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Abstract6

Our starting point is a variational model in nonlinear elasticity that allows for7

cavitation and fracture that was introduced by Henao and Mora-Corral (Arch Ra-8

tional Mech Anal 197:617–655, 2010). The total energy to minimize is the sum of9

the elastic energy plus the energy produced by crack and surface formation. It is a10

free discontinuity problem, since the crack set and the set of new surface are un-11

knowns of the problem. The expression of the functional involves a volume integral12

and two surface integrals, and this fact makes the problem numerically intractable.13

In this paper we propose an approximation (in the sense of Γ -convergence) by14

functionals involving only volume integrals, which makes a numerical approxi-15

mation by finite elements feasible. This approximation has some similarities to16

the Modica–Mortola approximation of the perimeter and the Ambrosio–Tortorelli17

approximation of the Mumford–Shah functional, but with the added difficulties typ-18

ical of nonlinear elasticity, in which the deformation is assumed to be one-to-one19

and orientation-preserving.20

1. Introduction21

Free-discontinuity problems have attracted a great amount of attention in the22

mathematical community in the last decades because of their applications and of23

the mathematical challenges that they pose. We refer to the monograph [1] for an24

in-depth study. A common feature of these problems is the presence of an interac-25

tion between an n-dimensional volume energy and an (n − 1)-dimensional surface26

energy. The latter involves a surface set, which is an unknown of the problem. A27

paradigmatic model is the Mumford and Shah [2] functional for image segmenta-28

tion, which was recasted as a variational free-discontinuity problem by De Giorgi29

et al. [3] as follows: for a given f ∈ L2(Ω), minimize30

∫

Ω

[

|∇u|2 + (u − f )2
]

dx + H
n−1(Ju) (1)31
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among u ∈ SBV (Ω). Here, Ω is a bounded open set of Rn and SBV is the space32

of special functions of bounded variation. In this case, the free discontinuity set is33

Ju , the jump set of u.34

In elasticity theory, the paradigmatic free-discontinuity problem is that of frac-35

ture, which can be seen as a vectorial version of the Mumford–Shah functional. In36

its simplest form, the functional to minimize is37

∫

Ω
|∇u|2 dx + H

n−1(Ju) (2)38

among u ∈ SBV (Ω, Rn). The first term of (2) is a handy substitute of the elastic39

energy, and the second term penalizes the crack formation, as stipulated by Grif-40

fith’s [4] theory of fracture. The quasistatic evolution of the variational formulation41

of brittle fracture was first proposed by Francfort and Marigo [5].42

Another phenomenon in elasticity theory that can be regarded as a free-discon-43

tinuity problem is that of cavitation, which is the process of formation and rapid44

expansion of voids in solids, typically under triaxial tension. The seminal paper of45

Ball [6] described this process as a singular ordinary differential equation, but in46

his work and in others following it, the location of the cavity points was prescribed.47

It was shown by Müller and Spector [7] that cavitation can be recast as a free-48

discontinuity problem following the general scheme described above. In this case,49

the energy to minimize is50

∫

Ω
W (Du) dx + Per u(Ω) (3)51

among u ∈ W 1,p(Ω, Rn) satisfying some invertibility conditions. The first term52

of (3) is the elastic energy of the deformation, while the second term represents53

the energy produced by the creation of new surface, and, hence, by the cavitation.54

The idea is that the image u(Ω), properly defined, may create a hole which was not55

previously in Ω . The new surface created by the hole is detected by Per u(Ω), so56

in this case the free discontinuity set is the measure-theoretic boundary of u(Ω),57

which lies in the deformed configuration.58

Our free discontinuity problem to be approximated gathers the fracture func-59

tional with the cavitation functional. To be precise, Henao and Mora-Corral60

[8–10] showed that when the functional setting allows for cavitation and fracture,61

it is convenient to replace the term Per u(Ω) in (3) by the functional62

E (u) := sup
{

E (u, f) : f ∈ C∞
c (Ω × R

n, R
n), ∥f∥∞ ! 1

}

, (4)63

where64

E (u, f) :=
∫

Ω
[cof ∇u(x) · Dxf(x, u(x)) + det ∇u(x) div f(x, u(x))] dx. (5)65

They proved that E (u) equals the H n−1-measure of the new surface created by u,66

whether produced by cavitation, fracture or any other process of surface creation.67

They also proved the existence of minimizers of68

∫

Ω
W (Du) dx + H

n−1(Ju) + E (u) (6)69
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among u ∈ SBV (Ω, Rn) satisfying some invertibility conditions. We remark that70

in (3) and (6), the stored-energy function W is polyconvex and has the growth71

W (F) → ∞ as det F → 0. (7)72

In this paper, we define a slight variant of the functional E , namely73

Ē (u) := sup
{

E (u, f) : f ∈ C∞
c (Ω̄ × R

n, R
n), ∥f∥∞ ! 1

}

. (8)74

The main difference of Ē with respect to E is that, while E measures the surface75

created, Ē also measures the stretching of the boundary ∂Ω by the deformation. In76

fact, it can be proved that, loosely speaking, the equality77

Ē (u) = E (u) + H
n−1(u(∂Ω))78

holds. Functional Ē also differs from Per u(Ω), since the latter cannot detect the79

creation of surface given by the set of jumps of u−1; see [8,9] for details.80

A direct approach to numerical minimization of free-discontinuity functionals,81

as those described above, is unfeasible using standard methods. A fruitful procedure82

is the construction of an approximating sequence of elliptic functionals Iε, possibly83

defined in a different functional space, that Γ -converge to the functional I to be84

approximated.85

One of the first results in this direction was the example of Modica and Mor-86

tola [11], which was recast by Modica [12] as an approximation of a model for87

phase transitions in liquids. They showed how the perimeter functional can be ap-88

proximated by elliptic functionals via Γ -convergence. As a particular case, they89

showed the convergence of90

3

∫

Ω

[

ε|Dw|2 +
w2(1 − w)2

ε

]

dx (9)91

for functions w ∈ W 1,2(Ω) with prescribed mass
∫

Ω w dx, to the functional92

Per w−1(0)93

in the space BV (Ω, {0, 1}).94

A landmark study was the approximation by Ambrosio and Tortorelli [13,14]95

of the Mumford–Shah functional (1) by the functionals96

∫

Ω
(v2 + ηε) |Du|2 dx +

1

2

∫

Ω

[

ε|Dv|2 +
(1 − v)2

ε

]

dx97

for u, v ∈ W 1,2(Ω). Here v is an extra variable that converges almost everywhere98

to 1, and indicates healthy material when v ≃ 1 and damaged material when v ≃ 0.99

The infinitesimal ηε goes to zero faster than ε.100

The work of Ambrosio and Tortorelli [13] has given rise to many extensions101

(the reader is referred, in particular, to the monograph [15]), as well as actual102

numerical studies and experiments [16–19]. We ought to say that the numerical103

experiments of Bourdin et al. [20] (see also the review paper [21]) were in fact104
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a strong motivation for our work, and so was the analysis by Burke [22] of the105

Ambrosio–Tortorelli functional.106

In the context of our interest in fractures, we mention that Chambolle [23] was107

able to extend their result to approximate, instead of (2), the more realistic energy108

∫

Ω
W (∇u) dx + H

n−1(Ju), (10)109

when W equals the quadratic functional corresponding to linear elasticity. In the110

case of a quasiconvex W with p-growth from above and below, the Γ -convergence111

was proved by Focardi [24] (see also Braides et al. [33]). As a by-product of112

our analysis, we cover the case where W is polyconvex and has the growth (7),113

as required in nonlinear elasticity. We believe that this is the first lower bound114

inequality proved for a stored energy function satisfying that growth condition.115

This paper deals with the approximation of116

∫

Ω
W (Du) dx + H

n−1(Ju) + Ē (u), (11)117

which is, as mentioned above, a variant of (6), and, hence, a model for the energy118

of an elastic deformation that also exhibits cavitation and fracture. We chose the119

functional (11) instead of (6), that is to say, Ē instead of E , because the latter lends120

itself to an easier approximation. The study of a model that gathers cavitation and121

fracture was partially motivated by the role of cavitation in the initiation of fracture122

in rubber and ductile metals through void growth and coalescence (see [25–31]).123

In particular, the numerical experiments carried out using the method described in124

this work (see the companion paper [32]) aim to contribute to the understanding of125

void coalescence as a precursor of fracture.126

Broadly speaking lines, the term H n−1(Ju) of (11) can be treated as an127

Ambrosio–Tortorelli term, while the term Ē (u) resembles a Modica–Mortola term,128

but it is subtler. The general scheme of the approximation of (11) proposed in this129

paper is as follows. We will use two phase-field functions: v for H n−1(Ju) and130

w for Ē (u). As in the Ambrosio–Tortorelli approximation, v lies in the reference131

configuration, and v ≃ 1 indicates healthy material, while v ≃ 0 represents dam-132

aged material. For technical reasons in our argument, we need v to be continuous,133

so instead of134

1

2

∫

Ω

[

ε|Dv|2 +
(1 − v)2

ε

]

dx,135

we choose136

∫

Ω

[

εq−1 |Dv|q

q
+

(1 − v)q ′

q ′ε

]

dx137

as an approximation ofH n−1(Ju), where q > n, and q ′ is the conjugate exponent of138

q. The Sobolev embedding guarantees that v is continuous. Thus, the approximation139

of the term H n−1(Ju) of (11) follows the scheme of Braides et al. [33].140
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The approximation of the term Ē (u) is new and summarized as follows. As141

in the Modica–Mortola approximation, the phase-field function w is defined in142

the deformed configuration, and w ≃ 1 when there is matter, while w ≃ 0 when143

there is no matter. In other words, w ≃ χu(Ω). Naturally, there must be a relation144

between the phase-field variables, which is that w follows v but in the deformed145

configuration, so w ◦ u ≃ v. Imposing an exact equality w ◦ u = v would make146

the construction of the recovery sequence too strict, and, in fact, is incompatible147

with the boundary condition for v and w. The exact way of expressing w ◦ u ≃ v148

is that w ◦ u ! v and that w ◦ u is close to v in L1. Again, for technical reasons,149

the function w is required to be continuous, so instead of (9), we choose150

6

∫

Q

[

εq−1 |Dw|q

q
+

wq ′
(1 − w)q ′

q ′ε

]

dy151

to approximate Ē (u). Although it might be possible to argue by density and remove152

the assumption that v and w are continuous (hence to allow for any exponent q),153

we have found difficulties in that approach.154

Here Q ⊂ Rn is a bounded open set containing a fixed compact set K , which155

in turn is assumed to contain the image of u. A key result in this approximation is156

the representation formula157

Ē (u) = Per u(Ω) + 2 H
n−1(Ju−1), (12)158

valid for deformations u that are one-to-one. Equality (12) is the analogue of the rep-159

resentation formula for E proved in [9, Th. 3]. We observe that the term Per u(Ω),160

explained above, appears together with the term H n−1(Ju−1), which measures the161

set of jumps of the inverse and accounts for a possible pathological phenomenon162

consisting in a sort of interpenetration of matter for deformations u that still are163

one-to-one. We refer to [9] for a discussion of this phenomenon, and just mention164

here that deformations u with H n−1(Ju−1) > 0 are, in general, not physical.165

Given λ1, λ2 > 0, the main result of the paper is an approximation result of the166

functional167

Iε(u, v, w) :=
∫

Ω
(v2 + ηε) W (Du) dx + λ1

∫

Ω

[

εq−1 |Dv|q

q
+

(1 − v)q ′

q ′ε

]

dx

+ 6λ2

∫

Q

[

εq−1 |Dw|q

q
+

wq ′
(1 − w)q ′

q ′ε

]

dy

(13)

168

to169

I (u) :=
∫

Ω
W (∇u) dx170

+λ1

[

H
n−1(Ju) + H

n−1 ({x ∈ ∂DΩ : u ̸= u0}) +
1

2
H

n−1(∂N Ω)

]

171

+λ2 Ē (u) (14)172
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as ε → 0, where 0 < ηε ≪ ε, together with a constitutive relation in (13) ensuring173

that w ◦ u − v tends to zero in L1. We explain the two terms in I that have not174

appeared so far. We impose to u a Dirichlet boundary condition u0 in the Dirichlet175

part ∂DΩ of the boundary ∂Ω , while the Neumann part ∂N Ω is left free. The176

phase-field functions v and w are assumed to satisfy177

v|∂DΩ = 1, v|∂N Ω = 0, w|Q\u(Ω) = 0.178

The fact that v has to decrease to 0 at ∂N Ω forces a transition from 1 to 0, whose179

energy is, approximately, 1
2H n−1(∂N Ω). This term is a constant, and, hence, it180

does not affect the minimization problem. On the other hand, the term181

H
n−1 ({x ∈ ∂DΩ : u(x) ̸= u0(x)}) (15)182

accounts for a possible fracture at the boundary. Indeed, it is well-known that183

the traces are not continuous with respect to the weak∗ convergence in BV (see,184

for example, [1, Sect. 3.8]), so even though uε = u0 on ∂DΩ for a sequence of185

deformations uε, it is possible that its weak∗ limit u in BV does not satisfy the186

boundary condition. This phenomenon is, nevertheless, penalized energetically by187

the term (15).188

The admissible space for Iε is the set of (u, v, w) such that u ∈ W 1,p(Ω, Rn), v ∈189

W 1,q(Ω), w ∈ W 1,q(Q) satisfying the boundary conditions described above, and190

u is one-to-one almost everywhere. Moreover, u is assumed to create no sur-191

face, which is expressed as E (u) = 0. The admissible space for I is the set of192

u ∈ SBV (Ω, Rn) such that u is one-to-one almost everywhere.193

The limit passage from Iε to I is meant to be in the sense of Γ -convergence,194

but, unfortunately, in this paper we do not provide a full Γ -convergence result. The195

existence of minimizers, compactness and lower bound are indeed proved. To be196

precise, the functional Iε has a minimizer for each ε. Moreover, if (uε, vε, wε) is197

a sequence of admissible maps with supε Iε(uε, vε, wε) < ∞ then, for a subse-198

quence, there exists a one-to-one almost everywhere map u ∈ SBV (Ω, Rn) such199

that uε → u, vε → 1 and wε → χu(Ω) almost everywhere. In addition,200

I (u) ! lim inf
ε→0

Iε(uε, vε, wε).201

Proving the upper bound, however, is out of reach at the moment, since it seems that202

the construction of the recovery sequence would require, in particular, a density203

result for invertible maps, whereas only partial results are known in this direction204

(see [34–38]). This is so because the usual approach to proving a limsup inequality205

consists in first proving it for a dense subset of smooth maps and then concluding by206

density. As mentioned above, in the presence of the constraint that u is one-to-one207

almost everywhere, there are no known results of density of smooth functions that208

are useful for our analysis. There are, in fact, more difficulties that appear, such as to209

identify the set of limit functions u. We only prove that this set is contained in the set210

of u ∈ SBV (Ω, Rn) such that u is one-to-one almost everywhere, H n−1(Ju) < ∞211

and Ē (u) < ∞. Once that set was identified, another density result would be212

needed, this time of the style that piecewise smooth maps (for example, maps with213

finitely many smooth cavities and smooth cracks) are dense in the set to be identified;214
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that result would be in the spirit of that of Cortesani [39] (see also [40]) stating215

that functions that are smooth away from a polyhedral crack are dense in SBV with216

respect to Mumford–Shah energy. Instead of a full upper bound inequality, what217

we perform is a series of examples of deformations u in dimension 2 that can be218

approximated by admissible maps (uε, vε, wε) satisfying219

I (u) = lim
ε→0

Iε(uε, vε, wε).220

We have chosen the deformations u so that one creates a cavity, one creates an221

interior crack, one presents fracture at the boundary, and one exhibits coalescence,222

which is modelled as the creation of a crack joining two preexisting cavities. Those223

examples, as well as the numerical experiments of [32], allow us to believe that the224

stated functional I is indeed the Γ -limit of Iε.225

We now present the outline of this paper. In Section 2 we present the general226

notation as well as some results that will be used throughout the paper. In Section227

3 we give a geometric meaning to Ē by proving the equality228

Ē (u) = Per u(Ω) + 2 H
n−1(Ju−1). (16)229

We also show a lower semicontinuity property for this functional. In Section 4 we230

present the general assumptions for the stored energy functional W and for the231

deformations. We also define the admissible set for the functional Iε. In Section 5232

we prove the existence of minimizers for the functional Iε. Section 6 proves the233

compactness and lower bound for the convergence Iε → I . Section 7 constructs234

some examples for the upper bound.235

2. Notation and Preliminary Results236

In this section we set the general notation and concepts of the paper, and state237

some preliminary results.238

2.1. General Notation239

We will work in dimension n " 2, and Ω is a bounded open set of Rn . Vector-240

valued and matrix-valued quantities will be written in boldface. Coordinates in the241

reference configuration will be denoted by x, while coordinates in the deformed242

configuration by y.243

The closure of a set A is denoted by Ā, and its boundary by ∂ A. Given two244

sets U, V of Rn , we will write U ⊂⊂ V if U is bounded and Ū ⊂ V . The open245

ball of radius r > 0 centred at x ∈ Rn is denoted by B(x, r), the closed ball by246

B̄(x, r), while B̄( Ā, r) is the set of x′ ∈ Rn such that dist(x′, Ā) ! r . The function247

dist indicates the distance from a point to a set. Unless otherwise stated, a ball will248

always be an open ball.249

Given a square matrix A ∈ Rn×n , its transpose is denoted by AT , and its deter-250

minant by det A. Its cofactor matrix is denoted by cof A and satisfies (det A)1 =251

AT cof A, where 1 indicates the identity matrix. The inverse of A is denoted by252
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A−1. The inner product of vectors and of matrices will be denoted by ·. The Euclid-253

ean norm of a vector and its associated matrix norm are denoted by | · |. Given254

a, b ∈ Rn , we indicate by a ⊗ b ∈ Rn×n its tensor product.255

Unless otherwise stated, expressions like measurable or almost everywhere (for256

almost everywhere or almost every) refer to the Lebesgue measure in Rn , which is257

denoted by L n . The (n − 1)-dimensional Hausdorff measure will be indicated by258

H n−1. The measure H 0 is the counting measure.259

The Lebesgue L p and Sobolev W 1,p spaces are defined in the usual way. So are260

the sets of class Ck and their versions Ck
c of compact support. We do not identify261

functions that coincide with almost everywhere. We will indicate the target space, as262

in, for example, L p(Ω, Rn), except if it is R, in which case we will write L p(Ω). If263

K ⊂ Rn , we indicate by L p(Ω, K ) the set of u ∈ L p(Ω, Rn) such that u(x) ∈ K264

for almost everywhere x ∈ Ω , and analogously for other function spaces. The265

space L
p
loc(Ω) indicates the set of f : Ω → R such that f |A ∈ L p(A) for all open266

A ⊂⊂ Ω , and analogously for other function spaces.267

Strong or almost everywhere convergence is denoted with →, while weak con-268

vergence is denoted with ⇀.269

With ⟨·, ·⟩ we will indicate the duality product between a distribution and a270

smooth function. The identity function in Rn is denoted by id.271

If µ is a measure on a set U , and V is a µ-measurable subset of U , we denote272

by µ V the restriction of µ to V , which is a measure on U . The measure |µ|273

denotes the total variation of µ.274

Given two sets A, B of Rn , we write A = B almost everywhere if L n(A\B) =275

L n(B\A) = 0, and analogously when we write that A = B holds H n−1-almost276

everywhere. In particular, the expression A ⊂ B H n−1-almost everywhere means277

H n−1(A\B) = 0.278

2.2. Boundary and Perimeter279

Given a measurable set A ⊂ Ω , its characteristic function will be denoted by280

χA. Its perimeter in Ω is defined as281

Per(A,Ω) := sup

{∫

A
div g(y) dy : g ∈ C∞

c (Ω, R
n), ∥g∥∞ ! 1

}

,282

while Per A := Per(A, Rn).283

Half-spaces are denoted by284

H+(a, ν) := {x ∈ R
n : (x − a) · ν " 0}, H−(a, ν) := H+(a,−ν),285

for a given a ∈ Rn and a nonzero vector ν ∈ Rn . The set of unit vectors in Rn is286

denoted by Sn−1.287

Given a measurable set A ⊂ Rn and a point x ∈ Rn , the density of A at x is288

defined as289

D(A, x) := lim
r↘0

L n(B(x, r) ∩ A)

L n(B(x, r))
.290
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Definition 1. Let A be a measurable set of Rn . We define the reduced boundary of291

A, and denote it by ∂∗ A, as the set of points y ∈ Rn for which a unit vector ν A(y)292

exists such that293

D(A ∩ H−(y, ν A(y)), y) =
1

2
and D(A ∩ H+(y, ν A(y)), y) = 0.294

This ν A(y) is uniquely determined and is called the unit outward normal to A.295

This definition of a boundary may differ from other usual definitions, but thanks296

to Federer’s [41] theorem (see also [1, Th. 3.61] or [42, Sect. 5.6]) they ensure that297

H n−1-almost everywhere coincides with all other usual definitions of a reduced (or298

essential or measure-theoretic) boundary for sets of finite perimeter. In particular,299

if Per(A,Ω) < ∞ then Per(A,Ω) = H n−1(∂∗ A ∩ Ω).300

2.3. Approximate Differentiability and Functions of Bounded Variation301

We assume that the reader has some familiarity with the set BV of functions302

of bounded variation, and of special bounded variation SBV ; see [1], if necessary,303

for the definitions. This section is meant primarily to set some notation.304

The total variation of u ∈ L1
loc(Ω, Rn) is defined as305

V (u,Ω) := sup

{∫

Ω
u(x) · Div ϕ(x) dx : ϕ ∈ C1

c (Ω, R
n×n), |ϕ| ! 1

}

,306

where Div ϕ is the divergence of the rows of ϕ.307

The following notions are essentially due to Federer [41].308

Definition 2. Let A be a measurable set in Rn , and u : A → Rn a measurable309

function. Let x0 ∈ Rn satisfy D(A, x0) = 1, and let y0 ∈ Rn .310

(a) We will say that x0 is an approximate jump point of u if there exist a+, a− ∈ Rn
311

and ν ∈ Sn−1 such that a+ ̸= a− and312

D
({

x ∈ A ∩ H±(x0, ν) :
∣

∣u(x) − a±∣
∣ " δ

}

, x0

)

