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ABSTRACT 

Measuring the performance of forensic evaluation methods that compute likelihood 
ratios (LRs) is relevant for both the development and the validation of such methods. 
A framework of performance characteristics categorized as primary and secondary is 
introduced in this study to help achieve such development and validation. Ground-
truth labelled fingerprint data is used to assess the performance of an example 
likelihood ratio method in terms of those performance characteristics. Discrimination, 
calibration, and especially the coherence of this LR method are assessed as a function 
of the quantity and quality of the trace fingerprint data. Assessment of the coherence 
revealed a weakness of the comparison algorithm in the computer-assisted likelihood 
ratio method used.	
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ABSTRACT 

Measuring the performance of forensic evaluation methods that compute likelihood ratios 

(LRs) is relevant for both the development and the validation of such methods. A framework 

of performance characteristics categorized as primary and secondary is introduced in this 

study to help achieve such development and validation. Ground-truth labelled fingerprint data 

is used to assess the performance of an example likelihood ratio method in terms of those 

performance characteristics. Discrimination, calibration, and especially the coherence of this 

LR method are assessed as a function of the quantity and quality of the trace fingerprint data. 

Assessment of the coherence revealed a weakness of the comparison algorithm in the 

computer-assisted likelihood ratio method used.  
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1. INTRODUCTION 

Forensic research makes progress in the field of evaluation of forensic findings. An 

increasingly adopted approach [1] uses a logical framework based on Bayes’ Theorem to 

report forensic evidence in terms of likelihood ratios [1,2]. Computer-assisted LR methods 

(also referred to simply as LR methods), have been developed to assist the forensic 

practitioner in his role of forensic evaluator [3,4,5,6,7,8,9]. In these methods pattern 

recognition algorithms are often used for the feature extraction (analysis), the feature 

comparison, and statistical models are used for the evaluation of the forensic findings. 

In this article the term validation refers to a series of experiments, and the application of a set 

of performance metrics and validation criteria to demonstrate validity. This is different from 

Ref. [10], where the term validity was defined as a single metric and equated to accuracy. 

The specific performance characteristics, performance metrics and validation criteria are used 

to describe the performance of methods computing LRs and to assess the limits of their 

validity when used for casework. The LR describes the strength of the evidence, and does not 

imply a decision by itself. Therefore, the validation of LRs is not the validation of a decision 

process, but of a description process. We define coherence as a performance characteristic, 

understood as the ability of a LR method to perform better and to maintain low rates of 

misleading evidence as some measured parameters influencing quality in the features studied 

improve, and vice versa. A concrete example is provided when studying and assessing the 

coherence of a forensic fingermark evaluation method, based on a comparison algorithm of 

an AFIS (Automated Fingerprint Identification System). When analysing the coherence of 

the method we hope to observe a LR value increasing with the intrinsic quantity and quality 

of the information present in the trace data (such as the length of a speech fragment or the 

number of minutiae in a fingermark). 

Forensic service delivery makes progress in the field of quality assurance. Initiatives in the 

European Network of Forensic Science Institutes (ENFSI) focus on best practices, method 

validation and service accreditation [11,12]. But because LR methods for forensic evaluation 

are still very new, the question of their validation has not been addressed yet in the context of 

quality assurance. Currently, performance characteristics, performance measures, and 

validation criteria exist to assess analytical forensic methods [13] and human-based methods 

used for forensic evaluation [14,15]. These approaches are however not suitable for the 

validation of LR methods developed for forensic evaluation. Such a validation requires 
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specific performance characteristics, performance measures and validation criteria related to 

the nature of the LRs and the computation methods involved. 

Studying the coherence contributes to describing the performance of the LR method using 

datasets in which some measurable parameters influencing the strength of the evidence vary. 

The variation of the length of utterances in forensic automatic speaker recognition and the 

variation of the number of minutiae in fingermarks are examples of such parameters. 

Coherence is a highly desirable property of a LR method. 

The remainder of this article is structured as follows. The definition of coherence in a set of 

performance characteristics is presented in Section 2. Section 3 introduces the experimental 

example for assessment of the coherence of LRs assigned using computer-assisted methods. 

