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Abstract 

 

Items that are clustered according to shared content may violate the principle of 

conditional independence commonly used in Item Response Theory. This paper 

investigates the capabilities of a logistic item response model in relation to locally 

dependent item responses. The model includes main effect and interaction parameters that 

are computed as linear functions of the latent trait. The paper explains the interpretation 

of the parameters, the maximum likelihood estimation algorithm, the information matrix 

and some results concerning parameter identifiability. The problem of over-fitting the 

data is addressed in a simulation study, and two real data examples are described to 

illustrate the approach, one from the context of a sample survey and the other from ability 

testing using testlets.  

Key words: Locally dependent items, local independence, logistic models, item response 

theory.   



1. Introduction 

Local stochastic independence is a common assumption in Item Response Theory. 

However, there are applied contexts in which the items are organized in clusters and the 

responses to different items may show dependencies even after conditioning on the latent 

trait. Items are clustered, for example, when they are related to a common stem (Wainer, 

Bradlow & Wang, 2007) or learning during a test occurs (Verhelst & Glas, 1993; Hoskens 

& de Boeck, 1997). 

 

Logistic response models for locally dependent items have regularly appeared in 

the psychometric literature. Jannarone (1986, 1997), Kelderman (1984) and Kelderman 

and Rijkes (1994) proposed interaction models in the Rasch family of models. Hoskens 

and de Boeck (1997) and Ip, Smits and de Boeck (2009) proposed a number of interaction 

models based on a two-parameter logistic model (2PL), which are thus unidimensional 

and applicable to dichotomous data. Multidimensional extensions appeared in Hoskens 

and de Boeck (2001). 

 

This paper explores the capabilities of logistic models to parameterize 

interactions. The statistical framework is called the generalized logit linear item response 

model (GLLIRM), and introduces a number of novelties: 1) it is a general formulation 

that can accommodate different patterns of interactions and/or covariates through linearly 

constrained parameters; 2) main effects and interactions are represented by scale and 

intercept parameters; 3) parameters are interpreted by investigating the invariants of item 

response functions; 4) the model is applicable to dichotomous and polytomous data; 5) 

marginal maximum likelihood estimation equations are described, and 6) the paper 

includes new results for identifiability and its relation to the log-linear model (Agresti, 



2002), which is also a particular case of the proposed formulation. 

 

The GLLIRM belongs to the so-called canonical kernels (Ip, Wang, de Boeck &  

Meulders, 2004), and some properties of the GLLIRM that are not obvious from the 

canonical kernel formulation will be described below. In particular, one problem with 

logistic interaction models is that item response functions are not reproducible (Ip, 2002; 

Ip et al., 2004), which means that the item response functions are altered by the inclusion 

of interaction parameters. For these reasons, this paper investigates which properties of 

the item response functions are invariant with respect to the number of items in the cluster 

and the relationship of these properties with the parameters. 

 

2. Model for item interactions 

2.1. The statistical model 

Consider a contingency table that cross-classifies a multinomial sample on several 

categorical variables. The cells of the table are defined by the different response patterns 

that can be given to a set of T  items, and Kt is the number of categories for item t . The 

number of cells is
1

T

tt
C K


 . Cell c  is defined by a response pattern 

1( )c c ct cTk … k … k    k , where 1ct tk … K   . A log-linear model (LLM) under 

multinomial sampling assumes that the probability for the realization cK k  is given by 

(e.g., Laird, 1991; Agresti, 2002):  
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where zc is the propensity, or utility in econometric terms, towards response pattern ck  

and is given by:  
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The parameter ( )t

k  is the main effect of category k  of item t , 1 2

1 2

( )t t

k k  is the 

second-order interaction for categories 1k  and 2k  of the item pair 1 2t t  and so on up 

to the T-th-order interaction 
1

(1 )

T

…T

K …K . The constant 
1

log exp( )
C

cc
z


     will be used to 

simplify notation, so that the model can be written as:  

 log ( )c cP z k  

 

The parameters are subject to identifiability constraints, two of them seem 

especially useful for interpretation: 1) the sum of the parameters over categories is zero, 

and 2) every item has a baseline category whose parameters are set to zero. The first type 

of constraint imposes the equalities:  
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Without loss of generality, we assume that category 1 is the baseline category for 

every item. Then, constraints in relation to the baseline impose the equalities:  
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LLMs are based on the assumption that individuals are homogeneous because the 

parameters are constant across individuals. In contrast to this, GLLIRM assumes that the 



parameters are functions of a latent trait, , and thus 
cz  becomes a latent propensity. Let 

V  be a nonempty set of items, and let ( )Vk  be the vector of responses to V . The 

parameters are given by the linear function:  

 
( )

( )

V

V j j     
k  

 

LLM is the particular case 0j  , whereas in general, 
j  can take on arbitrary 

real values for GLLIRM. This has the effect of doubling the number of parameters. A 

saturated LLM contains all the parameters up to T-th-order interaction 
1

(1 )

ct ctT

T

k k  and has 

exactly 1C   parameters and zero degrees of freedom. A GLLIRM model of the same 

order would have 2( 1)C   parameters and would run out of degrees of freedom. Thus, 

not all of the interaction parameters for GLLIRM can be estimated.  

 

Example. Consider a cluster composed of a dichotomous and a trichotomous item. The 

probability of the response pattern 1 2( )c c ck k k , with 1 1 2ck    and 2 1 2 3ck    , is 

given by:  
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where 
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     . The GLLIRM parameters are 

( ) ( ) ( )t t t

k k k      and 
1 2 1 2 1 2

(12) (12) (12)

k k k k k k     . The parameter constraints can be visualized 

by writing the model in a matrix form. If the sum over categories is zero, the probabilities 

of the response patterns can be expressed as:  
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where the following constraints are implicit: (1) (1)

1 2   , (2) (2) (2)
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21 22 22     . If the first 

category is a baseline category, the model reads in matrix form:  
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where it is implicit that (1)

1 0  , (2)

1 0  , (12)

11 0  , (12)

12 0  , (12)

13 0  , and (12)

21 0  . 

Using baseline constraints, the marginal probability of passing the dichotomous item can 

be written as:  
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If the two interaction parameters were zero ( (12) (12)

22 23 0   ), the marginal probability 



would be (1) (1)

2 2(2) exp( ) (1 exp( ))P     , which is the 2PL model. However the item 

characteristic curves are non-reproducible because the probability function in equation 

(1) is not the 2PL in general.  

