TERESA BULLON MATA

CLAVES MORFOESTRUCTURALES Y MORFOGENÉTICAS PARA LA INTERPRETACIÓN DEL SECTOR OCCIDENTAL DE LA SIERRA DE GUADARRAMA

Situada entre las Sierras de Somosierra - Ayllón y Gredos, que forman parte del Sistema Central, la Sierra de Guadarrama es un territorio accidentado, que se alarga en una dirección preferente NE - SW, pero su anchura es escasa y sus laderas montañosas terminan rápidamente en superficies subhorizontales sobre las que se eleva. El medio físico que le caracteriza está fuertemente influenciado por las condiciones de continentalidad de la Meseta, a causa de su situación en el centro de la misma. Gredos, de localización más occidental, tiene una mayor afinidad atlántica, y Somosierra - Ayllón, por su proximidad al Sistema Ibérico, adquieren ciertas modalidades climáticas y biogeográficas de este.

El sector occidental de la Sierra de Guadarrama comprende todos los conjuntos de relieves elaborados sobre materiales cristalinos que afloran entre las cuencas terciarias del Duero y Tajo, desde los meridianos del Puerto de Navacerrada al este y el de la Cruz Verde al oeste. Consta de un sector montañoso, con alineaciones más o menos individualesizadas entre valles inferiores, y dos unidades más bajas que aquél, al que sirven de base, con una topografía fundamentalmente plana, a las que se ha denominado pedemientes.

1 Con la palabra "pedemiente" se denomina aquí el conjunto de unidades de relieve labradas sobre materiales erosionados, situadas en el contacto con las laderas montañosas, que tienen altitudes y pendientes sensiblemente inferiores a éstas. No se usa, por tanto, en el sentido restrictivo que se le suele dar en la geomorfología francesa, ni en el que es utilizado por los geólogos españoles, más difuso.

La razón de la elección para estas unidades de relieve de un término preciso es doble, por un lado es necesario expresar que existe entre las llanuras terciarias y las montañas propiamente dichas un territorio de transición, donde las características de la morfogeométrica, del medio natural y de la explotación estratigráfica cambian gradualmente de una a otra, dando lugar a unidades específicas de gran interés geográfico. Por otro lado, conviene dejar claro que el área de luttura más próxima al sector montañoso depende muy estrechamente de él, pues es lugar de origen de los materiales terrenales que la tapizan, de la mayor parte del agua superficial y subterránea que discurra por ella, y de los cambios climáticos apreciables, discontinuaciones de las precipitaciones y aumento de las precipitaciones, debido a la proximidad de las elevaciones geográficas.

El sector de pedemiente, que comprende un conjunto de unidades de relieve y de reto natural perfeccionadamente definido, ha tenido habitualmente una denominación heterogénea, pues los significados científicos se han mezclado más o menos confusamente con evocaciones de origen literario. Broto y Solé, así como Vidal Boix, le llaman en ocasiones zecola, lo que en la actualidad no es correcto, pues la palabra tiene usos significativos estructurales muy precisos. También Vidal Boix la denomina a veces sierres, posadas, rampas, vaudeur pedonal y pedemiente cristalino; Lázaro Ochavía - Atenso pie de monte, plataforma de pie de sierra, planes en gradería, planicies cristalinas, o llamadas San Miguel de la Cámara, etc. También a menudo se ha tomado el todo por la parte y se ha hecho coincidir el pedemiente con las unidades geomorfológicas principales que lo constituyen, es decir, con los arranques erosivos, lo que en cierto modo significa una cierta reducción de los planteamientos geomorfológicos.

Era necesario, en definitiva, buscar un término específico, que indicara por sí mismo el tipo de unidad geográfica a la que se hacía referencia. Los nombres más adecuados de todos los indicados eran, a nuestro entender, el de pedemiente o el de rampa. Finalmente, hemos preferido elegir el primero, pues era el que mejor se había empleado para denotar otras unidades específicas de la Sierra de Guadarrama, ya que, como es sabido, tanto Vaudour (1975) como Lázaro Ochavía - Atenso (1977 - 1980) se refieren con el nombre de rampas a las superficies de erosión que emergen en el barranco septentrional de la cuenca del Tajo las arenas terciarias, los afloramientos mesozoicos y las rocas cristalinas, que se internan bastante extensamente en el interior de la cuenca.

