

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

RecSys '11: Proceedings of the fifth ACM conference on Recommender

systems, ACM, 2011. 309-312

DOI: http://dx.doi.org/10.1145/2043932.2043990

Copyright: © 2011 ACM

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1145/2043932.2043990

Towards a More Realistic Evaluation: Testing the Ability to
Predict Future Tastes of Matrix Factorization-based

Recommenders

Pedro G. Campos1,2, Fernando Díez1, Manuel Sánchez-Montañés1

{pedro.campos, fernando.diez, manuel.smontanes}@uam.es
1Universidad Autónoma de Madrid

Francisco Tomás y Valiente 11
28049, Madrid, Spain

2Universidad del Bío-Bío
Av. Collao 1202

4081112, Concepción, Chile

ABSTRACT
The use of temporal dynamic terms in Matrix Factorization
(MF) models of recommendation have been proposed as a
means to obtain better accuracy in rating prediction task.
However, the way such models have been tested may not
be a realistic setting for recommendation. In this paper,
we evaluated rating prediction and top-N recommendation
tasks using a MF model with and without temporal dynamic
terms under two evaluation settings. Our experiments show
that the addition of dynamic parameters do not necessar-
ily yield to better results on these tasks when a more strict
time-aware separation of train/test data is performed, and
moreover, results may vary notably when different evalua-
tion schemes are used.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Information Filtering, Retrieval

Models, Selection Process; I.5.1 [Pattern recognition]: Mod-
els

General Terms
Algorithms, Performance

Keywords
Time-Aware Recommender Systems, Matrix Factorization,
Time-Aware Evaluation

1. INTRODUCTION
Given that many Recommender Systems (RS) have been

operating for years, the temporal dimension is acquiring
more importance. One example of temporal variations is
the change of tastes (evolution) of users through time. Many
new algorithms try to incorporate this information e.g. [2, 6,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’11, October 23–27, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0683-6/11/10 ...$10.00.

4]. Moreover, the Netflix Prize[1] competition wining team
has mentioned the time-awareness of their solution as one of
the key factors of their successful ensemble [4]. Despite the
above mentioned, is notable that some evaluation settings
used to test recommendation methods are not as realistic as
should be expected. For example, in the Netflix Prize evalu-
ation scheme, there are test data time-stamped before some
training data. That motivated us to test the performance
of time-aware recommendation models when using a more
strict (realistic) setting. Given the outstanding performance
of Koren’s Time-Aware Matrix Factorization algorithm [4],
we tested if it really could improve future ratings’ predic-
tion when no “future” data are available. Our intuition was
that, given the bunch of additional information the algo-
rithm uses, there is too much over-fitting to train data and
thus prediction of future ratings (an important purpose of
a RS) would not be as desirable with this model. We hy-
pothesize that a simpler, less prone to over-fitting model
can produce better predictions of future ratings. With this
purpose, we have made a comparative of algorithms’ perfor-
mance under commonly used vs. a more strict experimental
setting [7]. In section 2 we describe the related model and
the evaluation scheme used previously to test it. In sec-
tion 3 we present and analyze the results obtained. Finally
we present some preliminary conclusions and possible future
work.

2. RELATED WORK
The first time-aware RS were mainly based on models de-

pendent linearly or exponentially (a.k.a. time decay) on the
time distance to past ratings (e.g., days ellapsed) [2]. These
models work under the assumption that more recent ratings
better reflects users’ present tastes. Most of these previous
models work under a kNN framework, where some weight
computations (e.g. similarity) are modified by the time dis-
tance. However as Koren states [4], there are punctual fluc-
tuations, e.g. a bad mood day where the user finds every-
thing worse than on a normal day, or longer-lasting but any
case time-bounded effects, such as temporal item trends. He
developed a model mixing these considerations, which may
be incorporated into a kNN or a Matrix Factorization (MF)
framework. Though the former have been the most used
framework in the Collaborative Filtering (CF) field due to
its simplicity and good performance, the latter is gaining

increasing attention because of its superior performance. In
this work we centered on the MF framework.

2.1 Time-Aware Matrix Factorization Models

2.1.1 Matrix Factorization Models
The MF technique is an extension of the Singular Value

Decomposition (SVD) approach. In SVD a data matrix R is
decomposed into new matrices such that R = PΣQT . Given
that typically the rating matrix R is sparse, and thus SVD
can not be applied directly, in the case of MF, P and Q are
used to iteratively approximate R using that [6]:

r̂u,i =

f∑

j=0

Pu,j ·Qj,i = p
T
u qi (1)

This way R can be approximated (factorized) by P and Q

(f user and item factors respectively) using only the known
values of R, minimizing for example the Frobenius Norm
between the difference on them: min ‖R − PQ‖2. Over-
fitting can be alleviated using regularization, i.e., penalizing
the magnitude of the approximated vectors [5].

