2
log(2πe)− 1

2
log(2πe)− 1

2
log
(

1 + 2ρ
√

1− ρ2ρXY

)
= −1

2
log
(

1 + 2ρ
√

1− ρ2ρXY

)
.

As before, we get a family of values depending on ρ, so we will use their maximum as a

representative of the family. So our new measure for the linear dependencies is:

LD(X,Y ) = −1

2
max

ρ∈[−1,1]
log
(

1 + 2ρ
√

1− ρ2ρXY

)
.

But we can calculate explicitly the value of this maximum. We have to derive this expression

with respect to ρ to obtain the extreme points:

∂

∂ρ
log
(

1 + 2ρ
√

1− ρ2ρXY

)
=

∂
∂ρ

(
1 + 2ρ

√
1− ρ2ρXY

)
1 + 2ρ

√
1− ρ2ρXY

=
2ρXY

1 + 2ρ
√

1− ρ2ρXY

(√
1− ρ2 − ρ2√

1− ρ2

)

=
2ρXY√

1− ρ2 + 2ρ(1− ρ2)ρXY

(
1− 2ρ2

)
= 0.

So the maximum values of LD(X,Y ) are obtained in:

ρ = ± 1√
2
.

We obtain the final expression by substituting this values in the original function:

LD(X,Y ) = −1

2
log(1− |ρXY |).

Using this expression and the previous one developed for the non-linear dependencies we can

define the independence measure for the Gaussian case:

I∗(X,Y ) = NLD(X,Y ) + LD(X,Y )
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=

∫ 1

−1

[
1

2
log
(

2πe(1 + 2ρ
√

1− ρ2ρXY )
)
−H(ρX +

√
1− ρ2Y )

]
dρ

−1

2
log(1− |ρXY |). (10.5)

We have seen along this section and the previous one that this is a valid independence test,

that is, this expression characterises independence since mutual information does. But right

now we only have a measure which assumes that the marginal distributions of the variables are

both Gaussian, which is not the case in most applications. In the next section we will define the

general independence test that does not require that the marginals to be Gaussian. The final

expression is similar to this one, but without removing the non-Gaussianity of the independent

pair.

10.3 Non Gaussian marginals

In this section we will introduce a new independence test for general random variables, without

making any assumption about their marginal distributions. However in this case the theoretical

foundations of the test are not completely developed.

The first attempt would be to see if any linear combination of the variables are more Gaus-

sian if they are independent. This property holds when the marginals are Gaussian, as shows

Equation (10.4). However, if the random variables can have any distribution, there could be

directions for which the sum of the independent samples of the random variables is less Gaus-

sian than the sum of the original dependent ones. Anyway, in practice it is difficult to find an

example where the mentioned property does not hold.

We still have not delimited the class of distributions for which Equation (10.4) does not

hold for all ρ ∈ [−1, 1], but we have obtained some clues from the experiments. The most clear

example is displayed in Figure 10.2, where X ∼ U [0, 1] and Y ∼ Pareto(1, 1) is obtained from

X as:

Y =
1

1−X
, where 1−X ∼ U [0, 1].

The explicit relation between the data can be seen in Figure 10.3, where it is clearly reflected

that the variable Y is almost zero. The Pareto distribution has heavy tails, so it keeps its shape

after standardization. We divided by 1 −X instead of X to have positive correlation between

the variables, which leads to a more clear interchange between the order of the negentropies. In

this example we see that for ρ > 0 the negentropy of the sum of the random variables is larger

when they are independent that when they are dependent. That is, the independent sum is

more distant from the Gaussian distribution according to the Kullback-Leibler divergence.

Although Equation (10.4) only holds for ρ < 0 in this example, the difference between both

values of the negentropy is really small for the values of ρ where it does not hold. So we believe

that the mean of all the differences are greater than zero. That is, we guess that:

Conjecture 1. Given three random variables X ∼ P and Y, Y⊥ ∼ Q, such that X is independent
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Figure 10.2: Negentropy of ρX+
√

1− ρ2Y depending on whether the variables are independent.

from Y⊥, then for some reasonable rotation invariant function µNG that measures the non-

Gaussinity of a distribution:∫ 1

−1
µNG

(
ρX +

√
1− ρ2Y

)
dρ ≥

∫ 1

−1
µNG

(
ρX +

√
1− ρ2Y⊥

)
dρ.

In other words, if we think of ρ as a uniform random variable over [−1, 1] (P ∼ U [−1, 1]),

we conjecture that:

EP
[
µNG

(
PX +

√
1− P 2Y

)]
≥ EP

[
µNG

(
PX +

√
1− P 2Y⊥

)]
.

Expressing it with expectations allows us to work mathematically with it better, although

we have not obtained remarkable results for the mean up to now. However, we have obtained a

proof for the maximum of the differences of the negentropy when the variables are uncorrelated:

Theorem 18. Given two uncorrelated random variables X and Y :

max
ρ∈[−1,1]

(
G(ρX +

√
1− ρ2Y )−G(ρX +

√
1− ρ2Y⊥)

)
≥ 0,

where Y⊥ is a random variable with the same distribution as Y but independent of X.

Proof. We can change ρ = cos(θ), and then we have to prove:

max
θ∈[0,π]

(G(X cos θ + Y sin θ)−G(X cos θ + Y⊥ sin θ)) ≥ 0.
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Figure 10.3: Counterexample where X ∼ U [−1, 1] and Y = 1
1−X ∼ Pareto(1, 1).