 

Model parameters can be interpreted using the highest-order terms as described in 

Agresti (2002). However, in that interpretation, the statistical meaning of the lower order 

terms depends on the presence of interactions of higher order. For example, the main 

effects of the items would depend on the interactions with other items and in consequence 

of the cluster size. For these reasons, sections 2.2 and 2.3 describe the properties of the 

response probabilities that are invariant with respect to cluster size and have a simple 

relationship with the parameters. For example, consider the following probability ratios:  
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These quotients depend on a single log-linear parameter irrespective of the value 

of the other parameters.  

 

Because     , GLLIRM can be expressed in matrix form as 

log ( )      P W 1 W 1  , where W is a matrix of fixed coefficients that 

imposes the constraints. However, allowing for different weights for the scale and 

intercept parameters is a common psychometric practice. Thus, the most general 

formulation of GLLIRM allows for separate weights and is given by:  

 log    P A B 1   

 



where A  and B  are the matrices of coefficients. This formulation can be used to 

impose the two types of constraints described above and any other linear constraint.  

 

2.2. Interpretation of parameters that sum to zero 

The interpretation of the parameters is based on their relationship with the 

conditional probabilities of the response patterns. First of all, the constant   should be 

eliminated to clarify this relationship. When the sum of the parameters is set to 0, from 

the model equation log ( )c cP z k , it follows that 
1
log ( )

C
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
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consequence,   is equal to the log geometric mean of the probabilities of the response 

patterns conditional on  :  
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The interpretation of parameters depends on a number of geometric means:  
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Then P  is the geometric mean of the probabilities of all response patterns, 
1kP  

is the geometric mean for the category 1k  of Item 1 and 
1 2k kP  is the geometric mean for 

the pair of responses 1k  and 2k  for Items 1 and 2. From the equation log ( )c cP z k

, it follows that 
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In consequence, the main effect parameter for category 
1k  of Item 1 depends on the log 

ratio:  
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By a similar argument, second-order interaction parameters are given by:  
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The relationship between parameters and geometric means follows a recursive 

relation. Let ( )S V  be the set of all subsets of V  excluding the empty and the universal 

sets. Then, parameters of order two and above are defined by:  
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For example:  
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The interpretation of the parameters of a given order is not altered by the inclusion 

in the model of parameters for higher-order interactions (by the size of the cluster of 

items, using the terminology in test construction).  

 

2.3. Interpretation of parameters in relation to a baseline category 

From the equation log ( )c cP z k , it follows that   is the logarithm of the 

probability of the baseline response pattern under this type of constraint:  



 log ( )P  1  

 

The equations for interpreting parameters have a similar structure to those in 

section 2.2, but the geometric means are substituted by probabilities of the baseline 

categories. Because 
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1log ( 1 1) kP k …      , the main effect parameters depend on the 

ratio of probabilities for the category alone and the baseline response pattern:  
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Second- and higher-order parameters are defined by the formula:  
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where ( ( ) )P V 1k  is the probability for a response vector in which the responses 

to the items not included in V  are set to 1. For example, the interaction between Items 1 

and 2 is given by:  
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The interpretation of the highest-order parameters depends only on the responses 

to the interacting items. For example, suppose that a model has second-order interactions 

only. Then, the interaction between items 1 and 2 is the log odds  
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so that the responses to the other items, 3( )Tk … k   k , are arbitrary and need not be 

fixed to the baseline category. 



3. Statistical inference 

3.1. Parameter estimation 

Let ( )' ' ' 



    be the vector of parameters. The sample contains the response 

patterns from n individuals, nc is the observed frequency of response pattern 
ck  and 

ick  

is the pattern given by individual i . We assume that   is a random effect and that the 

distribution 1( )nF …    is fully specified in order to avoid the introduction of more 

parameters into the model. Moreover, the variables i  are independent and identically 

distributed (
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n
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
   ). Then, the maximum-likelihood estimate, ̂ , is the 

value that maximizes the marginal distribution:  
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 

k

k
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The integral involved in the marginal probability ( ) ( ) ( )c cP dF 



  k is 

solved in practice using numerical quadrature (e.g., Stoer & Bulirsch, 1980). The log-

likelihood function can be given as ( ) log ( ) logl L '  n   , where 1( )Cn … n   n  and 

1log (log ( ) log ( ))C…      .  

 

The maximum likelihood estimate is the solution to the estimation equation 

( )l    0  , which is solved iteratively using the EM algorithm (Bock & Aitkin, 1981). 

The E step of the EM consists of computing the numerical value of the matrix 

1diag( ( | ),..., ( | ))Cf f F k k , where ( | )cf  k  is the posterior distribution of   

conditional on ck , for the grid of values of   used in numerical quadrature. The M step 



consists of iteratively solving the likelihood equations while keeping F  constant to the 

values obtained in the E step (e.g., Nocedal & Wright, 2006). The first-order derivatives 

involved in the M step can be written as:  

 

( ) ( 1 ) and

( ) ( 1 )

l d

l d

 











      
  

      
  





A A F

B B F

p n

p n







 

where 1( ( ) ( ))CP … P   p k k  is the vector of conditional probabilities and the 

matrix integral is the matrix formed by the integral of each element. The EM iterates 

between the E step (computing F ) and the M step (solving the equation ( )l    0   

with respect to  and keeping F  fixed) until convergence.  

 

3.2. Information matrix and identifiability 

The asymptotic distribution of the maximum likelihood estimate is 

1ˆ(  ) ( )Ln N I   0   under regularity conditions (Birch, 1964; Bishop, Fienberg 

&Holland, 1975; Cox, 1984). The symbol I  represents the Fisher information matrix 

and is given by (Andersen, 1980, p. 96):  

 1I '  D   (3) 

where diag( )D  , ( ) '       is the Jacobian matrix of  and:  

 with ( ) and
 

      
 

A 0
EC E M N C

0 B
  

Moreover, let  be the variance–covariance matrix of K  conditional on  ; that 

is, diag( ) ' p pp . Then, ( )dF 



 M   and ( )dF 




 N  . Inserting the 

expression for  into equation (3), the information matrix takes the form  

 1I   C E D EC  



Identifiability of the parameters depends on the rank of I . A point in parameter 

space is locally identifiable if I  is nonsingular (Rothenberg, 1971; Wansbeek & Meijer, 

2000; Bekker & Wansbeek, 2003). A necessary identifiability condition is that the vector 

1 is not in the column space of A and B . To prove this, we first note that M  and N  

are rank deficient. This is demonstrated by seeking the solution, v , to the equation 

0 Nv , which reads:  

 (diag( ) ) ( )' dF 



   0 Nv p pp v  

All the vectors of the form 1v v , with v  arbitrary, satisfy 

(diag( ) )' 0 p pp v , and thus N  is rank deficient because 0 Nv . A similar argument 

applies to M , and therefore 0 E1.  