** Departamento de Geografía Física, de la Facultad de Geografía e Historia, Universidad Complutense de Madrid.

*** Ese artículo se ha elaborado a partir de las conclusiones que aparecen en la tesis doctoral de la autora (Es-
El sector montañoso tiene un tramo más elevado en torno al Puerto de Navacerrada, con alturas próximas a los 2,300 m. en Peña del Oso, Montón de Trigo y Siete Picos, pero la altitud decrece considerablemente hacia el oeste, donde las cimas bajan desde los 1,902 m. de Cueva Valiente a los 1,757 de Cabeza Renales. Por su parte las piedemontes tienen altitud similar tanto al norte como al sur de las unidades montañosas en el área más próxima a ellas, sobre los 1,100 m., y descienden suavemente a partir de ahí hasta su extremo inferior.

En este territorio tienen su cabecera gran número de corrientes fluviales que se organizan en varias cuencas. Destacan las de Moreos y Valbuena, que drenan hacia el Duero, y las del Guadarrama, Au-encia y Coño que son tributarias del Tajo. La mayoría de sus ríos corren en los tramos altos por gargantas profundas, que construyen ámbitos abiertos y húmedos cubiertos de pinar de pino silvestre, de gran importancia natural, mientras que en los piedemontes las aguas discurren por cauces levemente encuadrados, o por llanuras aluviales más o menos extensas.

La morfología del sector occidental de la Sierra de Guadarrama no es demasiado bien conocida. Se han hecho sobre ella estudios que, salvo la obra de Biroel - Solé, de 1934, muy general y basada en supuestos teóricos algo antiguos, son más bien de carácter fragmentario y local. En ellos se subrayan la mayor parte de los factores morfoestructurales y la extracción de datos se efectúa con preferencia en el contacto entre los piedemontes y las cuencas terciarias, quedando el sector montañoso prácticamente ignorado, salvo en lo que se refiere a algunos aspectos del modelado cuaternario. En el análisis que sigue de base a este trabajo se han tomado en consideración tanto los bloques montañosos como los de piedemonte y se ha atendido igualmente a los factores estructurales y a los de modelación, intentando dar para cada lugar concreto el valor que cada uno de ellos tiene en la organización del relieve y el modo de combinación de los elementos que lo constituyen.

I.- LOS CARACTERES DE LA FRACTURACIÓN

La Sierra de Guadarrama se ha formado durante el Terciario a consecuencia del movimiento de bloques del zócalo granítico - gneisico, de edad hercínica, arrastrado por la erosión y fracturado desde el tardihercinico preferentemente según un sistema de fallas conjugadas de dirección NE - SW y NW - SE. El levantamiento de sus cumbres hasta altitudes que sobrepasan los 2,000 m. es el fenómeno contrario al del hundimiento de las fosas del Duero y Tajo, con las que se relacionan geneticamente.

El desplazamiento de los bloques a lo largo de las fallas ha sido variado, pero la erosión ha borrado la mayor parte de las estructuras del plano de falla, por lo que en algunos casos el movimiento se manifiesta en un plano de las estructuras terciarias, quedando el sector montañoso prácticamente ignorado, salvo en lo que se refiere a algunos aspectos del modelado cuaternario. En el análisis que sigue de base a este trabajo se han tomado en consideración tanto los bloques montañosos como los de piedemonte y se ha atendido igualmente a los factores estructurales y a los de modelación, intentando dar para cada lugar concreto el valor que cada uno de ellos tiene en la organización del relieve y el modo de combinación de los elementos que lo constituyen.

1) Aquellas a lo largo de las cuales se han producido movimientos verticales importantes, que actúan por este motivo como límite de los principales
bloques tectónicos que se definen. Suelen estar intruidos por deques de diversa composición y anchura, de ubicación anterior a su desplazamiento tectónico, y sus contactos se definen por zonas de contacto y arenisca de desplazamiento. Aunque también suelen funcionar como límites de bloque, suelen no ser fallas individualizadas en toda su recorrido, sino zonas de otras zonas y que se alteran en una dirección y adquieren un comportamiento unitario en la tectónica tectónica.

c) Fallas netas y de gran longitud, que tienen un valor destacado en época tardíferro. Pero de reactivación posterior menos intenso, que provocan desplazamientos aislados de características específicas y a veces son aprovechadas por la morfogénesis para labrar gargantas encuadradas en valles hendidos. El hecho de que su importancia tectónica sea grande se aprecia por los cambios morfoestructurales que se producen a un lado y otro de las mismas, y por estar jalonadas en algunas de sus tramos por pequeñas intrusiones graníticas.