To simplify the notation, we will denote the projections as:

Z(θ) = X cos θ + Y sin θ,

Z⊥(θ) = X cos θ + Y⊥ sin θ.

Since X and Y are uncorrelated, the variances of Z(θ) and Z⊥(θ) do not depend on θ, so

this expression can be rewritten as:

max
θ∈[0,π]

(G(Z(θ))−G(Z⊥(θ))) = max
θ∈[0,π]

([log(2πe)−H(Z(θ))]− [log(2πe)−H(Z⊥(θ))])

= max
θ∈[0,π]

(H(Z⊥(θ))−H(Z(θ))) ≥ 0.

Which is equivalent to:

min
θ∈[0,π]

(H(Z(θ))−H(Z⊥(θ))) ≤ 0. (10.6)

We will analyse the term with the independent variables. We can apply the entropy power

inequality, which says that, for two independent random variables W and W⊥:

e2H(W+W⊥) ≥ e2H(W ) + e2H(W⊥).

We will use also the following property of the entropy, for a d-dimensional random variable

W and a matrix a:

H(aW ) = H(W ) + log det(a).

Therefore we can establish a bound for the entropy:

H(X cos θ + Y⊥ sin θ) =
1

2
log
(
e2H(X cos θ+Y⊥ sin θ)

)
≥ 1

2
log
(
e2H(X cos θ) + e2H(Y⊥ sin θ)

)
87



=
1

2
log
(
e2H(X)+2 log cos θ + e2H(Y⊥)+2 log sin θ

)
=

1

2
log
(
e2H(X) cos2 θ + e2H(Y⊥) sin2 θ

)
≥ min

θ∈[0,π]

1

2
log
(
e2H(X) cos2 θ + e2H(Y⊥) sin2 θ

)
= min(H(X), H(Y )).

The last minimum has been computed as usual. Since this inequality holds for all θ ∈ [0, π],

and there is no θ is the final expression, we can write:

min
θ∈[0,π]

H(X cos θ + Y⊥ sin θ) ≥ min(H(X), H(Y )).

Besides, it is clear that the inverse inequality also holds, therefore:

min
θ∈[0,π]

H(X cos θ + Y⊥ sin θ) = min(H(X), Y (Y )).

Therefore, for the dependent variables (X,Y ) we get:

min
θ∈[0,π]

H(X cos θ + Y sin θ) ≤ min(H(X), Y (Y )) = min
θ∈[0,π]

H(X cos θ + Y⊥ sin θ).

Since the right-hand term does not depend on θ and H(Z⊥(θ)) ≥ min(H(X), Y (Y )) for all

θ ∈ [0, π], this expression is equivalent to Equation 10.6, that we want to prove.

In fact, we could have used the interval
[
0, π2

]
in the previous proof, instead of [0, π]. The

interval θ ∈
[
0, π2

]
corresponds to ρ ∈ [0, 1]. We have seen empirically (Figure 10.2) that the

strict inequality does not hold in this interval. Therefore, we have decided to keep the complete

interval [0, π], since our goal is to prove the strict inequality.

Now using this conjecture we can define a new way to measure the non-linear dependencies

of the sample as the mean difference between the negentropies. However, since we do not know

whether the conjecture is true or not, we will use the absolute value of the differences to define

the test. In most of the cases this absolute value will not change the result, because the previous

conjecture is true for the negentropy in the commonly used relations between variables. However

we ensure with it that the NLD term for general distributions is positive.

NLD∗(X,Y ) =

∫ 1

−1

∣∣∣G(ρX +
√

1− ρ2Y )−G(ρX +
√

1− ρ2Y⊥)
∣∣∣dρ

=

∫ 1

−1

∣∣∣∣∣
(

1

2
log
(

2πe(1 + 2ρ
√

1− ρ2ρXY )
)
−H(ρX +

√
1− ρ2Y )

)

−
(

1

2
log
(

2πe(1 + 2ρ
√

1− ρ2ρXY⊥)
)
−H(ρX +

√
1− ρ2Y⊥)

) ∣∣∣∣∣dρ
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=

∫ 1

−1

∣∣∣H(ρX +
√

1− ρ2Y⊥)−H(ρX +
√

1− ρ2Y )

+
1

2
log
(

1 + 2ρ
√

1− ρ2ρXY

) ∣∣∣dρ.
Therefore we can define a new independence measure by replacing NLD with NLD∗ in the

definition of the test for the Gaussian marginals.

Definition 39. We define a measure of independence between the random variables X and Y

named non-Gaussianity independence measure as:

I∗(X,Y ) = NLD∗(X,Y ) + LD(X,Y ) (10.7)

=

∫ 1

−1

∣∣∣H(ρX +
√

1− ρ2Y⊥)−H(ρX +
√

1− ρ2Y ) +
1

2
log
(

1 + 2ρ
√

1− ρ2ρXY

) ∣∣∣dρ
−1

2
log(1− |ρXY |).

Although this measure lacks a complete theoretical foundation, the underlying assumptions

hold in empirically. As we have mentioned before in this chapter, we have used the negentropy

to measure the Gaussianity of the projections, but there are other Gaussianity measures which

could be used instead. In the next section we will apply other measures to define alternative

ways to measure independence,for which we could try to prove the conjecture of the present

section.