 

Secondly, suppose that the vector 1 is in the column space of A  and B . In that 

case, there would be a vector y  that satisfies the equation 1 Cy , and because 0 E1

, one gets that 1 1 0'I ' ' ' ' '   C E D EC 1E D E1y y y y . Thus I  has a zero eigenvalue and 

so is singular.  

 

In summary, the necessary identifiability condition is full column rank of the 

matrix ( )1 C , which reduces to full column rank of ( )1 A and ( )1 B . Moreover, because 

the rank of E  is smaller than C  and the rank of a matrix product cannot exceed the rank 

of any of its members, the number of parameters in  cannot be higher than 1C   for I  

to be nonsingular. The identifiability condition for the GLLIRM is a generalization of the 

identifiability condition for an LLM under multinomial sampling (Agresti, 2002, chapter 

14). In particular, the matrix A  is dropped in an LLM, and the identifiability condition 

reduces to full column rank of ( )1 B .  



 

Example. Consider two LLMs based on the matrices: 

 (1) (2)

0 0 1 0

0 1 2 1
and

1 0 3 2

1 1 4 3

   
   
    
   
   
   

B B  

 

The first model satisfies the identifiability condition, whereas the second does not because 

the equation (2)1 B y  has the solution (1 1) y . The identifiability problem for these 

models may be visualized using the information divergence or Kullback–Leibler 

divergence (Bowden; 1973). The divergence 0( )H    is computed conditional on a 

fixed point in the parameter space, 0 , and is a function of . 0( )H   measures the 

difference between the distributions ( )   and 0( )  , so that 0( ) 0H     when 

0( ) ( )c c    for any c , and 0( ) 0H     otherwise. Thus 0( ) 0H     indicates 

that the points  and 0  are observationally equivalent and not identifiable. The 

definition of the information divergence is:  

 0 0

1 0

( )
( ) log ( )

( )

C
c

c

c c

H





 
   

 



  


 

The upper panel of Figure 1 shows the value of 0( )H    in a neighborhood of 

0  0  for the first model. 0( )H    takes the value 0 only when  0 ; this means 

that there are no points 0   that are observationally equivalent to 0 .  

 

(Figure 1)  

 

The lower panel of Figure 1 shows the value of the divergence for the second 



model. The function 
0( )H    takes the value 0 along the line (1 1) t   for t  

arbitrary, and all the points in this line are observationally equivalent.  

 

These findings illustrate a general result: all the points in the parameter space that 

are proportional to the solution of 1 Cy  are observationally equivalent. This can be 

demonstrated by observing that the directional derivative of 
0( )H    at the direction of 

y  is zero. More specifically, consider a line segment in the parameter space between two 

points 
0  and 

1 ; that is, 2 0 1 0( )t       where [0 1]t  . The derivative of 

2 0( )H    with respect to t  is given by:  

 1

2 0 0 2 2 1 0( ) [ ] [ ] [ ] ( )H '     1D D E C        

where 0[ ]D  , 1

2[ ]
D   and 2[ ]E   represent matrix functions and the term in brackets is 

the argument, whereas 1 0( )C    represents a matrix product. Therefore, if y  is the 

solution to 1 Cy  and because E1 0 , then 2 0( ) 0H      in the direction of the 

vector 1 0( )  y  . The consequence is that 2 0( )H    and 2 0( )H     are constant 

with value 0 along the line segment, and all the points that lie on it are observationally 

equivalent.  

 

4. Simulation study 

GLLIRMs can be heavily parameterized. Even models that satisfy the 

identifiability conditions may present problems of estimation if the data does not contain 

enough information to estimate with precision all the parameters. This section presents a 

simulation study conducted to investigate the problems raised by an incorrect 

specification of the estimated model -in particular the dangers involved in estimating a 

model with fewer or more interaction parameters than in the true model- and the increase 



of model complexity. 

 

An artificial test was created with eight items. Items 1 to 4 form one cluster and 

items 5 to 8 constitute the second cluster. Four models were defined, all with scale and 

intercept parameters for the main effects. The interaction parameters for each model are: 

1) conditional independence (CI), which has no interactions; 2) second order (2B) 

includes intercept parameters for the second-order interactions; 3) third order (3B) with 

intercepts for the third-order interactions, and 4) fourth order (4AB) with scale and 

intercept parameters for the fourth-order interactions. Model CI is nested in 2B, 3B and 

4AB, and the models 2B, 3B and 4AB are not nested within each other. True values of 

the intercepts were sampled from a normal (0, 1) distribution and the scale parameters 

were sampled from a lognormal distribution with a mean of 1.2 and standard deviation of 

0.4. Ability had a standard normal distribution. 

 

The design of the simulation study has three factors: simulated model (four 

levels), estimated model (four levels) and sample size (three levels of 500, 1000 and 5000 

subjects). One thousand samples were simulated for each cell of the design from the 

simulated model, and the estimated model was fitted to those data. 

 

Table 1 contains the mean value of the likelihood ratio test statistic (G2) and the 

empirical proportion of rejection (EPR) for the 48 cells of the design. Several conclusions 

can be drawn from this table: when the simulated and estimated models coincide, the 

resulting statistical test is conservative. The same result is obtained when the investigator 

fits a model with the same parameters as in the true model and a number of unnecessary 

interaction parameters (the simulated model is nested in the estimated one). If the patterns 



of interactions in the simulated and estimated models do not match (they are not nested 

models), G2 has high statistical power with a large sample. 