Las fallas del cuadrante NE son las de mayor longitud, de especialización regular, las mejor conocidas geológicamente y las más evidentes de todas; imponen la dirección general de la Sierra de Guadarrama y limitan las morfoestructuras más importantes. Las fallas del cuadrante NW son transversales a la cadena, y su papel morfoestructural es menos evidente que el de las del NE. La longitud de las mismas no suele ser muy grande, dada la escasa amplitud del afloramiento de todo el conjunto cristalino, pero es muy posible que algunas de ellas se prolonguen por debajo de los reflejos tectónicos de las cuencas. Pocas veces se ha hablado de la importancia alpina de las fallas de esta dirección; no obstante, después de la observación detallada en el campo y a través de fotogrametría de diversas escalas, se ha podido comprobar que tienen un importante papel en la distribución de las estructuras y en la configuración de ciertas morfologías. A escala general del sector occidental de la Sierra se aprecia un grupo de ellas, regularmente capilares, que producen desplazamientos de los bloques menores de escala, generalmente de valor desigual pero de sentido idéntico; el bloque occidental tiene siempre una situación más medial que el oriental, de manera que en un sentido W - E los bloques están más levantados al norte, pues los efectos parciales de cada una de las fallas se van sumando. En conjunto dan como consecuencia que la situación de Guadarrama sea bastante más septentrional que la de Gredos. Además de producir paralelamente una modificación de las direcciones estructurales, que van girando hacia el NW, de manera que Gredos, con respecto a Guadarrama, presenta fallas más maniobrablemente NE y NW se inclinan más hacia el W. Donde mejor se aprecia este efecto es en las fallas comunes a ambos conjuntos, como en la meridional del Sistema Central y en la comparación de las direcciones de los ejes mayores de las grandes fisuras tectónicas de Gredos, como Ambles y Tiétar, con las guadarrameñas de Lozoya y Guadafía.

Las fallas E - W son más frecuentes e importantes en los tramos occidentales que en los orientales de Guadarrama y a veces también tienen saltos en la vertical notables. Las N - S NNE y NW son más secundarias; no suelen generar morfoestructuras destacadas, aunque sí modifican las existentes. A veces desgarran las fosas y aplanaciones y son aprovechadas por los ríos para labrar enormes valles. La misma que ocurre en el caso anterior, estos grietas de fallas son más frecuentes en el sector occidental que en el oriental.

II.- LA INFLUENCIA DE LA LITOLOGÍA

La litología interviene en el modelo a partir de las escamas de resistencia de las rocas, pues según su dureza se forman relieves aplanados o con crestas agudas, bien patentes en las cumbres. También influye la estructura que ha adquirido a consecuencia de los procesos de deformación tectónica o de intrusión a los que ha estado sometida.

La evidencia de ciertas desigualdades de relieve que no pueden condicionarse por la litología, una vez descartadas las demás posibles causas, ha dado pie para confirmar que ciertas variedades de roca dan tipos de modelados específicos, según varían ciertos parámetros, que en las rocas geológicas son el contenido en mica y su distribución dentro de la roca, cantidad y color del cuarzo, contenido en glauconita y grados de migmatisación o tektomización.

Pueden distinguirse básicamente dos tipos de grietas. El primero de grietas glandulares y bandeares, en ocasiones masivos, con mayor cantidad de feldespato que cuarzo, abundante mica y fuerte migmatisación, que ocupan las partes más bajas de las laderas y gargantas y tiene un gran espesor. El otro es de textura más variable, granito fino, mejor orientación metamórfica y mayor contenido en cuarzo. El primero es más altamente que el segundo, que, por el contrario, es muy sensible a la fracturación por cambios de temperatura. Hay un grieta que se desgaja y otro que se fractura. De la morfología de cada uno depende en gran medida la de las laderas y cumbres. Uno tiende a dar formas macizas, cumbres aplastadas y abundantes roca rellenamiento arenoso, en cambio, que favorece el tapizado de las laderas y la formación de vegetal. El segundo crestería agudas en las cumbres y acumulaciones considerables de fragmentos detríticos de gran tamaño.

Los condicionamientos estructurales se aprecian sobre todo en el grado de resistencia de la roca y en la influencia de la foliación. Como norma general se ha observado que las grietas basálticas fijan muestran una mayor influencia de la foliación principal en la morfología, mientras que las grietas oculares prueban esta control a medida que aumentan la cantidad y el tamaño de las cumbres. Los desarrollos rocosos, tanto con aplanamientos como de celtas, muestran dos caras principales, una conforme al plano de la foliación principal, que es como un dorso estructural de hazamiento igual al de aquél, de forma subesférica y muy masivo, apenas afectado por fracturas, y otra opuesta, vertical y muy dicha, que da abundante material clástico. En ocasiones estas disimetrías son capaces de condicionar la evolución, altitud e importancia de las pedreras de gelatras, pues aparecen mejor o peor definidas no sólo según las condiciones climáticas o de pen-
diente, sino también en función de la orientación del relieve respecto a los planos de la falla principal.

De la observación de las rocas graníticas se ha deducido que los criterios para su clasificación son el tamaño y homogeneidad del grano dentro de la roca, el contenido en biotita y feldespatos, así como el grado de tectonización.