10.4 Other non-Gaussianity measures

In this section we will develop two different versions of our non-Gaussianity independence test

by using other measures for the non-linear dependencies. In the original definition of the test

we measure the difference between the negentropies, but this measure is not smooth and has a

lot of peaks, specially for small samples, since the differential entropy involved in its expression

is difficult to estimate. Now we will change this quantity by using the two homogeneity tests

previously presented in this work, which have better properties. That is, we will measure the

distance to the Gaussian distribution using the MMD and the energy distance.

The first attempt would be to use directly energy distance or MMD instead of negentropy in

the original formula of Equation (10.2). That is, comparing the joint distribution of the random

variables X and Y with a multivariate Gaussian, without using unidimensional projections. But,

for the set of problems that we have tested, this option performs worse than the other option

based on projections.

Therefore, we will use MMD and energy distance instead of negentropy in the term NLD∗

of the definition of the measure. But using these measures requires taking into account some

technical issues. The main problem with using different non-Gaussianity measures in NLD∗

is that we have to sum it with the linear dependencies, LD. Therefore we have to adjust the

scale of the new measure. If we do not do this, it could be that one of the two quantities was
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negligible. For example, the scale of MMD is ten times smaller than the scale of negentropy.

Therefore if we sum the MMD with LD, the measure of the linear dependencies will be so large

compared to the MMD that we will not detect the non-linear dependencies. Conversely for the

linear dependencies if the scale of the new non-linear measure is very large in comparison. Then

the new tests would be, for X ∼ P and Y ∼ Q:

IE(X,Y ) = CE max
ρ∈[−1,1]

∣∣∣E(Z, ρX +
√

1− ρ2Y )− E(Z, ρX +
√

1− ρ2Y⊥)
∣∣∣ (10.8)

−1

2
log(1− |ρXY |),

Ik(X,Y ) = Ck max
ρ∈[−1,1]

∣∣∣MMD(F , Z, ρX +
√

1− ρ2Y )−MMD(F , Z, ρX +
√

1− ρ2Y⊥)
∣∣∣

−1

2
log(1− |ρXY |), (10.9)

where Z ∼ N (0, 1) and F is the unit ball of the RKHS Hk. We have to determine the constants

CE and Ck to adjust the scale. We have written here the maximum over ρ instead of the mean,

that we used with the negentropy, but both methods are possible. In the following chapter we

will explore both possibilities, because neither of them is uniformly better than the others.

The first approach is to adjust the scales of the differences empirically, and this is the option

chosen in the following practical chapter. In particular, we have stablish a value for the constant

for each particular sample. As the real value of the scale is given by the negentropy, we will use

it to obtain the constant, although it could introduce a bias in some cases when the negentropy

is not able to detect the dependences. However in practice this adjustment performs well. In

particular, we use the median of the quotients:

G(ρX+
√

1−ρ2Y )

E(Zρ,ρX+
√

1−ρ2Y )
and

G(ρX+
√

1−ρ2Y )

MMD(F ,Zρ,ρX+
√

1−ρ2Y )
,

where Zρ is a Gaussian variable with the same mean an variance of the projection ρX +√
1− ρ2Y . We have checked empirically that this selection of the constants do not have prob-

lems under the null hypothesis. It is necessary to adjust the constants for every sample to avoid

problems when the marginal distributions of the variables are Gaussian.

Along the experiments we observed that the shape of the negentropy is similar to the shapes

of the MMD and the energy distance. This could point out that there exists a theoretical

relationship between them, as it happens between the MMD and the energy distance. In Figure

10.4 we can see an example of this similitude with both methods, where we used a quadratic

relationship with sample size 300. In particular, we take X ∼ U([0, 1]) and Y = X2. We scale

the variables to have zero mean and unit variance and whiten the data to remove the linear

dependences. We have represented G(Z, ρX +
√

1− ρ2Y ) and G(Z, ρX +
√

1− ρ2Y⊥) in the

first subfigure, where Z is a Gaussian distribution, and the equivalent functions for the energy

distance and MMD in the other two subfigures. We have used a standard Gaussian kernel for

the MMD. We can also observe that, indeed, negentropy is not smooth, in contrast to MMD or

energy distance. Moreover, it is clear that these last two methods are connected.

But we have not explored this option yet, so we still do not know if there exists really a

theoretical relationship between the measures. In this example we have used a Gaussian kernel
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Figure 10.4: Comparison between negentropy, energy distance and MMD for the non-linear

dependence obtained by whitening a quadratic one (Y = X2).

with unit width, because adjusting the parameter entails analyse the samples for every value of

ρ. Besides it is enough for seeing the similar shape of the quantities.

Nevertheless whitening the data can help us to solve our original problem. If we remove

the linear dependencies from our samples, then LD(X,Y ) = 0, so we have not to worry about

adjusting the scale of the nonlinear ones. But then we do not have a measure of independence,

but a nonlinear dependence one. However, it can help us to determine which test is more

powerful, since detecting the linear dependencies is an easy task. One option would be to make

a two-step test, one step to detect the linear dependencies and, if it does not determine the

dependence of the sample, applying a second step to detect the non-linear dependencies. But if

we want to keep the significance level of the global test, we have to reduce the significance level

in each step, which may lead to diminish the total power.

On another front, when studying results about random projections, we found a connection

with these measures based on projections of the variables. We need some previous notation:

Definition 40. Given a closed subspace L of H, we denote by PL the projection of the probability

distribution P onto L, namely the probability measure on L given by:

PL(B) = P(π−1
L (B)),

where B ⊂ L is a Borel set.