 

(Table 1) 

 

Tables 2 and 3 contain the bias of the estimated parameters for the 16 conditions 

with n = 500, which constitutes the worst-case scenario. The tables also contain the true 

parameter values. A Wald statistic (Buse, 1982) was computed by squaring the 

standardized bias, which is the bias divided by the simulated standard deviation of the 

parameter estimates. The p-value for this statistic was taken from a 2

1  distribution. 

Figures in boldface in Tables 2 and 3 indicate statistical significance at a nominal Type I 

error rate of 0.05. 

 

(Table 2) 

(Table 3) 

 

Tables 2 and 3 show that estimates are unbiased when the simulated model is 

nested in the estimated one. However, bias arises in the estimates when the models are 

not nested. Thus, ignoring interaction parameters may distort the estimation of the 

remaining parameters. Moreover, the results for the remaining sample sizes (not shown 

in Tables 2 and 3) show that the biases do not vanish when the sample size increases. 

 

Finally, the correlation matrix of the parameter estimates was computed to 

investigate dependencies; the results are summarized in Table 4. The table shows the 

correlations between the estimates of the location parameters for item cluster 1 when the 



simulated model is CI and the estimated models are CI or 2B. The table shows that the 

inclusion of interactions increases the correlation of all of the parameters, and these 

correlations are not reduced by large sample size. Thus, the distortions in the estimates in 

heavily parameterized models are not independent from one parameter to another. 

 

(Table 4) 

 

In summary, the general conclusion of the simulation study is that it is safer to err 

in the direction of over-fitting the data to avoid biases in the estimates, a significant G2 

statistic may indicate a lack of interaction parameters, and heavily parameterized models 

may have high standard errors and correlations between estimates. Thus, in the absence 

of information about which interactions should be estimated, models can be fitted using 

a two step process that is illustrated below in Section 5.1. First, a relatively general model 

is estimated, and then this model is simplified to eliminate unnecessary interactions.  

 

5. Empirical examples 

This section presents two empirical examples in which the model was estimated 

assuming that ( )F   is standard normal. 

5.1. Sample survey with dichotomous data 

A survey of religious feelings was applied to 1333 individuals. We have analyzed 

a cluster of five items that share a common stem. The stem reads I would sacrifice my 

life, and the five items are: 1) for my country; 2) to save another’s life; 3) for democracy; 

4) for God and 5) for my family. The response categories are Yes or No. The observed 

data appear in Table 5, which shows the observed frequencies and the response patterns. 



The values 0 and 1 indicate No and Yes, respectively. The columns labeled Pattern and 

Interactions contain the columns of W  for a model with main effects and second-order 

interactions in which the first category is the baseline. 

 

(Table 5) 

Several models were estimated: the one- and two-parameter logistic models; the 

2PL with location parameters for the second-order interactions (2PL-2B) and with scale 

and location parameters for the interactions (2PL-2AB); LLM with main effects, second-

order and third-order interactions (LLM-1, LLM-2 and LLM-3); and a categorical factor 

analysis model for two latent dimensions. Results for goodness of fit appear in Table 6. 

Chi square indicates that all the models fit the data, except for the 1PL and LLM-1. The 

2PL model with second-order interactions (2PL-2B) minimizes the AIC. 

 

A process of backward elimination was applied to the 2PL-1B to eliminate 

unnecessary interaction parameters. A Wald statistic was computed for each interaction 

parameter and the model re-estimated after the non-significant interactions were 

eliminated. This process was repeated until the model that minimizes the AIC was 

identified. This model was labeled 2PL-1B-Backward and the results for its goodness of 

fit appear in Table 6. 

 

(Table 6) 

 

Table 7 contains the parameter estimates for the five models. The different models 

offer different pictures of the data. The LLM-2 does not take into account individual 

differences. The factorial model includes two factors: the first is specific for items 1 and 



4, and the second relates to the other items. The 2PL includes a single latent dimension 

that can be regarded as a tendency to sacrifice, and the 2PL-2B includes a latent 

dimension and interaction parameters between item pairs to explain their associations 

after conditioning on . The 2PL-2B-Backward model only includes interactions between 

items 1 and 2, and between 1 and 3. 

 

(Table 7) 

 

One interesting finding in Table 7 is that the interactions for LLM-2 are all 

positive, whereas the interactions for the 2PL-2B model are mostly negative. This is 

because LLM-2 ignores individual differences in the disposition to sacrifice and attributes 

all the associations in the data to second-order interactions. In contrast, the interactions 

for 2PL-2B are due to the associations that appear after the effect of the latent variable is 

removed.  

 

The item characteristic functions for the 2PL and the 2PL-1B-Backwards appear 

in Figure 2. The figure illustrates that interaction parameters may produce deviations from 

monotonicity, which in this example affect mainly Item 3. 

 

The lower row of Figure 2 contains the item characteristic functions of items 2 

and 3 and the probability of endorsing these items conditional on the response to Item 1. 

The probability of endorsing items 2 and 3 is lower for those individuals who endorse 

Item 1 than for those who do not. Apparently, some individuals attempt to compensate 

for a negative response to Item 1 by responding positively to items 2 and 3. 

 



(Figure 2) 

 

Overall, this example shows that some associations remain in the data even after 

the effect of the latent variable is removed. Increasing the latent dimensionality is a way 

of dealing with these associations, but a unidimensional model is preferable because there 

is no a priori reason to seek other latent dimensions apart from the general tendency to 

sacrifice. 

 

5.2. Ability testing with polytomous data 

The second example uses data from the USA database for Population 3 (final year 

of secondary school) of the 1995 edition of the TIMSS (Gonzalez, Smith & Sibberns, 

1998). Sample size is 10834. Twelve items from the mathematics literacy scale were used. 

The items and the responses can be retrieved from the internet address 

http://timss.bc.edu/timss1995.html. 

 

The test contains multiple-choice and open-ended items. Moreover, it includes 

two testlets, each composed of two open-ended items. The structure of the test and the 

psychometric models applied to it appear in Table 8. The open-ended items were scored 

in three categories (nonresponse, incorrect and correct), according to the manual of the 

TIMSS, and were parameterized using the partial credit model (PCM; Masters, 1982), the 

generalized partial credit model (GPCM; Muraki, 1992) and the nominal categories 

model (NCM; Bock, 1972). Two versions of these models were applied: the original 

version (no interactions) and a model supplemented with location parameters for the 

second-order interactions within each testlet. Finally, a bifactor model was estimated. The 

bifactor model includes three factors, the general one and a cluster-specific factor for each 



testlet. Thus, each item in a testlet loads only on two factors. In this way, the latent 

structure of the bifactor model is the same as in the factor analytic tradition (Harman, 

1976), although the measurement model used in this particular example is a 

multidimensional nominal categories model (Bock & Gibbons, 2010) instead of the 

traditional linear factor analysis. The nonresponse category is the baseline. 