Hay tres tipos de tamaño del grano: grueso, medio y fino, con variaciones intermedias. El grano de grano grueso potásico tiene una gran cantidad de feldespatos y escasa de mica. Es una roca muy resistente a la alteración que suele dar abundantes restos excisos, pero está frecuentemente sometida a procesos de tectonización. Es casi habitual la presencia de fracturas en los cristales que dan una limitación secundaria que rompe la cohesión de la roca y favorece su rotura o desagregación. En él se desarrollan más que en ningún otro tipo las formaciones domáticas y sus morfologías derivadas, como las disyunciones en planas arqueadas y las llanuras. Al mismo tiempo las formas redondeadas o semiesféricas dominan a todos los niveles, desde los bloques que tupían el suelo a las tolomeas domáticas. También es más frecuente que en ningún otro tipo la descomposición paralela a la superficie, el deslizamiento de descomposición subhorizontal en cumbres y las formas de detalle, como los pilares o las picotes de elefante.

Los granitos de grano medio pueden ser potásicos o de grano homogéneo con abundante mica y plagioclasia u tener un predominio del feldespato potásico. Según la regularidad de su grano y abundancia de la mica, la morfología característica se aproxima más o menos a la variedad anterior. La combinación más frecuente es la de diqueñas ortogonales de bordes muy separados, que provocan la fracturación en bloques cuadrangulares, de bordes romos pero no redondeados. Son frecuentes los restos limitados por caras rectangulares que tienen el aspecto de torretas subdivididas en pisos por el deslizamiento horizontal.

Los granitos orientales de grano fino suelen marcar la transición de grano a grueso; por lo que aparecen con frecuencia en las bordas de las intrusiones. Se fracturan en bloques pequeños y angulosos, que pueden dar lugar a formaciones de pedruscos de tipo pergaminizado en exposiciones adecuadas.

Las observaciones de campo revelan que los términos más ácidos, de grano grueso y con poco mica se sitúan en el centro de los afloramientos graníticos, rodeados por rocas de tamaño de grano menor y más elevado contenido en mica. En el centro de alguna de estas intrusiones se interrumpen ciertas fallos tectónicas que afectan al grano y a los granitos próximos a su contacto, con lo que se aprecia que hay una cierta continuidad del fenómeno intrusivo con relación al de fracturación, pues no da manifiesto por otros autores. Las diferencias en el grado de fracturación crean respuestas morfológicas distintas que se aúnan a las motivadas por la composición mineral y textura. Las rocas graníticas más antiguas y de grano medio están más intensamente fracturadas, tienen procesos de alteración in situ importantes y apenas dan afloramientos exentos. Los del centro de las intrusiones son más masi-

Fig. 2. Formas domáticas, diaclasas curvas y llanuras fuertemente inclinadas sobre las granitos de grano grueso muy resistentes, de Siete Picos.
vas, tienen gran resistencia a la alteración y la roca aflora en sitio por todas partes, compitiendo con
juntos muy bien marcados.

En los resultados de granito existe una estrecha
relación entre el tipo de litología y el diacristado. En
los que tienen formas dométicas adquiere bastante
importancia el diacristado curvo, especialmente si el
inmueble no está abierto y el volumen expuesto no es
muy fuerte. Las diacristas rectílineas emplazan a adq
quirir importancia si las curvas no son muy abun
dantes y la forma domética está desdibujada. La
dispersión en las direcciones de este tipo de diacris
sas disminuye asimismo desde los resultados semicirc
ulares a los constituidos por espiras o cretaduras agu
das, muy dominadas por fracturas y diacristas para
telas, que con frecuencia son de origen tectónico.

En algunos conjuntos graníticos, especialmente en
los de menor tamaño, se manifiesta una disime
tria general del conjunto y de los resultados de roca,
a que una vez descartadas las posibles influencias cli
tóicas o de basculamiento del bloque tectónico en
e el que están ubicados parece que podrían deberse a
la relación existente entre la normalidad de la intru
sión y la dirección a que han estado sometidos.

III.- LA ORGANIZACIÓN
MORFOESTRUCTURAL

Las unidades fundamentales de la Sierra de
Guadarrama se agrupan en tres bloques principales,
uno central, más elevado, y dos adyacentes, a los
que se les ha denominado pinedamentos.

