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tionIn a re
ent letter by Watts and Strogatz [1℄ it was shown that small-world (SW)networks, half way between regular and 
ompletely random ones, enhan
e signal-propagation speed, 
omputational power, and syn
hronizability. The main prop-erties of SW networks are a high 
lustering like in regular networks and, at thesame time, a small path length like in random ones. Therefore, SW networks mayhave properties given neither in regular nor in random networks [2℄.In this work we have extended Watts and Strogatz's general framework byintrodu
ing dynami
al elements in the network nodes. The 
ooperative behaviorof large assemblies of dynami
al elements has been the subje
t of many inves-tigations [3℄. However, in all of them the 
onne
tivity between the elements ofthe network was either regular or 
ompletely random. None of the previous stud-ies in
orporates a 
omparative analysis of network dynami
s for all the di�erent
onne
tivity topologies. We pretend to show that in order to provide the typi
albehavior observed in biologi
al systems, namely fast response, 
oherent os
illa-tions in the lo
al �eld potential (LFP) and temporal 
oding, a neural networkwith SW 
onne
tivity topology is required. We will show that regular topologiesare able to produ
e temporal 
oding and 
oherent os
illations, but in a time s
alethat would imply mu
h slower responses than those observed in biology. On theother hand, 
ompletely random 
onne
tivities provide a fast response, but the
oherent os
illations tipi
ally observed in the LFP are lost. The SW topologyseems to be the only one 
apable to produ
e all these features in synergy withina biologi
ally plausible time s
ale.2 Model and MethodsThe model we propose for this study is made of an array of non-identi
al Hodgkin-Huxley elements 
oupled by ex
itatory synapses. We have used the original fun
-tions and parameters employed by Hodgkin and Huxley [4℄. The synapti
 trans-mission is modelled using the method and parameters des
ribed by Destexhe et al.[5℄. The system was integrated using the Runge-Kutta 6(5) s
heme with variabletime step based on [6℄.Three di�erent kinds of 
onne
tivity patterns have been tested: regular, ran-dom and small world. To interpolate between regular and random networks wefollow the pro
edure des
ribed by Watts and Strogatz [1℄: starting from a ringlatti
e with N verti
es and k edges per vertex, ea
h edge is rewired at randomwith probability p. The limits of regularity and randomness are for p = 0 andp = 1 respe
tively, and the SW topology lies somewhere in the region 0 < p < 1.



The quanti�
ation of the stru
tural properties of these graphs is performed usingtheir 
hara
teristi
 path length L(p) and their 
lustering 
oeÆ
ient C(p) [1℄ (seeFig. 1a).
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Figure 1: (a) Chara
teristi
 path length L(p) and 
lustering 
oeÆ
ient C(p) for thefamily of randomly rewired graphs, normalized to the values L(0) and C(0) of the regular
ase. (b) Average a
tivity os
illation amplitude �(p) , and (
) degree of 
oheren
e �(p)for the whole range of networks, 
al
ulated between T1 = 100 and T2 = 200. All 
urvesare averages over ten realizations of the simulation with parameters N = 797, k = 30and g = 0:015. An input signal I0 = 1:5 was inje
ted, at t = 50, to 80 
ontiguousneurons.3 ResultsWe are interested in the fun
tional signi�
an
e of SW topologies for the dynami
sof the network. To study the global behavior of the network we 
ompute itsaverage a
tivity (equivalent to the LFP). The quantities used to dete
t the onsetand degree of 
oherent os
illations are the average a
tivity os
illation amplitude[7℄ and the degree of 
oheren
e [8℄. The amplitude of the os
illations is measuredby �2(p) = 1T2 � T1 Z T2T1 [hVp(t)it � Vp(t)℄2dt (1)where Vp(t) is the average a
tivity of the network for a given value of the probabili-ty p, and the angle bra
kets denote temporal average over the integration interval.A high value of �(p) would imply a high amplitude of the os
illations of the aver-age a
tivity, while a low value would indi
ate an almost non-os
illatory behavior.



The degree of 
oheren
e is determined by �tting a gaussian to the highest peakof the power spe
tra and 
al
ulating:� = H!=�! (2)where H is the height of the peak, ! is the frequen
y at whi
h it appears and �!is the width of the peak at the half maximum height [8℄.In Fig. 1b we plot �(p) for ea
h of the di�erent networks 
hara
terized byits probability p, and in Fig. 1
 we do the same for �(p). Noti
e that 
oherentos
illations in
rease in the region in whi
h a high C(p) and a low L(p) o

ursimultaneously; this is pre
isely the SW region.In many biologi
al systems, temporal 
oding is represented by the timing ofa
tion potentials with respe
t to an ongoing 
oherent 
olle
tive os
illatory patternof a
tivity. When a stimulus is presented, some neurons respond to it with someparti
ular timing with respe
t to the LFP. As a measure of this temporal 
oding,we have divided time in periods of the global average a
tivity, and 
al
ulated forea
h period the quantity:Ai(n) = 1C ZT [ai(t)� V (t)℄2dt (3)where i represents a parti
ular 
luster, n a parti
ular period of the average a
tivity,ai(t) is the average a
tivity of 
luster i, and C is a normalization 
onstant to getthe value of Ai(n) in the range 0�1. In Fig. 2 we show the results for three di�erent
lusters 
hosen at random in a network within the SW 
onne
tivity regime. It 
anbe observed that the a
tivities of the di�erent 
lusters are out of phase and rea
htheir maximum values at di�erent periods of the average a
tivity. The ability torepresent this kind of temporal 
oding 
an be observed in regular networks as well.However, we remind the reader that regular networks have very slow a
tivationtimes.4 Con
lusionsIn 
on
lusion, regular networks produ
e 
oherent os
illations in a slow time s
ale;whereas random networks give rise to fast response but without 
oherent os
illa-tions. We have observed that SW networks show both 
oherent os
illations withthe ability of temporal 
oding and fast rea
tion times. The dynami
al system in-trodu
ed in the nodes of the network is the Hodgkin-Huxley model that presentsa saddle-node bifur
ation to the limit 
y
le.Although we have not performed a detailed analysis of the me
hanism thatgenerates 
oheren
e, the simulations show that: i) it takes longer to syn
hronizein regular networks be
ause the lo
alized input needs to propagate through thering; ii) the SW topology over
omes this problem be
ause of the existen
e of afew long range 
onne
tions; and iii) in the random 
ase the 
lustering 
oeÆ
ient istoo low, whi
h implies that a spe
i�
 neuron re
eives signals from many neuronsthat do not 
ommuni
ate among themselves, so diÆ
ulting syn
hronization.



212 262 312 362 412
time

−35
−30
−25
−20
−15

V
(t

)
0

0.2
0.4
0.6
0.8

A
3

0
0.2
0.4
0.6
0.8

A
2

0
0.2
0.4
0.6
0.8

A
1

(a)

(b)

(c)

(d)

Figure 2: (a)-(
) Average a
tivity of three di�erent 
lusters of neurons promediatedover periods of the global mean a
tivity. The simulation 
orresponds to a probabilitywithin the SW region. (d) Average a
tivity of the whole network showing the 
oherentos
illations over whi
h the a
tivities of 
lusters are promediated.Referen
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