= 0313

for all δ > 0. The unit vector ν is uniquely determined up to a sign. When a314

choice of ν has been done, it is denoted by νu(x0). The points a+ and a− are315

called the lateral traces of u at x0 with respect to the νu(x0), and are denoted316

by u+(x0) and u−(x0), respectively. The set of approximate jump points of u317

is called the jump set of u, and is denoted by Ju.318

(b) We will say that u is approximately differentiable at x0 ∈ A if there exists319

L ∈ Rn×n such that320

D

({

x ∈ A\{x0} :
|u(x) − u(x0) − L(x − x0)|

|x − x0|
" δ

}

, x0

)

= 0321

for all δ > 0. In this case, L (which is uniquely determined) is called the322

approximate differential of u at x0, and will be denoted by ∇u(x0).323
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We will say that a map u : Ω → Rn is approximately differentiable almost324

everywhere when it is measurable and approximately differentiable at almost each325

point of Ω .326

If u : Ω → Rn is a function of locally bounded variation, Du denotes the distri-327

butional derivative of u, which is a Radon measure in Ω . The Calderón–Zygmund328

theorem asserts that if u is locally of bounded variation then it is approximately329

differentiable almost everywhere and ∇u coincides almost everywhere with the330

absolutely continuous part of Du.331

Lemma 1. Let u : Ω → Rn be approximately differentiable almost everywhere,332

and let E ⊂ Ω be measurable. Then χE u is approximately differentiable almost333

everywhere, and ∇(χE u) = χE∇u almost everywhere.334

Proof. As E is measurable, by Lebesgue’s theorem, almost every point in E has335

density 1 in E , and almost every point in Ω\E has density 1 in Ω\E . It is im-336

mediately possible to check that if x ∈ E satisfies D(E, x) = 1 and u is ap-337

proximately differentiable at x then χE u is approximately differentiable at x with338

∇(χE u)(x) = ∇u(x), while if x ∈ Ω\E satisfies D(Ω\E, x) = 1 then χE u is339

approximately differentiable at x with ∇(χE u)(x) = 0. ⊓5340

The following is a known result in the theory of BV functions; it is in fact a341

particular case of [1, Th. 3.84].342

Lemma 2. Let u ∈ SBV (Ω, Rn) ∩ L∞(Ω, Rn) and let E be a measurable subset343

of Ω with Per(E,Ω) < ∞. Then χE u ∈ SBV (Ω, Rn) and JχE u ⊂ (Ju ∩ E) ∪344

(∂∗E ∩ Ω)H n−1-almost everywhere.345

2.4. Area Formula and Geometric Image346

We recall the area formula of Federer [41]. The formulation is taken from [7,347

Prop. 2.6].348

Proposition 1. Let u : Ω → Rn be approximately differentiable almost every-

where, and denote the set of approximate differentiability points of u by Ωd . Then,

for any measurable set A ⊂ Ω and any measurable function ϕ : Rn → R,
∫

A
ϕ(u(x)) |det ∇u(x)| dx =

∫

Rn
ϕ(y)H

0({x ∈ Ωd ∩ A : u(x) = y}) dy,

whenever either integral exists. Moreover, if ψ : A → R is measurable and ψ̄ :
u(Ωd ∩ A) → R is given by

ψ̄(y) :=
∑

x∈Ωd∩A
u(x)=y

ψ(x),

then ψ̄ is measurable and349

∫

A
ψ(x)ϕ(u(x)) |det ∇u(x)| dx =

∫

u(Ωd∩A)
ψ̄(y)ϕ(y) dy, (17)350

whenever the integral on the left-hand side of (17) exists.351
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Γ -Convergence Approximation of Fracture and Cavitation

The area formula of Proposition 1 has given rise to the notion of the geometric352

image (or measure-theoretic image, using the expression in [7]) of a measurable set353

A ⊂ Ω under an approximately differentiable map u : Ω → Rn . This was defined354

as u(A ∩ Ωd) by Müller and Spector [7]; for technical convenience, however,355

we use the following definition, which is an adaptation of that of Conti and De356

Lellis [43].357

Definition 3. Let u : Ω → Rn be approximately differentiable almost everywhere358

and suppose that det ∇u(x) ̸= 0 for almost everywhere x ∈ Ω . Define Ω0 as the359

set of x ∈ Ω such that u is approximately differentiable at x with det ∇u(x) ̸= 0,360

and there exist w ∈ C1(Rn, Rn) and a compact set K ⊂ Ω of density 1 at x such361

that u|K = w|K and ∇u|K = Dw|K . For any measurable set A of Ω , we define362

the geometric image of A under u as u(A ∩ Ω0), and denote it by imG(u, A).363

Standard arguments, essentially due to Federer [41, Thms. 3.1.8 and 3.1.16]364

(see also [7, Prop. 2.4] and [43, Rk. 2.5]), show that the set Ω0 in Definition 3 is of365

full measure in Ω .366

2.5. Notation About Sequences367

When computing the Γ -limit of Iε in (13), we will fix a sequence of posi-368

tive numbers tending to zero, and denote it by {ε}ε. The letter ε is reserved for a369

member of the fixed sequence, so expressions like “for every ε” mean “for every370

member ε of the sequence”, and {uε}ε denotes the sequence of uε labelled by the371

sequence of ε. We will repeatedly take subsequences, which will not be relabelled.372

All convergences involving ε are understood as the sequence {ε}ε goes to zero,373

abbreviated to ε → 0. For example, in the expression uε → u it is understood that374

the convergence holds as ε → 0.375

Given two sequences {aε}ε and {bε}ε of positive numbers, we write

aε # bε when lim sup
ε→0

aε

bε
< ∞,

aε ≪ bε when lim
ε→0

aε

bε
= 0,

aε ≃ bε when lim
ε→0

aε

bε
= 1,

aε ≈ bε when aε # bε and bε # aε.

Sometimes, the sequences {aε}ε and {bε}ε will be positive functions. In this case,376

and when a domain A of definition is clear from the context, the notation aε # bε377

means378

lim sup
ε→0

sup
x∈A

aε(x)

bε(x)
< ∞,379

and analogously for the other notation.380
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2.6. Inverses of One-to-One Almost Everywhere Maps381

A function is one-to-one almost everywhere when its restriction to a set of full382

measure is one-to-one.383

In this subsection we assume that u : Ω → Rn is approximately differentiable384

almost everywhere, one-to-one almost everywhere, and det ∇u(x) ̸= 0 for almost385

everywhere x ∈ Ω . It was proved in [9, Lemma 3] that u|Ω0 is one-to-one, where386

Ω0 is the set of Definition 3.387

Definition 4. The inverse u−1 : imG(u,Ω) → Rn of u is defined as the func-388

tion that sends every y ∈ imG(u,Ω) to the only x ∈ Ω0 such that u(x) = y.389

Analogously, given any measurable subset A of Ω , we define u−1
A : Rn → Rn as390

u−1
A (y) :=

{

u−1(y) if y ∈ imG(u, A),

0 if y ∈ Rn\ imG(u, A).
391

By Proposition 1, the maps u−1 and u−1
A are measurable.392

Lemma 3. The function u−1 is approximately differentiable in imG(u,Ω) and393

∇u−1(u(x)) = (∇u(x))−1 for all x ∈ Ω0. Moreover, if A is a measurable subset394

of Ω then u−1
A is approximately differentiable almost everywhere and395

∇u−1
A (y) =

{

∇u−1(y) for almost everywhere y ∈ imG(u, A),

0 for almost everywhere y ∈ Rn\ imG(u, A).
396

The first part of Lemma 3 was proved in [9, Th. 2], while the second part is a397

consequence of Lemma 1.398

2.7. Weak Convergence of Products and Minors399

We will frequently use the following convergence result, whose proof can be400

found, for example, in [44, Lemma 6.7].401

Lemma 4. For each j ∈ N, let f j , f ∈ L∞(Ω) and g j , g ∈ L1(Ω) satisfy402

f j → f almost everywhere and g j ⇀ g in L1(Ω) as j → ∞.403

Assume that sup j∈N ∥ f j∥L∞(Ω) < ∞. Then404

f j g j ⇀ f g in L1(Ω) as j → ∞.405

We denote by R
n×n
+ the set of F ∈ Rn×n such that det F > 0. Let τ = τ (n) be406

the number of minors (subdeterminants) of a matrix in Rn×n . Given F ∈ Rn×n , let407

µ0(F) ∈ Rτ−1 be the vector composed, in a given order, by all minors of F except408

the determinant, and µ(F) ∈ Rτ is defined as µ(F) := (µ0(F), det F). We denote409

by Rτ
+ the set of vectors in Rτ whose last component is positive.410

The following result on the weak continuity of minors is well known and can411

be proved as in Ambrosio [45, Cor. 4.9] (see also [1, Cor. 5.31]).412
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Γ -Convergence Approximation of Fracture and Cavitation

Lemma 5. For each j ∈ N, let u j , u ∈ SBV (Ω, Rn) be such that the sequences413

{∥∇u j∥Ln−1(Ω,Rn×n)} j∈N and {H n−1(Ju j )} j∈N are bounded. Assume that u j → u414

in L1(Ω, Rn) as j → ∞, and the sequence {cof ∇u j } j∈N is equi-integrable. Then415

µ0(∇u j ) ⇀ µ0(∇u) in L1(Ω, R
τ−1) as j → ∞.416

2.8. Slicing417

We will use the following slicing notation.418

Definition 5. For every ξ ∈ Sn−1 let Πξ be the linear subspace of Rn orthogonal419

to ξ . For B ⊂ Rn , let Bξ be the orthogonal projection of B on Πξ . For every420

x′ ∈ Πξ define Bξ ,x′
:= {t ∈ R : x′ + tξ ∈ B}. If f : B → R and x′ ∈ Bξ , let421

f ξ ,x′
: Bξ ,x′

→ R be defined by f ξ ,x′
(t) := f (x′ + tξ).422

Proposition 2. Suppose that u ∈ L∞(Ω) satisfies that for all ξ ∈ Sn−1,423

(i) uξ ,x′
∈ SBV (Ωξ ,x′

) for almost everywhere x′ ∈ Ωξ , and424

(ii)

∫

Ωξ

[∫

Ωξ ,x′
|∇uξ ,x′

| dt + H
0(Juξ ,x′ )

]

dH
n−1(x′) < ∞.425

Then u ∈ SBV (Ω),H n−1(Ju) < ∞, and for all ξ ∈ Sn−1, the following asser-426

tions hold:427

(a) ∇u(x′ + tξ) ·ξ = ∇uξ ,x′
(t), for H n−1-almost everywhere x′ ∈ Ωξ and almost428

everywhere t ∈ Ωξ ,x′
.429

(b) The normal νu : Ju → Sn−1 satisfies430

∫

Ju

|νu · ξ | dH
n−1 =

∫

Ωξ
H

0(Juξ ,x′ ) dH
n−1(x′).431

(c) For any H n−1-rectifiable subset A of ∂Ω ,432

∫

A
|ν · ξ | dH

n−1 =
∫

Aξ
H

0(Aξ ,x′
) dH

n−1(x′).433

(d) For any p " 1, any v ∈ C(Ω̄) with v " 0 and any measurable set A ⊂ Ω ,
∫

Ωξ

∫

Aξ ,x′
vξ ,x′

|∇uξ ,x′
|p dt dH

n−1(x′) !
∫

A
v |∇u|p dx and

∫

Ωξ

∫

Aξ ,x′
vξ ,x′

dt dH
n−1(x′) =

∫

A
v dx.

(e) For any set E ⊂ Ω with Per(E,Ω) < ∞,434

∫

Ωξ
H

0(∂∗Eξ ,x′
∩ Ωξ ,x′

) dH
n−1(x′) ! H

n−1(∂∗E ∩ Ω).435

Proof. Part (c) is proved in [41, Th. 3.2.22]. Part (d) is a consequence of (a) and436

Fubini’s theorem, and part (e) is a consequence of (c). The remaining parts are437

proved, for example, in [46, Th. 3.3] or in [47, Sect. 3] or in [1, Sect. 3.11] (in438

particular Remark 3.104 and Thm. 3.108). ⊓5439
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2.9. Coarea Formula440

We will use the coarea formula in the following two versions (see, for example,441

[1, Thms. 2.93 and 3.40] or [48, Th. 1.3.2 and Sect. 4.1.1.5]).442

Proposition 3. Let f ∈ L∞(R) be Borel measurable.443

(a) If u : Ω → R is Lipschitz then444

∫

Ω
f (u(x)) |Du(x)| dx =

∫ ∞

−∞
f (t)H

n−1({x ∈ Ω : u(x) = t}) dt. (18)445

(b) If u ∈ W 1,1(Ω) is continuous then446

∫

Ω
f (u(x)) |Du(x)| dx =

∫ ∞

−∞
f (t) Per({x ∈ Ω : u(x) < t},Ω) dt

=
∫ ∞

−∞
f (t) Per({x ∈ Ω : u(x) > t},Ω) dt.

(19)447

3. Representation of the Surface Energy Functional448

In this section we prove the representation formula (16) and a lower semicon-449

tinuity result for Ē . Recall from the Introduction that, given a map u : Ω → Rn
450

approximately differentiable almost everywhere such that det ∇u ∈ L1(Ω) and451

cof ∇u ∈ L1(Ω, Rn×n), we define, for each f ∈ C∞
c (Ω̄ × Rn, Rn), the quantities452

(5), (4) and (8). In Equation (5), Dxf(x, y) denotes the derivative of f(·, y) evaluated453

at x, while div always denotes the divergence operator in the deformed configura-454

tion, so div f(x, y) is the divergence of f(x, ·) evaluated at y. Note, in addition, that455

a function in C∞
c (Ω̄ × Rn, Rn) does not need to vanish in ∂Ω × Rn , as opposed456

to a function in C∞
c (Ω × Rn, Rn).457

The functional E was introduced in [8] to measure the creation of new surface458

of a deformation. The functional Ē is new, and its difference with respect to E459

is that Ē also takes into account what happens on ∂Ω , and, in particular, it also460

measures the stretching of ∂Ω by u.461

It was shown in [9, Th. 2] that the inequality E (u) < ∞ implies that suitable462

truncations of u−1 (see Definition 4) are in SBV . The adaptation of that result is463

as follows.464

Proposition 4. Let u ∈ L∞(Ω, Rn) be approximately differentiable almost every-465

where, one-to-one almost everywhere, and such that det ∇u > 0 almost everywhere,466

cof ∇u ∈ L1(Ω, Rn×n) and Ē (u) < ∞. Then u−1
Ω ∈ SBV (Rn, Rn).467

Proof. As a consequence of Proposition 1, we have that det ∇u ∈ L1(Ω), since468

u ∈ L∞(Ω, Rn).469

In order to calculate the total variation of u−1
Ω , fix α ∈ {1, . . . , n}, denote470

by vα the α-th component of u−1
Ω , and notice that vα ∈ L∞(Rn). For each ϕ ∈471

C∞
c (Rn, Rn) with ∥ϕ∥∞ ! 1 we have, thanks to Proposition 1,472

∫

Rn
vα(y) div ϕ(y) dy =

∫

Ω
xα div ϕ(u(x)) det ∇u(x) dx. (20)473
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Γ -Convergence Approximation of Fracture and Cavitation

Let eα denote the α-th vector of the canonical basis of Rn . When we define fα ∈474

C∞
c (Ω̄ × Rn, Rn) as475

fα(x, y) := xα ϕ(y),476

we have that477

E (u, fα) =
∫

Ω

[

cof ∇u(x) · (ϕ(u(x)) ⊗ eα) + xα div ϕ(u(x)) det ∇u(x)
]

dx,478

hence, by (20) we find that479

∣

∣

∣

∣

∫

Rn
vα(y) div ϕ(y) dy

∣

∣

∣

∣

! Ē (u) ∥id∥L∞(Ω,Rn) + ∥cof ∇u∥L1(Ω,Rn×n) .480

This shows that vα has finite total variation, and, hence u−1
Ω ∈ BV (Rn, Rn).481

Fix a bounded open set Q such that imG(u,Ω) ⊂⊂ Q. Let g ∈ C∞
c (Rn) have482

support in Q and satisfy ∥g∥∞ ! 1, consider ψ ∈ C1(R) ∩ W 1,∞(R) and fix483

α ∈ {1, . . . , n}.484

When we define f ∈ C∞
c (Ω̄ × Rn, Rn) as485

f(x, y) := (ψ(xα) − ψ(0)) g(y),486

we have that, thanks to Lemma 3, for almost everywhere x ∈ Ω and all y ∈ Rn ,

Dxf(x, y) · cof ∇u(x) =
(

g(y) ⊗ ψ ′(xα) eα

)

· cof ∇u(x)

= ψ ′(xα) (cof ∇u(x) eα) · g(y)

= det ∇u(x)ψ ′(xα)
(

(∇u−1(u(x)))T eα

)

· g(y)

= det ∇u(x)ψ ′(xα)∇vα(u(x)) · g(y)

and487

div f(x, y) = (ψ(xα) − ψ(0)) div g(y),488

so, thanks to Proposition 1,

E (u, f)

=
∫

Ω
det ∇u(x)

[

ψ ′(xα)∇vα(u(x)) · g(u(x))+(ψ(xα)−ψ(0)) div g(u(x))
]

dx

=
∫

imG(u,Ω)

[

ψ ′(vα(y))∇vα(y) · g(y) + ψ(vα(y)) div g(y)
]

dy

− ψ(0)

∫

imG(u,Ω)
div g(y) dy.
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On the other hand, using Lemma 1,

⟨D(ψ ◦ vα|Q) − ψ ′ ◦ vα ∇vα L
n Q, g|Q⟩

= −
∫

Q

[

ψ(vα(y)) div g(y) + ψ ′(vα(y))∇vα(y) · g(y)
]

dy

= −
∫

imG(u,Ω)

[

ψ(vα(y)) div g(y) + ψ ′(vα(y))∇vα(y) · g(y)
]

dy

− ψ(0)

∫

Q\ imG(u,Ω)
div g(y) dy.

Summing the last two expressions and using the divergence theorem, we obtain489

that490

E (u, f)+⟨D(ψ ◦ vα|Q)−ψ ′ ◦ vα ∇vα L
n Q, g|Q⟩=−ψ(0)

∫

Q
div g(y) dy=0.491

Therefore,
∣

∣⟨D(ψ ◦ vα|Q) − ψ ′ ◦ vα ∇vα L
n Q, g|Q⟩

∣

∣ ! Ē (u) ∥f∥L∞(Ω̄×Rn ,Rn)

! Ē (u) sup
x∈Ω̄

|ψ(xα) − ψ(0)|

! Ē (u) sup
t,s∈R

|ψ(t) − ψ(s)| .

By the characterization of SBV given in [1, Prop. 4.12], this implies that vα|Q ∈492

SBV (Q). As vα is zero outside Q and in a neigbourhood of ∂ Q, we have that493

vα ∈ SBV (Rn), and, hence u−1
Ω ∈ SBV (Rn, Rn). ⊓5494

The following is a representation result for Ē . We follow the proof of [9, Th.495

3], which showed an analogous statement for the surface energy E .496

Theorem 1. Let Ω be a bounded Lipschitz domain satisfying 0 /∈ Ω̄ . Let u ∈497

L∞(Ω, Rn) be approximately differentiable almost everywhere with cof ∇u ∈498

L1(Ω, Rn×n). Suppose that there exists a measurable subset A of Ω such that499

(a) u|Ω\A = 0.500

(b) u|A is one-to-one almost everywhere.501

(c) det ∇u > 0 almost everywhere in A.502

(d) u−1
A ∈ SBV (Rn, Rn).503

Then imG(u, A) has finite perimeter, for any f ∈ C∞
c (Ω̄ × Rn, Rn) we have that504

E (u, f)505

=
∫

J
(u|A)−1

[

f
(

((u|A)−1)−(y), y
)

−f
(

((u|A)−1)+(y), y
)

]

· ν(u|A)−1(y) dH
n−1(y)506

+
∫

∂∗ imG(u,A)
f
(

((u|A)−1)−(y), y
)

· νimG(u,A)(y) dH
n−1(y), (21)507

and508

Ē (u) = Per imG(u, A) + 2 H
n−1(J(u|A)−1). (22)509
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Γ -Convergence Approximation of Fracture and Cavitation

Proof. As in Proposition 4, we have that det ∇u ∈ L1(Ω), since u ∈ L∞(Ω, Rn).510

Assumption (d) and the chain rule in BV (see [49, Prop. 1.2] or [1, Th. 3.96])511

show that |u−1
A | ∈ BV (Rn), so, as a particular case of the coarea formula for BV512

functions (see, for example, [1, Th. 3.40]), almost all superlevel sets of |u−1
A | have513

finite perimeter. Since for each 0 ! t < infx∈Ω |x| we have514

{

y ∈ R
n : |u−1

A (y)| > t
}

= imG(u, A),515

we conclude that516

Per imG(u, A) < ∞. (23)517

In this proof, given B ⊂ Rn and a function h : B → Rn , we define the function518

h ◃▹ id : B × R
n → R

n × R
n, (h ◃▹ id)(y1, y2) := (h(y1), y2).519

Let f ∈ C∞
c ((Ω̄ ∪ {0})×Rn, Rn). As the image of u−1

A is contained in Ω ∪ {0},520

the function f ◦ (u−1
A ◃▹ id) is well defined; moreover, thanks to assumption (d)521

and the chain rule in BV , it belongs to SBV (Rn, Rn), and522

∇
(

f ◦ (u−1
A ◃▹ id)

)

= Dxf ◦
(

u−1
A ◃▹ id

)

∇u−1
A + Dyf ◦

(

u−1
A ◃▹ id

)

,

D j
(

f ◦ (u−1
A ◃▹ id)

)

=
[

f ◦
(

(u−1
A )+ ◃▹ id

)

− f ◦
(

(u−1
A )− ◃▹ id

)]

⊗ νu−1
A

H
n−1 Ju−1

A
,

(24)523

where we have used the trivial identities524

Ju−1
A ◃▹id = Ju−1

A
, νu−1

A ◃▹id = νu−1
A

,
(

u−1
A ◃▹ id

)±
=
(

u−1
A

)±
◃▹ id525

and the notation D j represents the jump part of the derivative (see, for example,526

[1, Def. 3.91]). It is easy to check through the definitions and property (23) that the527

following equalities hold up to H n−1-null sets:528

Ju−1
A

= J(u|A)−1 ∪ ∂∗ imG(u, A), J(u|A)−1 ∩ ∂∗ imG(u, A) = ∅,

νu−1
A

=

{

ν(u|A)−1 in J(u|A)−1 ,

νimG(u,A) in ∂∗ imG(u, A),

(u−1
A )+ =

{

((u|A)−1)+ in J(u|A)−1 ,

0 in ∂∗ imG(u, A),
(u−1

A )− = ((u|A)−1)−.

