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Abstract—An attractor neural network on the small-world topol-
ogy is studied. A learning pattern is presented to the network, then
a stimulus carrying local information is applied to the neurons and
the retrieval of block-like structure is investigated. A synaptic noise
decreases the memory capability. The change of stability from local
to global attractors is shown to depend on the long-range character
of the network connectivity.

Keywords—Hebbian learning, image recognition, small world, spa-
tial information.

I. INTRODUCTION

WHILE it is known that the most efficient arrangement
for storage and retrieval of patterns by an attractor

neural network as a whole (global information) is the random
network[1], connections in real brains do not appear to be fully
random. The majority of connections appear to occur between
nearby regions, suggesting a small-world topology[2],[3].

In this work a model of sparsely connected Hopfield-type
neural networks [4],[5] on the small-world topology of Watts-
Strogatz is presented[6],[7]. It is studied in deeper detail the
advantages of the small-world network topology going from
the one dimensional ring to the random graph[8],[9], with em-
phasis on networks capable of recovering global information
where local stimulus is relevant or only block information is
at disposal for the network. This can be successfully applied
in pattern recognition, such as image recognition, or any type
of pattern carrying local spatial information[10].

The response of a network to a given input stimulus leads
to a particular configuration of the neural activity. Local order
can emerge if the stimulus has some neighbourhood structure,
and the topology of the network favors stronger connectivity
with nearest neurons than between neurons in far regions. The
block-like attractor is explored to study in which conditions
(parameters), its dynamical behaviour favors retrieval of local
spatial information.

II. THE MODEL

In order to describe the neural activity the following model
is used. A pattern is presented to the network and the neurons
σi are initialized in one of two states, ±1 (active/inactive). The
state of a neuron σi is updated in time t through the following
equation:

σt
i = sign

(∑
i

ht−1
i − θ

)
, ht

i ≡
∑

i

Jijσ
t
j (1)
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where hi is the postsynaptic field arriving at neuron σi.
Here the sign function is defined as: sign(z) = 1 if z ≥
0, and sign(z) = −1 if z < 0. where Ki is the number of
connections of each neuron and Wij represents the weights
of the synapses between neurons i and j. The variable θ is
the firing threshold which is considered to be zero. We use
synchronous update and asymmetric weights. The synaptic
couplings between neurons i, j are Jij ≡ CijWij , where
C = {Cij ∈ 0, 1} is the topology matrix and W = {Wij}
are the learning weights.

The topology matrix splits in local and random links. The
local links connect each neuron to its KL nearest neighbours,
in a closed ring. The random links connect each neuron to
KR others uniformly distributed along the network. Hence,
the network degree is K = KL + KR. The network topology
is then characterized by two parameters: the connectivity ratio,
and the randomness ratio, defined respectively by:

γ = K/N, ω = KR/K, (2)

where ω plays the role of a rewiring probability in the small-
world model[2].

The synaptic weights Wij are given by

Wij = cW r
ij + (1 − c)ξiξj (3)

The term W r
ij is randomly generated to be either +1 or −1

with equal probability, multiplied by a factor c ∈ (0, 1) which
is the load rate, which accounts for all the previous synaptic
processing, including both short-term and long-term memory
of the network. The second term describes the Hebbian learn-
ing of a given pattern multiplied by 1− c. For a given c, there
is a competition between the learning pattern �ξ ≡ {ξi}

N
i and

the noise played by the random term. The pattern the network
is learning is the picture of Lena in Figure 1 - left.