The different datasets used to measure the performance characteristics are described in 

Section 4, while the relevance of the use of the datasets and their specificity is described in 

Section 5. The performance metrics related to the performance characteristics used are 

introduced in Section 6. Results in terms of coherence of the LR method are presented in 

Section 7, followed by general discussion and conclusions in Section 8. 

Throughout this article we frequently use the terms performance characteristic – a 

measurable property (or a set of measurable properties) of LRs; and performance metrics – a 

quantitative description of the performance characteristic. These definitions are ours and the 

terms may have different meanings in other related works. 

2. PERFORMANCE CHARACTERISTICS 

Several performance characteristics have been defined to assess the performance of 

computer-assisted LR methods developed for forensic evaluation. We propose to structure 

them into primary and secondary performance characteristics. Primary performance 

characteristics directly measure desirable properties of the LRs. The secondary performance 

characteristics measure how sensitive primary performance characteristics are to factors like 

the quantity of information in the data, and to the forensic casework circumstances, such as 

degraded quality, different technical and temporal conditions related for example to the 

acquisition of trace and test1 specimens, representativeness of the data, etc. 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 In the fingerprint modality the trace usually refers to the fingermark recovered from the crime scene and the 
test specimen usually refers to the rolled, inked fingerprint of a suspected individual. 
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2.1 Primary performance characteristics 

To assess the performance of computer-assisted LR methods, several performance 

characteristics have been defined recently in forensic evaluation [16]. A very important one is 

accuracy, defined as the combination of discrimination (discriminating power) and 

calibration [16,17,18].  

• Accuracy is defined as the closeness of agreement between the decision – driven by a LR 

computed by a given method – and the ground truth. The LR is accurate if it helps to lead 

to a decision that is correct2. In case of source level inference, the ground truth relates to 

the following pair of propositions: 

 

o Hp: The pair of specimens compared come from the same source (SS) 

o Hd: The pair of specimens compared come from different sources (DS) 

 

Ground-truth labels are defined as SS (same source) when the LR was calculated for 

specimens originating from the same source, and as DS (different source) when the LR 

was calculated for specimens originating from the different sources. If an experimental 

set of LR values is to be evaluated, and the corresponding ground-truth label of each of 

the LR values is known, then a given LR value is evaluated as more accurate if it supports 

the true (known) proposition to a higher degree, and vice-versa. 

• Discrimination (or discriminating power) is a property of a set of LRs that allows 

distinguishing between the propositions involved. See [16,17] for details. 

• Calibration is another property of a set of LRs. Perfect calibration of a set of LRs means 

that those LRs can probabilistically be interpreted as the evidential value of the 

comparison result for either proposition in a Bayesian evaluation framework. Finding a 

LR = x will be x times more probable under Hp than under Hd (in other words, the LR of 

the LR is the LR [19,20]). Under those conditions the LR is exactly as big or small as is 

warranted by the data. Well-calibrated LRs tend to increase with the discrimination of a 

given method [16]. 

2.2 Example factors influencing the primary performance characteristics 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 The LR does not imply a decision, but the accuracy measurement is inserted in a decision-theoretical process 
as explained in [16,17]. 
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• Quality of the data is a measurable parameter that has no information about the 

proposition, but can predict the performance of that comparison. In other words, 

specimens of high quality to be compared in a forensic case predict good performance of 

that comparison while low quality samples predict bad performance of a LR method. 

Examples are the quantity of minutiae in fingerprint comparisons or the signal-to-noise 

ratio in speaker recognition. 

• Quantity3 or amount of data, e.g. the length of a speech fragment, the number of 

minutiae in a fingermark, etc. 

• Representativeness of the data used to train the LR method for the data used in 

operational conditions. The smaller the dataset shift [22] between the two, the more 

representative the training data is for those in operational conditions. 

2.3 Secondary performance characteristics 

• Coherence is defined as the ability of the method to yield LRs with better performance 

with an increase of the quantity and quality of the information present in the data. 

• Generalization is defined as the property of a given method to maintain its performance 

under dataset shift. LR method 1 generalizes better than LR method 2 if, under similar 

conditions of dataset shift in both methods, the performance of method 1 decreases less 

than the performance of method 2. 

• Robustness is the ability of the method to maintain performance when the quantity or 

quality of the data decreases. For instance, method 1 is more robust to data sparsity than 

method 2 if, with decreasing amount of data, the performance of method 1 decreases less 

than the performance of method 2. 