 

(Table 8) 

 

Goodness-of-fit statistics appear in Table 9. The AIC and BIC always favor the 

interaction models with respect to their respective independence model. Secondly, the 

overall best-fitting model is NCM with interactions (NCM-I). 

 

(Table 9) 

 

Table 10 contains the parameter estimates for the testlets and the three best fitting 

models. The log odds and log odds ratios used to interpret parameters are also included. 

The high and positive interaction parameters suggest that the lack of fit of the conditional 

independence model is because of a tendency to repeat the same response within the two 

items of each testlet. Moreover, the tendency to respond with adjacent categories seems 

higher than the tendency to omit the first item and pass the second one, and vice versa. 

 

The parameterization in relation to a baseline category can be modified to obtain 

information about the relationship between the probabilities of successive categories. 

This is appropriate when the response categories have an order, such as in rating scales 

or partial credit items, where categories are compared with the previous one instead of 



comparing all of them with the baseline. Consider the following reparameterization of the 

main effect and second-order interactions: 
( )
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k kk
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1 2
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1 1 1 0k k     . Then, the main effect parameters depend on the odds of a category and 
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The second-order parameters contain information about the odds ratio between 

successive categories. 
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The values of 
j  and 

j  used for computing 
( )

( )

V

k V  also appear in Table 10. The 

interactions between categories 2-2 and 3-3 are high and positive, whereas most of the 

interactions between 2-3 and 3-2 are negative. This result confirms a tendency to repeat 

a response to the two items of each testlet. 

 

(Table 10) 

Finally, the item response functions for the two items of testlet 16, and the NCM, 

NCM-I and bifactor models appear in Figure 3. Comparing the NCM and NCM-I reveals 

that the introduction of the interaction parameters had a small effect in the response 

functions, which was a decrease in the probability of passing the items D-16a and D-16b. 

 

The item response functions for the bifactor model were computed conditional on 

the values –1 and 1 of the cluster-specific factor. The figure shows that the cluster-specific 



factor determines the distribution of responses between categories 2 and 3, and has little 

effect on the nonresponse category. Because of this and the factor loadings in Table 10, 

the cluster-specific factor appears to be an ability factor that is not shared with the other 

items. 

 

(Figure 3) 

6. Final remarks 

This paper explores the capabilities of the GLLIRM to address the problem of 

local dependencies within item clusters. Several issues must be considered in 

applications. First, the model suffers from a lack of reproducibility, so that the item 

characteristic functions are altered by the inclusion of interaction parameters. For that 

reason, the paper explains the interpretations of the parameters that remain unchanged 

when other parameters are incorporated into the model. 

 

Second, there is a limitation of the number of items that can be analyzed together. 

Each effect can potentially be described using scale and intercept parameters. In contrast 

to LLMs that admit interaction up to the highest order, the GLLIRM would run out of 

degrees of freedom if all parameters were included. The number of parameters increases 

rapidly and the interpretation becomes more complicated as the number of interacting 

items and the order of interaction increase. Thus, in practice, only a few of all possible 

interactions are estimable. Although the test can be long and may have many item 

clusters, the number of items in each cluster should not be high to keep the model 

reasonably simple. 

 



A third caveat is related to over-fitting of the data. A simulation study has shown 

that parameter estimates show biases when the model includes fewer interaction 

parameters than the true model. However, no biases arose when the model included 

unnecessary interaction. These results suggest a two-step strategy in model fitting: a 

relatively general model can be estimated first to capture all relevant interactions, and 

unnecessary interactions are eliminated in a second step based on a Wald test. 

 

Finally, there are other competing models for analyzing the same kind of data. 

LLMs are aimed at the analysis of interactions but are psychometrically uninteresting 

because of the lack of parameters representing individual differences. The paper shows 

by example that the interaction parameters for an LLM can be inflated because of the 

absence of a latent variable. One more tenable alternative within the context of 

psychometrics is a multidimensional model. Ip (2010) showed that multidimensional 

models may be observationally equivalent to unidimensional models with interaction 

terms. However, multidimensional models suffer from their own list of problems. 

Estimation of categorical factorial models relies on numerical integration or simulation 

techniques and may be unfeasible when there are many latent dimensions. In the present 

context, if the factorial model includes a general latent trait and a specific factor for each 

cluster of interacting items, there would be a sharp limitation on the number of clusters 

that could be analyzed simultaneously. Thus factorial models may be useful in those 

situations where GLLIRM is inapplicable: with few clusters composed of a large number 

of items. However, the cluster specific factor may be difficult to interpret if there are not 

a priori reasons to conceive item clusters as multidimensional. 

 

In closing, different models may obtain an acceptable fit if either the order of the 



interactions or the number or latent dimensions are increased. Model choice would be 

conditioned by technical estimation problems and should ultimately be based on the 

structure of the test, the intended interpretation and the judgment of the investigator.  
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TABLE 1. Mean value of the likelihood ratio test statistic (G2) and empirical proportion 

of rejection (EPR) for the different combinations of true vs. estimated model and 

sample size in the simulation study 

n = 500 CI 2B 3B 4AB 

CI 197.3(.00) 185.7(.00) 189.2(.00) 194.1(.00) 

2B 149.9(.00) 102.8(.00) 124.1(.00) 136.5(.00) 

3B 316.4(.92) 185.5(.00) 164.8(.00) 240.6(.09) 

4AB 233.9(.03) 197.1(.00) 190.5(.00) 179.3(.00) 

n = 1000 CI 2B 3B 4AB 

CI 218.3(.00) 206.8(.00) 210.6(.00) 214.3(.00) 

2B 203.1(.00) 123.0(.00) 161.3(.00) 182.5(.00) 

3B 489.9(1.00) 235.5(.14) 188.0(.00) 335.1(.99) 

4AB 308.2(.91) 248.2(.25) 228.4(.03) 203.4(.00) 

n = 5000 CI 2B 3B 4AB 

CI 231.1(.01) 222.3(.02) 223.9(.00) 227.6(.01) 

2B 515.6(1.00) 156.9(.00) 225.3(.98) 425.8(1.00) 

3B 1638.8(1.00) 458.5(1.00) 206.2(.01) 927.0(1.00) 

4AB 731.4(1.00) 486.0(1.00) 367.8(1.00) 226.1(.01) 

df 239 227 231 235 

Note: The rows of the table indicate the model used to simulate the data (true 

model) and the columns indicate the estimated model. The cells contain the 

mean of G2 and the EPR between brackets. df is the number of degrees of 

freedom for the estimated model under the hypothesis that the model fits. 

