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1 Introduction

In a recent letter by Watts and Strogatz [1] it was shown that small-world (SW)
networks, half way between regular and completely random ones, enhance signal-
propagation speed, computational power, and synchronizability. The main prop-
erties of SW networks are a high clustering like in regular networks and, at the
same time, a small path length like in random ones. Therefore, SW networks may
have properties given neither in regular nor in random networks [2].

In this work we have extended Watts and Strogatz’s general framework by
introducing dynamical elements in the network nodes. The cooperative behavior
of large assemblies of dynamical elements has been the subject of many inves-
tigations [3]. However, in all of them the connectivity between the elements of
the network was either regular or completely random. None of the previous stud-
ies incorporates a comparative analysis of network dynamics for all the different
connectivity topologies. We pretend to show that in order to provide the typical
behavior observed in biological systems, namely fast response, coherent oscilla-
tions in the local field potential (LFP) and temporal coding, a neural network
with SW connectivity topology is required. We will show that regular topologies
are able to produce temporal coding and coherent oscillations, but in a time scale
that would imply much slower responses than those observed in biology. On the
other hand, completely random connectivities provide a fast response, but the
coherent oscillations tipically observed in the LFP are lost. The SW topology
seems to be the only one capable to produce all these features in synergy within
a biologically plausible time scale.

2 Model and Methods

The model we propose for this study is made of an array of non-identical Hodgkin-
Huxley elements coupled by excitatory synapses. We have used the original func-
tions and parameters employed by Hodgkin and Huxley [4]. The synaptic trans-
mission is modelled using the method and parameters described by Destexhe et al.
[5]. The system was integrated using the Runge-Kutta 6(5) scheme with variable
time step based on [6].

Three different kinds of connectivity patterns have been tested: regular, ran-
dom and small world. To interpolate between regular and random networks we
follow the procedure described by Watts and Strogatz [1]: starting from a ring
lattice with NV vertices and k edges per vertex, each edge is rewired at random
with probability p. The limits of regularity and randomness are for p = 0 and
p = 1 respectively, and the SW topology lies somewhere in the region 0 < p < 1.



The quantification of the structural properties of these graphs is performed using
their characteristic path length L(p) and their clustering coefficient C(p) [1] (see
Fig. 1a).
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Figure 1: (a) Characteristic path length L(p) and clustering coefficient C(p) for the
family of randomly rewired graphs, normalized to the values L(0) and C(0) of the regular
case. (b) Average activity oscillation amplitude o(p) , and (c) degree of coherence S(p)
for the whole range of networks, calculated between 77 = 100 and 75 = 200. All curves
are averages over ten realizations of the simulation with parameters N = 797, k = 30
and g = 0.015. An input signal Iy = 1.5 was injected, at ¢ = 50, to 80 contiguous
neurons.

3 Results

We are interested in the functional significance of SW topologies for the dynamics
of the network. To study the global behavior of the network we compute its
average activity (equivalent to the LFP). The quantities used to detect the onset
and degree of coherent oscillations are the average activity oscillation amplitude
[7] and the degree of coherence [8]. The amplitude of the oscillations is measured
by

) = [T - Tt )

where V),(t) is the average activity of the network for a given value of the probabili-
ty p, and the angle brackets denote temporal average over the integration interval.
A high value of o(p) would imply a high amplitude of the oscillations of the aver-
age activity, while a low value would indicate an almost non-oscillatory behavior.



The degree of coherence is determined by fitting a gaussian to the highest peak
of the power spectra and calculating:

f=Hw/Aw (2)

where H is the height of the peak, w is the frequency at which it appears and Aw
is the width of the peak at the half maximum height [8].

In Fig. 1b we plot o(p) for each of the different networks characterized by
its probability p, and in Fig. 1c we do the same for 5(p). Notice that coherent
oscillations increase in the region in which a high C(p) and a low L(p) occur
simultaneously; this is precisely the SW region.

In many biological systems, temporal coding is represented by the timing of
action potentials with respect to an ongoing coherent collective oscillatory pattern
of activity. When a stimulus is presented, some neurons respond to it with some
particular timing with respect to the LFP. As a measure of this temporal coding,
we have divided time in periods of the global average activity, and calculated for
each period the quantity:

A = & [ fate) — VT 3)

where ¢ represents a particular cluster, n a particular period of the average activity,
a;(t) is the average activity of cluster i, and C is a normalization constant to get
the value of A;(n) in the range 0—1. In Fig. 2 we show the results for three different
clusters chosen at random in a network within the SW connectivity regime. It can
be observed that the activities of the different clusters are out of phase and reach
their maximum values at different periods of the average activity. The ability to
represent this kind of temporal coding can be observed in regular networks as well.
However, we remind the reader that regular networks have very slow activation
times.

4 Conclusions

In conclusion, regular networks produce coherent oscillations in a slow time scale;
whereas random networks give rise to fast response but without coherent oscilla-
tions. We have observed that SW networks show both coherent oscillations with
the ability of temporal coding and fast reaction times. The dynamical system in-
troduced in the nodes of the network is the Hodgkin-Huxley model that presents
a saddle-node bifurcation to the limit cycle.

Although we have not performed a detailed analysis of the mechanism that
generates coherence, the simulations show that: i) it takes longer to synchronize
in regular networks because the localized input needs to propagate through the
ring; ii) the SW topology overcomes this problem because of the existence of a
few long range connections; and iii) in the random case the clustering coefficient is
too low, which implies that a specific neuron receives signals from many neurons
that do not communicate among themselves, so difficulting synchronization.
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Figure 2: (a)-(c) Average activity of three different clusters of neurons promediated
over periods of the global mean activity. The simulation corresponds to a probability
within the SW region. (d) Average activity of the whole network showing the coherent
oscillations over which the activities of clusters are promediated.
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