2.1.2 Time Modeling
In his KDD 20091 Best Research Paper [4], Koren de-

scribes the incorporation of biases, temporal biases and tem-
poral user/item interaction factors into a MF model. The
purpose of incorporating bias terms into the model is to
discount such user and item effects thus obtaining a more
accurate prediction. A basic bias-aware estimator is [5]:

r̂u,i = µ+ bu + bi (2)

where µ stands for the global average rating, bu is the
average rating bias of user u, and bi is the average rating
bias of item i. A natural next step when considering time
effects is to incorporate time-changing bias effects [4]:

r̂u,i = µ+ bu(t) + bi(t) (3)

Following Koren’s analysis [4] the item temporal bias is
expected to change slowly over time, meanwhile the user
temporal bias also includes sudden, day-specific drifts. Slow
bias changes can be modeled either by a temporal binning of
the bias (i.e. a different bias is computed on different time
intervals or bins) or a decaying function of time. Here we
adhere to Koren’s formulation which also maintains a bias
term whose value holds during all timespan, thus getting [4]:

bu(t) = bu + αu · sign(t− tu)|t− tu|
β + bu,t

bi(t) = bi + bi,Bin(t)
(4)

where t is the prediction date, tu is the mean rating date
of user u and αu and β are parameters learned from data.

2.1.3 Time-Aware Matrix Factorization
When considering the incorporation of time effects in a

MF model, besides static and dynamic biases, Koren also
discusses how temporal dynamic affects user-item interac-
tions. He highlights that users are due to personal changes

119th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, www.sigkdd.org/kdd2009/.

Figure 1: Schematic view of data division.

in their tastes, so factors describing their rating behavior
are more likely to be prone to temporal effects than factors
related with items. Thus, a modeling similar to those used
on the user bias effects can be applied on the users’ factors,
leading to [4]:

r̂u,i = µ+ bu(t) + bi(t) + p
T
u (t)qi (5)

with

pu,j(t) = pu,j + α
′

u,j · sign(t− tu)|t− tu|
β′

+ pu,j,t (6)

The associated minimization problem must consider reg-
ularization terms, and can be solved using the stochastic
gradient descent method2.

2.2 Evaluation of the Model
Even though the logical evaluation framework to test a

time-aware RS would be a time-centered one, where predic-
tions of the model are to be realized without knowledge of
“future” ratings (i.e all training data having a date prior to
prediction date), it has not been the case on the aforemen-
tioned recommendation method. As user studies are too
costly to test every new algorithm, the common way is to
use rating data recorded for a timespan, hiding a part of it
for testing, and leaving the rest of the data for training. As
noted in [6], commonly this evaluation is performed without
a temporal perspective, whilst data changes as time goes by.
Due to data sparsity and user behavior of rating most items
at incorporation time, it is not always feasible to make a
strict time-aware train/test data division. For instance, the
renowned Netflix Prize competition used as testing data a
fixed number of the most recent ratings of each user [1]. Al-
though this scheme seems reasonable, as noted in [7] it is
not expected that all users rate the same number of items.
Moreover, from a time-aware perspective, it must be noted
that some training data correspond to “future” data w.r.t.
some test data within this scheme. Given that the discussed
model is heavily dependent on such data, we consider that
a more strict evaluation is required to test its true benefits.

3. EVALUATION

3.1 Evaluation Protocol
We used theMovieLens 1M dataset3, comprising 1.000.209

ratings (with timestamps) from 6.040 users on 3.706 items.
This dataset correspond to users of the MovieLens movie RS
who joined the system during 2000. Ratings’ timestamps
span from April 26th, 2000 to February 28th, 2003.