Los fallos de dirección NE a partir de las que se
diferencian estos últimos de la cuenca terciaria son de
gran importancia geométrica, cortan la corta
za hasta una gran profundidad, según afirma Ro
sales Calvo y otros (1977); aun a pesar de que los
análisis grávimétricos no le digan expresamente, las
fallas de contacto de los pinedamentos con los blo
ques montañeses deben ser también profundas y
quedar señaladas como fallas o zonas de adegazamiento
cortical en el mapa presentado por Cadavid
(1977). Morfostructuralmente se presentan como
escarpes de falla rectilínea y de gran longitud o si
tuos, a causa de la combinación con fracturas y
fallas cortas de direcciones diversas. A veces más
que un escarpe simple hay un cierto número de pe
queños bloques tecsónicos intermedios, que desde
las cimas pierden altura de una manera equilamada.
De todos ellos sólo los primeros de tales escarpes
son reconocidos como de origen tectónico en la litera
tura geológica clásica; los demás son igno
rados o se considera que están causados por el
retroceso de los escarpes de falla originales en función
de la erosión diferencial.

El contacto de los pinedamentos con las cuencas
terciarias da la clave de numerosos problemas mor
destructurales, principalmente a causa de la con
servación en su borde de la cobertura criotáctica, que
debería cubrir antes del comienzo de las desviaciones
de bloques la totalidad del actual contorno de la
Sierra de Guadarrama. El crioterrio se muestra de
formado con menor o mayor incertidumbre y según
modalidades distintas a lo largo de sus afloramen
tos, lo que necesariamente viene a indicar que el
movimiento de bloques sufrió importantes variacio
nes transversales. Sobre el terreno se aprecia que es
los cambios no son progresivos, sino que están delti
mitados por fallas, generalmente de dirección NW,
que sin ningún efecto morfoestructural visible se
prolongan por el piedemonte cristalino y continúan
más o menos desplazadas, por los bloques monta
ñosos, determinando cambios en la elevación de es
tos. Así pues, parece claro que la fracturación trans
versal actúa coetáneamente al movimiento de las
fallas longitudinal, dando lugar a bloques individua
lizados con respecto a los demás.

El contacto cuesta-zócalo en el piedemonte
norte es diferente a un lado y otro de una falla que
 desde el Puerto de León se dirige al noreste, hacia
Vegas de Matute. Mientras que hacia el oeste el ci
tado contacto aparece bien delimitado por una falla
de dirección ENE, con un plano de falla fuertemen
te inclinado, hacia el este aparece un conjunto de
bloques en disposición monocline, que se hunden
progresivamente al NW, hasta quedar separados
bajo los materiales secundarios que los fósforman.
El tramo con plano de falla fuertemente inclinado co
responde afloramientos criotácticos de elevado bu
zamiento, verticales, o incluso volcados, trazados
bajo un zócalo cabalgante que en ocasiones también
sopla al terciario. Dicho se dan los basculamien
tos monociales aparecen afloramientos exter
nos del crioterrio, generalmente con buzamiento inferior
a los 10º al NW, que han evolucionado hacia un
modulado en cuestas, cuya análisis ya se ha dedi
cado un trabajo con anterioridad (T. Bullón, 1985).

Por su parte, en el piedemonte meridional el con
tacto con la cuenca terciaria del Taio, que se
efectúa a través de la denominada falla meridional
del Sistema Central, también aparecen modificacio
nes transversales en la dirección o inclinación del
plano de falla que permiten, por ejemplo, que la co
bortera criotérica quede conservada en aquellos lu
garos en donde aquí tiene una disposición normal,
inclinada hacia la cuesta (Valdemorillo), y desapa
rece cuando es vertical o la inversa (Calapuzar).

Todas las fallas con diversas direcciones que se
mueven constantemente producen modificaciones
diversas en la que encuentran a su paso, sean per
pendiculares o oblicuas, y deforman de un modo
equivalente las morfoestructuras de claro origen ter
ciario, como las que aparecen en los materiales cri
tácicos. Si se observan las cuestas constituidas por
estos materiales que están situados al este de Vegas
de Matute, se ve que los buzamientos de los estratos
aumentan de este a oeste a partir de ciertas fallas
transversales a su dirección y que a medida que es
tan más inclinadas mayor ha sido el cepillado eros
ivo de los tramos litocristalográficos superiores de
la serie criotérica; como además la superficie de la
rama que enlaza esta superficie de erosión está más
inclinada en idéntico sentido y de manera pro
portional, se deduce que la fracturación transversal
que modifica el buzamiento de los monociales criotácticos afecta también al piedemonte cristalino,
de modo que la superficie de arremetida se adap
ta a esta disposición estructural preva
La más importante de las rupturas transversa
les al eje de la cuenca es la del Puerto del León, que
divide el sector occidental de la Sierra de Guadarr
ama en dos tramos, netamente diferenciales entre sí
y provoca la interrupción o notable dislocación de las
fracturas longitudinales que aparecen a un lado y
Fig. 3. Unidades morfostructurales del piedemonte Norte.
Fig. 4. Unidades morfoestructurales del piedemonte Sur.
otro de este accidente. El sector occidental a bloque de Málaga presenta un relieve compacto, de bastante anchura y poco elevado, que se levanta, no obstante, por medio de escarpes braquios sobre las piedemontes meridionales y septentrionales. El bloque oriental o de Guadarrama está escindido en alineaciones montañosas individualizadas, tiene valles y fosas interiores, una mayor elevación topográfica y dirección NE. Presenta un bocatamiento hacia el NW, que no sólo afecta a los bloques de piedemonte norte, sino que también se aprecia en las alineaciones montañosas, con laderas NW largas y tenebrosas, al contrario que las SE, verdes y abruptas (Fig. 3).