Corollary 3.3 of [28] states:

Corollary 3. Let P and Q be Borel probability measures of Rd, where d ≥ 2. Assume that:

• The absolute moments mn =
∫
|x|ndP(x) are finite and satisfy

∑
n≥1m

− 1
n

n =∞;
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• PL = QL for infinite many hyperplanes L in Rd.

Then P = Q.

For d = 2, the one-dimensional projections are the same as those we are using. To show

independence, we can build the MMD statistic with a characteristic kernel, or energy distance,

to determine whether the distributions of ρX +
√

1− ρ2Y and ρX +
√

1− ρ2Y⊥ are equal for

a given value of ρ ∈ [−1, 1]. For example:

MMD2
ρ(F , X, Y ) ≡ MMD2

(
F , ρX +

√
1− ρ2Y, ρX +

√
1− ρ2Y⊥

)
.

Therefore, using the previous corollary, the random variables X and Y are independent if

and only if MMD2
ρ(F , X, Y ) = 0 for infinitely many values of ρ.

This is not exactly what we are doing. In fact, using the reverse triangle inequality:∣∣∣MMD2
(
F , Z, ρX +

√
1− ρ2Y⊥

)
− MMD2

(
F , ρX +

√
1− ρ2Y⊥, Z

) ∣∣∣
≤ MMD2

(
F , ρX +

√
1− ρ2Y, ρX +

√
1− ρ2Y⊥

)
,

where Z is a Gaussian variable. However, this result is interesting by itself, since it also involves

characterising independence of the variables through analysing their projections. Moreover, with

this measure it is not necessary to check the property for all ρ, but only for a infinity number

of it.

We have presented in this section several possible improvements of the original test, defined

in the previous section. We can not choose one option empirically, because some of them are

better for some problems than the others. The only option discarded is the maximum of the

negentropy, because it performs clearly worse that the mean for the tested problems. Therefore,

in the following chapter we will compare tests based on these options with other state-of-the-art

independence tests.
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Chapter 11

Comparison between methods

In this chapter we will carry out some experiments on benchmark data from [29] and [30]. In the

first group of experiments we assess the robustness of the tests on independence when noise is

injected in the data. The goal of the second group of experiments is to measure the power of the

test as a function of sample size. We compare the independence tests introduced in this work,

and other state-of-the-art test, which are introduced in the original papers of the experiments.

11.1 Approximate Correntropy Independence

In this section we introduce an independence criterion based on a generalization of the concept

of correlations for non-linear projections of the random variables, taken from [30]. To this end we

will use a real valued, continuous, symmetric, non-negative definite and translationally invariant

kernel k. This will allow us to use Bochner’s Theorem.

Definition 41. Given two random variables X and Y , their correntropy is defined as:

V (X,Y ) = Ek(X − Y ) =

∫
k(x− y)dPXY (x, y),

where PXY is the joint probability distribution.

Correntropy is a generalization of the concept of correlation that extracts not only second

order information, but also higher order moments of the joint distribution.

Definition 42. Given two random variables X and Y , their centered correntropy is defined

as:

U(X,Y ) = EXY k(X − Y )− EXEY k(X − Y ) =

∫
k(x− y)(dPXY (x, y)− dPX(x)PY (y)),

where PX and PY are the marginal distributions of X and Y , respectively, and PXY their joint

distribution.

Correntropy and centered correntropy exhibit similar properties as correlations and covari-

ances. Zero centered correntropy does not imply independence. To characterize independence

we need a more general quantities:
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Definition 43. Given two random variables X and Y , the parametric centered correntropy

is defined as:

Ua,b(X,Y ) = EXY k(aX + b− Y )− EXEY k(aX + b− Y )

=

∫
k(ax+ b− y)(dPXY (x, y)− dPX(x)PY (y)),

where a, b ∈ R and a 6= 0.

It can be shown that given two random variables X and Y , the variables are independent if

and only if Ua,b(X,Y ) = 0 ∀a, b ∈ R. The original independence test given in [30] is formulated in

terms of the supremum of the absolute value of the parametric centered correntropy. The search

of this supremum involves evaluating this quantity on a grid in R2, which is computationally

expensive. We will use a simplified version, also introduced in [30].

Definition 44. Given two random variables X and Y , the Approximate Correntropy In-

dependence (ACI) measure is defined as:

γ(X,Y ) = max(|U(X,Y )|, |U(−X,Y )|) = max(|U1,0(X,Y )|, |U−1,0(X,Y )|).

This is not really a measure of independence, however this test characterizes independence

under the assumption that that the joint density is a mixture of Gaussian distributions with the

same mean and Gaussian marginals.

Instead of using the projections aX + b, we have developed a novel generalization that

uses more intuitive and general ones. Consider the set of one-dimensional projections of a

d-dimensional random variable X:

Z(w) = w>X,

where w ∈ Rd is a unit vector, whose norm is equal to one. We first define a homogeneity test:

Proposition 26. Given two distributions P and Q, P = Q if and only if:

Uw,b(P,Q) =

∫
Rd
k(w>x+ b)(dP(x)− dQ(x)) = 0,

for all w ∈ Rd of unit norm and b ∈ R.

Proof. This proof is similar to the one for Lemma 1 of [30].

(=⇒) It is clear that if P = Q, then Uw,b(P,Q) = 0 for all w and b.