2due to space constraints the interested reader is pointed
to [4] and references therein for additional details.
3http://www.grouplens.org/node/73

5 10 15 20

0.
85

0.
90

0.
95

1.
00

1.
05

RMSE of different algorithms through time
(non−cummulative)

Time (30−days intervals)

R
M

S
E

KNN
MF
TimeMF
TimeMF_Future

5 10 15 20

0.
87

0.
88

0.
89

0.
90

0.
91

0.
92

0.
93

RMSE of different algorithms through time

Time (30−days intervals)

R
M

S
E

KNN
MF
TimeMF
TimeMF_Future

Figure 2: Average RMSE vs. time on 5 time-aware splits of MovieLens 1M dataset

As a basic evaluation protocol, the dataset must be di-
vided into train and test sets. The strictest time-aware ap-
proach would be to simulate the arrival of ratings based
on timestamps (having different training/test sets for each
user/item/rating tuple) [7], with the disadvantage of being
very computationally expensive. As our main concern is to
restrict the usage of“future”data in training, a natural date-
based data division would be to take as training data those
ratings done until a predefined date ttest, and leave as test
data ratings after such a date. We also would like to per-
form a sort of cross-validation. As discussed in the previous
section, a common n-folds based splitting approach with rat-
ings randomly divided into n splits (that is, n-1 splits used
as training data and the one left as testing data), is not suit-
able given the temporal nature of the data (and our aim of
detecting temporal trends). Therefore, we decided to make
a user-based sub sampling of the dataset, thus allowing the
selection of different users in different time-ordered “splits”.
Thus, ratings prior to ttest from users in a split become the
training set, and ratings posterior to ttest from users in the
same split become the test set, i.e. recommendations gen-
erated with training set can be contrasted against the same
users’ future ratings (posterior to ttest). This scheme also
allows building an additional validation set (required to ad-
just parameters of the model) whose ratings lie in between
training and test ratings. Figure 1 shows a schematic view
of the data selection design used.

In order to facilitate the fair comparison among different
algorithms, we decided to select only those users with at
least 1 rating in each interval (train, validation and test).
504 users of the dataset met the selection criteria (with
tvalidation= January 1st, 2001 and ttest=June 15th, 2001.
We divided them randomly into 5 subsets of 100 users each
and form a split with 4 of the 5 subsets. Thus we got 5
different overlapping samples of 400 users. We call these the
Time-Aware splits. In order to contrast our results, w.r.t.
the used leave last ratings as test approach, we generated
another split using the 504 selected users, but using the 9
last ratings of each user as test, and letting as training set
the remaining ratings. We call this the Last Ratings split.

3.2 Tested Algorithms and Metrics
We used the basic MF algorithm [5] (without biases con-

sideration) and a Weighted Pearson similarity user based
kNN algorithm [3] with k = 200 as baselines to contrast

performance against the Time-Aware MF model [4]. This
model considers many variables whose values depend on spe-
cific dates, which are useful in a NetFlix-like evaluation (e.g.
if there are training ratings of a user on a day, and there
is a test rating on the same day, the model can take ad-
vantage of knowing such day’s specific user rating bias).
Thus, we tested two variants of this algorithm, TimeMF
and TimeMF Future. The former sets to zero every time
dependent members of the model (e.g. bi,Bin(t) = 0 in (4)

and α′

u,j · sign(t − tu)|t − tu|
β′

= 0 in (6)), thus in this
case the model should only express the long-lasting user
tastes. The latter sets these members with extrapolated
values from training data if possible. In particular, we use
the value of the last temporal bin of item bias for any test
date, and the resulting values of αu ·sign(t− tu)|t− tu|

β and

α′

u,j · sign(t− tu)|t − tu|
β′

setting t as the test rating date;
However, bu,t and pu,j,t terms can not be extrapolated, as
they depend on the specific prediction day, thus no training
data is available to train them. All parameters of MF vari-
ants were optimized using the Simplex optimization method,
using f = 10 factors. We evaluated performance on the rat-
ing prediction task using the typical RS metric Root Mean
Squared Error (RMSE), meanwhile the top-N recommen-
dation task was evaluated using the well-known IR metrics
Prediction and Recall, choosing as relevant items those in
the test set of each user with a rating ≥ 3.0. For rank-
ing generation, algorithms were forced to predict ratings for
each user on all items in the test set (among all users), then
ranked each item according to prediction (leaving out items
already rated by the user). Prediction and Recall were com-
puted for each user, and then averaged among all users.