(25)529

Let η ∈ C∞
c (Rn). On the one hand, we have that530

⟨D
(

f ◦ (u−1
A ◃▹ id)

)

, η 1⟩ = −
∫

Rn

(

f ◦ (u−1
A ◃▹ id)

)

· div(η1) dy

= −
∫

Rn
f(u−1

A (y), y) · Dη(y) dy,

(26)531
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whereas using (24) we find that532

⟨D
(

f ◦ (u−1
A ◃▹ id)

)

, η 1⟩

=
∫

Rn

[

∇u−1
A (y)T · Dxf(u−1

A (y), y) + div f(u−1
A (y), y)

]

η(y) dy

+
∫

J
u−1

A

[

f
(

(u−1
A )+(y), y

)

− f
(

(u−1
A )−(y), y

)

]

· νu−1
A

(y) η(y) dH
n−1(y).

(27)

533

Recall that div denotes the divergence operator in the deformed configuration, that534

is, with respect to the y variables. If η is chosen so that η = 1 in a neigbourhood of535

imG(u, A), equalities (26) and (27) read, respectively, as536

⟨D
(

f ◦ (u−1
A ◃▹ id)

)

, η 1⟩ = −
∫

Rn\ imG(u,A)
f(0, y) · Dη(y) dy, (28)537

and538

⟨D
(

f ◦ (u−1
A ◃▹ id)

)

, η 1⟩539

=
∫

Rn\ imG(u,A)
div f(0, y) η(y) dy540

+
∫

imG(u,A)

[

∇u−1
A (y)T · Dxf(u−1

A (y), y) + div f(u−1
A (y), y)

]

dy541

+
∫

J
u−1

A

[

f
(

(u−1
A )+(y), y

)

− f
(

(u−1
A )−(y), y

)

]

· νu−1
A

(y) dH
n−1(y), (29)542

where we have used that Ju−1
A

⊂ imG(u, A) as well as Lemma 3. Now, the diver-543

gence theorem for sets of finite perimeter shows that544

∫

Rn\ imG(u,A)

[

f(0, y) · Dη(y) + div f(0, y) η(y)
]

dy545

= −
∫

∂∗ imG(u,A)
f(0, y) · νimG(u,A)(y) dH

n−1(y). (30)546

Comparing (28), (29) and (30), we find that547

∫

∂∗ imG(u,A)
f(0, y) · νimG(u,A)(y) dH

n−1(y)548

=
∫

imG(u,A)

[

∇u−1
A (y)T · Dxf(u−1

A (y), y) + div f(u−1
A (y), y)

]

dy549

+
∫

J
u−1

A

[

f
(

(u−1
A )+(y), y

)

− f
(

(u−1
A )−(y), y

)

]

· νu−1
A

(y) dH
n−1(y), (31)550
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Γ -Convergence Approximation of Fracture and Cavitation

Using identities (25) we obtain that, in fact,551

∫

J
u−1

A

[

f
(

(u−1
A )−(y), y

)

− f
(

(u−1
A )+(y), y

)

]

· νu−1
A

(y) dH
n−1(y)

=
∫

J
(u|A)−1

[

f
(

((u|A)−1)−(y), y
)

−f
(

((u|A)−1)+(y), y
)

]

· ν(u|A)−1(y) dH
n−1(y)

+
∫

∂∗ imG(u,A)

[

f
(

((u|A)−1)−(y), y
)

− f
(

0, y
)

]

· νimG(u,A)(y) dH
n−1(y).

(32)

552

Equalities (31) and (32), together with Lemmas 1 and 3, thus yield553

∫

imG(u,A)

[

∇(u|A)−1(y)T · Dxf((u|A)−1(y), y) + div f((u|A)−1(y), y)
]

dy

=
∫

J
(u|A)−1

[

f
(

((u|A)−1)−(y), y
)

−f
(

((u|A)−1)+(y), y
)

]

· ν(u|A)−1(y) dH
n−1(y)

+
∫

∂∗ imG(u,A)
f
(

((u|A)−1)−(y), y
)

· νimG(u,A)(y) dH
n−1(y).

(33)

554

Now we use assumption (a), Proposition 1 and equality (33) to find that555

∫

Ω
[cof ∇u(x) · Dxf(x, u(x)) + det ∇u(x) div f(x, u(x))] dx

=
∫

A
[cof ∇u(x) · Dxf(x, u(x)) + det ∇u(x) div f(x, u(x))] dx

=
∫

imG(u,A)

[

∇(u|A)−1(y)T · Dxf((u|A)−1(y), y) + div f((u|A)−1(y), y)
]

dy

=
∫

J
(u|A)−1

[

f
(

((u|A)−1)−(y), y
)

−f
(

((u|A)−1)+(y), y
)

]

· ν(u|A)−1(y) dH
n−1(y)

+
∫

∂∗ imG(u,A)
f
(

((u|A)−1)−(y), y
)

· νimG(u,A)(y) dH
n−1(y).

(34)

556

Expression (34) is independent of the value of f at 0. Therefore, for any f ∈557

C∞
c (Ω̄ × Rn, Rn), equality (21) holds. Consequently,558

Ē (u) ! Per imG(u, A) + 2 H
n−1(J(u|A)−1). (35)559

In particular, Equation (22) holds if Ē (u) = ∞. Suppose, then, that Ē (u) < ∞.560

By Riesz’ representation theorem, there exists an Rn-valued Borel measure Λ in561

Ω̄ × Rn such that562

|Λ|(Ω̄ × R
n) = Ē (u) (36)563
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and564

E (u, f) =
∫

Ω̄×Rn
f(x, y) · dΛ(x, y), f ∈ C∞

c (Ω̄ × R
n, R

n). (37)565

Assumption (d) implies that the set Ju−1
A

is σ -finite with respect to H n−1. Let566

F ⊂ Ju−1
A

be a Borel set such that H n−1(F) < ∞, and consider the Rn-valued567

measure568

λF :=
(

((u|A)−1)− ◃▹ id
)

♯

(

νimG(u,A)H
n−1 (∂∗ imG(u, A) ∩ F)

)

569

+
[

(

((u|A)−1)− ◃▹ id
)

♯
−
(

((u|A)−1)+ ◃▹ id
)

♯

]

570

×
(

ν(u|A)−1H
n−1 (J(u|A)−1 ∩ F)

)

. (38)571

Here, the operator ♯ denotes the push-forward of a measure (see, for example, [1,572

Def. 1.70]). By definition of lateral traces,573

(

((u|A)−1)− ◃▹ id
)

(imG(u, A)) ∩
(

((u|A)−1)+ ◃▹ id
)

(imG(u, A)) = ∅, (39)574

whereas the definition of jump set yields that any point in J(u|A)−1 has density one575

in imG(u, A), hence576

H
n−1
(

J(u|A)−1 ∩ ∂∗ imG(u, A)
)

= 0. (40)577

Using (39) and (40), it is easy to check, by the definition of total variation of a
measure (see, for example, [1, Def. 1.4]), that

|λF | =
∣

∣

∣

∣

(

((u|A)−1)− ◃▹ id
)

♯

(

νimG(u,A)H
n−1 (∂∗ imG(u, A) ∩ F)

)

∣

∣

∣

∣

+
∣

∣

∣

∣

(

((u|A)−1)− ◃▹ id
)

♯

(

ν(u|A)−1H
n−1 (J(u|A)−1 ∩ F)

)

∣

∣

∣

∣

+
∣

∣

∣

∣

(

((u|A)−1)+ ◃▹ id
)

♯

(

ν(u|A)−1H
n−1 (J(u|A)−1 ∩ F)

)

∣

∣

∣

∣

.

In fact, by [49, Lemma 1.3] and [1, Prop. 1.23],

|λF | =
(

((u|A)−1)− ◃▹ id
)

♯

(

H
n−1 (∂∗ imG(u, A) ∩ F)

)

+
(

((u|A)−1)− ◃▹ id
)

♯

(

H
n−1 (J(u|A)−1 ∩ F)

)

+
(

((u|A)−1)+ ◃▹ id
)

♯

(

H
n−1 (J(u|A)−1 ∩ F)

)

.

Thus, on the one hand,578

|λF |
(

Ω̄ × R
n
)

= H
n−1
({

y ∈ ∂∗ imG(u, A) ∩ F : ((u|A)−1)−(y) ∈ Ω̄
})

579

+H
n−1
({

y ∈ J(u|A)−1 ∩ F : ((u|A)−1)−(y) ∈ Ω̄
})

580

+H
n−1
({

y ∈ J(u|A)−1 ∩ F : ((u|A)−1)+(y) ∈ Ω̄
})

581

= H
n−1
(

∂∗ imG(u, A) ∩ F
)

+ 2 H
n−1
(

J(u|A)−1 ∩ F
)

. (41)582
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Γ -Convergence Approximation of Fracture and Cavitation

On the other hand, equalities (21) and (37) together with a standard approximation583

argument based on Lusin’s theorem, show that the equality584

∫

Ω̄×Rn
φ(x) g(y) · dΛ(x, y)585

=
∫

∂∗ imG(u,A)
φ(((u|A)−1)−(y)) g(y) · νimG(u,A)(y) dH

n−1(y)586

+
∫

J
(u|A)−1

[

φ(((u|A)−1)−(y)) − φ(((u|A)−1)+(y))
]

g(y)587

× · ν(u|A)−1(y) dH
n−1(y) (42)588

is valid for any φ ∈ C∞(Ω̄) and any bounded Borel function g : Rn → Rn . Let
now φ ∈ C∞(Ω̄) and g ∈ Cc(R

n), and apply (42) to φ and gχF so as to obtain
∫

Ω̄×F
φ(x) g(y) · dΛ(x, y)

=
∫

∂∗ imG(u,A)∩F
φ(((u|A)−1)−(y)) g(y) · νimG(u,A)(y) dH

n−1(y)

+
∫

J
(u|A)−1∩F

[

φ(((u|A)−1)−(y)) − φ(((u|A)−1)+(y))
]

g(y)

× ·ν(u|A)−1(y) dH
n−1(y),

which, together with (38), yields589

∫

Ω̄×F
φ(x) g(y) · dΛ(x, y) =

∫

Ω̄×Rn
φ(x) g(y) · dλF (x, y). (43)590

Using that the set of sums of functions the form591

φ(x) g(y) with φ ∈ C∞(Ω̄) and g ∈ Cc(R
n)592

is dense in Cc(Ω̄ × Rn, Rn), we conclude from (43) that593

∫

Ω̄×F
f(x, y) · dΛ(x, y) =

∫

Ω̄×Rn
f(x, y) · dλF (x, y)594

holds true for all f ∈ Cc(Ω̄ × Rn, Rn). By Riesz’ representation theorem, this595

shows that Λ (Ω̄ × F) = λF . By virtue of (41), we obtain that596

|Λ| (Ω̄ × F) = H
n−1
(

∂∗ imG(u, A) ∩ F
)

+ 2 H
n−1
(

J(u|A)−1 ∩ F
)

,597

so, in particular,598

|Λ| (Ω̄ × R
n) " H

n−1
(

∂∗ imG(u, A) ∩ F
)

+ 2 H
n−1
(

J(u|A)−1 ∩ F
)

.599

As Ju−1
A

is σ -finite with respect to H n−1, we conclude that600

|Λ| (Ω̄ × R
n) " H

n−1
(

∂∗ imG(u, A)
)

+ 2 H
n−1
(

J(u|A)−1

)

,601

but Equations (35) and (36) show that, in fact, equality (22) holds. ⊓5602
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As in [8, Prop. 4], one can easily prove formulas (21) and (22) for functions u603

that are diffeomorphisms outside finitely many smooth cavities and cracks.604

The following is a lower semicontinuity result for Ē and will represent a key605

step in the proof of the compactness and lower bound result for the Γ -convergence606

of Iε (see (13)) to be proved in Section 6. Its proof is an adaptation of those of [8,607

Thms. 2 and 3].608

Theorem 2. Let Ω be a bounded Lipschitz domain satisfying 0 /∈ Ω̄ . For each ε,609

let uε : Ω → Rn be approximately differentiable almost everywhere, and let Fε be610

a measurable subset of Ω such that611

(a) cof ∇uε ∈ L1(Fε, Rn×n) and det ∇uε ∈ L1(Fε).612

(b) L n(Fε) → L n(Ω).613

(c) uε|Fε is one-to-one almost everywhere.614

(d) det ∇uε > 0 almost everywhere in Fε.615

(e) u−1
ε,Fε

∈ SBV (Rn, Rn).616

(f) supε

[

Per imG(uε, Fε) + H n−1(J(uε |Fε )−1)
]

< ∞.617

(g) There exists θ ∈ L1(Ω) with θ > 0 almost everywhere such that χFε det ∇uε ⇀618

θ in L1(Ω).619

(h) {uε}ε is equi-integrable.620

(i) There exists a map u : Ω → Rn approximately differentiable almost every-621

where such that uε → u almost everywhere.622

(j) χFε cof ∇uε ⇀ cof ∇u in L1(Ω, Rn×n).623

Then θ = det ∇u almost everywhere, u is one-to-one almost everywhere,624

χimG(uε,Fε) → χimG(u,Ω) in L1(Rn) and625

Per imG(u,Ω) + 2 H
n−1(Ju−1)626

! lim inf
ε→0

[

Per imG(uε, Fε) + 2 H
n−1(J(uε |Fε )−1)

]

. (44)627

Proof. As supε Per imG(uε, Fε) < ∞, there exists a measurable set V ⊂ Rn such628

that, for a subsequence, imG(uε, Fε) → V in L1
loc(R

n). We will see that, in fact,629

there is no need of taking a subsequence.630

Let ϕ ∈ Cc(R
n). By Proposition 1, for all ε,631

∫

imG(uε,Fε)
ϕ(y) dy =

∫

Fε

ϕ(uε(x)) det ∇uε(x) dx.632

Letting ε → 0 and using assumption (g) and Lemma 4, we obtain633

∫

Rn
ϕ(y)χV (y) dy =

∫

Ω
ϕ(u(x)) θ(x) dx. (45)634

A standard approximation procedure using Lusin’s theorem shows that (45) holds635

true for any bounded Borel function ϕ : Rn → R.636

Now we show that det ∇u(x) ̸= 0 for almost everywhere x ∈ Ω . Let Ωd be the637

set of approximate differentiability points of u, and let Z be the set of x ∈ Ωd such638

that det ∇u(x) = 0. As a consequence of Proposition 1, we find thatL n(u(Z)) = 0.639
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Γ -Convergence Approximation of Fracture and Cavitation

Thus, there exists a Borel set U containing u(Z) such that L n(U ) = 0. Applying640

(45) with ϕ = χU , we obtain that641

0 !
∫

Z
θ dx !

∫

Ω
χU (u(x)) θ(x) dx = L

n(U ∩ V ) ! L
n(U ) = 0,642

and, since θ > 0 almost everywhere, we conclude that L n(Z) = 0.643

Define Ω1 as the set of x ∈ Ωd such that det ∇u(x) ̸= 0 and θ(x) > 0. We644

have just shown that Ω1 has full measure in Ω . The function ψ̃ : Rn → R defined645

by646

ψ̃(y) :=
∑

x∈Ω1
u(x)=y

θ(x)

| det ∇u(x)|
, y ∈ R

n
647

satisfies that ψ̃ > 0 in u(Ω1), ψ̃ = 0 in Rn\u(Ω1) and, thanks to Proposition 1,648

for any bounded Borel function ϕ : Rn → R,649

∫

Ω
ϕ(u(x)) θ(x) dx =

∫

Rn
ϕ(y) ψ̃(y)χimG(u,Ω)(y) dy. (46)650

Equalities (45) and (46) show that χV = ψ̃χimG(u,Ω) almost everywhere. Since ψ̃ >651

0 in u(Ω1), necessarily V = imG(u,Ω) almost everywhere and ψ̃ = χimG(u,Ω)652

almost everywhere. Moreover, imG(uε, Fε) → imG(u,Ω) in L1
loc(R

n) for the653

whole sequence ε.654

Define ũε := χFε uε. Assumptions (b) and (h) yield (ũε−uε) → 0 in L1(Ω, Rn),655

and, hence, for a subsequence, the convergence also holds almost everywhere, so,656

thanks to assumption (i), ũε → u almost everywhere. For each f ∈ C∞
c (Ω̄ ×657

Rn, Rn), thanks to assumptions (g) and (j), and Lemma 4, one has658

lim
ε→0

E (ũε, f) =
∫

Ω
[cof ∇u(x) · Dxf(x, u(x)) + θ(x) div f(x, u(x))] dx.659

Since E (ũε, f) ! Ē (ũε)∥f∥∞ for each ε, thanks to Theorem 1 and assumption (f),660

the linear functional Λ : C∞
c (Ω̄ × Rn, Rn) → R given by661

Λ(f) :=
∫

Ω
[cof ∇u(x) · Dxf(x, u(x)) + θ(x) div f(x, u(x))] dx662

satisfies663

|Λ(f)| ! lim inf
ε→0

Ē (ũε) ∥f∥∞ , f ∈ C∞
c (Ω̄ × R

n, R
n).664

By Riesz’ representation theorem, we obtain that Λ can be identified with an Rn-665

valued measure in Ω̄ × Rn . At this point, one can repeat the proof of [8, Th.666

3] and conclude that θ = det ∇u almost everywhere. In particular, for each f ∈667

C∞
c (Ω̄ × Rn, Rn), we have that E (ũε, f) → E (u, f), so taking suprema we obtain668

that Ē (u) ! lim infε→0 Ē (ũε), and we conclude assertion (44) thanks to Theorem669

1 and Proposition 4.670

The fact that θ = det ∇u almost everywhere shows that ψ̃(y) = H 0({x ∈671

Ω1 : u(x) = y}) for almost everywhere y ∈ Rn . Using now that ψ̃ = χimG(u,Ω)672

almost everywhere, we infer that u is one-to-one almost everywhere. ⊓5673
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Ω1

Ω

∂DΩ

∂NΩ

Fig. 1. Ω is coloured in grey, and Ω1 is the union of the grey and light-grey parts

The list of assumptions of Theorem 2 may look artificial, but we will see in674

Section 6 that they are naturally satisfied for a truncation of the maps uε generating675

a minimizing sequence for the functional Iε of (13).676

4. General Assumptions for the Approximated Energy677

In this section we present the admissible set for the functional Iε of (13). We678

also list the general assumptions for the stored energy function W .679

The reference configuration of the body is represented by a bounded domain Ω680

of Rn . We distinguish the Dirichlet part ∂DΩ of the boundary ∂Ω , where the de-681

formation is prescribed, and the Neumann part ∂N Ω := ∂Ω\∂DΩ . We impose that682

both ∂DΩ and ∂N Ω are closed. We assume that ∂DΩ is non-empty and Lipschitz;683

in particular, H n−1(∂DΩ) > 0. Moreover, we suppose that there exists an open set684

Ω1 ⊂ Rn such that Ω ∪ ∂DΩ ⊂ Ω1 and ∂N Ω ⊂ ∂Ω1. A typical configuration is685

shown in Fig. 1. We will also need sets K ⊂ Q ⊂ Rn in the deformed configuration686

such that Q is open and K is compact.687

Recall the notation for minors from Section 2.7. The assumptions for the func-688

tion W : Ω × K × R
n×n
+ → R are the following:689

(W1) There exists W̃ : Ω × K × Rτ
+ → R such that the function W̃ (·, y, ξ ) is690

measurable for every (y, ξ) ∈ K ×Rτ
+, the function W̃ (x, ·, ·) is continuous691

for almost everywhere x ∈ Ω , the function W̃ (x, y, ·) is convex for almost692

everywhere x ∈ Ω and every y ∈ K , and693

W (x, y, F) = W̃ (x, y,µ(F)) for almost everywhere x ∈ Ω694

and all (y, F) ∈ K × R
n×n
+ .695

(W2) There exist a constant c > 0, an exponent p " n − 1, an increasing function696

h1 : (0,∞) → [0,∞) and a convex function h2 : (0,∞) → [0,∞) such697

that698

lim
t→∞

h1(t)

t
= lim

t→∞

h2(t)

t
= lim

t→0+
h2(t) = ∞699

and700

W (x, y, F) " c |F|p + h1(| cof F|) + h2(det F)701

for almost everywhere x ∈ Ω , all y ∈ K and all F ∈ R
n×n
+ .702
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Γ -Convergence Approximation of Fracture and Cavitation

Assumptions (W1)–(W2) are the usual ones in nonlinear elasticity (see, for703

example, [50,51]), in which W is assumed to be polyconvex and blows up when704

the determinant of the deformation gradients goes to zero. However, the growth705

conditions are slow enough to allow for cavitation (see, for example, [7,8,10,44]):706

this is why p is only required to be greater than or equal to n − 1, and h1 is only707

required to be superlinear at infinity. We also remark that the dependence of W on708

y is not physical, but we have included it for the sake of generality, since it does709

not affect the mathematical analysis.710

Given parameters λ1, λ2, ε, η, b > 0, an exponent q > n and functions u ∈711

W 1,p(Ω, K ), v ∈ W 1,q(Ω, [0, 1]), w ∈ W 1,q(Q, [0, 1]), we define the approxi-712

mated energy as713

I (u, v, w) :=
∫

Ω
(v(x)2 + η) W (x, u(x), Du(x)) dx714

+λ1

∫

Ω

[

εq−1 |Dv(x)|q

q
+

(1 − v(x))q ′

q ′ε

]

dx715

+6 λ2

∫

Q

[

εq−1 |Dw(y)|q

q
+

w(y)q ′
(1 − w(y))q ′

q ′ε

]

dy. (47)716

We assume the existence of a bi-Lipschitz homeomorphism u0 : Ω1 → K such717

that det Du0 > 0 almost everywhere and718

∫

Ω
W (x, u0(x), Du0(x)) dx < ∞. (48)719

Note that imG(u0,Ω) is open, as it coincides with u0(Ω). Moreover, E (u0) = 0720

(see, for example, [8, Sect. 4]).721

We define A E as the set of u ∈ W 1,p(Ω, K ) such that722

u = u0 on ∂DΩ, (49)723

in the sense of traces, and that, defining724

ū :=

{

u in Ω,

u0 in Ω1\Ω,
(50)725

we have that ū is one-to-one almost everywhere, det Dū > 0 almost everywhere726

and727

E (ū) = 0. (51)728

Note that the following properties are automatically satisfied: ū ∈ W 1,p(Ω1, K ),729

imG(u,Ω) ⊂ K almost everywhere (52)730

and731

L
n (imG(ū,Ω1\Ω) ∩ imG(u,Ω)) = 0. (53)732

Moreover, u0 ∈ A E .733
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Duvan Henao, Carlos Mora-Corral and Xianmin Xu