(⇐=) We can rewrite Uw,b(P,Q), using Bochner’s and Fubini’s Theorems, as:

Uw,b(P,Q) =

∫
Rd
k(w>x+ b)(dP(x)− dQ(x))

=

∫
Rd

(∫
R
e−iα(w>x+b) dµ(α)

)
(dP(x)− dQ(x))
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=

∫
R
e−iαb

(∫
Rd
e−iαw

>x (dP(x)− dQ(x))

)
dµ(α)

=

∫
R
e−iαb

(∫
Rd
e−iw

>
α x (dP(x)− dQ(x))

)
dµ(α),

where µ is a finite positive measure and wα = αw. If Uw,b(P,Q) = 0 for all b ∈ R, by the

properties of the Fourier transform:∫
Rd
e−iw

>
α x (dP(x)− dQ(x)) = 0, ∀wα ∈ Rd.

This expression can be written in terms of the characteristic functions of the distributions:∫
Rd
e−iw

>
α x (dP(x)− dQ(x)) =

∫
Rd
e−iw

>
α x dP(x)−

∫
Rd
e−iw

>
α x dQ(x)

= ΦP(wα)− ΦQ(wα) = 0, ∀wα ∈ Rd.

The equality of the characteristic functions implies equality in distribution P = Q.

For the two dimensional casi, this expression is similar to the parametric centered correntropy,

P(x, y) = PXY (x, y) and Q(x, y) = PX(x)PY (y). Then the projections used are of the type:

cos θx+ sin θy + b,

It is possible to formulate a different test in terms of one dimensional projections only:

Proposition 27. Given two distributions P and Q, P = Q if and only if:

Uw(P,Q) =

∫
Rd

∫
Rd
k(w>(x− x′))(dP(x)− dQ(x))(dP(x′)− dQ(x′)) = 0,

for all unitary w ∈ Rd.

Proof. This proof combines ideas of [30] and the tests based on embeddings in RKHS.

(=⇒) It is clear that if P = Q, then Uw(P,Q) = 0 for all w.

(⇐=) Using Bochner’s and Fubini’s theorems:

Uw(P,Q) =

∫
Rd

∫
Rd
k(w>(x− x′))(dP(x)− dQ(x))(dP(x′)− dQ(x′))

=

∫
Rd

∫
Rd

(∫
R
e−iαw

>(x−x′)dµ(α)

)
(dP(x)− dQ(x))(dP(x′)− dQ(x′))

=

∫
R

[∫
Rd
e−iαw

>x

(∫
Rd
e−iαw

>x′(dP(x′)− dQ(x′))

)
(dP(x)− dQ(x))

]
dµ(α)
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=

∫
R

(∫
Rd
e−iαw

>x(dP(x)− dQ(x))

)(∫
Rd
e−iαw

>x′(dP(x′)− dQ(x′))

)
dµ(α)

=

∫
R

∣∣ΦP(wα)− ΦQ(wα)
∣∣2dµ(α),

where µ is a finite positive measure, wα = αw and ΦP(·) and ΦQ(·) are the characteristic

functions of the distributions P and Q, respectively. If Uw(P,Q) = 0 for all w ∈ Rd of unit norm,

then:

ΦP(wα) = ΦQ(wα), ∀wα ∈ Rd.

Since the characteristic functions are equal, the corresponding distributions are also equal.

For d = 2, we can take P(x, y) = PXY (x, y) and Q(x, y) = PX(x)PY (y) to define a indepen-

dence test. Since we are using projections of the variables, we can use some of the results of

random projections, like the one presented in the previous chapter, to reduce the range of w for

which we have to check the test.

11.2 Randomized Dependence Coefficient

In this section we will introduce another independence coefficient introduced in [29]. This

coefficient is a scalable estimator with the same properties as the following one:

Definition 45. Given two random variables X and Y , the Hirschfeld-Gebelein-Rényi Max-

imum Correlation Coefficient (HGR) is the supremum of Pearson’s correlation coefficient

ρ over all Borel-measurable functions f and g of finite variance:

hgr(X,Y ) = sup
f,g

ρ(f(X), g(Y )).

The HGR correlation coefficient is difficult to use in practice, because it is the supremum

over an infinite-dimensional space. Instead we define the RDC, which measures the dependence

in terms of the largest canonical correlation between n random non-linear projections of the

copula transformation of the variables.

Definition 46. Given a d-dimensional random vector X = (X1, . . . , Xd) with continuous marginal

cumulative distribution functions F1, . . . , Fd, the vector U = (U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd))

whose marginals are U [0, 1], is known as the copula transformation.

The first step of the RDC method is to compute the copula transformation using the empirical

cumulative distribution function. The second one is to augment these empirical transformations

with non-linear projections, so that linear methods can be used to capture non-linear depen-

dences in the original data. The choice of the non-linear projections φ is equivalent to the choice

of the spaces of features. In the original paper, sine and cosine projections are used:

φ(X) =
(

cos(w>X + b), sin(w>X + b)
)
,
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where w ∈ Rd and b ∈ R. In particular, in [29] these parameters are samples of the random

variables W ∼ N (0, sI) and B ∼ U [−π, π], where I is the identity matrix. Choosing W to be

Gaussian is analogous to the use of a Gaussian kernel for the projections. The parameter s plays

the role of the kernel width. Let the set of n random projections:

Φn,s(X) =
(
φ(w>i X + bi), . . . , φ(w>nX + bn)

)
.