In the next section we present an experimental example to illustrate the measurement of 

coherence, discuss the datasets used in the LR method development and the performance 

measures used to establish the coherence of LRs produced by the method. 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 Quality is not an intrinsic property, but depends e.g. on the ability of a system to extract features from the 
specimens, and to compare and evaluate this information. 
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3. MEASURING COHERENCE: Experimental example with LRs inferred from 

fingermarks  

The comparison of the minutiae of a fingermark and fingerprint using an AFIS comparison 

algorithm results in a comparison score. The strength of evidence of this score can be 

assessed in terms of a LR. Since the LR method in our case consists of modelling the SS and 

DS score distributions, it is referred to as a LR model from here on. A detailed description of 

the LR model used – derived from [6] – is beyond the scope of this article, since the aim is to 

present the validation methodology with the focus on the analysis of coherence. 

Recall the set of propositions from the Section 2.1. Without loss of generality we can 

rephrase them to fit our fingerprint example: 

• Hp: The fingermark and fingerprint come from the same source (SS) 

• Hd: The fingermark and fingerprint come from different sources (DS) 

 

Having defined the set of propositions with respect to which the comparison scores are 

evaluated, we proceed to build the LR model [6]: 

 

• Use the minutiae comparison algorithm to compare the fingermarks of a suspect with the 

fingerprint of a suspect to produce a same source score distribution (SS) 

• Use the minutiae comparison algorithm to compare the crime scene fingermark to the 

fingerprint of a suspect to produce the evidence score (E) 

• Use the minutiae comparison algorithm to compare the crime scene fingermark to a 

database of fingerprints of individuals other than the suspect to produce a different 

source score distribution (DS) 

• Model the SS and DS score distributions using probability density functions or a 

discriminative approach e.g. using logistic regression [18] 

• Compute the strength of the evidence given by the likelihood ratio: 

 

 
LR =

p(E |Hp )
p(E |Hd )

 (Eq. 1) 

The comparison algorithm applied in this work to generate scores is a commercial product 

Motorola bis 9.1, used as a black-box. The minutiae extraction and comparison technology 
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remains outside the scope of this work, but we still present some of its functionality. The 

algorithm used is speed-optimized and outputs comparison scores in three separate score 

ranges. The comparison algorithm considers two different comparison methods depending on 

the number of minutiae in the mark: one for 5 to 10 minutiae configurations and one for 

configurations of 11 and more minutiae. The maximum score is directly proportional to the 

number of features in agreement. We get back to the two methods of the comparison 

algorithm in section 7. 

4. DATASETS USED 

We use two different datasets – one with simulated fingermarks to obtain the values of the 

parameters of the model and a relatively small one with forensic fingermarks to determine 

validity of the LR model for forensic casework. In the following sections we present the two 

datasets used in more detail. We justify their degree of similarity both numerically using the 

Kullback-Leiber (KL) divergence, a measure commonly used in probability and information 

theory [21], and visually by comparing the histograms of selected score distributions. 

4.1 Forensic dataset 

The forensic dataset consists of data from real forensic cases: 58 identified fingermarks in 12-

minutiae configuration and their corresponding fingerprints. The ground-truth labels of the 

dataset, indicating whether a fingermark / fingerprint pair originates from the same source is 

denoted as “ground-truth by proxy” because of the nature of the pairing between fingermarks 

and fingerprints: they have been assigned after examination by human examiners, taking into 

account not only the 12 minutiae, but also other minutiae, ridge pattern, etc. The minutiae 

feature vectors4 of the fingermarks have been manually extracted by examiners while the 

minutiae feature vectors of the fingerprints have been automatically extracted using a feature 

extraction algorithm and manually checked by examiners. 