 

 

 

  



TABLE 2. True parameter values and bias of the estimated parameters for different 

combinations of simulated vs. estimated model in the simulation study 

 True Estimated True Estimated 

 CI CI 2B 3B 4AB 2B CI 2B 3B 4AB 

 0.46 0.01 0.23 0.01 0.02 0.46 -2.92 -0.51 -2.68 -3.04 

 2.02 0.04 0.32 0.09 0.05 2.02 0.45 1.32 -0.12 0.13 

 0.09 0.00 0.13 0.00 0.01 0.09 -3.06 -0.32 -2.76 -3.21 

 -1.60 -0.04 0.16 -0.04 -0.04 -1.60 -3.77 -0.75 -3.47 -3.70 

   -0.18   0.89  0.14   

   -0.08   -1.24  0.06   

   -0.20   -1.24  0.18   

   -0.08   -0.27  -0.24   

   -0.23   0.31  -0.92   

   -0.11   -1.52  0.13   

    0.03     0.93  

    -0.03     1.37  

    0.00     -0.40  

    -0.02     0.12  

     0.17     2.36 

 -1.21 -0.02 -0.54 -0.05 -0.02 -1.21 0.53 -0.39 0.50 0.52 

 1.27 0.01 -0.31 0.01 0.01 1.27 2.13 -0.09 1.40 1.93 

 -0.22 0.00 -0.28 -0.02 0.00 -0.22 0.35 -0.25 0.32 0.33 

 -0.67 -0.01 -0.22 -0.02 -0.01 -0.67 -0.05 -0.19 -0.09 -0.06 

   0.33   1.74  0.43   

   0.25   0.82  0.30   

   0.17   0.03  0.18   

   0.16   1.01  0.29   

   0.11   1.83  0.30   

   0.09   -0.28  0.10   

    0.02     1.54  

    0.01     2.23  

    0.02     0.02  

    0.00     1.78  

     0.08     4.29 

 1.83 0.04 -0.14 0.04 0.03 1.83 1.96 0.57 1.94 2.08 

 1.77 0.06 -0.11 0.07 0.04 1.77 -0.53 0.24 1.15 0.32 

 0.77 0.01 -0.09 0.01 0.00 0.77 2.05 0.26 1.85 2.18 

 2.43 0.06 -0.09 0.09 0.09 2.43 2.69 0.63 2.59 2.52 

     0.14     1.01 

 1.70 0.04 0.62 

0-.11 

-.09 

- 

0.08 0.04 1.70 -0.44 0.51 -0.41 -0.47 

 0.99 0.02 0.28 0.04 0.03 0.99 -0.93 0.26 -0.44 -0.78 

 0.84 0.01 0.21 0.03 0.01 0.84 -0.31 0.22 -0.29 -0.30 

 0.54 0.00 0.15 0.02 0.01 0.54 0.00 0.13 0.02 -0.01 

     0.07     -0.02 

Note: Sample size is 500. Empty cells are structural zeroes. Boldface indicates statistical 

significance using a Wald test. 

  



TABLE 3. True parameter values and bias of the estimated parameters for different 

combinations of simulated vs. estimated model in the simulation study 

 True Estimated True Estimated 

 3B CI 2B 3B 4AB 4AB CI 2B 3B 4AB 

 0.46 -0.78 1.02 -0.01 -1.13 0.46 -0.05 0.61 -0.03 0.01 

 2.02 0.20 0.37 0.08 -0.24 2.02 -0.05 0.83 0.11 0.08 

 0.09 -0.43 0.37 0.00 -0.75 0.09 -0.06 0.31 -0.03 0.01 

 -1.60 -0.38 0.66 -0.14 -1.17 -1.60 0.12 0.59 -0.19 -0.05 

   -0.34     -0.59   

   -1.19     -0.24   

   -1.28     -0.59   

   1.89     -0.46   

   -0.63     -0.59   

   -0.56     -0.24   

 2.09   -0.01     -0.40  

 -0.84   0.02     0.19  

 -1.54   -0.02     0.07  

 0.52   0.05     0.02  

     2.32 0.29    0.30 

 -1.21 -0.86 -2.54 -0.12 -0.06 -1.21 -0.70 -4.53 -0.03 -0.09 

 1.27 -1.90 -0.55 -0.02 -1.01 1.27 -1.02 -1.83 0.37 0.02 

 -0.22 -0.79 -1.66 -0.04 -0.12 -0.22 -0.81 -2.73 0.05 -0.01 

 -0.67 -0.12 -1.07 -0.03 0.44 -0.67 -0.75 -2.04 -0.01 -0.01 

   -0.43     1.15   

   1.05     1.41   

   0.81     1.10   

   -0.96     0.29   

   -0.39     -0.30   

   0.75     0.46   

 -1.96   0.00     -0.68  

 -0.70   0.01     -0.58  

 0.95   0.03     -0.16  

 -0.58   0.00     -1.09  

     -1.67 -1.85    0.10 

 1.83 0.20 -0.40 0.08 1.82 1.83 -0.10 -0.55 0.16 0.01 

 1.77 -0.80 -0.29 0.09 0.57 1.77 0.15 -0.42 0.32 0.13 

 0.77 0.18 -0.17 0.01 0.89 0.77 0.10 -0.21 0.08 0.00 

 2.43 0.15 -0.44 0.28 1.76 2.43 -0.29 -0.68 0.36 0.10 

     -0.56 0.68    0.25 

 1.70 0.91 2.71 0.18 0.04 1.70 0.97 5.08 0.18 0.15 

 0.99 1.97 1.87 0.09 0.57 0.99 1.92 2.80 0.43 0.03 

 0.84 0.92 1.34 0.05 0.17 0.84 1.17 2.64 0.12 0.02 

 0.54 0.14 0.67 0.03 -0.34 0.54 0.90 1.61 0.11 0.01 

     -0.45 0.96    0.26 

Note: Sample size is 500. Empty cells are structural zeroes. Boldface indicates statistical 

significance using a Wald test. 