It was shown in [10, Th. 4.6] that condition (51) prevents the creation of cavities734

of ū in Ω1. In particular, it prevents the creation of cavities in Ω and at ∂DΩ (as735

in [44]). Moreover, (51) is automatically satisfied if p " n (see [8, Sect. 4]), or if736

ū satisfies condition INV and Det Dū = det Dū (see [10, Lemma 5.3] and also [7]737

for the definition of condition INV and of the distributional determinant Det).738

We define A as the set of triples (u, v, w) such that u ∈ A E , v ∈ W 1,q

(Ω, [0, 1]), w ∈ W 1,q(Q, [0, 1]) and

v = 1 on ∂DΩ, (54)

v = 0 on ∂N Ω, (55)

w = 0 in Q\ imG(u,Ω), (56)

v(x) " w(u(x)) almost everywhere x ∈ Ω, (57)
∫

Ω
[v(x) − w(u(x))] dx ! b. (58)

The functional I of (47) will be defined on the set A . We explain the choice of739

conditions (54)–(58). The functions v and w are phase-field variables: v in the740

reference configuration, and w in the deformed configuration. A value of v close741

to 1 indicates healthy material, while if it is close to zero, it indicates a region with742

a crack. The function w indicates where there is matter, so w ≃ χimG(u,Ω). Except743

close to the boundary, the function w follows v in the deformed configuration, so744

w ◦ u ≃ v: this is expressed by inequalities (57), (58), since, eventually, b will745

tend to zero. The fact that w ≃ χimG(u,Ω) agrees with the boundary condition (56).746

Condition (54) is also natural since the trace equality (49) and the existence (50)747

of an extension ū in W 1,p(Ω1, Rn) prevent a fracture at ∂DΩ . Condition (55) is748

somewhat artificial and comes from a technical part of the proof. As ∂N Ω is the749

free part of the boundary, there is no information about whether u presents fracture750

at ∂N Ω . Condition (55) allows for it but it does not impose it. At some point of the751

proof of the lower bound inequality (see Proposition 7, and, in particular, relation752

(133)), we need to distinguish ∂N Ω from ∂DΩ with the mere information of v, and753

we are only able to do it with (55). Naturally, condition (55) has an effect on the754

limit energy, since it forces a transition from 1 to 0 close to ∂N Ω , whose cost is755

approximately 1
2H n−1(∂N Ω). This term is a constant, hence it does not affect the756

minimization problem, and explains its appearance in the limit energy (14).757

5. Existence for the Approximated Functional758

In this section we prove that the functional (47) has a minimizer in A , so the759

approximated problem is well posed.760

Theorem 3. Let λ1, λ2, ε, η, b > 0, p " n − 1 and q > n. Let I be as in (47).761

Then there exists a minimizer of I in A .762

Proof. We show first that the set A is not empty and that I is not identically infinity763

in A . As ∂DΩ and ∂N Ω are disjoint compact sets, there exists a Lipschitz function764

v0 : Ω̄ → [0, 1] such that v0 = 1 on ∂DΩ and v0 = 0 on ∂N Ω .765
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Γ -Convergence Approximation of Fracture and Cavitation

Let u0 be as in Section 4. By the regularity of the Lebesgue measure, there766

exists a compact E ⊂ u0(Ω) such that767

L
n(u0(Ω)\E) !

b

Ln
, (59)768

where L is the Lipschitz constant of u−1
0 in u0(Ω). As u0(Ω) is open, there exists769

a Lipschitz function w1 : Q → [0, 1] such that w1 = 1 in a neighbourhood of E ,770

and w1 = 0 in Q\u0(Ω). Define w0 : Q → [0, 1] as771

w0 :=

⎧

⎪

⎨

⎪

⎩

v0 ◦ u−1
0 in E,

min{w1, v0 ◦ u−1
0 } in u0(Ω)\E,

0 in Q\u0(Ω).

772

It is easy to check that w0 is Lipschitz and that v0 " w0 ◦ u0 almost everywhere in773

Ω . Moreover, thanks to (59) we find that774

∫

Ω
[v0 − w0 ◦ u0] dx =

∫

Ω\u−1
0 (E)

[v0 − w0 ◦ u0] dx ! L
n
(

Ω\u−1
0 (E)

)

! b.775

Thus, conditions (54)–(58) hold for the triple (u, v, w) = (u0, v0, w0). In conse-776

quence, (u0, v0, w0) ∈ A . In addition,777

∫

Ω

[

|Dv0|q + (1−v0)
q ′
]

dx<∞ and

∫

Q

[

|Dw0|q + w
q ′

0 (1−w0)
q ′
]

dy<∞.

(60)778

Using (48) and (60), we find that I (u0, v0, w0) < ∞. Furthermore, assumption779

(W2) shows that I " 0. Therefore, there exists a minimizing sequence780

{(u j , v j , w j )} j∈N of I in A . Again assumption (W2) implies the bound781

sup
j∈N

[

∥

∥Du j

∥

∥

L p(Ω,Rn×n)
+
∥

∥h1(| cof Du j |)
∥

∥

L1(Ω)
+
∥

∥h2(det Du j )
∥

∥

L1(Ω)

]

< ∞.782

Moreover, calling ū j the extension of u j as in (50), and using De la Vallée–Poussin783

criterion, we find that the sequence {Dū j } j∈N is bounded in L p(Ω1, Rn×n), while784

the sequences {cof Dū j } j∈N and {det Dū j } j∈N are equi-integrable. As, in addition,785

det Dū j > 0 almost everywhere, ū j is one-to-one almost everywhere and E (ū j ) =786

0 for all j ∈ N, the same proof of [8, Th. 4] shows that there exists ū ∈ W 1,p(Ω1, K )787

such that ū is one-to-one almost everywhere, det Dū > 0 almost everywhere,788

E (ū) = 0 and that, for a subsequence,789

ū j → ū almost everywhere in Ω1, ū j ⇀ ū in W 1,p(Ω1, R
n),790

det Dū j ⇀ det Dū in L1(Ω1) (61)791

as j → ∞. Moreover, a standard result on the continuity of minors (see, for792

example, [52, Th. 8.20], which in fact is a particular case of Lemma 5) shows that793

µ0(Du j ) ⇀ µ0(Du) in L1(Ω, Rτ−1) as j → ∞, where we are using the notation794

for minors explained in Section 2.7. With (61) we obtain795

µ(Du j ) ⇀ µ(Du) in L1(Ω, R
τ ) as j → ∞. (62)796
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Duvan Henao, Carlos Mora-Corral and Xianmin Xu

In addition, ū = u0 in Ω1\Ω , so, calling u := ū|Ω we have that condition (49) is797

satisfied and, hence, u ∈ A E .798

Using that q > n, the Sobolev embedding theorem, the estimate799

sup
j∈N

[

∥Dv j∥Lq (Ω,Rn) + ∥Dw j∥Lq (Q,Rn)

]

< ∞,800

and the inclusions v j (Ω), w j (Q) ⊂ [0, 1] for all j ∈ N, we find that there exist801

v ∈ W 1,q(Ω, [0, 1]) and w ∈ W 1,q(Q, [0, 1]) such that, for a subsequence,802

v j → v in C0,α(Ω̄),

w j → w in C0,α(Q̄),

v j ⇀ v in W 1,q(Ω),

w j ⇀ w in W 1,q(Q),
(63)803

for some α > 0. Now, for all j ∈ N and almost everywhere x ∈ Ω ,804

|w j (u j (x)) − w(u(x))| ! |w j (u j (x)) − w j (u(x))| + |w j (u(x)) − w(u(x))|805

!
∥

∥w j

∥

∥

C0,α(Q̄)

∣

∣u j (x) − u(x)
∣

∣

α +
∥

∥w j − w
∥

∥

L∞(Q)
,806

so, thanks to the convergences (61) and (63), we infer that807

w j ◦ u j → w ◦ u almost everywhere as j → ∞. (64)808

Thanks to (63), (64) and dominated convergence, we have that inequalities (57)–809

(58) are satisfied, as well as the boundary conditions (54), (55). We show next that810

condition (56) is also satisfied. For this, we first prove that811

χimG(u j ,Ω) → χimG(u,Ω) as j → ∞ (65)812

in L1(Rn). Thanks to [8, Th. 2], there exists an increasing sequence {Vk}k∈N of813

open sets such that Ω =
⋃

k∈N Vk and, for each k ∈ N,814

χimG(u j ,Vk ) → χimG(u,Vk ) as j → ∞ (66)815

in L1
loc(R

n), up to a subsequence. In fact, as χimG(u j ,Ω) ! χK almost everywhere816

for all j ∈ N, we have that the convergence (66) is in L1(Rn). For all j, k ∈ N we817

have that818

∥

∥χimG(u j ,Ω) − χimG(u,Ω)

∥

∥

L1(Rn)
!
∥

∥χimG(u j ,Ω) − χimG(u j ,Vk )

∥

∥

L1(Rn)

+
∥

∥χimG(u j ,Vk ) − χimG(u,Vk )

∥

∥

L1(Rn)
+
∥

∥χimG(u,Vk ) − χimG(u,Ω)

∥

∥

L1(Rn)
.

(67)

819

Thanks to Proposition 1,820

∥

∥χimG(u j ,Ω) − χimG(u j ,Vk )

∥

∥

L1(Rn)
=
∥

∥χimG(u j ,Ω\Vk )

∥

∥

L1(Rn)
821

=
∫

Ω\Vk

det Du j (x) dx (68)822

and823

∥

∥χimG(u,Vk ) − χimG(u,Ω)

∥

∥

L1(Rn)
=
∫

Ω\Vk

det Du(x) dx. (69)824
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Γ -Convergence Approximation of Fracture and Cavitation

Let ε̄ > 0. By the equi-integrability of the sequence {det Du j } j∈N given by (61),825

there exists k ∈ N such that for all j ∈ N,826

∫

Ω\Vk

det Du j (x) dx +
∫

Ω\Vk

det Du(x) dx ! ε̄. (70)827

Using the L1(Rn) convergence of (66), for such k ∈ N there exists j0 ∈ N such828

that for all j " j0,829

∥

∥χimG(u j ,Vk ) − χimG(u,Vk )

∥

∥

L1(Rn)
! ε̄. (71)830

Thus, the L1(Rn) convergence (65) follows from (67)–(71). For a subsequence, it831

also holds almost everywhere. To conclude the argument, we let y ∈ Q\ imG(u,Ω).832

By the almost everywhere convergence of (65), there exists j0 ∈ N such that833

y /∈ imG(u j ,Ω) for all j " j0, and, by (56), w j (y) = 0. Passing to the limit using834

(63) shows that w(y) = 0. Therefore, condition (56) holds and we conclude that835

(u, v, w) ∈ A .836

On the other hand, convergences (63) show that837

∫

Ω
(1−v)q ′

dx = lim
j→∞

∫

Ω
(1−v j )

q ′
dx,

∫

Ω
|Dv|q dx ! lim inf

j→∞

∫

Ω
|Dv j |q dx

(72)838

and839

∫

Q
wq ′

(1 − w)q ′
dy = lim

j→∞

∫

Q
w

q ′

j (1 − w j )
q ′

dy,840

∫

Q
|Dw|q dy ! lim inf

j→∞

∫

Q
|Dw j |q dy. (73)841

In addition, we can apply the lower semicontinuity result of [53, Th. 5.4], according842

to which, thanks to the polyconvexity of W given by (W1) and to convergences843

(61), (62) and (63), we have that844

∫

Ω
(v(x)2 + η)W (x, u(x), Du(x)) dx

! lim inf
j→∞

∫

Ω
(v j (x)2 + η) W (x, u j (x), Du j (x)) dx.

(74)845

Inequalities (72), (73) and (74) show that (u, v, w) is a minimizer of I in A . ⊓5846

6. Compactness and Lower Bound847

For the rest of the paper, we fix a sequence {ε}ε of positive numbers going to848

zero. As in Section 4, we fix parameters λ1, λ2 > 0, exponents p " n − 1 and849

q > n and sequences {ηε}ε and {bε}ε of positive numbers such that850

sup
ε

ηε < ∞ (75)851
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and852

bε → 0. (76)853

For the upper bound inequality (see Section 7) we will need that ηε tends to zero854

faster than ε, but for this section, only the boundedness of ηε, given by (75), is re-855

quired. The functional I of (47) corresponding to the parameters λ1, λ2, ε, ηε, p, q856

will be called Iε, and the admissible set A of Section 4 corresponding to b = bε857

in the restriction (58) will be called Aε.858

Given ε, measurable sets A ⊂ Ω and B ⊂ Q, and (u, v, w) ∈ Aε, define859

I E
ε (u, v; A) :=

∫

A
(v(x)2 + ηε) W (x, u(x), Du(x)) dx,

I V
ε (v; A) :=

∫

A

[

εq−1 |Dv(x)|q

q
+

(1 − v(x))q ′

q ′ε

]

dx

I W
ε (w; B) :=

∫

B

[

εq−1 |Dw(y)|q

q
+

w(y)q ′
(1 − w(y))q ′

q ′ε

]

dy.

(77)860

Define also861

I E
ε (u, v) := I E

ε (u, v;Ω), I V
ε (v) := I V

ε (v;Ω) and I W
ε (w) := I W

ε (w; Q),862

so that863

Iε(u, v, w) = I E
ε (u, v) + λ1 I V

ε (v) + 6λ2 I W
ε (w).864

This section is devoted to the proof of the following theorem.865

Theorem 4. For each ε, let (uε, vε, wε) ∈ Aε satisfy866

sup
ε

Iε(uε, vε, wε) < ∞. (78)867

Then there exists u ∈ SBV (Ω, K ) such that u is one-to-one almost everywhere,868

det Du > 0 almost everywhere and, for a subsequence,869

uε → u almost everywhere, vε → 1 almost everywhere and870

wε → χimG(u,Ω) almost everywhere (79)871

Moreover, for any such u, we have that
∫

Ω
W (x, u(x),∇u(x)) dx

+ λ1

[

H
n−1(Ju) + H

n−1 ({x ∈ ∂DΩ : u(x) ̸= u0(x)}) +
1

2
H

n−1(∂N Ω)

]

+ λ2

[

Per imG(u,Ω) + 2 H
n−1(Ju−1)

]

! lim inf
ε→0

Iε(uε, vε, wε).

In the inequality above, the value of u on ∂Ω is understood in the sense of traces872

(see, for example, [1, Th. 3.87]). Theorem 4 constitutes the usual compactness and873

lower bound parts of a Γ -convergence result. Its proof spans the next subsections,874

and will be divided into partial results.875
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Γ -Convergence Approximation of Fracture and Cavitation

6.1. A First Compactness Result876

For the sake of brevity, for each ε we define Wε : Ω → [0,∞] through877

Wε(x) := W (x, uε(x), Duε(x)). (80)878

We present is a preliminary compactness result for the sequence {(uε, vε)}ε.879

Proposition 5. For each ε, let (uε, vε) ∈ A E × W 1,q(Ω, [0, 1]) satisfy880

sup
ε

[

I E
ε (uε, vε) + I V

ε (vε)
]

< ∞. (81)881

Then, for a subsequence,882

vε → 1 in L1(Ω), almost everywhere and in measure, (82)883

and there exists u ∈ BV (Ω, K ) such that884

uε → u almost everywhere and in L1(Ω, R
n). (83)885

Proof. For each ε, we use the equality886

D
((

3v2
ε − 2v3

ε

)

uε

)

= 6vε(1 − vε)uε ⊗ Dvε + v2
ε (3 − 2vε) Duε,887

the bound 0 ! vε ! 1 and the L∞ a priori bound for uε given by K to find that888

∣

∣

∣D
((

3v2
ε − 2v3

ε

)

uε

)∣

∣

∣ # (1 − vε) |uε ⊗ Dvε| + v2
ε |Duε|889

# (1 − vε) |Dvε| + v
2
p
ε |Duε| ,890

so by Hölder’s inequality, Young’s inequality and assumption (W2) we obtain that
∫

Ω

∣

∣

∣D
((

3v2
ε − 2v3

ε

)

uε

)∣

∣

∣ dx

#
∫

Ω
(1 − vε) |Dvε| dx +

(∫

Ω
v2
ε |Duε|p dx

)
1
p

# I V
ε (vε) +

(∫

Ω
v2
ε Wε dx

)
1
p

! I V
ε (vε) + I E

ε (uε, vε)
1
p # 1.

Therefore, there exists u ∈ BV (Ω, K ) such that (3v2
ε − 2v3

ε )uε → u almost891

everywhere, for a subsequence.892

On the other hand,893

∫

Ω
(1 − vε)

q ′
dx ! q ′ε I V

ε (vε) # ε,894

so, taking a subsequence, the convergences (82) hold and, hence,895

uε =

(

3v2
ε − 2v3

ε

)

uε
(

3v2
ε − 2v3

ε

) → u almost everywhere.896

By dominated convergence, uε → u in L1(Ω, Rn) as well. ⊓5897
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6.2. Fracture Energy Term898

In this section we study the term I V
ε . Its analysis is essentially due to Ambrosio899

and Tortorelli [13,14], who proved it in the scalar case when W is the Dirichlet900

energy. In this section, we take many ideas from the exposition of [54, Sect. 10.2]901

and [33, Sect. 5.2], who extended the result to the vectorial case for a quasiconvex902

W . Some adaptations are to be made, though, because of the boundary conditions903

(49), (54) and (55), so that inequality (85) of Proposition 6 below is stronger than904

the usual lower bound inequality for I V
ε . In addition, our W is polyconvex, is905

allowed to have a slow growth at infinity and blows up when the determinant of906

the deformation gradient goes to zero, all of which add further difficulties in the907

analysis.908

We first present a version of the intermediate value theorem for measurable909

functions, which will be used several times in the sequel. Although the result is910

well known for experts, we have not found a precise reference.911

Lemma 6. Let I ⊂ R be a measurable set with L 1(I ) > 0. Let f, g : I → [0,∞]912

be two measurable functions such that f ∈ L1(I ). Then the set of s0 ∈ I such that913

∫

I
f (s) g(s) ds " g(s0)

∫

I
f (s) ds914

has positive measure.915

Proof. Let J be the set of s ∈ I such that f (s) > 0. The result is immediate if916

L 1(J ) = 0, so assume that L 1(J ) > 0. The result is also trivial if g is constant917

almost everywhere in J , so assume that this is not the case. Then918

∫

J f (s) g(s) ds
∫

J f (s) ds
> ess inf

J
g.919

By definition of essential infimum, we have that920

L
1

({

s0 ∈ J : g(s0) !

∫

J f (s) g(s) ds
∫

J f (s) ds

})

> 0. (84)921

Assume the conclusion of the lemma to be false. Then, together with (84) we would922

infer that there exists s0 ∈ J such that923

∫

J
f (s) g(s) ds <

∫

J
f (s) ds g(s0) and g(s0) !

∫

J f (s) g(s) ds
∫

J f (s) ds
,924

which is a contradiction. ⊓5925

The following lemma is a restatement of the well-known fact that Lipschitz926

domains satisfy both the interior and exterior cone conditions (see, for example,927

[55, Prop. 3.7]).928
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Γ -Convergence Approximation of Fracture and Cavitation

Lemma 7. Let Ω be a Lipschitz domain. Then there exist δ > 0 and γ0 ∈ (0, 1)929

such that for H n−1-almost everywhere x ∈ ∂Ω and every ξ ∈ Sn−1 such that930

ξ · νΩ(x) > γ0,931

{t ∈ (−δ, δ) : x + tξ ∈ Ω} = (−δ, 0).932

The compactness result of Proposition 5 is complemented by the following one,933

in which we also prove the lower bound inequality for the term I V
ε .934

Proposition 6. For each ε, let (uε, vε) ∈ A E × W 1,q(Ω, [0, 1]) satisfy (81). Let935

u ∈ BV (Ω, K ) satisfy (83). Then u ∈ SBV (Ω, K ) and936

H
n−1(Ju)+H

n−1 ({x ∈ ∂DΩ : u(x) ̸= u0(x)}) +
1

2
H

n−1(∂N Ω)

! lim inf
ε→0

I V
ε (vε).

(85)937

Proof. Fix 0 < δ < 1
2 . We perform a slicing argument, for which we will use the938

notation of Definition 5. By Fatou’s lemma, Proposition 2 and (W2), we have that939

for every ξ ∈ Sn−1,940

∫

Ωξ
lim inf

ε→0

∫

Ωξ ,x′
(vξ ,x′

ε )2 |Duξ ,x′

ε |p dt dH
n−1(x′)941

! lim inf
ε→0

∫

Ωξ

∫

Ωξ ,x′
(vξ ,x′

ε )2 |Duξ ,x′

ε |p dt dH
n−1(x′)942

! lim inf
ε→0

∫

Ω
v2
ε |Duε|p dx # lim inf

ε→0
I E
ε (uε, vε) (86)943

and944

∫

Ωξ
lim inf

ε→0

∫

Ωξ ,x′

[

εq−1 |Dv
ξ ,x′

ε |q

q
+

(1 − v
ξ ,x′

ε )q ′

q ′ε

]

dt dH
n−1(x′)945

! lim inf
ε→0

∫

Ωξ

∫

Ωξ ,x′

[

εq−1 |Dv
ξ ,x′

ε |q

q
+

(1 − v
ξ ,x′

ε )q ′

q ′ε

]

dt dH
n−1(x′)946

! lim inf
ε→0

I V
ε (vε). (87)947

Inequalities (86), (87) and the energy bound (81) imply that for H n−1-almost948

everywhere x′ ∈ Ωξ ,949

lim inf
ε→0

∫

Ωξ ,x′
(vξ ,x′

ε )2 |Duξ ,x′

ε |p dt < ∞,950

lim inf
ε→0

∫

Ωξ ,x′

[

εq−1 |Dv
ξ ,x′

ε |q

q
+

(1 − v
ξ ,x′

ε )q ′

q ′ε

]

dt < ∞. (88)951

By (82), (83), using slicing theory and passing to a subsequence (which may depend952

on x′), we also have that, for H n−1-almost everywhere x′ ∈ Ωξ ,953

L
1
(

{t ∈ Ωξ ,x′
: vξ ,x′

ε (t) < 1 − δ}
)

→ 0 and uξ ,x′

ε → uξ ,x′
in L1(Ωξ ,x′

, R
n).