In order to obtain multiple minutiae configurations for the LR method validation, the 

minutiae extracted from the fingermarks have been clustered into configurations of 5 to 12 

minutiae, according to the method described in [23]. Following the clustering procedure we 

obtain 481 minutiae clusters in a 5-minutiae configuration from the 58 fingermarks with 12 

minutiae. For each cluster in the marks, a same-source (SS) score is obtained by comparing 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 Minutiae feature vectors of a fingermark or fingerprint in our case consist of feature type, position, and 
orientation (parallel to the ridge flow). 
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each minutiae cluster from a fingermark with the corresponding reference print. Similarly, a 

different-source (DS) score distribution is obtained by comparing a fingermark to a subset of 

a police fingerprint database. This subset consists of roughly 10 million 10-print cards 

captured in 500 dpi. The higher the number of minutiae in each cluster, the lower the number 

of clusters, as can be seen in Table 1. An example of a forensic fingermark is presented in 

Figure 1. 

4.2 Simulated fingermarks dataset 

Simulated fingermarks were obtained by capturing a video sequence of a finger of a known 

individual moving on a glass plate in different directions in order to capture as much 

distortion as possible. Reference print(s) of the same finger of the same individual were 

recorded on a 10-print card. This dataset consists of 200 individuals (100 male and 100 

female) times 10 video sequences (1 per finger). The process of obtaining the simulated 

marks dataset is described in detail in [23]. 

The simulated dataset consists of 25,000 fingermarks of known origin, from which we 

produce the SS and DS score distributions (the number of simulated fingermarks differs per 

configuration5 as shown in Table 2). An example of a simulated fingermark on a forensic 

background is presented in Figure 1. 

There are several advantages in using a simulated fingermarks dataset: 

1.) The contrast and the clarity of the images captured from the video sequences are high 

which allows for automatic minutiae extraction. 

2.) It is relatively easy and cost-efficient to scale up the experiment and produce more 

simulated marks. 

5. MEASURING SIMILARITY BETWEEN THE DATASETS 

Since the two datasets (forensic and simulated) were acquired under different conditions, it is 

appropriate to establish the degree of similarity between the distributions of the scores 

generated by them. We use the KL (Kullback-Leiber) divergence to quantitatively express the 

similarity between the DS score distributions of the two datasets. We convert the score 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 The difference in the number of simulated fingermarks per configuration is caused by the sub-sampling of the 
original fingerprint captured from a video sequence of a finger moving on the glass surface of a fingerprint 
sensor [21]. 
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distributions into normalized histograms representing relative frequencies of observations of 

comparison scores in each of the two datasets – forensic (F) and simulated (S) – and compute 

the KL divergence as follows: 

 
KL = F(i) ⋅ ln F(i)

S(i)
"

#
$

%

&
'

i
∑  (Eq. 2) 

where the index i in Equation 2 refers to the i-th bin in the histogram. Note that if the two 

distributions F and S are identical the KL divergence is equal to zero, and the more similar 

the histograms are, the smaller is the divergence. 

Since the KL divergence is a non-commutative distance between the two distributions F and 

S, we propose to calculate the distance between F and S and S and F. The final, symmetric 

KL divergence is represented as the average of those two distances: 

 
KLsym =

∑F(i)
i

⋅ ln F(i)
S(i)

#

$
%

&

'
( +∑S(i) ⋅

i
ln S(i)

F(i)
#

$
%

&

'
(

2  (Eq. 3) 

where index i, as in Equation 2 refers to i-th bin in the histogram. 

The KL divergence of the two datasets, calculated using Equation 3, is presented in Table 3. 

Recall from Equation 2 that the more similar the two score distributions are, the closer to zero 

is the resulting KLsym. The highest degree of similarity between the simulated and the forensic 

dataset is found for the fingermarks clustered in 6-minutiae configuration, while the lowest 

degree of similarity is found for the fingermarks in 5-minutiae configuration. 

For better understanding the KL divergence, the similarity of the two score distributions can 

also be visually assessed in Figures 2 and 3. We compare the normalized histograms of the 

scores for the simulated and the forensic datasets, presenting as an example the results for the 

5-minutiae configurations (lowest degree of similarity KLsym = 0.033) and the 6-minutiae 

configurations (highest degree of similarity KLsym = 0.007). The difference between these 

most similar and least similar score distributions appears negligible in Figures 2 and 3. 

Establishing a degree of similarity between the two datasets acquired under different 

conditions is a very important step in LR method development, especially when using 

probability density functions to produce LRs. We conclude that the simulated dataset is a 

representative approximation of the forensic dataset. 
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6. PERFORMANCE MEASURES USED 

In this part we introduce a set of plots and performance measures used to evaluate the 

performance of the model for different minutiae configurations. Although alternative 

measures can be used to illustrate the coherence of the LR method, we think that visual 

representations and measures proposed are sufficient. 