  



Table 4. Correlation matrix between some parameter estimates in the simulation study 

for different sample sizes. The simulated model is CI and the estimated ones are CI or 

2B 

 

           

n=500  1.00 0.09 0.16 0.46       

  0.67 1.00 
-

0.01 
0.03       

  0.58 0.52 1.00 0.16       

  0.85 0.73 0.55 1.00       

 
-

0.68 

-

0.66 

-

0.46 

-

0.61 
1.00      

 
-

0.59 

-

0.46 

-

0.78 

-

0.40 
0.43 1.00     

 
-

0.91 

-

0.57 

-

0.36 

-

0.81 
0.58 0.30 1.00    

 
-

0.45 

-

0.58 

-

0.72 

-

0.43 
0.43 0.57 0.28 1.00   

 
-

0.61 

-

0.90 

-

0.42 

-

0.75 
0.60 0.36 0.55 0.42 1.00  

 
-

0.48 

-

0.45 

-

0.89 

-

0.56 
0.40 0.51 0.36 0.55 0.39 1.00 

n=1000  1.00 0.00 0.16 0.38       

  0.66 1.00 
-

0.02 
0.04       

  0.55 0.53 1.00 0.15       

  0.87 0.72 0.58 1.00       

 
-

0.62 

-

0.59 

-

0.40 

-

0.55 
1.00      

 
-

0.54 

-

0.50 

-

0.79 

-

0.43 
0.39 1.00     

 
-

0.90 

-

0.50 

-

0.32 

-

0.81 
0.49 0.19 1.00    

 
-

0.43 

-

0.63 

-

0.70 

-

0.45 
0.35 0.56 0.24 1.00   

 
-

0.62 

-

0.88 

-

0.44 

-

0.72 
0.57 0.43 0.49 0.49 1.00  

 
-

0.50 

-

0.47 

-

0.89 

-

0.61 
0.36 0.52 0.39 0.56 0.40 1.00 

n=5000  1.00 0.11 0.06 0.48       

  0.81 1.00 
-

0.11 
0.08       

  0.83 0.74 1.00 0.09       

  0.99 0.79 0.85 1.00       

 
-

0.88 

-

0.67 

-

0.77 

-

0.88 
1.00      

 
-

0.79 

-

0.75 

-

0.93 

-

0.80 
0.74 1.00     

  - - - - 0.82 0.64 1.00    



0.97 0.75 0.72 0.95 

 
-

0.80 

-

0.66 

-

0.90 

-

0.81 
0.82 0.85 0.69 1.00   

 
-

0.86 

-

0.64 

-

0.78 

-

0.87 
0.96 0.78 0.79 0.85 1.00  

 
-

0.84 

-

0.75 

-

0.97 

-

0.85 
0.76 0.84 0.77 0.85 0.73 1.00 

Note: Results for the estimated CI model appear above the diagonal and the estimated 

2B mode appears below. 

 

 

  



Table 5. Response patterns, second-order interactions between items and 

observed frequencies for the sample survey example 

Pattern  Interactions  Frequency  Pattern  Interactions  Frequency   

00000  0000000000  55 10000  0000000000  0   

00001  0000000000  381  10001  0001000000  7   

00010  0000000000  0  10010  0010000000  0   

00011  0000000001  20  10011  0011000001  3   

00100  0000000000  0  10100  0100000000  0   

00101  0000000010  4  10101  0101000010  2   

00110  0000000100  0  10110  0110000100  0   

00111  0000000111  2  10111  0111000111  1   

01000  0000000000  2  11000  1000000000  0   

01001  0000001000  423  11001  1001001000  44   

01010  0000010000  2  11010  1010010000  0   

01011  0000011001  76  11011  1011011001  39   

01100  0000100000  1  11100  1100100000  0   

01101  0000101010  112  11101  1101101010  50   

01110  0000110100  0  11110  1110110100  0   

01111  0000111111  38  11111  1111111111  71   

 

  



Table 6. Goodness of fit statistics for three types of models in the sample survey 

example: local independence models, unidimensional models with item 

interactions and log linear-models. 

Type  Model  Parameters  G2 d.f.  p-value  AIC   

Conditional  1PL  5  261.2  26  0 001    5603.1   

independence 2PL  10  33.3  21  0.05  5367.5   

 Factorial  15  16.2  16  0.44  5360.5   

Conditional  2PL-2B  20  4.85  11  0.94  5359.1   

 2PL-2B-

Backward 

12 12.5 19 0.93 5349.2 

dependence  2PL-2AB  30  0.64  1  0.42  5374.9   

Log-linear  LLM-1  5  761.4  21  0 001    6085.7   

 LLM-2  15  16.0  16  0.46  5360.3   

 LLM-3  25  1.3  6  0.97  5365.6   

Note: Type refers to the type of structure imposed by the model. CI stands for 

conditional independence. The boldface indicates the smallest AIC for each type 

of model. 

 

  



Table 7. Parameter estimates for two local independence models (2PL and Two-factor) 

two models with local dependencies (2PL-2B and 2PL-2B-Backward) and a log-linear 

model applied to the sample survey example 

  2PL Factorial
 

2PL-2B  2PL-2B-

Backward 

LLM-

2   

Item 1 Item 2    i1
 i2

      

For my 

country  

 2.53  -3.03  4.08  3.75  0.00  7.97  -9.63  8.73 -4.31 -8.87   

Another’s life   2.88  1.25  -

1.39  

-

0.52  

3.78  4.66  2.60  3.66 1.63 -2.57   

For 

democracy  

 2.26  -2.29  2.73  -

0.26  

3.12  3.41  -1.25  4.40 -2.88 -4.82   

For God   1.57  -2.05  2.12  1.54  0.15  8.71  1.59  1.39 -1.96 -3.55   

For my family   2.54  5.29  -

5.11  

-

0.08  

2.47  3.28  6.43  2.40 5.09 1.97   

For my 

country  

Another’s life        -2.76   -3.23 1.42   

 For democracy        -0.63   -2.06 1.44   

 For God        -5.26    1.53   

 For my family        6.90    5.19   

Another’s life  For democracy        0.30    2.69   

 For God        -3.36    1.19   

 For my family        -0.37    2.68   

For 

democracy  

For God        -1.95    0.59   



 For my family        -1.32    0.81   

For God  For my family        -3.64    0.66   

Note: The column  contains the thresholds for the categorical factor analysis model, 

i1 and i2 are factor loadings; 12 is a structural zero and the correlation between the 

factors was 0.85.   