(89)954
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Fix any x′ ∈ Ωξ for which Equations (88), (89) hold, and let U be a non-955

empty open subset of Ω . Then U ξ ,x′
is also open, hence it is the union of a disjoint956

countable family {Ik}k∈N of open intervals. Note that each Ik depends also on957

U, x′ and ξ , but this dependence will not be emphasized in the notation. Also for958

simplicity, we use the notation {Ik}k∈N, even though the family of intervals may be959

finite.960

By Young’s inequality, the coarea formula (19) and Lemma 6, for each k ∈ N961

and each ε there exists sε,k ∈ (δ, 1 − δ) such that, when we define962

aδ :=
∫ 1−δ

δ
(1 − s) ds, Eε,k := {t ∈ Ik : vξ ,x′

ε (t) < sε,k}, (90)963

we have964

∫

Ik

[

εq−1 |Dv
ξ ,x′

ε |q

q
+

(1 − v
ξ ,x′

ε )q ′

q ′ε

]

dt965

"
∫

Ik

(1 − vξ ,x′

ε ) |Dvξ ,x′

ε | dt966

"
∫ 1−δ

δ
(1 − s)H

0
(

∂∗{t ∈ Ik : vξ ,x′

ε (t) < s} ∩ Ik

)

ds967

" aδ H
0(∂∗Eε,k ∩ Ik). (91)968

The function v
ξ ,x′

ε is absolutely continuous, hence differentiable almost every-969

where. In addition, by a version of Sard’s theorem for Sobolev maps (see, for970

example, [56, Sect. 5]), we have that971

L
1
(

vξ ,x′

ε

(

{t ∈ Ωξ ,x′
: vξ ,x′

ε is differentiable at t and (vξ ,x′

ε )′(t) = 0}
))

= 0.972

On the other hand, it is easy to see that for any s0 ∈ R with the property that973

all t0 ∈ (vξ ,x′

ε )−1(s0) is such that vξ ,x′

ε is differentiable at t0 and (vξ ,x′

ε )′(t0) ̸= 0,974

one has975

∂∗{t ∈ Ωξ ,x′
: vξ ,x′

ε (t) < s0} = ∂{t ∈ Ωξ ,x′
: vξ ,x′

ε (t) < s0}.976

Moreover, since v
ξ ,x′

ε is continuous, Eε,k is an open set. These facts together with977

Lemma 6 allow us to assume that the number sε,k in (90) was chosen so that not978

only (91) holds, but also ∂∗Eε,k = ∂ Eε,k . Thus,979

1

δ2
lim inf

ε→0

∫

U ξ ,x′
(vξ ,x′

ε )2 |Duξ ,x′

ε |p dt "
∑

k∈N

lim inf
ε→0

∫

Ik\Eε,k

|Duξ ,x′

ε |p dt,

lim inf
ε→0

∫

U ξ ,x′

[

εq−1 |Dv
ξ ,x′

ε |q

q
+

(1 − v
ξ ,x′

ε )q ′

q ′ε

]

dt " aδ lim inf
ε→0

H
0(∂ Eε,k ∩ Ik).

(92)

980
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Γ -Convergence Approximation of Fracture and Cavitation

Fix k ∈ N. From (88) and (92), we infer that lim infε→0 H 0(∂ Eε,k ∩ Ik) < ∞,981

and, hence, for a subsequence, Eε,k has a uniformly bounded number of connected982

components. Let Fk be the Hausdorff limit of a subsequence of {Eε,k}ε, that is, Fk983

is characterized by the facts that it is compact, contained in Ik and for each η > 0984

there exists εη such that if ε < εη then985

Eε,k ⊂ B̄(Fk, η) and Fk ⊂ B̄
(

Eε,k, η
)

. (93)986

Moreover, Fk can be found by taking the limit of the sequences of endpoints of the987

connected components of Eε,k . Call988

Gk,0 := {t ∈ Fk ∩ ∂ Ik : lim
ε→0

vξ ,x′

ε (t) = 0},989

Gk,1 := {t ∈ Fk ∩ ∂ Ik : lim
ε→0

vξ ,x′

ε (t) = 1},990

where the value of v
ξ ,x′

ε in ∂ Ik is understood in the sense of traces, and it al-991

ways exists because v
ξ ,x′

ε is uniformly continuous. By (89) and (90) we have that992

L 1(Eε,k) → 0, hence Fk necessarily consists of a finite number of points. Using993

this and that each Eε,k is a union of a uniformly bounded number of open intervals,994

the following argument allows us to conclude that995

H
0(Fk ∩ Ik) + H

0(Gk,1) +
1

2
H

0(Gk,0) ! lim inf
ε→0

1

2
H

0(∂ Eε,k ∩ Ik). (94)996

Indeed, we first observe that for each t ∈ Fk there exist sequences {τ ε}ε and {τ ε}ε997

tending to t such that998

τ ε < τ ε, τ ε, τ ε ∈ ∂ Eε,k and (τ ε, τ ε) ⊂ Eε,k for all ε.999

Consider the following two cases.1000

(a) If t ∈ Ik , then τ ε, τ ε ∈ Ik for every ε sufficiently small. Therefore, to t there1001

correspond two points in ∂ Eε,k ∩ Ik : τ ε and τ ε.1002

(b) If t ∈ ∂ Ik , assume, for definiteness, that t = inf Ik . Then t ! τ ε for all ε1003

sufficiently small. If limε→0 v
ξ ,x′

ε (t) = 1, then, by (90) we have that t ̸= τ ε,1004

and, hence τ ε, τ ε ∈ Ik . Therefore, to t there correspond two points in ∂ Eε,k∩Ik :1005

τ ε and τ ε. If, instead, limε→0 v
ξ ,x′

ε (t) = 0 then still τ ε ∈ Ik , but it may1006

happen that τ ε = t for all ε sufficiently small, so we cannot guarantee that1007

τ ε ∈ Ik . Hence we only conclude that to t there corresponds at least one point1008

in ∂ Eεk ∩ Ik : τ ε.1009

This discussion completes the proof of (94).1010

Now, for each η > 0 there exists εη such that if ε < εη, the inclusions (93)1011

hold. Thus, by (88) and (92),1012

∞ > lim inf
ε→0

∫

Ik\Eε,k

|Duξ ,x′

ε |p dt " lim inf
ε→0

∫

Ik\B̄(Fk ,η)
|Duξ ,x′

ε |p dt. (95)1013
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From (89) and (95) we obtain that uξ ,x′
∈ W 1,p(Ik\B̄(Fk, η), Rn) and1014

∫

Ik\B̄(Fk ,η)
|Duξ ,x′

|p dt ! lim inf
ε→0

∫

Ik\Eε,k

|Duξ ,x′

ε |p dt. (96)1015

Since the right-hand side of (96) is independent of η, we conclude that uξ ,x′
∈1016

W 1,p(Ik\Fk, Rn) and1017

∫

Ik

|∇uξ ,x′
|p dt ! lim inf

ε→0

∫

Ik\Eε,k

|Duξ ,x′

ε |p dt. (97)1018

A standard result in the theory of SBV functions (see, for example, [1, Prop. 4.4])1019

shows then that uξ ,x′
∈ SBV (Ik, Rn) and1020

Juξ ,x′ ∩ Ik ⊂ Fk ∩ Ik . (98)1021

In particular, uξ ,x′
∈ SBVloc(U

ξ ,x′
, Rn) and, by (98), (94) and (92),1022

H
0(Juξ ,x′ ∩ U ξ ,x′

) +
∑

k∈N

[

H
0(Gk,1) +

1

2
H

0(Gk,0)

]

1023

!
1

2aδ
lim inf

ε→0

∫

U ξ ,x′

[

εq−1 |Dv
ξ ,x′

ε |q

q
+

(1 − v
ξ ,x′

ε )q ′

q ′ε

]

dt. (99)1024

The analysis above is true for any non-empty open U ⊂ Ω . In the rest of the1025

paragraph, we take U to be Ω . We have1026

V
(

uξ ,x′
,Ωξ ,x′

)

=
∑

k∈N

V
(

uξ ,x′
, Ik

)

=
∑

k∈N

⎡

⎢

⎣

∫

Ik

∣

∣

∣∇uξ ,x′
∣

∣

∣ dt +
∑

t∈J
uξ ,x′ ∩Ik

∣

∣

∣uξ ,x′
(t+) − uξ ,x′

(t−)
∣

∣

∣

⎤

⎥

⎦
.

(100)

1027

Both equalities of (100) are standard: see, for example, [42, Rk. 5.1.2] for the first1028

and [1, Cor. 3.33] for the second. In (100), uξ ,x′
(t+) denotes the limit at t of the1029

precise representative of uξ ,x′
from the right, and uξ ,x′

(t−) from the left. On the1030

one hand, we have, due to (99) and (88),1031

∑

k∈N

∑

t∈J
uξ ,x′ ∩Ik

∣

∣

∣uξ ,x′
(t+) − uξ ,x′

(t−)
∣

∣

∣ ! 2 sup
y∈K

|y| H 0(Juξ ,x′ ) < ∞ (101)1032

and, on the other hand, using (97), (92), (88) and Fatou’s lemma,1033

∑

k∈N

∫

Ik

|∇uξ ,x′
|p dt ! lim inf

ε→0

∑

k∈N

∫

Ik\Eε,k

|Duξ ,x′

ε |p dt

!
1

δ2
lim inf

ε→0

∫

Ωξ ,x′
(vξ ,x′

ε )2 |Duξ ,x′

ε |p dt < ∞.

(102)1034
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Γ -Convergence Approximation of Fracture and Cavitation

Thus, equations (100), (101) and (102) show that uξ ,x′
∈ SBV (Ωξ ,x′

, Rn). In1035

addition, by (99) and (87),1036

∫

Ωξ
H

0(Juξ ,x′ ) dH
n−1(x′) !

1

2aδ
lim inf

ε→0
I V
ε (vε), (103)1037

whereas, by (102) and (86),1038

∫

Ωξ

∫

Ωξ ,x′
|∇uξ ,x′

|p dt dH
n−1(x′) =

∫

Ωξ

∑

k∈N

∫

Ik

|∇uξ ,x′
|p dt dH

n−1(x′)

# lim inf
ε→0

I E
ε (uε, vε).

(104)

1039

Proposition 2 and equations (103), (104), and (81) conclude that u ∈ SBV (Ω, Rn)1040

and H n−1(Ju) < ∞.1041

We pass to prove (85). Fix a dense countable set {ξ j } j∈N in Sn−1 andγ ∈ [γ0, 1),
where γ0 is the number appearing in Lemma 7. Define the sets

S := {x ∈ ∂DΩ : u(x) ̸= u0(x)},
S j := {x ∈ ∂Ω : there exists σ > 0 such that x − (0, σ )ξ j ⊂ Ω

and x + (0, σ )ξ j ⊂ R
n\Ω},

A j := {x ∈ Ju ∪ S ∪ ∂N Ω : ν(x) · ξ j > γ and ν(x) · ξ i ! γ for all i < j},

where ν(x) in the definition of A j denotes either νu(x) if x ∈ Ju, or νΩ(x) if1042

x ∈ S ∪ ∂N Ω . For convenience, the Borel maps νu : Ju → Sn−1 and νΩ : ∂Ω →1043

Sn−1 are defined everywhere, even at those points where Ju or ∂Ω do not admit1044

an approximate tangent space; for those points x (which form an H n−1-null set),1045

νu(x) and νΩ(x) are defined arbitrarily so that the resulting maps νu and νΩ are1046

Borel. Note that {A j } j∈N is a disjoint family whose union is Ju ∪ S ∪∂N Ω . Indeed,1047

for each x ∈ Ju ∪ S ∪ ∂N Ω there exists j ∈ N such that |ν(x) · ξ j | > γ , since1048

{ξ j } j∈N is dense in Sn−1. If j0 ∈ N is the first such j , then x ∈ A j0 . Notice, in1049

addition, that1050

S
ξ j

j ⊂ Ωξ j . (105)1051

Indeed, let πξ j
be the linear projection onto Πξ j (see Definition 5). If x0 ∈ S

ξ j

j then1052

there exists x ∈ S j such that x0 = πξ j
(x). By definition of S j , there exists t > 01053

such that x − tξ j ∈ Ω , so πξ j
(x − tξ j ) ∈ Ωξ j , but πξ j

(x − tξ j ) = πξ j
(x) = x0.1054

This shows (105). Now, Lemma 7 implies that, since γ " γ0,1055

A j ∩ ∂Ω ∩ S j = A j ∩ ∂Ω H
n−1-almost everywhere. (106)1056

Use the regularity of the finite Radon measure H n−1 (Ju ∪ S ∪∂N Ω) to find,1057

for each j ∈ N, an open set U j such that A j ⊂ U j and1058

H
n−1
(

(Ju ∪ S ∪ ∂N Ω) ∩ U j\A j

)

! 2− j (1 − γ ). (107)1059
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For each x ∈ Ju ∪ S ∪ ∂N Ω , let j ∈ N satisfy x ∈ A j , and define Fx as the family1060

of all closed balls B centred at x such that B ⊂ U j and1061

H
n−1 ((Ju ∪ S ∪ ∂N Ω) ∩ ∂ B) = 0. (108)1062

Then the family1063

F := {B : B ∈ Fx for some x ∈ Ju ∪ S ∪ ∂N Ω}1064

forms a fine cover of Ju ∪S∪∂N Ω . Apply Besicovitch’s theorem (see, for example,1065

[1, Th. 2.19]) to obtain a disjoint subfamily G of F such that H n−1((Ju ∪ S ∪1066

∂N Ω)\
⋃

G ) = 0. For each j ∈ N, call Vj the union of the interiors of all the balls1067

in G that are centred at a point in A j . Each Vj is open and contained in U j , the1068

family {Vj } j∈N is disjoint, and1069

H
n−1

(

(Ju ∪ S ∪ ∂N Ω)\
⋃

j∈N

Vj

)

= 0, (109)1070

because of condition (108).1071

Fix j ∈ N and x′ ∈ Ωξ j such that Equations (88), (89) hold for ξ = ξ j . As1072

each Vj is open, we can apply (99) to U = Ω ∩ Vj so as to obtain1073

H
0(J

u
ξ j ,x

′ ∩ (Ω ∩ Vj )
ξ j ,x

′
) +
∑

k∈N

[

H
0(G

j,x′

k,1 ) +
1

2
H

0(G
j,x′

k,0 )

]

!
1

2aδ
lim inf

ε→0

∫

(Ω∩Vj )
ξ j ,x

′

⎡

⎣εq−1 |Dv
ξ j ,x

′

ε |q

q
+

(1 − v
ξ j ,x

′

ε )q ′

q ′ε

⎤

⎦ dt,

(110)1074

where the family {Ik}k∈N of intervals this time corresponds to (Ω ∩ Vj )
ξ j ,x

′
, and1075

the dependence of Gk,0 and Gk,1 on Vj , ξ j , and x′ has been made explicit in the1076

notation. Now we analyze the last two terms of the left-hand side of (110). We1077

discuss the following two cases.1078

(a) Let t0 ∈ (∂N Ω ∩ S j ∩ Vj )
ξ j ,x

′
. Thus, there exist x ∈ ∂N Ω ∩ S j ∩ Vj and1079

x′ ∈ (∂N Ω ∩ S j ∩ Vj )
ξ j such that x = x′ + t0ξ j . Then t0 ∈ ∂ Ik for some1080

k ∈ N, by definition of S j . By (55) we have that v
ξ j ,x

′

ε (t0) = 0 for all ε, so by1081

the continuity of v
ξ j ,x

′

ε , we infer that t ∈ Eε,k for all t ∈ Ωξ j ,x
′

with t ≃ t0;1082

see (90). Since x ∈ S j , this implies that t0 ∈ Eε,k . From the definition of Fk1083

we conclude that t0 ∈ Fk . This shows that1084

(∂N Ω ∩ S j ∩ Vj )
ξ j ,x

′
⊂
⋃

k∈N

G
j,x′

k,0 . (111)1085

(b) Note now that H n−1-almost everywhere x ∈ ∂DΩ satisfies uε(x) = u0(x),1086

thanks to (49). Take such an x that in addition belongs to S ∩ S j ∩ Vj . As in1087

the previous case, let x′ ∈ (S ∩ S j ∩ Vj )
ξ j and t0 ∈ (S ∩ S j ∩ Vj )

ξ j ,x
′
be such1088
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Γ -Convergence Approximation of Fracture and Cavitation

that x = x′ + t0ξ j , so t0 = sup Ik for some k ∈ N. By (54), v
ξ j ,x

′

ε (t0) = 1 for1089

all ε, while we have just seen that1090

u
ξ j ,x

′

ε (t0) = u0(x). (112)1091

On the other hand, t0 must belong to Fk , since otherwise, having in mind1092

equation (93) and the fact that Fk is compact, there would exist η > 0 such1093

that (t0 − η, t0) ⊂ Ik\Eε,k for all ε sufficiently small. By (88), (89), (112)1094

and the continuity of maps in W 1,p((t0 − η, t0), Rn), we would conclude that1095

uξ j ,x
′
(t0) = u0(x), which contradicts the fact that x ∈ S. This shows that for1096

H n−1-almost everywhere x′ ∈ (S ∩ S j ∩ Vj )
ξ j ,1097

(S ∩ S j ∩ Vj )
ξ j ,x

′
⊂
⋃

k∈N

G
j,x′

k,1 . (113)1098

Inclusions (111) and (113) imply that1099

∫

(∂N Ω∩S j ∩Vj )
ξ j

H
0
(

(∂N Ω ∩ S j ∩ Vj )
ξ j ,x

′
)

dH
n−1(x′)

!
∑

k∈N

∫

(∂N Ω∩S j ∩Vj )
ξ j

H
0(G

j,x′

k,0 ) dH
n−1(x′),

∫

(S∩S j ∩Vj )
ξ j

H
0
(

(S ∩ S j ∩ Vj )
ξ j ,x

′
)

dH
n−1(x′)

!
∑

k∈N

∫

(S∩S j ∩Vj )
ξ j

H
0(G

j,x′

k,1 ) dH
n−1(x′).

(114)1100

Now recall from (105) that1101

(∂N Ω ∩ S j ∩ Vj )
ξ j ⊂ (Ω ∩ Vj )

ξ j and (S ∩ S j ∩ Vj )
ξ j ⊂ (Ω ∩ Vj )

ξ j . (115)1102

Thus, combining (114), (115), (110), Fatou’s lemma and Proposition 2, we find that1103

∫

(Ω∩Vj )
ξ j

H
0
(

J
u

ξ j ,x
′ ∩ (Ω ∩ Vj )

ξ j ,x
′
)

dH
n−1(x′)1104

+
∫

(S∩S j ∩Vj )
ξ j

H
0
(

(S ∩ S j ∩ Vj )
ξ j ,x

′
)

dH
n−1(x′)1105

+
1

2

∫

(∂N Ω∩S j ∩Vj )
ξ j

H
0
(

(∂N Ω ∩ S j ∩ Vj )
ξ j ,x

′
)

dH
n−1(x′)1106

!
1

2aδ
lim inf

ε→0
I V
ε (vε;Ω ∩ Vj ). (116)1107
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Duvan Henao, Carlos Mora-Corral and Xianmin Xu

By Proposition 2,1108

∫

(Ω∩Vj )
ξ j

H
0(J

u
ξ j ,x

′ ∩ (Ω ∩ Vj )
ξ j ,x

′
) dH

n−1(x′)=
∫

Vj ∩Ju

∣

∣νu · ξ j

∣

∣ dH
n−1,1109

∫

(S∩S j ∩Vj )
ξ j

H
0((S ∩ S j ∩ Vj )

ξ j ,x
′
) dH

n−1(x′)=
∫

S∩S j ∩Vj

∣

∣νΩ · ξ j

∣

∣ dH
n−1,1110

∫

(∂N Ω∩S j ∩Vj )
ξ j

H
0((∂N Ω ∩ S j ∩ Vj )

ξ j ,x
′
) dH

n−1(x′)1111

=
∫

∂N Ω∩S j ∩Vj

∣

∣νΩ · ξ j

∣

∣ dH
n−1. (117)1112

Using the definition of A j , we find that1113

∫

Vj ∩Ju∩A j

∣

∣νu · ξ j

∣

∣ dH
n−1 +

∫

Vj ∩S∩A j

∣

∣νΩ · ξ j

∣

∣ dH
n−1

1114

+
1

2

∫

Vj ∩∂N Ω∩A j

∣

∣νΩ · ξ j

∣

∣ dH
n−1

1115

" γ

[

H
n−1(Vj ∩ Ju ∩ A j ) + H

n−1(Vj ∩ S ∩ A j )1116

+
1

2
H

n−1(Vj ∩ ∂N Ω ∩ A j )

]

. (118)1117

On the other hand, using the inclusion Vj ⊂ U j and (107), we find that1118

H
n−1(Vj ∩ Ju) + H

n−1(Vj ∩ S) +
1

2
H

n−1(Vj ∩ ∂N Ω)1119

! H
n−1(Vj ∩ Ju ∩ A j ) + H

n−1(Vj ∩ S ∩ A j ) +
1

2
H

n−1(Vj ∩ ∂N Ω ∩ A j )1120

+2− j (1 − γ ). (119)1121

Applying (106), we obtain that1122

∫

Vj ∩Ju

∣

∣νu · ξ j

∣

∣ dH
n−1 +

∫

S j ∩S∩Vj

∣

∣νΩ · ξ j

∣

∣ dH
n−1

1123

+
1

2

∫

Vj ∩∂N Ω∩S j

∣

∣νΩ · ξ j

∣

∣ dH
n−1 "

∫

Vj ∩Ju∩A j

∣

∣νu · ξ j

∣

∣ dH
n−1

1124

+
∫

A j ∩S∩Vj

∣

∣νΩ · ξ j

∣

∣ dH
n−1 +

1

2

∫

A j ∩∂N Ω∩Vj

∣

∣νΩ · ξ j

∣

∣ dH
n−1. (120)1125

By (109) and (119), we have that1126

H
n−1(Ju) + H

n−1(S) +
1

2
H

n−1(∂N Ω)1127

!
∑

j∈N

[

H
n−1(Ju ∩ Vj ∩ A j )1128

+H
n−1(A j ∩ S ∩ Vj ) +

1

2
H

n−1(A j ∩ ∂N Ω ∩ Vj )

]

+ 1 − γ . (121)1129
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Γ -Convergence Approximation of Fracture and Cavitation

Putting together successively inequalities (121), (118), (120), (117), (116), we ob-1130

tain1131

H
n−1(Ju) + H

n−1(S) +
1

2
H

n−1(∂N Ω) !
1

2aδγ
lim inf

ε→0
Iε(vε) + 1 − γ .1132

Letting γ → 1 and δ → 0, we conclude the validity of (85). ⊓51133

6.3. Surface and Elastic Energy Terms1134

In this section we study I E
ε (uε, vε) and I W

ε (wε). The analysis of the term1135

I E
ε (uε, vε) is initially based on Braides et al. [33, Sect. 3], who proved a Γ -1136

convergence result for a quasiconvex stored energy function W with p-growth. The1137

term I W
ε (wε) resembles a Modica--Mortola [11] functional, but for its analysis1138

we also need the convergence result of Theorem 2. In fact, in order to deal with a1139

polyconvex function W that grows as in (W2) and with the invertibility constraint1140

for the deformation, we need to apply the techniques of [8].1141

The following auxiliary results will be used several times. Recall from Section1142

2.7 the notation for minors.1143

Lemma 8. For each ε, let (uε, vε) ∈ A E × W 1,q(Ω, [0, 1]) satisfy (81). Let {Aε}ε1144

be a sequence of measurable subsets of Ω such that infε inf Aε vε > 0. Then, the1145

sequence {∇(χAε uε)}ε is bounded in L p(Ω, Rn×n), and {µ(∇(χAε uε))}ε is equi-1146

integrable.1147

Proof. Call δ := infε inf Aε vε. Using Lemma 1 and (W2), as well as notation (80),1148

we find that1149

∫

Ω

∣

∣∇(χAε uε)
∣

∣

p
dx !