6.1 Detection Error Trade-off (DET) plot and Equal Error Rate (EER) 

The DET plot [25] presents the false acceptance rate (FAR) as a function of the false 

rejection rate (FRR). The error rates are plotted on a Gaussian-warped scale. This makes the 

DET curves linear when the log(LR) values are normally distributed. The closer the curve is 

to the origin, the better the discrimination of the method. The intersection of a DET curve 

with the diagonal of the DET plot marks the Equal Error Rate (EER). The EER is used as a 

performance measure to show the coherent behaviour of the LR method. For example, when 

comparing forensic fingermarks in different minutiae configurations the EER should be 

larger for configurations with fewer minutiae (see Figure 4). Even if a DET plot is meant to 

characterize a system that makes decisions, it is informative about the coherence of the LR 

method when evaluating datasets with different quantities of information.  

6.2 Tippett plots 

Tippett plots [26] are representations of cumulative distributions of LRs. The curves in it 

represent the proportion of comparisons resulting in a log(LR) greater than t versus that value 

t, when either proposition Hp or Hd is true. In a Tippett plot, the rates of misleading evidence 

for either proposition can be observed at the intersection of each of the curves and the vertical 

at t = 0. The log(LR) value zero corresponds to a LR value of 1. Using Tippett plots it is 

relatively easy to distinguish the performance of an LR method when presented with different 

quantities of evidential information. 

Examples of Tippett plots are shown in Figure 5 for the 5 and 10-minutiae configurations. 

The decrease in misleading evidence due to the 5 additional minutiae can clearly be seen. 

6.3 Empirical Cross-Entropy (ECE) plot and the Log likelihood ratio cost (Cllr) 

The Empirical Cross-Entropy or ECE plot [16,17] is a representation of the performance and 

calibration of the LR values and complements other already established methods such as 

those discussed above [17]. The Cllr is a closely related cost function of the log(LR) defined 
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in Ref. [18]. ECE and Cllr are both lower when the likelihood ratio correctly supports the 

ground-truth proposition. The difference between them lies in the interpretation of both 

measures. The Cllr is interpreted as an average decision cost for all prior probabilities. On the 

other hand, the ECE has an information-theoretical interpretation as the amount of 

information lacking compared to full knowledge of the ground-truth, on average in a given 

set of LR values. The Cllr is an average over costs and priors, and therefore is not giving the 

performance for a given value of the prior, but for an average of all possible priors. An ECE-

plot shows the ECE for a certain range of priors [16,17]. It can be easily shown that the Cllr is 

the ECE at prior log-odds of 0 (i.e. a prior probability of 0.5). In this sense, the ECE is a more 

general and interpretable performance metric than the Cllr in a forensic context, where no 

decision is to be made by the forensic examiner and where the value of the prior changes very 

much from one case to another. It also appears to be more suitable to show the validity of a 

method over a relevant set of priors that are generally unknown. On the other hand, the Cllr is 

a summary of the ECE in a single number, useful for comparing and ranking methods. 

We use the Cllr as a measure of accuracy, consisting of two components: discrimination min
llrC  

and calibration cal
llrC  [18]. The solid curve in the ECE plot also represents accuracy: the lower 

it is, the better the accuracy of the method. The dashed curve represents the discrimination, 

and is sometimes referred to as “accuracy after PAV”, because it is the ECE after applying 

the Pool Adjacent Violators algorithm (PAV). It is an algorithm that improves the calibration 

of a set of LRs while not affecting their discrimination, see [18] for details. The difference 

between these two curves represents calibration losses: the smaller the distance, the better the 

LR method’s calibration. 

Besides the information-theoretical aspect, the ECE provides the “range of application” of the 

LR method under evaluation. A LR method should perform better than a reference method 

producing LR = 1 for the whole range of prior probabilities. In a range of prior probabilities 

where this is not the case, using the LR method would be worse than not using any method at 

all. 

