
Fast Response and Coherent Osillations in Small-WorldHodgkin-Huxley Neural NetworksL. F. Lago-Fern�andez, R. Huerta, F. Corbaho and J. A. Sig�uenzaDpto. Ingenier��a Inform�atia, E.T.S. de Inform�atiaUniversidad Aut�onoma de Madrid28049 Madrid1 IntrodutionIn a reent letter by Watts and Strogatz [1℄ it was shown that small-world (SW)networks, half way between regular and ompletely random ones, enhane signal-propagation speed, omputational power, and synhronizability. The main prop-erties of SW networks are a high lustering like in regular networks and, at thesame time, a small path length like in random ones. Therefore, SW networks mayhave properties given neither in regular nor in random networks [2℄.In this work we have extended Watts and Strogatz's general framework byintroduing dynamial elements in the network nodes. The ooperative behaviorof large assemblies of dynamial elements has been the subjet of many inves-tigations [3℄. However, in all of them the onnetivity between the elements ofthe network was either regular or ompletely random. None of the previous stud-ies inorporates a omparative analysis of network dynamis for all the di�erentonnetivity topologies. We pretend to show that in order to provide the typialbehavior observed in biologial systems, namely fast response, oherent osilla-tions in the loal �eld potential (LFP) and temporal oding, a neural networkwith SW onnetivity topology is required. We will show that regular topologiesare able to produe temporal oding and oherent osillations, but in a time salethat would imply muh slower responses than those observed in biology. On theother hand, ompletely random onnetivities provide a fast response, but theoherent osillations tipially observed in the LFP are lost. The SW topologyseems to be the only one apable to produe all these features in synergy withina biologially plausible time sale.2 Model and MethodsThe model we propose for this study is made of an array of non-idential Hodgkin-Huxley elements oupled by exitatory synapses. We have used the original fun-tions and parameters employed by Hodgkin and Huxley [4℄. The synapti trans-mission is modelled using the method and parameters desribed by Destexhe et al.[5℄. The system was integrated using the Runge-Kutta 6(5) sheme with variabletime step based on [6℄.Three di�erent kinds of onnetivity patterns have been tested: regular, ran-dom and small world. To interpolate between regular and random networks wefollow the proedure desribed by Watts and Strogatz [1℄: starting from a ringlattie with N verties and k edges per vertex, eah edge is rewired at randomwith probability p. The limits of regularity and randomness are for p = 0 andp = 1 respetively, and the SW topology lies somewhere in the region 0 < p < 1.



The quanti�ation of the strutural properties of these graphs is performed usingtheir harateristi path length L(p) and their lustering oeÆient C(p) [1℄ (seeFig. 1a).

1e−05 1e−04 1e−03 1e−02 1e−01 1e+00
p

0

1

2

3

4

5

σ(p)

0

0.2

0.4

0.6

0.8

1
(a)

(b)

C(p)/C(0)

L(p)/L(0)

1e−05 1e−04 1e−03 1e−02 1e−01 1e+00
probability

0

500

1000

1500

2000

p

ββ

(c)

Figure 1: (a) Charateristi path length L(p) and lustering oeÆient C(p) for thefamily of randomly rewired graphs, normalized to the values L(0) and C(0) of the regularase. (b) Average ativity osillation amplitude �(p) , and () degree of oherene �(p)for the whole range of networks, alulated between T1 = 100 and T2 = 200. All urvesare averages over ten realizations of the simulation with parameters N = 797, k = 30and g = 0:015. An input signal I0 = 1:5 was injeted, at t = 50, to 80 ontiguousneurons.3 ResultsWe are interested in the funtional signi�ane of SW topologies for the dynamisof the network. To study the global behavior of the network we ompute itsaverage ativity (equivalent to the LFP). The quantities used to detet the onsetand degree of oherent osillations are the average ativity osillation amplitude[7℄ and the degree of oherene [8℄. The amplitude of the osillations is measuredby �2(p) = 1T2 � T1 Z T2T1 [hVp(t)it � Vp(t)℄2dt (1)where Vp(t) is the average ativity of the network for a given value of the probabili-ty p, and the angle brakets denote temporal average over the integration interval.A high value of �(p) would imply a high amplitude of the osillations of the aver-age ativity, while a low value would indiate an almost non-osillatory behavior.



The degree of oherene is determined by �tting a gaussian to the highest peakof the power spetra and alulating:� = H!=�! (2)where H is the height of the peak, ! is the frequeny at whih it appears and �!is the width of the peak at the half maximum height [8℄.In Fig. 1b we plot �(p) for eah of the di�erent networks haraterized byits probability p, and in Fig. 1 we do the same for �(p). Notie that oherentosillations inrease in the region in whih a high C(p) and a low L(p) oursimultaneously; this is preisely the SW region.In many biologial systems, temporal oding is represented by the timing ofation potentials with respet to an ongoing oherent olletive osillatory patternof ativity. When a stimulus is presented, some neurons respond to it with somepartiular timing with respet to the LFP. As a measure of this temporal oding,we have divided time in periods of the global average ativity, and alulated foreah period the quantity:Ai(n) = 1C ZT [ai(t)� V (t)℄2dt (3)where i represents a partiular luster, n a partiular period of the average ativity,ai(t) is the average ativity of luster i, and C is a normalization onstant to getthe value of Ai(n) in the range 0�1. In Fig. 2 we show the results for three di�erentlusters hosen at random in a network within the SW onnetivity regime. It anbe observed that the ativities of the di�erent lusters are out of phase and reahtheir maximum values at di�erent periods of the average ativity. The ability torepresent this kind of temporal oding an be observed in regular networks as well.However, we remind the reader that regular networks have very slow ativationtimes.4 ConlusionsIn onlusion, regular networks produe oherent osillations in a slow time sale;whereas random networks give rise to fast response but without oherent osilla-tions. We have observed that SW networks show both oherent osillations withthe ability of temporal oding and fast reation times. The dynamial system in-trodued in the nodes of the network is the Hodgkin-Huxley model that presentsa saddle-node bifuration to the limit yle.Although we have not performed a detailed analysis of the mehanism thatgenerates oherene, the simulations show that: i) it takes longer to synhronizein regular networks beause the loalized input needs to propagate through thering; ii) the SW topology overomes this problem beause of the existene of afew long range onnetions; and iii) in the random ase the lustering oeÆient istoo low, whih implies that a spei� neuron reeives signals from many neuronsthat do not ommuniate among themselves, so diÆulting synhronization.
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