1

δ2

∫

Aε

v2
ε |Duε|p dx #

∫

Aε

v2
ε Wε dx ! I E

ε (uε, vε) # 1.1150

Let h1 and h2 be the functions of (W2). For i ∈ {1, 2}, define h̄i : [0,∞) → [0,∞)1151

as h̄i (t) := hi (max{1, t}). Then1152

lim
t→∞

h̄i (t)

t
= ∞, i ∈ {1, 2}1153

and
∫

Ω
h̄1(| cof ∇(χAε uε)|) dx ! L

n(Ω) h1(1) +
∫

Aε

Wε dx

! L
n(Ω) h1(1) +

1

δ2
I E
ε (uε, vε) # 1;

similarly,1154

∫

Ω
h̄2(det ∇(χAε uε)) dx ! L

n(Ω) h2(1) +
1

δ2
I E
ε (uε, vε) # 1.1155

By De la Vallée–Poussin’s criterion, {cof ∇(χAε uε)}ε and {det ∇(χAε uε)}ε are1156

equi-integrable. The rest of the components of {µ(∇(χAε uε))}ε are equi-integrable1157

because p " n − 1 and, due to Hölder’s inequality, minors of order k ∈ N with1158

k < p are equi-integrable, as {∇(χAε uε)}ε is bounded in L p(Ω, Rn×n). ⊓51159
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Lemma 9. For each ε, let (uε, vε) ∈ A E × W 1,q(Ω, [0, 1]) satisfy (81). Let u ∈1160

SBV (Ω, K ) satisfy (83). Let {Aε}ε be a sequence of measurable subsets of Ω such1161

that L n(Aε) → L n(Ω). Assume that1162

inf
ε

inf
Aε

vε > 0 and sup
ε

Per(Aε,Ω) < ∞.1163

Then1164

µ0(∇(χAε uε)) ⇀ µ0(∇u) in L1(Ω, R
τ−1).1165

Proof. We check that the sequence {χAε uε}ε satisfies the assumptions of Lemma1166

5.1167

Lemma 2 shows that χAε uε ∈ SBV (Ω, Rn) and H n−1(JχAε uε ) ! Per(Aε,Ω)1168

for each ε. In addition, thanks to (83) and L n(Aε) → L n(Ω), we have that1169

χAε uε → u in L1(Ω, Rn). Therefore, using Lemma 8, we find that the sequence1170

{∇(χAε uε)}ε is bounded in L p(Ω, Rn×n), and the sequence {cof ∇(χAε uε)}ε is1171

equi-integrable. The conclusion is achieved thanks to Lemma 5. ⊓51172

Proposition 7. For each ε, let (uε, vε, wε) ∈ Aε satisfy (78). Let u ∈ SBV (Ω, K )1173

satisfy (83). Then u is one-to-one almost everywhere, det Du > 0 almost every-1174

where,1175

Per imG(u,Ω) + 2 H
n−1(Ju−1) ! 6 lim inf

ε→0
I W
ε (wε), (122)1176

∫

Ω
W (x, u(x),∇u(x)) dx ! lim inf

ε→0
I E
ε (uε, vε) (123)1177

and, for a subsequence,1178

wε → χimG(u,Ω) in L1(Q). (124)1179

Proof. Fix 0 < δ1 < δ2 < 1. As in (91), using the coarea formula (19), we obtain1180

that for each ε there exists sε ∈ (δ1, δ2) such that the set Aε := {x ∈ Ω : vε(x) > sε}1181

satisfies supε Per(Aε,Ω) < ∞ and, due to (82),1182

L
n(Aε) → L

n(Ω). (125)1183

Thanks to Lemma 9,1184

µ0(∇(χAε uε)) ⇀ µ0(∇u) in L1(Ω, R
τ−1). (126)1185

Again as in (91), for each ε there exists tε ∈ (δ1, δ2) such that, defining

bδ1,δ2 :=
∫ δ2

δ1

s(1 − s) ds, Eε := {y ∈ Q : wε(y) > tε} ,

Fε := {x ∈ Ω : wε(uε(x)) > tε}

we have that1186

I W
ε (wε) "

∫

Q
wε(1 − wε) |Dwε| dy " bδ1,δ2 Per Eε. (127)1187
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Γ -Convergence Approximation of Fracture and Cavitation

We have also used the equality Per Eε = Per(Eε, Q), which is true because condi-1188

tions (56), (52) and the continuity of wε imply that Eε ⊂⊂ Q. In particular, (127)1189

shows that1190

sup
ε

Per Eε < ∞. (128)1191

Thanks to (57), (58) and (76), we have that (wε ◦uε −vε) → 0 in L1(Ω). With the1192

convergence (82), we conclude that, for a subsequence, wε ◦ uε → 1 in measure,1193

hence1194

L
n(Fε) → L

n(Ω). (129)1195

Denoting by ∆ the operator of symmetric difference of sets, we have, thanks to1196

(57), that vε|Aε∆Fε " δ1 for all ε, so Lemma 8 yields the equi-integrability of the1197

sequence {µ0(χAε∆Fε Duε)}ε. Therefore, using also (125) and (129),1198

∥

∥µ0(∇(χAε uε)) − µ0(∇(χFε uε))
∥

∥

L1(Ω,Rτ−1)
=
∫

Aε∆Fε

|µ0(Duε)| dx → 0,1199

which, together with (126), shows that1200

µ0(∇(χFε uε)) ⇀ µ0(∇u) in L1(Ω, R
τ−1). (130)1201

Now we verify the assumptions of Theorem 2 for the sequence {uε}ε of maps1202

and the sequence {Fε}ε of sets. Using (56), it is easy to check that1203

imG(uε, Fε) = Eε almost everywhere, (131)1204

so1205

Per imG(uε, Fε) = Per Eε (132)1206

and, recalling (128), we obtain that supε Per imG(uε, Fε) < ∞.1207

Now we show that u−1
ε,Fε

∈ SBV (Rn, Rn). Any x ∈ Fε satisfies vε(x) > tε,1208

thanks to (57). As vε is continuous, any x ∈ F̄ε satisfies vε(x) " tε, so x /∈ ∂N Ω ,1209

because of (55). Thus,1210

F̄ε ∩ ∂N Ω = ∅. (133)1211

Let now ūε ∈ W 1,p(Ω1, Rn) be the extension of uε given by (50). Thanks to the1212

relations Ω ∪ ∂DΩ ⊂ Ω1 and (133), as well as to the fact that ∂DΩ and ∂N Ω are1213

closed disjoint sets, we can apply [9, Th. 2] to infer that, thanks to (51), there exists1214

an open set Uε ⊂⊂ Ω such that Fε ⊂ Uε and ū−1
ε,Uε

∈ SBV (Rn, Rn). Using (131)1215

and the inclusions1216

Eε ⊂ imG(uε,Ω) ⊂ imG(ūε, Uε),1217

we obtain that imG(uε, Fε) = imG(ūε, Uε) ∩ Eε almost everywhere; therefore,1218

u−1
ε,Fε

= χEε ū−1
ε,Uε

almost everywhere. Thus, by Lemma 2, we conclude that u−1
ε,Fε

∈1219

SBV (Rn, Rn).1220

As E (ūε) = 0, we can apply now [9, Th. 3] to obtain that H n−1(ΓI (ūε)) = 0.1221

Here ΓI denotes the invisible surface, as defined in [9, Def. 9]. For the purposes1222

of the proof, here it suffices to know that ΓI (ūε) is the set of y ∈ Jū−1
ε

such that1223

both lateral traces (ūε)
±(y) belong to Ω1. Now, any y ∈ J(uε |Fε )−1 satisfies that the1224
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lateral traces ((uε|Fε )
−1)±(y) exist, are distinct and belong to F̄ε, and, hence, to Ω1,1225

due to (133). Thus, y ∈ ΓI (ūε). Therefore, J(uε |Fε )−1 ⊂ ΓI (ūε) and, consequently,1226

H
n−1(J(uε |Fε )−1) = 0. (134)1227

Due to (57) and Lemma 8, there exists θ ∈ L1(Ω) such that, for a subsequence,1228

χFε det Duε ⇀ θ in L1(Ω). Moreover, θ " 0 almost everywhere. If θ were1229

zero in a set A ⊂ Ω of positive measure, using (125) and (129), we would have1230

(for a subsequence) det Duε → 0 almost everywhere in A and χAε → 1 almost1231

everywhere in Ω; hence by assumption (W2), we would obtain χAε h2(det Duε) →1232

∞ almost everywhere in A, and, by Fatou’s lemma,1233

lim
ε→0

∫

Aε∩A
h2(det Duε) dx = ∞,1234

but for each ε, recalling the notation (80),

I E
ε (uε, vε) "

∫

Aε

v2
ε Wε dx " δ2

1

∫

Aε

Wε dx " δ2
1

∫

Aε

h2(det Duε) dx

" δ2
1

∫

Aε∩A
h2(det Duε) dx,

which is a contradiction with (78). Thus, θ > 0 almost everywhere. We can there-1235

fore apply Theorem 2 and (134) in order to conclude that θ = det ∇u almost1236

everywhere, u is one-to-one almost everywhere,1237

χimG(uε,Fε) → χimG(u,Ω) almost everywhere and in L1(Rn), (135)1238

up to a subsequence, and1239

Per imG(u,Ω) + 2 H
n−1(Ju−1) ! lim inf

ε→0
Per imG(uε, Fε). (136)1240

In particular,1241

det(χFε Duε) ⇀ det ∇u in L1(Ω). (137)1242

Having in mind (127) and (132), we obtain1243

Per imG(uε, Fε) !
1

bδ1,δ2

I W
ε (wε). (138)1244

Putting together (136) and (138), and letting δ1 → 0 and δ2 → 1, we obtain1245

inequality (122).1246

We prove now (123). Convergences (129), (130) and (137) show that1247

µ(χFε Duε) ⇀ µ(∇u) in L1(Ω, R
τ ) and χFε uε → u almost everywhere.

(139)1248

Let {F̃ε}ε be the increasing sequence of sets obtained from {Fε}ε, that is, F̃ε :=1249
⋃

ε′!ε Fε′ . Trivially, (129) and (139) yield1250

L
n(F̃ε) → L

n(Ω), µ(χF̃ε
Duε) ⇀ µ(∇u) in L1(Ω, R

τ ),1251

χF̃ε
uε → u almost everywhere. (140)1252
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Γ -Convergence Approximation of Fracture and Cavitation

Now fix an element ε1 of the sequence {ε}ε. Convergences (140) and assumption1253

(W1) allow us to use the lower semicontinuity theorem of [53, Th. 5.4] applied to the1254

function W̃ε1 : Ω × K × Rτ
+ → R defined as W̃ε1(x, y,µ) := χF̃ε1

(x)W̃ (x, y,µ),1255

so as to obtain that1256

∫

F̃ε1

W (x, u(x),∇u(x)) dx ! lim inf
ε→0

∫

F̃ε1

W (x, (χF̃ε
uε)(x), (χF̃ε

∇uε)(x)) dx.

(141)1257

Moreover, for each ε ! ε1 we have F̃ε1 ⊂ F̃ε, so using assumption (57), we find1258

that1259

∫

F̃ε1

W (x, (χF̃ε
uε)(x), (χF̃ε

∇uε)(x)) dx =
∫

F̃ε1

Wε dx !
∫

F̃ε

Wε dx

!
1

δ2
1

∫

F̃ε

v2
ε Wε dx !

1

δ2
1

I E
ε (uε, vε).

(142)

1260

On the other hand, by (140) and the monotone convergence theorem,1261

lim
ε1→0

∫

F̃ε1

W (x, u(x),∇u(x)) dx =
∫

Ω
W (x, u(x),∇u(x)) dx. (143)1262

Formulas (141), (142) and (143) show that1263

∫

Ω
W (x, u(x),∇u(x)) dx !

1

δ2
1

lim inf
ε→0

I E
ε (uε, vε).1264

Letting δ1 → 1 and δ2 → 1 we conclude the validity of (123).1265

We pass to prove (124). As supε I W
ε (wε) < ∞, a well-known argument going1266

back to Modica [12, Th. I and Prop. 3] (see also [57, Sect. 4.5]) shows that there1267

exists a measurable set V ⊂ Q such that, for a subsequence,1268

wε → χV almost everywhere and in L1(Q). (144)1269

Take a y ∈ Q for which convergences (135) and (144) hold at y. If y ∈ imG(u,Ω),1270

applying (135), for all sufficiently small ε we have that y ∈ imG(uε, Fε). The1271

definition of Fε shows that wε(y) " δ1, and, due to (144) we must have wε(y) → 11272

and y ∈ V . Let now y /∈ imG(u,Ω). Applying (135), for all sufficiently small1273

ε we have that y /∈ imG(uε, Fε). If y /∈ imG(uε,Ω) then wε(y) = 0 because1274

of (56), whereas if y ∈ imG(uε,Ω\Fε) then wε(y) ! δ2. In either case, due to1275

(144), necessarily wε(y) → 0 and y /∈ V . This shows that χimG(u,Ω) = χV almost1276

everywhere in Q and concludes the proof. ⊓51277

It is clear that Propositions 5, 6 and 7 complete the proof of Theorem 4.1278
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7. Upper Bound1279

In this section we prove the upper bound inequality for some particular but1280

illustrating cases. For simplicity, and to underline the main ideas of the construc-1281

tions, we assume the space dimension n to be 2. This is mainly a simplification for1282

the notation, since the deformations considered enjoy many symmetries that lend1283

themselves to natural n-dimensional versions. Moreover, we assume that the stored-1284

energy function W : R
2×2
+ → [0,∞] depends only on the deformation gradient,1285

and there exist c1 > 0, p1, p2 " 1, and a continuous function h : (0,∞) → [0,∞)1286

satisfying1287

(W̄1) W (F) ! c1|F|p1 + h(det F) for all F ∈ R
2×2
+ ,1288

(W̄2) lim sup
t→∞

h(t)

t p2
< ∞, and1289

(W̄3) for every α0 > 1 there exists C(α0) > 0 such that h(αt) ! C(α0)(h(t) + 1)1290

for all α ∈ (α−1
0 ,α0) and all t ∈ (0,∞).1291

Assumptions (W̄1)–(W̄2) are somehow the upper bound counterpart of assumption1292

(W2) of Section 4. Assumption (W̄3) does not have an analogue in the lower bound1293

inequality, and it is used here to conclude that if the determinant of the gradient1294

of two deformations are similar, then their energies are also similar. It allows, for1295

example, a polynomial or a logarithmic growth of W in det F.1296

Since our main motivation is the study of cavitation and fracture, the deforma-1297

tions u chosen for the analysis present cavitation and fracture of various types. For1298

those deformations, we prove that for each ε there exists (uε, vε, wε) ∈ Aε such1299

that (79) holds and1300

∫

Ω
W (∇u(x)) dx1301

+λ1

[

H
1(Ju) + H

1 ({x ∈ ∂DΩ : u(x) ̸= u0(x)}) +
1

2
H

1(∂N Ω)

]

1302

+λ2

[

Per imG(u,Ω) + 2 H
1(Ju−1)

]

= lim
ε→0

Iε(uε, vε, wε). (145)1303

The calculations leading to (145) are lengthy, and will only be sketched. It is also1304

cumbersome to check that each element (uε, vε, wε) of the recovery sequence1305

actually belongs to Aε, so the proof of this is left to the reader. Moreover, in the1306

constructions of this section, the container sets K and Q (see Section 4) do not play1307

an essential role, so we will not specify them.1308

For convenience, the notation of (77) will be further simplified. Since the func-1309

tionals I E
ε , I V

ε and I W
ε will always be evaluated at (uε, vε), vε and wε, respectively,1310

for any measurable sets A ⊂ Ω and B ⊂ Q, the quantities I E
ε (uε, vε; A), I V

ε (vε; A)1311

and I W
ε (wε; B) will be simply denoted by I E

ε (A), I V
ε (A) and I W

ε (B), respectively.1312

This section has the following parts. In Section 7.1 we construct the optimal1313

profile for the phase-field functionsvε andwε to vary from 0 to 1. Section 7.2 reviews1314

some well-known concepts and formulas related to curves in the plane. In Sections1315

7.3–7.6 we construct the recovery sequence for four particular deformations, each1316

of them with a specific kind of singularity: a cavity, a crack on the boundary, an1317
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Γ -Convergence Approximation of Fracture and Cavitation

interior crack and a crack joining two cavities. All constructions follow the same1318

general lines, which are explained in Section 7.3 and then adapted in Sections1319

7.4–7.6.1320

7.1. Optimal Profile of the Transition Layer1321

We introduce the functions that will give the optimal profile for vε and wε1322

to go from 0 to 1. The construction is purely one-dimensional, so that vε and1323

wε will only depend on the distance to the singular set through a function called,1324

respectively, σε,V and σε,W . These functions solve an ordinary differential equation,1325

which is presented in this subsection, and determine the optimal transition, in terms1326

of energy, of going from 0 to 1. The construction is standard and goes back to1327

Modica and Mortola [11] for the approximation of the perimeter; it was then1328

used by Ambrosio and Tortorelli [13] for the approximation of the fracture1329

term.1330

We start using the fundamental theorem of Calculus: as 1 < q ′ < 2 the function1331

s :→
∫ s

0

1

(1 − ξ)q ′−1
dξ1332

is a homeomorphism from [0, 1] onto [0,
∫ 1

0
dξ

(1−ξ)q′−1
]. Its inverse σV is of class1333

C1 and, by definition,1334

σ−1
V (s) =

∫ s

0

1

(1 − ξ)q ′−1
dξ, s ∈ [0, 1].1335

Analogously, there exists a homeomorphism σW from [0,
∫ 1

0
dξ

ξq′−1(1−ξ)q′−1
] onto1336

[0, 1] of class C1 such that1337

σ−1
W (s) =

∫ s

0

1

ξq ′−1(1 − ξ)q ′−1
dξ, s ∈ [0, 1].1338

We note that σV and σ−1
V can be given a closed-form expression, but not σW or1339

σ−1
W . Notice that1340

σV (0) = 0, σ ′
V = (1 − σV )q ′−1, σW (0) = 0, σ ′

W = σ
q ′−1
W (1 − σW )q ′−1.

(146)1341

As an aside, we mention that the initial value problem satisfied by σW (the last1342

two equations of (146)) does not enjoy uniqueness, since the nonlinearity is not1343

Lipschitz. In fact, the function σW thus constructed is the maximal solution of those1344

satisfying the initial value problem.1345

For each ε, define σε,V : [0, εσ−1
V (1)] → [0, 1] and σε,W : [0, εσ−1

W (1)] →1346

[0, 1] as1347

σε,V (t) := σV

(

t

ε

)

, σε,W (t) := σW

(

t

ε

)

.1348

2 0 5 0 8 2 0
Jour. No Ms. No.

B
Dispatch: 21/11/2014
Total pages: 67
Disk Received
Disk Used

Journal: ARMA
Not Used
Corrupted
Mismatch

A
u

th
o

r 
P

ro
o

f



 
Duvan Henao, Carlos Mora-Corral and Xianmin Xu

Both σε,V and σε,W are homeomorphisms of class C1 such that1349

σ−1
ε,V (s) = εσ−1

V (s), σ−1
ε,W (s) = εσ−1

W (s), 0 ! s ! 1.1350

In particular,1351

σ−1
ε,V (1) ≈ σ−1

ε,W (1) ≈ ε. (147)1352

Moreover, by (146),1353

σε,V (0) = 0, σ ′
ε,V =

(1 − σε,V )q ′−1

ε
,

σε,W (0) = 0, σ ′
ε,W =

σ
q ′−1
ε,W (1 − σε,W )q ′−1

ε
.

(148)1354

7.2. Some Notation About Curves1355

We recall some definitions and facts about plane curves. Given a, b ∈ R2, we1356

define a∧b as the determinant of the matrix (a, b) whose columns are a and b. The1357

matrix
(a

b

)

has rows a and b. We define a⊥ := (−a2, a1) whenever a = (a1, a2).1358

Note that1359

a ∧ b = a⊥ · b = −a · b⊥ = a⊥ ∧ b⊥ and (a, b)−1 =
1

a ∧ b

(

−b⊥

a⊥

)

.1360

Let Θ be a C2 differentiable manifold of dimension 1, and let ū ∈ C1,1(Θ, R2)1361

satisfy ū′(θ) ̸= 0 for all θ ∈ Θ . The normal ν ∈ C0,1(Θ, S1) to ū and the signed1362

curvature κ : Θ → R of ū are defined as1363

ν := −
(ū′)⊥

|ū′|
, κ :=

ū′ ∧ ū′′

|ū′|3
. (149)1364

The following identities hold almost everywhere:1365

ν · ν′ = 0, ν ∧ ū′ = |ū′|, ν′ = −
1

|ū′|
(ū′′)⊥ −

ū′ · ū′′

|ū′|2
ν,

ū′ · ν′

|ū′|2
=

ν ∧ ν′

|ū′|
= κ, |ν′| = |ū′| |κ|.