Canonical Correlation Analysis is the calculation of pairs of directions (α, β) ∈ Rd × Rd

such that the projections α>X and β>Y , of the d-dimensional random variables X and Y , are

maximally correlated. These projections are named canonical, therefore:

Definition 47. Given two d-dimensional random variables X and Y , the canonical corre-

lations between them are the correlations between the random projections α>X and β>Y , for

(α, β) ∈ Rd × Rd.

The Randomized Dependence Coefficient is defined in terms of the canonical correlations of

the random projections:

Definition 48. Given two d-dimensional random variables X ∼ P and Y ∼ Q, and parameters

n ∈ N and s ∈ R (n, s > 0), the Randomized Dependence Coefficient between the variables

is defined as:

rdc(X,Y ;n, s) = sup
α,β

ρ
(
α>Φn,s(P(X)), β>Φn,s(Q(Y ))

)
.

11.3 Experiments

In this section we present the result of experiment in which we compare the power of the tests

introduced in Chapter 10 with state-of-the-art independence tests. These experiments have been

adapted from [29] and [30].

Some of the methods that we will test require to adjust parameters. For the HSIC test

we will use a Gaussian kernel. The width of the kernel are set to be the median of ‖(X,Y ) −
(X ′, Y ′)‖2d, where (X ′, Y ′) is an independent copy of (X,Y ). For the RDC we will use ten random

projections. The random sampling parameters (sX , sY ) are set to the median of ‖X −X ′‖2d and

‖Y −Y ′‖2d, where X ′ and Y ′ are independent copies of X and Y , respectively. These parameters

are computed independently for each of the two random samples.

The first group of experiments consist in computing the power of the methods as a function

of the level noise injected. We will use nine different dependences between the variables, the

first eight are taken from [29], the last one is a mixture of two crossed bivariate Gaussian. These

dependences can be seen in Figure 11.1. For the first eight data sets, the variable X follow a

distribution U([0, 1]), and the variable Y is a function of X. In the last example, both marginal

distributions are Gaussian. Before applying the tests the data are standardized so that they

have zero mean and unit variance. Then we inject additive Gaussian noise to the variable Y

with standard deviation varying from 0.1a to 3a, where a is problem dependent. We will use

samples of size 320. In particular, the value a for each problem is:
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Figure 11.1: Data dependences for the first experiment.

To simulate using the null hypothesis (H0, the variables are independent) we will generate
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a new sample of X, since we know its real distribution. First we use 500 independent samples

generated under H0 to compute the value of the statistic beyond which the null hypothesis is

rejected, at a signification level α = 0.05. Then we simulate another 500 dependent samples and

ascertain whether they are above the rejection threshold or not. In Figure 11.2 we can see the

powers of the nine methods introduced in this work. We denote by ”Imean” the non-Gaussianity

test when we are taking the mean of the differences of the negentropy over ρ (Equation 10.7).

”Emean” and ”Emax” denote the methods when we use energy distance to compute the non-

Gaussianity of the projections, taking the mean and the maximum of the differences respectively

(Equation 10.8). In the same way, ”MMDmean” and ”MMDmax” denote the methods where

MMD are used instead of negentropy (Equation 10.9).
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Figure 11.2: Power of the methods when increasing the noise level.

In general, the distance covariance method performs well, except for the circle relation. In
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this case, the best method is RDC, which also has good performance in other cases. It seems

that the circle dependence yields an unusual behaviour. In general, the tests proposed in this

work perform reasonably well compared with the others, especially ”Emax”. For example in

the linear case and in the fourth root. We can observe some fluctuations of the power when

the maximums of the differences are used. This is due to the fact that the methods are quite

sensitive to each particular sample when the maximums are taken and the scale constant affect

more in these cases. We can also see that all the tests perform poorly for the sine of 16π and

for the crossed Gaussian cases, so the dependences of these cases seems to be difficult to detect.

However, some of these examples have a strong linear dependence. Since we are interested

in detecting non-linear dependences as well, we have repeated the same experiment but rotating

the data to eliminate linear dependences. The data after the rotation (that is, the whitened

data) can be seen in Figure 11.3. This whitening is made after scaling the data and before

adding the noise. In figure 11.4 we can see the power of the methods for this whitened data.

In general, the power of the methods decreases. This indicates that the non-linear de-

pendences are harder to detect. When whitening the linear relation, there are still non-linear

dependences, but they are really difficult to detect. In fact, one of the components is equal to

zero, and it exhibits a non-monotonic dependence when the noise level increases. The distance

covariance can detect some dependences well, but its power has worsened. It seems that the

RDC method is the less affected by the removing of the linear dependences. For example, for

the circle dependence it is the best test, followed by two of the methods proposed in this work.

It is interesting that our original method with the negentropy is able to detect some dependence

in the sin(16πx) case, because all methods perform bad in this case when the linear depen-

dences are present. This may be due to the fact that the chosen rotation increase the non-linear

dependences that the negentropy detect better.

Next we will reproduce two different experiments taken from [30]. In the first one we will

asses the power of the test as a function of the sample size. We will use a different set of data,

also taken from [30]. Since the ACI method, proposed in that paper, assumes that the random

variables are a mixture of Gaussians, all the variables are based on Gaussian distributions. The

first one is a bivariate Gaussian with a correlation of 0.5. (X,Y ) ∼ N (0,Σ), where:

Σ =

(
1 0.5

0.5 1

)
.