We use a mesoscopic variable mt
l to describe the overlap

between the neural activity of block l of information, and the
pattern activity in this same piece of information, at time t.
The block − overlap restricted to the block l is:

mt
l ≡

1
Nl

∑
i∈l

ξiσ
t
i , (4)

at time step t. We can define averages over blocks as: 〈fl〉b ≡
1
b

∑b

l=1 fl.
The relevant order parameter are the mean overlap between

the neural states and the pattern, mt, and the blocks-variance
vt, given by (dropping the time index t)

m ≡ 〈ml〉b, v ≡ 〈m2
l 〉b − m2. (5)

Note that m is the usual global overlap, also written as m ≡
1
N

∑
i ξiσi. The standard deviation, one names block overlap

is δ = √
v . If the size of the blocks are taken L = 1, then

World Academy of Science, Engineering and Technology
Vol:2 2008-01-20 

823International Scholarly and Scientific Research & Innovation

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
 V

ol
:2

, N
o:

1,
 2

00
8 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
23

1

http://waset.org/publication/Learning-Block-Memories-with-Metric-Networks/231


the b = N blocks, with ml = ±1, carry no macroscopic
order. On the other hand, if there is only one block b = 1,
then v = 0. However, if the size is large but 1 � L � N ,
the blocks carry local information. We also define m as the
similarity between the learned and recovered pattern, and δ as
their local similarity.

III. RESULTS OF SIMULATION

Figure 1 - left shows the original pattern learned by the
network which is the picture of Lena Söderberg, a standard
test image used in digital image processing. The picture is
256×256 pixels, it has been binarized and properly formatted
to be either ±1 by pixel. We want to study the stability
and the attractor properties of a block state of the network,
characterized by a spatial partition of the pattern in a correct
zone and a inverted zone. The correct zone has the neuron
states identical to the learned pattern, while the inverted zone
has the neurons states in opposition to the pattern: each neuron
positioned at the same site as the pattern is switched off, i.e.
the active neurons become inactive and other way round. It is
represented in Figure 1 - center.

This state has vanishing overlap with the original pattern,
however one sees that it still carry information about Lena!
Most of the work found in the literature about memory
networks with metrics [1],[6],[7],[8] are focused only on
the global retrieval of a pattern, does not considering the
possibility of spatially correlated states. To study the stability
of the block states, one should start the network evolution
precisely with the block, so that mt=0 = 0 but δt=0 = 1.
Then, if the network stays at this block state, or if it goes
close to it, it means that there is a block phase which is
stable. However, this could be a marginal stability, with a very
narrow attractor basin. To check for the size of the attractor
basin, one must verify different initial conditions. For instance,
the initial configuration considered here in this paper has
m = 0, δ = 0.2, which is a strongly noisy 2-blocks structure
of overlaps, as can be seen in Figure 1 - right.

The network (N = 65, 536, K = 64 in average) starts
in a noisy 2-blocks Lena, and the neural dynamics leads to
a stationary state. Two cases are plotted in the Figure 2:
at left, the network has ω = 0.1, c = 0.74 at right it is
ω = 0.2, c = 0.8. One sees that the attractor for a more
local topology (small ω) and with moderate loading (not so
high c rate) is the block state (Fig.2 - left). For larger number
of long-range connections and higher loading, the attractor is
the global state (or the negative of it, as in Fig.2 - right).
The evolution in time for the network with block attractor is
depicted in Figure 3. One sees that the blocks are fulfilled
in the first t = 10 time steps, and it stays forever in the B
phase, except for small random fluctuations. The evolution for
the network with the global attractor is in Figure 4. One sees
that the network quickly evolves into a global phase, with a
completion of 93 percent of the learned pattern, m ≈ 0.93,
according to the Figure 2 - right.

In Figure 5 a phase diagram describes the regions of block
(B), global (G) and stationary (Z) states. One can conclude
from this figure that block activity appears for values of c

Fig. 1. Left: Lena - original. Center: Lena 2-blocks. Right: Lena 2-blocks,
v = 0.2.

Fig. 2. Recovered patterns. Left: ω = 0.1, c = 0.74, right: ω = 0.2, c =
0.8.
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Fig. 3. Evolution of the network into a block phase: ω = 0.1, c = 0.74.
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Fig. 4. Evolution of the network into a global phase: ω = 0.2, c = 0.8.
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less than approximately 0.84, and for ω not greater than 0.3.
One can observe a phase transition between global and block
retrieval.
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Fig. 5. Phase Diagram for block activity. B: block activity region. G: global
activity region, Z: stationary region.