El piedemonte sur tiene también a un lado y otro de esta discontinuidad características diferentes. El oriental está saldado de fosas longitudinales, paralelas al eje de la montaña, como las de Cerceda y Guadalix, junto con elevaciones intermedias, siendo la Sierra de Morata de Manzanares la más destacada de ellas. Un conjunto es un extenso y largo tramo, constituido por bloques de pequeña dimensión con gran capacidad para moverse diferencialmente entre sí, que dan lugar a contrastes topográficos más importantes que los existentes en el lado occidental, con un relieve aplanado, sin grandes desniveles: altitudinales, aunque también está bastante fragmentado, que ha llevado a algunos autores a considerarlo como uno de los restos más extensos y mejor conservados de un hipotético «piedemonte».

En el piedemonte norte la situación es inversa, pues es el bloque oriental el que tiene una mayor uniformidad topográfica y estructural, mientras que las fosas y alineaciones secundarias se producen en el occidental. Asociado al paso de esta ruptura aparece un ensanchamiento, profundización y aumento de la complicación tectónica de las fosas de Villalba y El Espinar, la deformación del domo antártico de Vega de Madute, así como una intensa fracturación y miliomiliformación en las rocas graníticas y gneissicas que aparecen en una ancha franja en torno al Puerto del León, que coincide con un fuerte descenso altitudinal de la cadena, que se sitúa en los 1.500 m.

IV.- LA EVOLUCIÓN MORFOLOGICA

Como ya se ha visto, las culminaciones de los relieves formados por materiales mesozoicos están afectados por una superficie de erosión que enlaza con el aplanamiento generalizado que aparece en los piedemontes cristalinos. Pero las huellas de este arranque también se aprecian en el interior de las fosas de piedemontes más importantes, iniciándose en las laderas montañosas externas o en las del interior de los valles más profundos y largos. Por ello hay que interpretar que esa superficie de erosión terminó de formarse con posterioridad al levantamiento principal de la Sierra y a la definición de sus principales morfoestructuras.

Los movimientos de elevación de la Sierra de Guadarrama comenzaron a hacerse notable al menos desde el Eoceno, cuando se produjo la retirada del mar cretácico y un primer ataque erosivo a los relieves creados, cuya expresión sedimentaria son las fácies detriticas oligocéneas que bordean todo el Sistema Central y continúan hasta el fin del Oligoceno.

Fig. 3. Principales conjuntos montañosos del Guadarrama Occidental: de derecha a izquierda, Siete Picos, Montaña de Trigo y Sierra de la Mujer Muerta.
Mieno inferior, momento en que aparecen establecidos la mayoría de los volúmenes existentes en la actualidad; así pues, el arrasamiento tuvo que terminar después, entre el Mioceno superior y el Plioceno.

No ha podido llegar a conocemos el valor exacto del arrasamiento erosivo. No hay constancia de que esté relacionado con montes inla ni con retroceso lento y paralelo al mismo de los escarpes de falla, como se ha hecho de manifiesto en otros lugares de la Sierra de Guadarrama (Sanz - Arcilleras 1981). Los montes isla que se han citado repetidamente en este sector de la Sierra de Guadarrama son en realidad pequeños hornos limitados por fallas, situados donde los esfuerzos tectónicos han actuado con mayor intensidad, pues forman parte de alineaciones o conjuntos de cerros escabrosos que bordean las fosas longitudinales, y han de considerarse relacionados genéticamente con éstas.