For the second example we generate a uniform random variable Z ∼ U [0, 2]. The variables X

and Y are the product of Z and two independent standard Gaussian:

X = ZX̃ and Y = ZỸ ,

where X̃, Ỹ ∼ N (0, 1). They are dependent because they share the variable Z. The variables

X and Y in the third example are the marginals of a mixture of three bivariate Gaussians with

correlations 0, 0.8 and −0.8, and probabilities 0.6, 0.2 and 0.2 respectively. The vector (X,Y )

has density:

0.6N (0,Σ1) + 0.2N (0,Σ2) + 0.2N (0,Σ3),
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Figure 11.3: Whitened data dependences for the first experiment.

where

Σ1 =

(
1 0

0 1

)
, Σ2 =

(
1 0.8

0.8 1

)
, Σ3 =

(
1 −0.8

−0.8 1

)
.

The variables of the last one are generated as a Gaussian random variable with correlation

coefficient 0.8 and then multiply each variable with white Gaussian noise:

(X,Y ) = Zε, where Z ∼ N (0,Σ2) and ε ∼ N (0,Σ1).

These relations can be seen in Figure 11.5.

The power is measured for sample sizes 25, 50, 100, 150 and 200. The results of these exper-

iments are presented in Figure 11.6. These results differs from the ones in [30], where a value

α = 0.1 was used.
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Figure 11.4: Power of the methods for whitened data when increasing the noise level.

It is clear that ACI method performs better for these examples than for the previous ones.

The measures of non-Gaussianity in terms of the negentropy and the energy distance perform

very well in the first example, but they perform extremely poor in the mixture. In the other

two examples the performances of these methods are not so bad. The best overall results are

obtained using the energy distance of the maximum.

We have carried out the experiments after removing the non-linear dependences by whitening

the data, as in the previous experiments. In this case, all methods perform poorly an no

conclusion can be drawn from the results.

Finally we have performed a final experiment following [30]. Two independent random

variables, X and Y , both having zero mean and unit variance. X is a uniform random variable,

X ∼ U [−
√

3,
√

3], whereas Y is a combination of two uniform random variables each having
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Figure 11.5: Data dependences for the second experiment.

equal probability of occurrence on disjoint support. Y has density:

0.5U [−1,−0.5] + 0.5U [0.5, 1].

We generate a new pair of random variables by rotating this random variable pair (X,Y ). The

covariance matrix does not change and, thus, the correlation between the new variables stays

zero. However, the dependence between them change. The new variables are independent if and

only if the angle of rotation is zero and dependent otherwise. Therefore, we will test the power

of the methods when increasing the rotation angle of the variables. We will use a sample size of

100. In Figure 11.7 we can see the rotated variables with an angle of π
20 .

The procedure will be the same as for the previous experiments. We will check the power

for angles 0, π70 ,
π
40 ,

π
20 ,

π
12 and π

10 . We have added an extra point with respect to the original

experiment of the paper. The powers of the methods can be seen in Figure 11.8.

The best methods in this case are our tests with energy distance and MMD when taking the

maximum of the differences. ACI method do not perform well, as well as distance covariance

for small angles. It has no sense to whiten the data in this case, since whitening is rotating the

data, and then we would break the aim of the experiment.

To sum up, it seems that distance covariance is a good method for general dependences,

although it fails in some ones. However, although we have checked several examples, all of

them are similar. For the first experiment all the variables Y are a function of a uniform, and

in the second and third experiments all the variables are variations of Gaussians. We have not
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Figure 11.6: Power of the methods when increasing the sample size.

checked, for example, heavy tails variables when the dependences are in the tails. Maybe we have

checked the tests, unconsciously, using a set of experiments that favours distance covariance.

As for other methods, when there are some evidence that the data is a mixture of Gaussian

distributions, ACI method or equivalents performs well. Besides, our methods perform well

generally. They are clearly the best in the last example, when the dependences of the data are

purely non-linear. They perform also well in the first experiment when the linear dependences

are removed, specially in a difficult case as the circle, when most of the methods fail. When the

linear dependences are present, they are on the average. However, we can not decide from this

experiments if some of the proposed methods is better than the others.
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Figure 11.7: Data for the third experiment with a rotation angle of π/20.
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Figure 11.8: Power of the methods when increasing the rotation angle.
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Chapter 12

Conclusions and future work

One of the aims of this work was to order and summarize the published research on homogeneity

tests based on embeddings of probability distributions in an RKHS’s and tests based on the

energy distance. We have introduced and analysed the properties of different homogeneity and

independence tests. Some of these independence test are novel in the literature. One of the main

results presented is that both families of methods are actually the same. In fact, energy distance

is a particular case of probability embedding test with a uncommon kernel. This particular

embedding can be interpreted as the limit of embeddings using Laplacian kernels with large

width.

A lot of efforts have been dedicated in the literature to choose the RKHS for the embedding,

although it does not affect significantly the results of the test for general data sets. We have

seen empirically that distance covariance performs better than HSIC in most of the cases that

we have proven. Distance covariance is obtained with the same procedure as energy distance,

so the connection between HSIC and distance covariance is similar to the one between MMD

and energy distance. It is remarkably that the kernel that allows to write energy distance as a

kernel embedding has not been widely studied, despite the empirical results.

Our main goal when developing the novel tests described was to detect non-linear depen-

dences, which is still a difficult problem of practical interest. We have confirmed this fact, since

most of the state-of-the-art tests fail when the linear dependences of the data are removed. We

have seen that all the methods analysed in Chapters 3 to 7 are closely related. It seems empir-

ically that our methods also present a similitude with the original versions of energy distance

and MMD, however this is still an open question.