IV. SIGNAL TO NOISE THEORY

The simulation results presented in the previous section can
be supported by a straightforward theory. The theory discussed
here is based in a signal to noise ratio approximation. Let
the neurons be distributed within blocks l, successively with
positive and negative activities, ml = m±. Then, following
Equations (5), the block activities can be written as

ml = m + ylδ, (6)

where yl
.= ±1 (according to the block) is a random variable.

The local field, Equation (1), with the Equation (3) for the
synapses, can be separated in a signal and a noise terms,

hi ≡ (1 − c)Kξimi + cΩi (7)

where mi ≡ 1
K

∑
j∈{i} ξjσj , Ωi ≡

∑
j∈{i} W r

ijσj are the
activity restricted to the neighbours {i}, and the synaptic noise,
respectively.

There are local and random neighbours for each neuron,
hence the signal term itself splits in localized and randomized
terms, namely

mi =
KL

K
mL

i +
KR

K
mR

i , (8)

with mL,R
i ≡ 1

KL,R

∑
j∈Kl,r

ξjσj where L and R are the local
and random sets of neighbours, respectively, of the neuron σi.

From Equation (4), whenever the neighbours belong to a
block, the localized field depends on its block overlap, ml. On
the other hand, the randomized field is a sample of a global
field, which does not depend on the block. Using the definition
in Equation (2), one arrive to an approximation for the local
field of neurons in the block l,

ξhl ≡ (1− c)K[ωm + (1− ω)(m + ylδ)(1− γb)] + cΩ (9)

where the correction term (1− γb) accounts for the boundary
effects between m± blocks.

The equation for the the block-activity is then ml =
〈sign(ξh)〉Ω, where the average in the angular brackets are
over the noise Ω. But from the Equation (6), after averaging
over the yl one gets

m = 〈ml〉y = 〈sign(h)〉y,Ω

δ = 〈yml〉y = 〈y sign(ξh)〉y,Ω, (10)

The average over Ω stands for the noise distribution.
This noise is Gaussian distributed, Ω .= N(0,Δ2) [5]. Its

variance is given by the sum of random and local terms,
Δ2 = V ar(Ωi) = ωΔ2

r +(1−ω)Δ2
l . Neglecting the feedback

terms, it is Δ2 = K. This approximation is valid in the limit
of strongly diluted networks (K � N ) [10]. However, for
local connections, even extreme dilution do not eliminate the
feedback, and Δ needs more precise calculations, which is
outside the scope of the present work.

The continuous transition from the G to the Z phase may
be analysed by taking first δ = 0 in the Equations (10), which
gives m = 〈sign[(1 − c)Km + cΩ]〉, then expanding around
m ∼ 0. It gives the constant line: c = [1 +

√
π

2K
]−1, which

coincides with border G-Z plotted in Figure 5. The transition
between B and G phases is not continuous, so no expansion is
possibly, but the equation: δ = 〈sign[(1− c)K(1−ω)δ +Ω]〉,
is similar to the previous equation for m except that it depends
on ω. The finite solution δ > 0 is stable only if c = [(1 −
ω)+

√
π

2K
]−1, which fits well also with the phase diagram in

Figure 5.

V. CONCLUSION

An attractor neural network with a metrical topology, (i.e, a
small-world with local and random connections) was studied
in this paper. The overlap between a learning pattern and the
neuron states is the usual global parameter which measures
the network retrieval ability. When the connections are prefer-
entially local, however, there are spatial correlations between
neurons which allow for states retrieving blocks of a pattern.
It is observed here that these block states are stable, with a
large basin of attraction.

Simulations for the dynamics of the global and block over-
laps are presented, and a diagram for the transitions between
global, block and zero-retrieval phases is built. A theoretical
set of macroscopic equations is obtained, and their fixed point
solutions agree quite well with the simulation results.

The present proposal of a block-like structure of patterns,
can be extrapolated to other types of topology. It could
be closely related to biological brain systems, on the one
hand, where different sensory blocks of patterns (arising from
several cortical structures) may be independently retrieved.
On the other hand blocks may represent incomplete pieces
of information which can be used to codify images (as shown
here) or other kind of signals (voice, fingerprints, genetic code,
etc). These are subjects of future research.
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