3.3 Results Analysis
Figure 2 shows RMSE results, averaged on the 5 time-

aware splits. The right plot was computed using cumulative
test data (e.g. on time interval 5 all test data from time
interval 1 to 5 are considered), whilst left plot was com-
puted using only data from the corresponding time interval.
Interestingly, all algorithms showed a similar behavior, de-
creasing error as time increases (from ttest) during first year.
It seems that changes in test ratings distribution affect algo-
rithms almost equally. More important, the lowest RMSE
value is achieved by the MF algorithm almost during the
whole period considered, which confirms our suspected hy-
pothesis. In the case of Precision, we centered the analysis

5 10 15 20

5
10

15
20

P@5 of different algorithms through time
(% of maximum P@5 achievable, non−cummulative)

Time (30−days intervals)

%
 o

f m
ax

im
um

 P
@

5
ac

hi
ev

ab
le

KNN
MF
TimeMF
TimeMF_Future

5 10 15 20

5
10

15
20

P@5 of different algorithms through time
(% of maximum P@5 achievable)

Time (30−days intervals)

%
 o

f m
ax

im
um

 P
@

5
ac

hi
ev

ab
le

KNN
MF
TimeMF
TimeMF_Future

Figure 3: Average P@5 vs. time on 5 time-aware splits of MovieLens 1M dataset

Table 1: Metric values on MovieLens 1M dataset
(Last Ratings split)

Algorithm RMSE % of max. P@5 achievable
kNN 0,9199 1,56%
MF 0,8949 2,49%
TimeMF 0,9139 2,01%
TimeMF Future 0,8854 2,06%

on top-5 recommendation. We obtained increasing values of
P@5 (Precision on top-5 recommended items) in the range
3%-9% for cumulative data, meanwhile the non-cumulative
were more stable around 3%. Due to low rating frequency
of users in periods after incorporation, the maximum P@5
achievable is lower than 1 (increasing as more test data is
available). To take into account this effect, in Figure 3 we
present the percentage of P@5 achieved out of the maxi-
mum P@5 achievable. As in the case of rating prediction,
MF is the best performing algorithm on top-N recommen-
dation on accumulated test. However, with non-cumulative
data, there is no clear best performing algorithm, although
all MF variants clearly outperform kNN. We measured Pre-
cision at other cut offs, obtaining similar results. In the
case of Recall results (not presented due to lack of space)
a similar tendency is shown. In contrast, Table 1 shows re-
sults on the Last Ratings split. In this case, as expected,
the Time-Aware MF with future data variant showed the
better RMSE results. P@5 achieved (out of the maximum
P@5 achievable) obtained is very poor, although the best
performance is achieved by MF.

4. CONCLUSIONS AND FUTURE WORK
We have presented results of ongoing work aiming to eval-

uate the true capability of time-aware RS proposed in the
literature to effectively predict future users’ tastes and rat-
ing behavior using a more strict time-aware evaluation. In
this case, we focused on determining if the incorporation
of additional, more complex terms in MF models help in
these tasks. Results obtained show two major findings: 1)
On evaluated tasks, simpler is better, i.e. using a basic
MF model yields to better results than more complex mod-
els, which we attribute to over-fitting. We must note how-
ever that any time-aware MF variant beats another simpler
model, KNN. The latter is probably due to the more global

nature of MF. 2) Using a more strict time-aware evaluation
(i.e. nearer to real world settings) may lead to important
differences in results, when compared with results obtained
with a less restrictive scheme, particularly on rating pre-
diction task. Although top-N recommendations seems less
affected, it is notable that the addition of time information
leads to poorer results, independently of the evaluation pro-
tocol used, although we must note that the used algorithms
are not intended for this task. With respect to the dataset,
we reckon that the used one is very small compared to nowa-
days available data (with hundred of millions of ratings),
and outdated. However, it does allow to see the differences
in results when the evaluation protocol is changed. Thus, we
plan to continue researching on this topic, replicating it on
larger datasets, including other time aware models propos-
als, and also including other kind of datasets, e.g. in other
domains, or with implicit feedback information. We think
that for a correct selection of RS models, a proper, cost-
effective though realistic evaluation setting must be used.
With this work, we hope to contribute to this purpose.

5. ACKNOWLEDGMENTS
This work is supported by the Spanish Government (TIN

2008-06566-C04-02) and by the Comunidad de Madrid and
Universidad Autónoma deMadrid (CCG10-UAM/TIC-5877).

6. REFERENCES
[1] J. Bennet and S. Lanning. The netflix prize. KDD Cup

and Workshop, 2007.

[2] Y. Ding and X. Li. Time weight collaborative filtering.
In CIKM 2005. Bremen, Germany, 2005, 485–492.

[3] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In SIGIR 1999. Berkeley, CA,
1999, 230–237.

[4] Y. Koren. Collaborative filtering with temporal
dynamics. In KDD 2009. Paris, France, 2009, 447–456.

[5] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[6] N. Lathia. Evaluating collaborative filtering over
time.PhD Thesis, University College London, 2010.

[7] G. Shani and A. Gunawardana. Evaluating
Recommendation Systems, 257–297. Recommender
Systems Handbook. Springer US, 2011.