Figure 6 presents an example for the sake of illustration, showing the ECE plots of the LR 

method evaluating the fingermarks in 5-minutiae configuration in two different settings: 

uncalibrated and calibrated with PAV. Calibrating the LR method not only improves the 

accuracy of the LR method (here measured by the Cllr), it also extends the applicable range of 

this method. The uncalibrated LR method presents an ECE larger than that of the reference 
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method for prior log-odds above 0.5, which does not happen for the calibrated method. Note 

that the LRs used for the right hand plot were calibrated using the data from the left hand plot, 

which explains why applying PAV using the right hand plot’s own data still reduces the ECE 

somewhat. 

7. RESULTS 

We use the same LR method to produce LR values for 5 to 12-minutiae configuration 

comparisons. To describe the performance of the LR method for each forensic n-minutiae 

configuration dataset, the LR method is trained with the corresponding n-minutiae simulated 

fingermark dataset. 

In order to establish the coherence of the LRs produced by the LR method selected, we 

measure the primary performance characteristics: accuracy (using Cllr and ECE as a measure), 

discrimination (using min
llrC  and ECE-after-PAV as a measure) and calibration (using cal

llrC  and 

the difference between ECE and ECE-after-PAV as a measure). Recall that the coherence is 

not a primary but a secondary performance measure: it describes the variation of the 

performance of the LR method when varying quality or quantity of the information (in our 

case the number of minutiae). 

The performance as a function of the number of minutiae is presented using ECE, Tippett and 

DET plots. The Cllr, min
llrC , and EER are determined for all minutiae configurations and 

presented in Table 4. 

The ECE plots in Figure 7 show a decreasing trend (solid curves), which corresponds to 

increased accuracy and discrimination (dashed curves) when increasing the number of 

minutiae from 5 to 10. The values for the accuracy and discrimination show the same trend 

and are summarized in Table 4. The sudden increase of these plots and values for the 11-

minutiae configurations are related to the comparison algorithm, which changes its method 

from 11 minutiae onwards.  

The Tippett plots in Figure 8 also show coherence of the method with the increasing distance 

between the curves based on LRs supporting either proposition as the number of minutiae 

increases. In an ideal system the rates of misleading evidence would be equal to zero, and 

both curves in the Tippett plots would be maximally separated. The coherence is observed in 

the Tippett plots when with the increasing number of minutiae there is a decreasing trend in 



13	
  
	
  

the rates of misleading evidence and an increase in the separation of the curves. The rate of 

misleading evidence in favor of Hd (RMED [24, 26]) decreases from 31% for 5-minutiae 

configurations to 3.5% for 12-minutiae configurations, while the rate of misleading evidence 

in favor of Hp (RMEP [24, 26]) decreases from 1.2% for 5-minutiae configurations to 0.06% 

for 12-minutiae configurations.  

The DET curves in Figure 9 capture the discrimination in a lot more detail, complementing 

the Tippett plots. Coherent behavior of the LR method used can be observed in the 

decreasing values of the EER for an increasing number of minutiae. The best performance in 

terms of EER was achieved for the 9-minutiae configuration dataset (EER = 1.6%). The 

worst performance of the LR method was observed for the 5-minutiae configuration dataset 

(EER = 15.7%). Table 4 lists the EER values and apart from the overall decreasing trend 

shows increases for 10 and 11 minutiae. Not too much meaning can be attached to this 

because of the overlap and irregular behavior of the DET curves for the highest number of 

minutiae. 

8. DISCUSSION & CONCLUSIONS 

The purpose of this article is to introduce coherence as a secondary performance 

characteristic for LR methods developed for forensic evaluation, and to demonstrate its use 

with an experimental example. In Section 2 we have split various performance characteristics 

into primary and secondary ones with examples of factors influencing the primary 

performance characteristics. We then focused on one performance characteristic in particular 

– the coherence – by giving an experimental example from the area of forensic fingerprint 

examination. Coherence has been defined as the property of a given method to perform better 

when the quality or quantity of information increases, which in our experimental example has 

been simulated by varying the number of minutiae present in fingermarks from 5 to 12. 