Tampoco se ha podido comprobar la existencia de retrocesos de escarpes de falla, sino que más bien los sitios donde estos aparecen en la actualidad están muy próximos o coinciden con las bandas de trituración, mielitización o intrusión filanenas que las fallas desveladoras han producido. No es válido bajo nuestro punto de vista, el criterio del frescor de los escarpes para deducir la existencia de un movimiento tectónico reciente. Más bien estos escarpes de falla son más o menos nitidos según las características de las fracturas, la naturaleza del roquedo, la existencia de intrusiones filanenas o la posibilidad de que la erosión pueda barrer con más o menos eficiencia la roca triturada que aparece próxima al plano de falla. Por la misma razón tampoco nos parece adecuada la interpretación que se hace del sector del Escorial (Vaughor y otros, 1979), según la cual el dominio apelado de la Sierra de Malagón y la superficie de piedemonte del Escorial estarían niveladas durante el terciario medio - superior, y posteriormente se separan al moverse la falla que da el escarp de Abantos. Efectivamente en el dorso de la Sierra de Malagón existe un arrasamiento erosivo que es contemporáneo del que aparece en el piedemonte del Escorial, pero nunca estas superficies han llegado a estar unidas ni a ser una misma cosa, pues cada una de ellas tiene una cobertura y una orientación propia. La de Malagón arrnace de las cumbres de esta Sierra sobre los 1.600 - 1.700 m, y se inclina hacia el WSW. La del Escorial parte del escarp de Abantos sobre los 1.100 m y se inclina hacia el SSW.

Con posterioridad existen reajustes tectónicos que modifican ligeramente el relieve ya establecido. En los piedemontes ciertos bloques se deprimen ligeramente al pie de los escarpes montañosos y las fosas se reducen, dejando en ambos casos colgada la raíz del arrasamiento finisieno y provocando también desvitalizaciones ligeras en los paneles de la superficie de erosión situados a un lado y otro de determinadas fallas. No obstante, pensamos que estas reactivaciones postúmenas tienen escasa importancia y no afectan a la totalidad de este conjunto cristalino. Es posible que no se deban a la incidencia de nuevos empujes tectónicos, sino que se trate simplemente de un movimiento de recogida de los bloques desveladores con anterioridad, ya que este reajuste parece producirse exclusivamente a lo largo de algunas fallas importantes. Quizás sólo se trate en algunos casos de la reacción de ciertas fallas secundarias a las principales, que producen el refuerzo de las fosas y la formación de algunos blo-

Fig. 6. Corte geomorfológico del piedemonte Norte.
ques deprimidos ligeramente, que no existían con anterioridad.

En el sector montañoso oriental son casi impredecibles estos regímenes, mientras que son más constatables en los pedizones, especialmente en el meridional. En la Sierra de Malagón el arrastre finnamoceno está más claramente desarrollado, sobre todo en las proximidades de la falda NNW que aprovecha el río Cofio, cerca de las Navas del Marqués. Las fallas de contacto de los cuencas terciarias también sufren alguna movilización, pues alguno de sus tramos está en disposición cabalgante sobre el Mioceno o la propia Formación de Grandes Bloques, cuya cronología pliocena no está suficientemente aclarada.

La inversión local de algunos planos de estas fallas no debe interpretarse como indicativo del carácter compresivo de las reactivaciones póstumas.
Sudries, 1984), sino que más bien parece tratarse de reajustes locales en función de los movimientos concretos de los diversos tramos en que están compartimentadas, pudiendo determinar en alguno de ellos un extraordinariamente sensible de un plano de falla normal hasta llegar a tomar la apariencia de plano inverso, aunque quizás en estos casos, como apunta González Uñanue (1983), en el escarpe de falla aprecian preferentemente las fallas antisépticas a la principal.

Así pues, nos parece que la tectónica que determina la desviación de los bloques en su fase principal y reajustes posteriores es de tipo distensivo y se destaca a partir de fallas normales.

Aunque no se puede precisar la rapidez con la que se produce el levantamiento de bloques principa- pal, el hecho es que una vez que los movimientos tectónicos cesaron, gran parte del conjunto cristalino de la Sierra de Guadarrama quedó arrasado por una superficie de erosión, que desvanece las desigualdades topográficas menores que se habían producido, pero no anuló por completo las que tenían mayor importancia, como las correspondientes a las alineaciones de cierres tectónicos intermedios. Estos arrastrean afectaron en completo a materiales litológicos diferentes y a áreas con diversos grados de trituración tectónica. A continuación se produce un cambio, posiblemente en el Plioceno, pues las condiciones morfoestructurales y morfológicas cambian; el clima es más húmedo y algunas fallas vuelven a funcionar. Ciertos bloques se humedan al pie de los escarpes montañosos y la superficie de arrastre fluvialica se desnivela gradualmente. Tiene lugar una intensa alteración que se localiza en preferencia donde el roque es más debido al ataque químico o mayor su fragmentación.

A lo largo de las fallas importantes se labran corredores longitudinalmente que nacen en los bloques deprimidos. La superficie anterior queda colgada y muy degradada. Después aparecen otros niveles morfológicos de menor altitud, de escasa importancia en los piedemontes, que se localizan con preferencia en el escarpe de la falla meridional o en áreas próximas a las gargantas fluviales como las del Asoncilla y Guadarrama. Es posible que estos niveles coincidan con nuevos reajustes tectónicos que estuvieron cada vez más localizados en el interior de los bloques deprimidos anteriormente.