(150)1366

Given an interval I and a differentiable function g : I → R, we consider the1367

function1368

Y : I × Θ → R
2, Y(t, θ) := ū(θ) + g(t) ν(θ),1369

and find the gradient of its inverse y :→ (t, θ) by writing Dt and Dθ as a linear1370

combination of ū′

|ū′| and ν and solving the linear system1371

{

Dt · ∂Y
∂t = 1, Dt · ∂Y

∂θ = 0,

Dθ · ∂Y
∂t = 0, Dθ · ∂Y

∂θ = 1,
1372
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Γ -Convergence Approximation of Fracture and Cavitation

which yields1373

Dt =
1

g′(t)
ν, Dθ =

1

|ū′| (1 + g(t)κ)

ū′

|ū′|
. (151)1374

We also have, by (150), that1375

∂Y

∂t
= g′(t) ν(θ),

∂Y

∂θ
= ū′(θ) + g(t) ν′(θ),

∂Y

∂t
∧

∂Y

∂θ
= g′(t)

∣

∣ū′(θ)
∣

∣ (1 + g(t)κ(θ)) .

(152)1376

7.3. Cavitation1377

We consider a typical deformation creating a cavity. Let Θ be the differentiable1378

manifold defined as the topological quotient space obtained from [−π,π ] with the1379

identification −π ∼ π , and note that Θ is diffeomorphic to S1. Functions defined1380

on Θ will be identified with 2π -periodic functions defined on R, in the obvious1381

way. We assume the existence of a homeomorphism u0 as in Section 4. Moreover,1382

Ω is a Lipschitz domain containing γ := {0}, we take ∂DΩ = ∂Ω and p1 < 2.1383

Suppose, further, that:1384

(D1) u ∈ C1,1(Ω̄\γ , R2) is one-to-one in Ω̄\γ , satisfies det ∇u > 0 almost1385

everywhere in Ω , and1386

∫

Ω

[

|Du|p1 + h (det Du)
]

dx < ∞. (153)1387

(D2) There exist ρ ∈ C1,1(Θ, (0,∞)) and ϕ ∈ C1,1(R) with ϕ′ > 0 and ϕ(· +1388

2π) − ϕ(·) = 2π such that, when we define ū : Θ → R2 as ū(θ) :=1389

ρ(θ)eiϕ(θ), we have that1390

lim
t→0+

sup
θ∈Θ

∣

∣

∣u(teiθ ) − ū(θ)
∣

∣

∣ = 0.1391

(D3) ū is a Jordan curve, and u(Ω̄\γ ) lies on the unbounded component of1392

R2\ū(Θ).1393

(D4) lim supt→0+ supθ∈Θ

(∣

∣

d
dt u(teiθ )

∣

∣+
∣

∣

d
dθ u(teiθ )

∣

∣

)

< ∞.1394

(D5) The inverse of u has a continuous extension v : u(Ω\γ ) → Ω̄ .1395

The reader can check that a typical deformation creating a cavity at γ indeed1396

satisfies assumptions (D1)–(D5), the only artificial assumption may be (D2), which1397

implies that the cavity is star-shaped. Note, in particular, that the assumptions1398

imply that u ∈ W 1,p1(Ω, R2),H 1(Ju−1) = 0 and imG(u,Ω) = u(Ω\γ ) almost1399

everywhere.1400

For the approximated functional Iε and the admissible set Aε, the sequences1401

{ηε}ε and {bε}ε of (75), (76) are chosen to satisfy1402

ηε ≪ ε p2−1 and ε ≪ bε. (154)1403

Under these assumptions, the following result holds. We remark that the notation1404

of the proof is chosen so that some of its parts can be used for the constructions of1405

Sections 7.4–7.6.1406
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Proposition 8. For each ε there exists (uε, vε, wε) ∈ Aε satisfying (79) and (145).1407

Proof. (Sketch) The construction requires five steps, which will correspond to five1408

independent zones Zε
1–Z ε

5 in the domain Ω . These zones follow one another in1409

order of increasing distance t = |x| to the singular set γ .1410

Let {aε}ε be any sequence such that1411

ηε ≪ a2p2−2
ε , aε ≪ ε

1
2 , (155)1412

which is possible thanks to (154). Introduce the auxiliary function1413

fε : [aε,∞) → [0,∞), fε(t) := t2 − a2
ε . (156)1414

The values of t at which one zone ends and the other begins are1415

aε, aε,V := aε +σ−1
ε,V (1), aε,W := f −1

ε

(

fε(aε,V )+σ−1
ε,W (1)

)

, 2aε,W . (157)1416

More precisely,1417

Z ε
1 := {x ∈ Ω : dist(x, γ ) < aε}, Z ε

2 := {x : aε ! dist(x, γ ) < aε,V },1418

Z ε
3 := {x : aε,V ! dist(x, γ ) < aε,W },1419

Z ε
4 := {x : aε,W ! dist(x, γ ) < 2aε,W }, Z ε

5 := Ω\
4
⋃

i=1

Z ε
i . (158)1420

Thanks to (147) and (155), we have that aε,V ≈ max{aε, ε} and aε,W ≈ ε
1
2 .1421

Step 1: regularization of u. It is in Z ε
1 where the singularity of u at γ is smoothed1422

out, so that uε fills the hole created by u. More precisely, we set1423

X(t, θ) := t eiθ , uε(X(t, θ)) :=
t

aε
ū(θ), vε(X(t, θ)) := 0,

wε(uε(X(t, θ))) := 0, (t, θ) ∈ [0, aε) × Θ.

(159)1424

The reason why vε = 0 in Zε
1 is that det Duε is roughly the area of the cavity (of1425

order 1) divided by the area of Z ε
1 (of order a−2

ε ), so det Duε ≈ a−2
ε , and W (F)1426

normally grows superlinearly in det F; it is thus necessary that vε = 0 so as to make1427

I E
ε (Z ε

1) small. The precise calculations are1428

Duε(X(t, θ)) =
duε

dt
⊗ Dt +

duε

dθ
⊗ Dθ,

(

Dt

Dθ

)

=
(

∂X

∂t
,
∂X

∂θ

)−1

=
1

∂X
∂t ∧ ∂X

∂θ

(− ∂X
∂θ

⊥

∂X
∂t

⊥

)

.

(160)1429

From (159), we find that1430

∂X

∂t
= eiθ ,

∂X

∂θ
= t ieiθ ,

∂X

∂t
∧

∂X

∂θ
= t,

duε

dt
=

1

aε
ū,

duε

dθ
=

t

aε
ū′,

duε

dt
∧

duε

dθ
=

t

a2
ε

ū ∧ ū′,

(161)1431
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Γ -Convergence Approximation of Fracture and Cavitation

so Dt = eiθ and Dθ = t−1ieiθ . Consequently, using (160), (161) as well,1432

∣

∣

∣Duε(te
iθ )
∣

∣

∣ # a−1
ε + ta−1

ε t−1 ≈ a−1
ε . (162)1433

On the other hand, considering that1434

duε

dt
∧

duε

dθ
=
(

(Duε)
∂X

∂t

)

∧
(

(Duε)
∂X

∂θ

)

= det Duε

(

∂X

∂t
∧

∂X

∂θ

)

, (163)1435

we find from (161) and (D2) that det Duε = a−2
ε ū ∧ ū′ = a−2

ε ρ2ϕ′, so1436

det Duε ≈ a−2
ε . (164)1437

Using (W̄1)–(W̄2), (162) and (164) we find that1438

W (Duε) # |Duε|p1 + (det Duε)
p2 # a−p1

ε + a−2p2
ε # a−2p2

ε .1439

Therefore, thanks to (155) we conclude that

I E
ε (Z ε

1) # ηε a−2p2
ε L

2(Z ε
1) ≈ ηε a2−2p2

ε ≪ 1,

I V
ε (Z ε

1) ≈ ε−1
L

2(Z ε
1) ≈ ε−1 a2

ε ≪ 1, I W
ε (uε(Z ε

1)) = 0.

Step 2: transition of vε from 0 to 1. It is very expensive for v to be equal to zero,1440

hence we set1441

vε(x) :=

{

σε,V (t (x) − aε), if aε ! t (x) < aε,V ,

1, if t (x) " aε,V ,
(165)1442

which satisfies1443

|Dvε(x)| = σ ′
ε,V (t (x) − aε), if aε ! t (x) < aε,V .1444

Since1445

ab =
aq

q
+

bq ′

q ′ whenever a, b " 0 with aq = bq ′
(166)1446

and (148) holds, we have that1447

(

ε
1− 1

q |Dvε|
)q

q
+

(

ε
− 1

q′ (1 − vε)

)q ′

q ′ = |Dvε| (1 − vε) . (167)1448

Consequently, thanks to the coarea formula (18),1449

I V
ε (Ω\Z ε

1) =
∫ 1

0
(1 − s)H

1({x ∈ Z ε
2 : vε(x) = s}) ds

=
∫ 1

0
(1 − s) 2π (aε + σ−1

ε,V (s)) ds ≪ 1.

(168)1450
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Step 3: transition of wε from 0 to 1. In Z ε
2 ∪ Z ε

3 we are not able to construct uε1451

as a close approximation of u. Instead, we define1452

uε(X(t, θ)) := Y( fε(t), θ), (t, θ) ∈ [aε, aε,W ) × Θ;
Y(τ, θ) := ū(θ) + τν(θ), τ " 0,

(169)1453

with fε and ν as in (156) and (149). This definition is partly motivated by the1454

explicit construction of incompressible angle-preserving maps in [58, Sect. 4]. In1455

this way, the deformation uε follows the geometry of the cavity, while det Duε1456

remains controlled. Note that there exists δū > 0 such that Y is a homeomorphism1457

from [0, δū] × Θ onto its image.1458

As for wε, we recall that vε(x) was constructed as a function of the distance1459

t = |x| from x to γ , and notice that I W
ε is minimized when wε(y) is a function of the1460

distance from y to the cavity surface ū(Θ). Since we want wε ◦ uε to coincide with1461

vε in a subset of Ω with almost full measure, it is convenient that the level sets of1462

the function x :→ dist(x, γ ) are mapped by uε to level sets of y :→ dist(y, ū(Θ)).1463

This is precisely the main virtue of the definition (169) of uε.1464

The radial function fε was defined as (156) so as to maintain det Duε bounded1465

and far away from zero. Indeed, by (152), (161), (163) and (169) it can be seen that1466

det Duε =
f ′
ε(t)

t
|ū′|(1 + fε(t)κ(θ)) ≈ 1.1467

At the same time, (151), (152), (160), (161) and (169) yield |Duε(te
iθ )| # t−1.1468

Therefore, recalling (W̄1)–(W̄2) and (161), and changing variables, we find that1469

I E
ε (Z ε

2 ∪ Z ε
3) #

∫ aε,W

aε

t1−p1 dt ≈ a
2−p1

ε,W ≈ ε1− p1
2 .1470

Due to the choice of fε in (156), the image of Zε
2 by uε is an annular region1471

of width a2
ε,V − a2

ε ≈ max{a2
ε , ε

2}, where wε does not have enough room to1472

do an optimal transition. This is why we let the transition of vε and wε occur1473

independently: first vε in Z ε
2, and then wε in uε(Z ε

3). So we set wε = 0 in uε(Z ε
2)1474

and1475

wε(ū(θ) + τν(θ)) := σε,W (τ − fε(aε,V )), fε(aε,V ) ! τ < fε(aε,W ). (170)1476

In order to calculate I W
ε , first we fix s ∈ (0, 1) and observe that the level set

{y ∈ uε(Z ε
3) : wε(y) = s} can be parametrized by y = ū(θ)+τε(s)ν(θ), for θ ∈ Θ

and τε(s) := fε(aε,V ) + σ−1
ε,W (s) # ε. Thus,

lim
ε→0

H
1({y ∈ uε(Z ε

3) : wε(y) = s}) = lim
ε→0

∫

Θ
|ū′(θ) + τε(s)ν

′(θ)| dθ

=
∫

Θ
|ū′(θ)| dθ = H

1(ū(Θ)).

Inverting the map (τ, θ) :→ y = ū(θ) + τν(θ) we obtain that τ (y) is the distance1477

from y to the cavity surface ū(Θ) and that Dτ (y) = ν(θ(y)) (see also (151)), hence1478
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Γ -Convergence Approximation of Fracture and Cavitation

|Dwε| = σ ′
ε,W (τ ). Using (166) and the differential equation (148) for σε,W , we1479

find, in an analogous calculation to that of (167), (168), that1480

lim
ε→0

I W
ε (u(Z3

ε )) =
(∫ 1

0
s(1 − s) ds

)

H
1(ū(Θ)) =

1

6
H

1(ū(Θ)). (171)1481

Step 4: back to the original deformation. In the fourth zone, uε must find a way1482

to attain all the material points in u(Z ε
1 ∪ Zε

2 ∪ Z ε
3 ∪ Z ε

4) using only those points1483

in Z ε
4. The resulting map uε needs to be continuous at the interface between Z ε

31484

and Z ε
4, and the regions uε(Z ε

2 ∪ Z ε
3) and uε(Z ε

4) must not overlap. To this end, we1485

introduce the auxiliary functions1486

Gε(ū(θ) + τν(θ)) :=

{

ū(θ) + ( fε(aε,W ) + τ/2)ν(θ), 0 ! τ ! 2 fε(aε,W ),

ū(θ) + τν(θ), τ " 2 fε(aε,W ),

(172)1487

and1488

Fε(X(t, θ)) := X(r(t), θ), r(t) :=

{

2√
3

√

t2 − a2
ε,W , aε,W < t < 2aε,W ,

t, t " 2aε,W .

(173)1489

For any a > 2 fε(aε,W ), function Gε retracts Y([0, a]×Θ) onto Y([ fε(aε,W ), a]×1490

Θ), while Fε expands {x : dist(x, γ ) > aε,W } onto {x : dist(x, γ ) > 0}. Moreover,1491

Gε = id in Y([2 fε(aε,W ),∞) × Θ) and Fε = id in Zε
5. Define uε := Gε ◦ u ◦ Fε1492

in Z ε
4 ∪ Z ε

5. Note that uε = u in Z ε
5, and that, thanks to (D2), uε is continuous on1493

Z̄ ε
3 ∩ Z̄ ε

4.1494

As in (160), writing du
dr :=

(

Du
(

r(t)eiθ
))

eiθ , in region Z ε
4 we have that1495

Du(r(t)eiθ ) =
du

dr
⊗ eiθ + r−1 du

dθ
⊗ ieiθ ,1496

DFε(te
iθ ) = r ′eiθ ⊗ eiθ +

r

t
ieiθ ⊗ ieiθ .1497

Hence det DFε = r ′ r
t = 4

3 and, thanks to (D4), we conclude that1498

∣

∣

∣D(u ◦ Fε)(te
iθ )
∣

∣

∣ ! r ′
∣

∣

∣

∣

du

dr

∣

∣

∣

∣

+
1

t

∣

∣

∣

∣

du

dθ

∣

∣

∣

∣

# max{r ′,
1

t
} = r ′ # a

1
2
ε,W (t − aε,W )−

1
2 .1499

Analogously, the gradient of Gε can be calculated as in (151) (with g(τ ) = τ ,1500

which corresponds to the definition of Y(τ, θ) of (169)) and (160):1501

DGε(Y(τ, θ)) =
dGε

dτ
⊗ ν +

1

|ū′| (1 + τκ)

dGε

dθ
⊗

ū′

|ū′|
,1502

hence1503

|DGε(Y(τ, θ))| !

∣

∣

∣

∣

dGε

dτ

∣

∣

∣

∣

+
1

|ū′| (1 + τκ)

∣

∣

∣

∣

dGε

dθ

∣

∣

∣

∣

# 1. (174)1504
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Duvan Henao, Carlos Mora-Corral and Xianmin Xu

Moreover, the analogue of (163) and (152) (applied to g(τ ) = τ in the denominator1505

and g(τ ) = fε(aε,W ) + τ/2 in the numerator) yields1506

det DGε =
dGε
dτ ∧ dGε

dθ

|ū′| (1 + τκ)
≃ ū ∧

ū′

|ū′|
+

1

2
≈ 1. (175)1507

The above calculations imply that

|Duε| # a
1
2
ε,W (t − aε,W )−

1
2 ,

det Duε(X(t, θ)) = (det DGε)(det Du)(det DFε) ≈ det ∇u(X(r(t), θ)).

Hence, thanks to (W̄1)–(W̄3),1508

W (Duε(X(t, θ)) # a
p1
2

ε,W (t − aε,W )−
p1
2 + h (det Du(X(r(t), θ))) .1509

Therefore, by the last assumption in (D1), considering that L 2(
⋃4

i=1 Z ε
i ) ≈1510

a2
ε,W ≈ ε,1511

I E
ε (Z ε

4) #
∫ 2aε,W

aε,W

a
p1
2

ε,W (t − aε,W )−
p1
2 t dt1512

+
3

4

∫

⋃4
i=1 Zε

i

h(det ∇u(z)) dz ≪ a2
ε,W + 1 ≈ 1.1513

Step 5: transition of wε from 1 to 0 close to the outer boundary. A further1514

transition is needed in order for wε to satisfy the boundary condition (56). Let1515

νQ(y) denote the unit normal to y ∈ u0(∂Ω) pointing towards R2\u(Ω\γ ). Call1516

also1517

Yε := {y − τνQ(y) : y ∈ u0(∂Ω), 0 ! τ ! σ−1
ε,W (1)} (176)1518

Set wε = 1 in uε(Z ε
4 ∪ Z ε

5)\Yε and1519

wε(y − τνQ(y)) := σε,W (τ ), 0 ! τ ! σ−1
ε,W (1). (177)1520

Proceeding as in the argument leading to (171), one can show that1521

lim
ε→0

I W
ε (Yε) =

1

6
H

1(u(∂Ω)). (178)1522

Concluding remarks. Based on the results obtained, it can be checked that1523

(uε, vε, wε) fulfils the conclusion of the proposition. Here we will show only that1524

∂ imG(u,Ω) = ū(Θ) ∪ u0(∂Ω). First note that for all θ ∈ Θ ,1525

v(ū(θ)) = v

(

lim
r→0

u(reiθ )

)

= lim
r→0

v(u(reiθ )) = lim
r→0

reiθ = 0.1526

It follows from (D2) that ū(Θ) ⊂ u(Ω\γ ). Moreover, ū(Θ) ∩ u(Ω\γ ) = ∅,1527

since otherwise there would exist y ∈ ū(Θ) and x ∈ Ω\{0} such that y = u(x);1528
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Γ -Convergence Approximation of Fracture and Cavitation

as seen before, v(y) = 0, but on the other hand, v(y) = v(u(x)) = x, which is a1529

contradiction. Therefore,1530

ū(Θ) ⊂ u(Ω\γ )\u(Ω\γ ) = ∂u(Ω\γ ),1531

the latter equality being due to the invariance of domain theorem. It is easy to see1532

that u0(∂Ω) is also contained in ∂u(Ω\γ ), since every x ∈ ∂Ω is the limit of a1533

sequence {x j } j∈N ⊂ Ω, u0(x) = u(x), and u : Ω̄\γ → R2 is continuous and1534

injective.1535

Conversely, let y ∈ ∂u(Ω\γ ). Then there exist a sequence {x j } j∈N in Ω\γ1536

converging to some x ∈ Ω such that u(x j ) → y as j → ∞. Since ∂u(Ω\γ ) ∩1537

u(Ω\γ ) = ∅, necessarily x ∈ {0} ∪ ∂Ω . If x ∈ ∂Ω , then y ∈ u0(∂Ω) since1538

u : Ω̄\γ → R2 is continuous. If x = 0 then r j := |x j | → 0 as j → ∞. For each1539

j ∈ N let θ j ∈ Θ be such that x j = r j e
iθ j . Using (D2) and the inequality1540

|y − ū(θ j )| ! |y − u(x j )| + |u(r j e
iθ j ) − ū(θ j )|1541

we find that ū(θ j ) → y as j → ∞, so y ∈ ū(Θ) = ū(Θ). This completes our1542

sketch of proof. ⊓51543

7.4. Fracture at the Boundary1544

We illustrate the role of the term H n−1({x ∈ ∂DΩ : u ̸= u0}) in (145) by1545

means of a simple example in which the Dirichlet condition is not satisfied. Let1546

Ω = B(0, 1), ∂DΩ = ∂Ω, ρ > 0, and consider the functions1547

r̄(t) :=
√

t2 + ρ2, u(teiθ ) := r̄(t)eiθ , u0(x) := λ0x,1548

and a number λ0 > r̄(1). Call ū(θ) := ρeiθ for θ ∈ Θ , and Θ as in Section 7.3. This1549

choice of u satisfies hypotheses (D1)–(D5) of Section 7.3. Call p := max{p1, p2}1550

and assume that1551

ηε ≪ ε p−1, ε ≪ bε. (179)1552

Take sequences {aε}ε and {cε}ε of positive numbers satisfying aε ≪ ε
1
2 , cε ≪ ε1553

and ηε ≪ c
p−1
ε . The numbers aε,V and aε,W , and the transition levels are defined1554

as in (157), the zones Z ε
1–Z ε

5 as in (158), the functions fε as in (156), X as in (159)1555

and Gε, Fε, r as in (172), (173). Finally, set1556

d+
ε := 1 − σ−1

ε,V (1), d−
ε := d+

ε − cε.1557

In zones Z ε
1–Z ε

4, define uε, vε, and wε as in Section 7.3. The definition of1558

(uε, vε, wε) in Z ε
5 needs to be modified, due to the following considerations. On1559

the one hand, uε has to satisfy the Dirichlet condition violated by u: uε(x) = λ0x1560

if |x| = 1; on the other hand, most of the time uε should coincide with u. Since1561

uε must be continuous, we will define it in such a way that it stretches the material1562

contained in {d−
ε ! |x| ! d+

ε } in order to fill the gap between u(Ω) = B(0, r̄(1))1563

and u0(∂Ω) = ∂ B(0, λ0). This stretching of material comes with large gradients1564

that are prohibitively expensive in terms of elastic energy, unless vε = 0 in that1565
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Duvan Henao, Carlos Mora-Corral and Xianmin Xu

annular region. Because of restriction (57), we need to produce first a transition for1566

wε from 1 to 0 before the transition of vε from 1 to 0. After the stretching takes1567

place, vε must go back from 0 to 1 due to condition (54).1568

In the region {2aε,W ! |x| ! d−
ε } we set uε := Gε ◦ u ◦ Fε, as in Step 4 of1569

the proof of Proposition 8. It is easy to see that uε(te
iθ ) = u(teiθ ) if r̄(t) − ρ "1570

2 fε(aε,W ). Since r̄(d−
ε ) → r̄(1) and fε(aε,W ) ≪ 1, it is clear that uε(te

iθ ) =1571

u(teiθ ) long before t reaches the value d−
ε . In {d−

ε ! |x| ! d+
ε }, define uε(te

iθ )1572

as rε(t)e
iθ , where rε is the linear interpolation such that r̄ε(d

−
ε ) = r̄(d−

ε ) and1573

r̄ε(d
+
ε ) = r̄(d+

ε ) + λ0 − r̄(1). In the remaining annulus {d+
ε ! |x| ! 1}, set1574

rε(t) = r̄(t) + λ0 − r̄(1). To sum up, uε(te
iθ ) = rε(t)e

iθ in Z ε
5, with1575

rε(t) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r̄(t)+ρ
2 + fε(aε,W ), if r̄(t) − ρ " 2 fε(aε,W ),

r̄(t), if r̄(t)−ρ ! 2 fε(aε,W ) and t " d−
ε ,

d+
ε −t

d+
ε −d−

ε
r̄(d−

ε ) + t−d−
ε

d+
ε −d−

ε
(r̄(d+

ε ) + λ0 − r̄(1)), d−
ε " t " d+

ε ,

r̄(t) + λ0 − r̄(1), d+
ε " t " 1.