  



Table 8. Items from the Mathematics Literacy scale of the TIMSS database and 

psychometric models 

Type  Seq.  Label  Cats.  Model 1  Model 2  Model 3  Model 4  Model 5  Model 6   Model 7 

Multiple  1  A-3  5  NCM  NCM  NCM  NCM  NCM  NCM   NCM 

choice  2  A-4  5     

 3  A-5  5     

 7  D-6  5     

Open  4  A-8  4  PCM  PCM  GPCM  GPCM  NCM  NCM   NCM 

ended  5  A-10  4     

 6  A-12  5     

 12  D-17  4     

Testlet  8  D-15a  3  PCM  PCM-I  GPCM  GPCM-I  NCM  NCM-I   Bifactor 

 9  D-15b  3     

Testlet  10  D-16a  3  PCM  PCM-I  GPCM  GPCM-I  NCM  NCM-I   Bifactor 

 11  D-16b  3     

Note: The column Seq. indicates the sequential order in which the items are applied. 

Cats. is the number of categories. The models are: PCM (partial credit model), GPCM 

(generalized partial credit model), NCM (nominal categories model), PCM-I (partial 

credit item with interactions), GPCM-I (generalized partial credit model with 

interactions), NCM-I (nominal categories model with interactions) NCM-3D (nominal 

categories model with a second dimension for the interacting items). The interactions 

are analyzed within each testlet only. All the items of each type are analyzed with the 

same model. 



Table 9. Goodness of fit statistics for the TIMMS database 

Model  Parameters  Log. lik.  AIC  BIC   

1  53  -86698.4  173502.8  173889.2   

2  61  -81169.1  162460.2  162904.9   

3  59  -76991.7  154101.4  154531.6   

4  67  -76107.3  152348.5  152837.0   

5  74  -73809.7  147767.4  148306.9   

6  82  -72906.8  145977.5  146575.4   

7 82 -73481.3 147126.6 147724.4 

Note: The description of models appears in Table 8.   

 

 

  



Table 10. Parameter estimates for the two testlets of the TIMMS database under the 

NCM, bifactor and NCM-I models 

  NCM Bifactor NCM-I  

Item  Category           Odds 

D-15a  2  1.46  0.18  12.54 -2.79 -13.61 1.03  -1.47  1.03  -

1.47  

(2 1)

(1 1)

P

P



    

 3  7.39  -8.88  19.43 -6.14 -18.95 2.66  -7.61  1.63  -

6.14  

(3 1)

(1 1)

P

P



    

D-15b  2  0.93  -0.51  13.92 -3.31 -14.02 0.77  -0.59  0.77  -

0.59  

(2 1)

(1 1)

P

P



    

 3  8.05  -8.60  15.87 -4.46 -15.86 3.76  -8.25  2.99  -

7.66  

(3 1)

(1 1)

P

P



    

D-15a 

D-15b  

2-2        7.77   7.77  (2 2 ) (11 )

(2 1 ) (1 2 )

P k P k

P k P k

   

       

 2-3        7.11   -

0.66  

(2 3 ) (11 )

(2 1 ) (1 3 )

P k P k

P k P k

   

       

 3-2        9.47   1.70  (3 2 ) (11 )

(3 1 ) (1 2 )

P k P k

P k P k

   

       

 3-3        9.95   1.14  (3 3 ) (11 )

(3 1 ) (1 3 )

P k P k

P k P k

   

       

D-16a  2  3.93  -6.28  10.01 1.86 -10.74 1.08  -2.33  1.08  -

2.33  

(2 1)

(1 1)

P

P



    

 3  6.99  -8.02  13.32 4.70 -16.86 5.41  -6.98  4.33  -

4.65  

(3 1)

(1 1)

P

P



    

D-16b  2  3.11  -5.91  6.63 0.30 -8.66 0.86  -2.53  0.86  -

2.53  

(2 1)

(1 1)

P

P



    

 3  6.50  -8.52  9.15 3.08 -15.07 2.07  -7.46  1.21  -

4.93  

(3 1)

(1 1)

P

P



    

D-16a 

D-16b  

2-2        5.85   5.85  (2 2 ) (11 )

(2 1 ) (1 2 )

P k P k

P k P k

   

       

 2-3        4.48   -

1.37  

(2 3 ) (11 )

(2 1 ) (1 3 )

P k P k

P k P k

   

       

 3-2        5.64   -

0.21  

(3 2 ) (11 )

(3 1 ) (1 2 )

P k P k

P k P k

   

       

 3-3        7.05   2.78  (3 3 ) (11 )

(3 1 ) (1 3 )

P k P k

P k P k

   

       

Note: The column Odds contains the log odds and log odds ratios used for interpretation 

of the NCM-I parameters. The columns  and  contain the values of  and  

used for computing .  and  are used for computing.  and  are factor 

loadings on the general and the cluster-specific factor. 

  



 

 

Figure 1. Information divergence between the distributions () and (0),  
where 0 = 

0. 

 

 

 



 

 

Figure 2. The upper row contains the marginal probabilities of endorsing the items –item 

characteristic curves- as a function of  ; the left column corresponds to the 2PL and the 

right column to the 2PL-2B-Backward. The lower row contains the marginal probabilities 

of endorsing the items 2 and 3 and probabilities of endorsing the items conditional on the 

response to Item 1 for the 2PL-2B-Backward. The lower left panel stands for Item 2 and 

lower right is Item 3.  

 



 

 

Figure 3. Item response functions for the items D-16a (left column) and D-16b (right 

column) and the models NCM (first row), NCM-I (second row) and bifactor (third and 

fourth rows). 