In the last part of the work we have assessed the power of all the methods using different

dependences and procedures. The main conclusion of these experiments is that the performance

of the tests is variable and strongly depends on the dependence structure of the data. One of

the consequences of these results is that each of the novel tests presented in Chapter 10 is more

powerful for some particular structures of the data. However, we can affirm that some of them

perform better than the others when the dependence of the data is purely non-linear, which was

the aim of their design.
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There are mainly three research lines open at this time. The first one is to complete and

settle down the meaning of the original version of the energy distance as a kernel embedding

method. These relation can be also established between distance covariance and HSIC methods,

although it is almost unexplored yet.

The other two lines are related with the novel independence tests. On the one hand, we have

mentioned that the theoretical justification of these tests is given only for the case of Gaussian

marginals. Therefore, it is necessary to provide full mathematical support for general marginal

distributions. Some results have been obtained in this line, as Theorem 18, but there are still

work to do. On the other hand, we have observed that random projections can be applied to

improve and develop independence tests. Most of the results related to random projections have

been formulated from the point of view of functional data. Therefore, we propose to explore

this type of results to reuse them to characterize independence of random variables.
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Glossary

In general, the page number refers to the first occurrence of the term.

TERM DEFINITION PAGE

Complete space. Metric space where every Cauchy sequence has a limit in the

space.

8

Pre-Hilbert space. A non complete complex vector space on which there is an

inner product.

8

Hilbert space. A complex vector space on which there is an inner product

and complete with respect to the distance function induced

by this inner product.

1

Metric space A space for which distances between all members of the

space are defined

8

Topological space A set X together with a collection of subsets of X such that

(1) the empty set and X are open, (2) any union of open

sets are open and (3) the intersection of any finite number

of open sets is open.

17

Lp(X ), 1 < p <∞. Functions such that ‖f‖p ≡
(∫
X |f(x)|pdx

) 1
p <∞. 5

L∞(X ). Functions such that ‖f‖∞ ≡ supx∈X |f(x)| < ∞. (Supre-

mum norm)

16

C(X ). Continuous functions with support on X 11

Mutually singular Two measures µ and ν are called mutually singular if there

exist a set A such that µ(A) = 1 and ν(A) = 0.

17

Signed measure. Generalization of measure by allowing it to have negative

values.

17
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Lebesgue measure. An extension of the classical notions of length and area to

more complicated sets. Given an open set S ⊂ R formed

by k disjoint intervals (ak, bk), i.e. S =
⋃
k(ak, bk), the

Lebesgue measure of S is λ(A) =
∑

k |bk − ak|.

5

Borel measure. Measure on a topological space that is defined on all open

sets (and thus on all Borel sets).

17

Dominated mea-

sure

A measure µ is dominated by another measure ν if for every

measurable set A, ν(A) = 0 implies µ(A) = 0. This is

written as µ� ν.

41

Borel set. Set in a topological space that can be formed from open

sets (or, equivalently, from closed sets) through the opera-

tions of countable union, countable intersection, and relative

complement.

52

Dense set. A subset S of a topological space X such that every point

x ∈ X either belongs to S or is a limit point of S.

16

Proper subset A proper subset S′ of a set S, denoted S′ ⊂ S, is a subset

that is strictly contained in S.

59

Compact space Space X such that each of its open covers (Collection of open

sets whose union contains X ) has a finite subcover.

A ⊂ Rn is compact if and only if it is closed and bounded.

16

Relatively compact

subspace

A subspace S of a topological space X whose closure (all

points in S plus the limit points of S) is compact.

110

Compact operator. An operator between Hilbert spaces, T : H → G, such that

the image under T of any bounded subset of H is a relatively

compact subset of G.

24

Bounded operator. An operator between normed vector spaces, T : X → Y,

such that ∃M > 0 such that ‖T (v)‖Y ≤ M‖v‖X ∀v ∈ X .

The operator norm, ‖T‖op, is the smallest such M .

9

Isometric embed-

ding

A map between metric spaces φ : X → Y with metrics dX

and Y such that dY(φ(x), φ(y)) = dX (x, y).

8

Bilinear A function of two variables that is linear with respect to

each of its variables.

8
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Measurable A function between measurable spaces f : (X ,A)→ (Y,B),

meaning that X and Y are sets equipped with respec-

tive sigma algebras A and B, such that f−1(E) ≡ {x ∈
X | f(x) ∈ E} ∈ A, ∀E ∈ B.

12

Absolutely continu-

ous

A function f such that ∀ε > 0 ∃δ > 0 such that whenever a

finite sequence of pairwise disjoint intervals (xk, yk) satisfies∑
k(yk − xk) < δ then

∑
k |f(yk)− f(xk)| < ε.

5

Almost everywhere A property holds almost everywhere if the set for which the

property does not hold has measure zero.

5

Almost surely. An event happens almost surely (a.s.) if it happens with

probability one.

40

Almost surely con-

vergence.

A sequence Xn converges almost surely (a.s.) towards X if

P(limn→∞Xn = X) = 1.

24

Norm convergence. The sequence fn converges in the norm ‖ · ‖ to f if ∀ε > 0

∃N such that ‖fn − f‖ < ε ∀n ≥ N .

24

Distribution con-

vergence

A sequence of random variables Xn converges in distribution

to a random variable X if limn→∞ Fn(x) = F (x) ∀x, where

Fn and F are the distribution functions of the variables.

23
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