1576

The definition for vε is as in (159) and (165) in zones Z ε
1 ∪ Z ε

2 and1577

vε(te
iθ ) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, aε,V ! t ! d−
ε − σ−1

ε,V (1),

σε,V (d−
ε − t), d−

ε − σ−1
ε,V (1) ! t ! d−

ε ,

0, d−
ε ! t ! d+

ε ,

σε,V (t − d+
ε ), d+

ε ! t ! 1.

1578

The assumption on {cε}ε is such that1579

I E
ε ({d−

ε ! |x| ! d+
ε }) + I V

ε ({d−
ε ! |x| ! d+

ε }) # ηεcε

(

c−p1
ε + c−p2

ε

)

+ cεε
−1 ≪ 1.1580

The definition of wε is 0 in uε(Z1
ε ∪ Z2

ε ), as in (170) in uε(Z3
ε ), 1 in uε(Z4

ε ), and1581

in uε(Z5
ε ) it is1582

wε(τeiθ ) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1, if r̄(2aε,W ) " τ " r̄(d−
ε − σ−1

ε,V (1)) − σ−1
ε,W (1),

σε,W (r̄(d−
ε − σ−1

ε,V (1)) − τ ),

if r̄(d−
ε − σ−1

ε,V (1)) − σ−1
ε,W (1) " τ " r̄(d−

ε − σ−1
ε,V (1)),

0, if r̄(d−
ε − σ−1

ε,V (1)) " τ " r̄(1).

1583

With respect to the analysis of Section 7.3, the only extra term appearing in the1584

energy estimates is1585

I V
ε

(

{d−
ε − σ−1

ε,V (1) ! |x| ! d−
ε } ∪ {d+

ε ! |x| ! 1}
)

1586

= 2π
(

d−
ε + d+

ε

)

∫ 1

0
(1 − s) ds → H

1(∂Ω).1587

This completes the sketch of proof of (145) in this example of fracture at the1588

boundary.1589
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Γ -Convergence Approximation of Fracture and Cavitation

7.5. Fracture in the Interior1590

In this subsection we consider a deformation creating a crack in the interior of the1591

body. To be precise, the reference configuration is Ω = B(0, 2) with ∂DΩ = ∂Ω .1592

We fix λ > 1 and declare u0 = λid. We set γ = [−1, 1] × {0}. Let Θ be the1593

topological quotient space obtained from [−2, 2] with the identification −2 ∼ 2.1594

Define X : [0,∞) × Θ → R2, first for θ ∈ [0, 1] by1595

X(t, θ) :=

{

(1, 0) + teiβ(t,θ), θ ∈ Θ0(t) := [0, π t
2+π t ],

(

(1 − θ)(1 + π
2 t), t

)

, θ ∈ Θ1(t) := [ π t
2+π t , 1],

β(t, θ) := (t−1 +
π

2
)θ,

(180)1596

and then extended to all [0,∞) × Θ by symmetry:1597

X(t, θ) :=

{

(−x1(t, 2 − θ), x2(t, 2 − θ)) , θ ∈ [1, 2],
(x1(t,−θ),−x2(t,−θ)) , θ ∈ [−2, 0],

(181)1598

where we have called x1, x2 the components of X. A representation of X is shown1599

in Fig. 2a. Note that X(t, ·) is a parametrization of the level curve {x ∈ Ω :1600

dist(x, γ ) = t}, which is close to being of arc-length. The assumptions for the1601

deformation are the following:1602

(F1) u ∈ C1,1(Ω̄\γ , R2) is one-to-one in Ω̄\γ , satisfies det ∇u > 0 almost every-1603

where in Ω , and (153) holds.1604

(F2) There are t0 ∈ (0, dist(γ , ∂Ω)), ρ ∈ C2([0, t0] × Θ, (0,∞)) and ϕ ∈1605

C2([0, t0] × R) such that1606

∂ϕ

∂θ
(t, θ) > 0, ϕ(t, θ + 4) = ϕ(t, θ) + 2π, (t, θ) ∈ [0, t0] × R1607

and1608

u(X(t, θ)) = ρ(t, θ) eiϕ(t,θ), (t, θ) ∈ (0, t0] × Θ.1609

(F3) For all t ∈ (0, t0), the curvature κt of u(X(t, ·)) (as defined in (149)) satisfies1610

κt > 0 almost everywhere.1611

(F4) The inverse of u has a continuous extension v : u(Ω\γ ) → Ω .1612

(a) (b)

Fig. 2. Representation of X and u corresponding to Section 7.5
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Duvan Henao, Carlos Mora-Corral and Xianmin Xu

(F5) For each a ∈ [−1, 1], the limits1613

u+(a, 0) := lim
(x1,x2)→(a,0)

x2>0

u(x1, x2), u−(a, 0) := lim
(x1,x2)→(a,0)

x2<0

u(x1, x2)1614

exist.1615

A representation of u is shown in Fig. 2b. Thanks to (F1) and (F5) one can easily1616

show that u ∈ SBV (Ω, R2) and Ju = γ H 1-almost everywhere. Furthermore,1617

also using (F4) and reasoning as in the last part of the proof Proposition 8, we can1618

check the equalities1619

Per imG(u,Ω) = Per u(Ω\γ ) = H
1(u−(γ )) + H

1(u+(γ )) + H
1(u0(∂Ω)),

H
1(Ju−1) = 0.

(182)

1620

Call p := max{p1, p2} and assume that (179).1621

Proposition 9. For each ε there exists (uε, vε, wε) ∈ Aε satisfying (79) and (145).1622

Proof. (Sketch) The construction of (uε, vε, wε) follows the same scheme of Propo-1623

sition 8. Let {aε}ε be any sequence such that1624

η
1

p−1
ε ≪ aε ≪ ε. (183)1625

Instead of (156), define fε(t) := t − aε. Define aε,V and aε,W as in (157), and1626

Z ε
1–Z ε

5 as in (158). Note that aε,V ≈ aε,W ≈ ε.1627

Step 1. Define uε in Z ε
1 by1628

uε(ℓX(aε, θ)) := ℓū(θ), ū(θ) := u(X(aε, θ)), (ℓ, θ) ∈ [0, 1] × Θ.1629

Let vε = 0 in Z ε
1 and wε = 0 in uε(Z ε

1). As in (160), we have that Duε =1630

ū ⊗ Dℓ + ℓū′ ⊗ Dθ , with1631

(

Dℓ

Dθ

)

=

(−(ℓ ∂X
∂θ )⊥

X(aε,θ)⊥

)

X(aε, θ) ∧ ℓ∂X
∂θ

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
aε+cos β

(

cos β sin β
−aε sin β
ℓ(1+ π

2 aε)
1+aε cos β
ℓ(1+ π

2 aε)

)

, θ ∈ Θ0(aε),

1
aε

(

0 1
−aε

ℓ(1+ π
2 aε)

1−θ
ℓ

)

, θ ∈ Θ1(aε),

1632

the result in the rest of Θ being analogous. Taking (F2) into account we obtain that1633

|Duε| # a−1
ε . From the analogue of (163) it follows that1634

det Duε =
ū ∧ ℓū′

X(aε, θ) ∧ ℓ∂X
∂θ

=

⎧

⎪

⎨

⎪

⎩

ρ2 ∂ϕ
∂θ (aε,θ)

(1+ π
2 aε)

1
aε+cos β , θ ∈ Θ0(aε),

ρ2 ∂ϕ
∂θ (aε,θ)

aε(1+ π
2 aε)

, θ ∈ Θ1(aε).
1635

Hence, by (F2),1636

1

2
(inf ρ)2 inf

∂ϕ

∂θ
! det Duε # a−1

ε .1637
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Γ -Convergence Approximation of Fracture and Cavitation

In addition, the geometry of γ shows that L 2(Z ε
1) ≈ aε. Therefore, thanks to1638

(183),1639

I E
ε (Z ε

1) + I V
ε (Z ε

1) + I W
ε (uε(Z ε

1)) # ηε

(

a−p1
ε + a−p2

ε

)

aε + ε−1aε ≪ 1.1640

Step 2. Define vε in Z ε
2 as in (165). The analysis is the same as in Proposition1641

8, save that now we have that for all t ∈ (aε, aε,V ),1642

H
1({x ∈ Ω : dist(x, γ ) = t}) = 2

(

H
1(γ ) + π t

)

,1643

hence1644

lim
ε→0

I V
ε (Z ε

2) = lim
ε→0

∫ 1

0
(1 − s)H

1({x ∈ Ω : dist(x, γ ) = aε + σ−1
ε,V (s)}) ds1645

= H
1(γ ).1646

Step 3. Define uε in Z2
ε ∪ Z3

ε and Y(τ, θ) as in (169), recalling that now fε(t) =1647

t−aε, and X is given by (180), (181). The function vε is defined as 1 in Zε
3 ∪Z ε

4∪Z ε
5,1648

and wε as in (170) in uε(Z ε
3). By (150) and (F3) we have that |ν ′| = κaε |ū

′|. Observe1649

from (F2) that |ū′| is bounded from below by inf(ρ ∂ϕ
∂θ ) > 0. Therefore,1650

sup
ε

sup κaε ! sup
t∈(0,t0]

sup κt < ∞.1651

On the other hand,
∣

∣

∣

∂X
∂t

∣

∣

∣ ! 1 + θ/t ! 1 + π/2 in Θ0(t). Therefore,1652

∂X

∂t
∧

∂X

∂θ
= 1 +

π

2
t,

∣

∣

∣

∣

∂X

∂t

∣

∣

∣

∣

! 1 +
π

2

∣

∣

∣

∣

∂X

∂θ

∣

∣

∣

∣

= 1 +
π

2
t in [0,∞) × Θ.

(184)1653

Using now (160) and (F2) we find that

|Duε(X(t, θ))| !
1

∂X
∂t ∧ ∂X

∂θ

(∣

∣

∣

∣

∂X

∂θ

∣

∣

∣

∣

+ |ū′|
(

1 + (t − aε)κaε

)

∣

∣

∣

∣

∂X

∂t

∣

∣

∣

∣

)

# 1 + sup

(∣

∣

∣

∣

∂ρ

∂θ

∣

∣

∣

∣

+ ρ
∂ϕ

∂θ

)

# 1.

On the other hand, (163), (152), (F2), and (F3) imply that1654

det Duε =
|ū′|(1 + (t − aε)κaε )

1 + π
2 t

≈ 1.1655

Hence1656

I E
ε (Z ε

2 ∪ Z ε
3) # L

2(Z ε
2 ∪ Z ε

3) # ε.1657
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The analysis for I W
ε is the same as in (170), (171), except that we need (F2) in order

to conclude that

lim
ε→0

H
1({y ∈ uε(Z ε

3) : wε(y) = s})

= lim
ε→0

∫

Θ

∣

∣

∣

∣

∂(u ◦ X)

∂θ
(aε, θ)

∣

∣

∣

∣

dθ

= lim
ε→0

H
1 ((u ◦ X)(aε, ·)(Θ)) = H

1(u−(γ )) + H
1(u+(γ )).

Step 4. Define uε := Gε ◦ u ◦ Fε in Z ε
4 ∪ Z ε

5, with Fε and Gε as in (172), (173),1658

but changing r(t) to1659

r(t) :=

{

2(t − aε,W ) + aε(2 − t
aε,W

), aε,W < t < 2aε,W ,

t, t " 2aε,W .
(185)1660

By (160) (applied to Fε), (185), and (184),

|DFε(X(t, θ))| !
1

∂X
∂t ∧ ∂X

∂θ

(∣

∣

∣

∣

∂X

∂t
(r(t), θ)

∣

∣

∣

∣

|r ′(t)|
∣

∣

∣

∣

∂X

∂θ

∣

∣

∣

∣

+
∣

∣

∣

∣

∂X

∂θ
(r(t), θ)

∣

∣

∣

∣

∣

∣

∣

∣

∂X

∂t

∣

∣

∣

∣

)

# 1.

Using now (163) we find that1661

det DFε =
(1 + π

2 r(t))(2 − aε
aε,W

)

1 + π
2 t

≈ 1.1662

Having also in mind the estimates (174) and (175), we find that1663

|Duε| # |Du| and det Duε ≈ det Du.1664

On the other hand, the definition of Gε and Fε are so that uε(x) = u(x) whenever1665

x = X(t, θ) with t " 2aε,W and u(x) = ū(θ) + τν(θ) with τ " 2(aε,W − aε).1666

Therefore, the set N ε of x ∈ Z ε
4∪Z ε

5 such that uε(x) ̸= u(x) satisfies L 2(N ε) ≪ 1.1667

Using (W̄1) and (F1), we conclude that1668

I E
ε (N ε) #

∫

N ε\γ

[

|Du|p1 + h (det Du)
]

dx ≪ 1.1669

Step 5. This is exactly the same as in the proof of Proposition 8. The function1670

wε is defined as 1 in uε(Z ε
4 ∪ Z ε

5)\Yε, and as (177) in Yε, where the region Yε is1671

defined as (176). We thus arrive at (178). This concludes our sketch of proof. ⊓51672
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Γ -Convergence Approximation of Fracture and Cavitation

7.6. Coalescence1673

Coalescence is the process by which two or more cavities are joined to form a1674

bigger cavity or else a crack. In this subsection we present a simple example of a1675

deformation that forms a crack joining two preexisting cavities.1676

Let r > 0, µ > 0 and h > 0. Let Ω be a Lipschitz domain such that1677

(−1, 1) × {0} ⊂ Ω, Ω ∩
(

B̄((−1 − r , 0), r) ∪ B̄((1 + r , 0), r)
)

= ∅1678

and1679

∂ B((−1 − r , 0), r) ∪ ∂ B((1 + r , 0), r) ⊂ Ω̄.1680

Set

∂N Ω = ∂ B((−1 − r , 0), r) ∪ ∂ B((1 + r , 0), r), ∂ΩD = ∂Ω\∂N Ω,

γ := [−1, 1] × {0}.

We assume1681

(L1) u ∈ C1,1(Ω̄\γ , R2) is one-to-one in Ω̄\γ , satisfies det ∇u > 0 almost1682

everywhere in Ω , and (153) holds.1683

(L2) The inverse of u has a continuous extension v : u(Ω\γ ) → Ω .1684

(L3) When we define u± : γ → R2 as1685

u±(x1, 0) = (µx1,±h), x1 ∈ (−1, 1),1686

we have that for all x1 ∈ (−1, 1),1687

lim
x→(x1,0)
±x2!0

u(x) = u±(x1, 0).1688

(L4) The deformation u can be continuously extended to ∂N Ω\{(−1, 0), (1, 0)}1689

by1690

⎧

⎪

⎨

⎪

⎩

u
(

(−1 − r , 0) + re(2θ−π)i
)

:= (−µ, 0) + heiθ , θ ∈
(

π

2
,

3π

2

)

,

u
(

(1 + r , 0) + re2θ i
)

:= (µ, 0) + heiθ , θ ∈
(

−
π

2
,
π

2

)

.

1691

A representation of u is shown in Fig. 3. As in Section 7.5, it is easy to check that1692

u ∈ SBV (Ω, R2), Ju = γ H 1-almost everywhere and (182) holds.1693

Assume (179). The following result holds.1694

Proposition 10. For each ε there is (uε, vε, wε) ∈ Aε satisfying (79) and (145).1695
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Fig. 3. Representation of u in the construction of Section 7.6

(a) (b)

Fig. 4. Representations of Θ, x̄1 and θ̄ , corresponding to Section 7.6

Proof. (Sketch) We define first a parametrization X(t, θ) of the domain in which
the parameter t represents the distance from X(t, θ) to γ ∪∂N Ω . To this aim, define
Θ as the quotient space obtained by taking the union A1 ∪ A2 ∪ A3 ∪ A4, where

A1 :=
[

−
π

2
,
π

2

]

× {1}, A2 := [−1, 1] × {2},

A3 :=
[

π

2
,

3π

2

]

× {3}, A4 := [−1, 1] × {4},

and identifying the points1696

(π

2
, 1
)

∼ (−1, 2), (1, 2) ∼
(π

2
, 3
)

,1697

(

3π

2
, 3

)

∼ (−1, 4), (1, 4) ∼
(

−
π

2
, 1
)

.1698

A representation of Θ is shown in Fig. 4a. Note that Θ is diffeomorphic to S1.1699

Define x̄1 : [0,∞) → [0,∞) and θ̄ : [0,∞) → S1 as1700

x̄1(t) := 1 + r −
√

r2 + 2r t, θ̄(t) := π − arctan
t

√

r2 + 2r t
. (186)1701

The point (x̄1(t), t) lies on the circle of centre (1 + r , 0) and radius r + t , whereas1702

θ̄(t) is the angle of (x̄1(t), t) with respect to (1 + r , 0); see Fig. 4b. The parabola1703

(x̄1(t), t) represents, therefore, the interface between the set of points that are closer1704

to γ and those that are closer to ∂ B((1 + r , 0), r).1705
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Γ -Convergence Approximation of Fracture and Cavitation

Define X : [0,∞) × Θ → R2 and Y : [−h,∞) × Θ → R2 as

X(t, θ) :=

⎧

⎪

⎨

⎪

⎩

(1 + r , 0) + (r + t)ei 2θ̄(t)
π θ if θ ∈ A1,

(−x̄1(t)θ, t) if θ ∈ A2,

by symmetry if θ ∈ A3 ∪ A4,

Y(τ, θ) :=

⎧

⎪

⎨

⎪

⎩

(µ, 0) + (h + τ )eiθ if θ ∈ A1,

(−µθ, h + τ ) if θ ∈ A2,

by symmetry if θ ∈ A3 ∪ A4.

In both definitions, we have identified A1 with [−π
2 , π

2 ], A2 with [−1, 1] and so
on. Let {aε}ε be any sequence such that (183) holds. As in Section 7.5, write
aε,V := aε + σ−1

ε,V (1) and aε,W := aε,V + σ−1
ε,W (1). Let

ū(θ) := Y(0, θ) =

⎧

⎪

⎨

⎪

⎩

u(X(0, θ)), θ ∈ Int A1 ∪ Int A3,

u+(X(0, θ)), θ ∈ A2,

u−(X(0, θ)), θ ∈ A4,

ν(θ) :=

⎧

⎪

⎨

⎪

⎩

eiθ , θ ∈ A1 ∪ A3,

(0, 1), θ ∈ A2,

(0,−1), θ ∈ A4,

where Int A1 stands for (−π
2 , π

2 )×{1}, which is further identified with (−π
2 , π

2 ), and1706

analogously for Int A3. Let Gε be as in (172), where fε is given by fε(t) := t −aε.1707

The recovery sequence is defined as1708

uε(X(t, θ)) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Y(h( t
aε

− 1), θ), (t, θ) ∈ (0, aε] × Θ,

Y(t − aε, θ), (t, θ) ∈ (aε, aε,W ] × Θ,

Gε ◦ u
(

X
(

2(t − aε,W ), θ
))

, (t, θ) ∈ (aε,W , 2aε,W ] × Θ,

Gε ◦ u (X(t, θ)) , (t, θ) ∈
(

(2aε,W , ∞) × Θ
)

∩ X−1(Ω),

1709

vε(x) :=

⎧

⎪

⎨

⎪

⎩

0, if dist(x, γ ∪ ∂N Ω) < aε,

σε,V (dist(x, γ ∪ ∂N Ω) − aε), if aε ! dist(x, γ ∪ ∂N Ω) ! aε,V ,

1, if dist(x, γ ∪ ∂N Ω) > aε,V ,

1710

and1711

wε(y)

:=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, in Y([0, aε,V − aε] × Θ),

σε,W

(

dist (y, ū(Θ)) − (aε,V − aε)
)

, in Y([aε,V − aε, aε,W − aε] × Θ),

σε,W (dist (y, u(∂DΩ))) , if y ∈ u(Ω\γ ) and dist (y, u(∂DΩ)) ! σ−1
ε,W (1),

1, in any other case in u(Ω\γ ).

From (186) we obtain1712

x̄ ′
1(t) = −

r
√

r2 + 2r t
, θ̄ ′(t) = −

r

(r + t)
√

r2 + 2r t
.1713
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Standard calculations show that1714

∣

∣

∣

∣

∂X

∂t

∣

∣

∣

∣

# 1,

∣

∣

∣

∣

∂X

∂θ

∣

∣

∣

∣

# 1,
∂X

∂t
∧

∂X

∂θ
≈ 11715

in compact subsets of (t, θ) ∈ [0,∞) × Θ , and1716

∣

∣

∣

∣

∂Y

∂τ

∣

∣

∣

∣

# 1,

∣

∣

∣

∣

∂Y

∂θ

∣

∣

∣

∣

# 1,
∂Y

∂τ
∧

∂Y

∂θ
≈ 11717

in compact subsets of (τ, θ) ∈ [−h,∞)×Θ . Using this, the result can be established1718

exactly as in Section 7.5. ⊓51719
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