The performance of the LR method was evaluated using different performance measures 

(Rates of Misleading Evidence, Cllr and EER) and their corresponding graphical 

representations: Tippett, ECE, and DET plots. The LR method used showed coherent 

behavior: performance increased with the number of minutiae increasing from 5 to 10. It also 

showed somewhat incoherent behavior and a small decrease in performance when moving 

from 10 to 11 minutiae. 
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This incoherent feature of the comparison algorithm’s performance is believed to be caused 

by a switch of the method it uses when more than 10 minutiae are present. The experimental 

example therefore reveals the importance of coherence in order to detect points of 

improvement in computer-assisted LR methods. 
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FIGURE CAPTIONS 

 

Figure 1 

Forensic (left) vs. simulated (right) fingermark.  

 

Figure 2 

Normalized score distribution for 5-minutiae configurations of forensic versus simulated 

datasets (lowest degree of similarity). 

 

Figure 3 

Normalized score distribution for 6-minutiae configurations of forensic versus simulated 

datasets (highest degree of similarity). 

 

Figure 4 

DET curves showing the performance of the same LR method with different quantities of 

information. The dashed curve shows worse discrimination in the LRs of comparisons for 6-

minutiae configurations, while the solid line shows better discrimination in the LRs of 

comparisons for 10-minutiae configurations. The equal error rates are given by the 

intersection of the curves with the diagonal of the plot, and are 6.9% and 2.2%, respectively. 

 

Figure 5 

Tippett plots showing the performance of the same LR method with different quantities of 

information. Dashed lines show less evidential information captured in the LRs of 

comparisons for 5-minutiae configurations, while solid lines show more evidential 

information captured in the LRs of comparisons for 10-minutiae configurations. 

 

Figure 6 

ECE plots for the same LR method (same set of LR values) before and after calibration 

(leave one out cross-validation used for calibration). On the left-hand-side the solid curve 

represents uncalibrated LRs, and the dashed curve gives the ECE after PAV. The LRs on the 

right-hand-side are calibrated using the PAV transform resulting from the data used for the 

left ECE plot. The dramatic lack of calibration is visible in the left plot by the fact that above 

prior-log(odds) = 0.5 the ECE exceeds that of the reference method which always gives 

Figure_Captions
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LR = 1). For that range of prior odds the uncalibrated method performs worse than a method 

that always returns the “I don’t know” answer (i.e., always yielding LR = 1). 

 

Figure 7 

ECE plots for LRs generated for forensic marks with 5 to12-minutiae configurations. Note 

the different scaling of the y-axis in the upper and lower row of plots. 

 

Figure 8 

Tippett plots for LRs generated for forensic marks with 5 to12-minutiae configurations. 

 

Figure 9 

DET plots for LRs generated for forensic marks with 5 to12-minutiae configurations. 
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TABLES 

 

Table 1: Forensic dataset sizes, for SS and DS scores. Note that the number of SS scores is 
the same as the number of clusters for a given number of minutiae. 

Minutiae SS scores DS scores  
5 481 10,283,780 
6 432 9,236,160 
7 426 9,107,880 
8 387 8,274,060 
9 342 7,311,960 
10 286 6,114,680 
11 190 4,062,200 
12 58 1,240,040 

 

Table 2: Simulated dataset sizes for SS and DS scores. 

Minutiae SS scores DS scores  
5 16,653 33,306,000 
6 25,058 50,116,000 
7 24,876 49,752,000 
8 25,015 50,030,000 
9 25,036 50,072,000 
10 24,994 49,988,000 
11 24,658 49,316,000 
12 24,443 48,886,000 

 

Table 3: KLsym divergence of the DS comparison scores (simulated and forensic dataset). 

Minutiae KLsym 
5 0.034 
6 0.007 
7 0.011 
8 0.019 
9 0.013 
10 0.010 
11 0.014 
12 0.011 

 

  

Tables_1_4
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Table 4: Increase in performance of the LR method when introducing additional minutiae. 

Minutiae Accuracy 
Cllr 

Discrimination 
min
llrC  

DET-EER 
[%] 

RMEP 
[%] 

RMED 
[%] 

5 0.50 0.43 15.69 31.39 1.18 
6 0.28 0.26 6.91 19.68 0.89 
7 0.16 0.14 3.95 11.74 0.69 
8 0.13 0.11 2.42 7.75 0.68 
9 0.075 0.063 1.56 3.80 0.63 
10 0.074 0.063 2.19 3.86 0.48 
11 0.100 0.081 2.73 5.26 0.19 
12 0.084 0.057 1.82 3.45 0.06 
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