La influencia de la litología tiene valores diferentes, según los casos. Introdujo la distinción fundamentalmente entre Sierra de Guadarrama, caracterizada por litologías cristalinas, del resto de los materiales sedimentarios de la Meseta, pero habitualmente interviene en escala de mayor detalle en la delineación de las unidades espaciales. En los piedemontes se distinguen los relieves formados por sedimentos calcáreos mesozoicos de los que existen sobre rocas cristalinas, pero dentro de ellos apenas es importante la distinción entre grano y grano. En los bloques montañosos, por el contrario, los contrastes que crea la litología son muy destacados, seguramente a causa de una mayor explotación por la erosión de las irregularidades y cambios de resistencia de cada uno de los tipos diferentes.

Tanto en Malagón como en Guadarrama son muy diferentes los relieves formados por rocas graníticas de los que aparecen en las grietas, y a su vez también pueden hacerse distinciones interesantes según las variedades de cada uno de estos grupos litológicos, tanto por el cambio de la morfología de detalle y grados de resistencia como por la tasa de acidez de los productos de descomposición procedentes de ellas. Así, las grotas de Siete Picos introducen modificaciones específicas en la clase y modos de colonización vegetal o en el topócrino, que no se dan en La Peñuela o Cerro de la Sefellida. Lo mismo ocurre con los gneises, pues las variedades teucrócratas con abundante cuarzo dan lugar a medios en los que el elemento fundamental es el roque, con gran cantidad de afloramientos en situ y fragmentos de prueba de todos los tamaños en torno a ellos. En el sector occidental de la Sierra de Guadarrama se da la coincidencia entre los lugares compuestos por estas litologías resistentes y los de mayor altitud, por lo que los procesos eólicos y los derivados del material de este tipo de rocas se acentúan y potencian entre sí, llegando a ser dominantes sobre los clima y los más perceptibles a simple vista.

La idea de cumbre plana no debe generalizarse, por este motivo, a todo el conjunto de la Sierra de Guadarrama, como podría parecer en una observación desde la lejanía, pues al lado de las subhierbas existen otras estrechas y agudas, modeladas a veces en crestas recortadas. Se ha comprobado que la existencia de uno u otro tipo de cumbre está muy relacionada con la naturaleza litológica, de manera que donde afloran las rocas muy resis- tientes el relieve culminante es intrincado, y de superficies regulares donde éstas son más intercalables.

A veces se ha interpretado que los niveles aplana- nados de las cumbres constituyen restos de los aplana- mientos erosivos que debieron de existir previamente al levantamiento de los bloques, pero dada la clara influencia de los grados de resistencia de las rocas en los modelos de cumbre, parece más indicado pensar que los restos de este aplana- miento, de haber existido, apenas se han conservado, y que los niveles planos de caráctes, lo mismo que las crescen- cias, se deben a evoluciones morfológicas posteriores al levantamiento de los bloques.

En los piedemontes toponópicos hay restos claros de la superficie precristalina, pues incluso en el ro- cado que aflora bajo los sucesivos sucesivos de las cuestas del cretácico está algo roto por morfogenésis precretácicas, posteriores al arrastre tectónico principal. No obstante, es posible que dada la escasa importancia en ellos del modelo de erosión diferencial, la superficie de erosión flúmi- noca tenga un carácter poligénico y haya evolucionado a partir de relieves previamente aplaniados, que adquirieron inclinación variable en función de la intensidad del basculamiento de los bloques.

V.- LAS FORMAS DEL MODELADO

La morfología de los restos de la superficie de erosión coincide bastante en aquellos lugares en donde aparece, y en un criterio importante para deter- minar su origen. Se trata de lugares muy bre- queños, con gran número de afloramientos de rocas relativamente sanas, cuya morfología muestra dia- clasias muy enmarcadas referidas de áreas y muy es- paciadas entre sí, con bordes irregulares debido a
alteración diferencial, pilaneones muy evolucionados, etc., formando revaltes muy poco destacados, rodeados de bloques sueltos semienterrados en areitas, de formas subredondeadas.

Los desarrollos pósitos de que afectaran a los pedimentos deben coincidir con un cambio climático. Es la razón por la cual los modelados que aparecen por debajo de la superficie de erosión flamígrana tiene una alteración muy profunda de las rocas y se localizan, además de en los bloques tectónicos deprimidos donde las rocas son más alterables o reciben mayores aportes de escorriente, en áreas de intensa trituración, etc.

Estos relieves, que frecuentemente consituyen alvéolos de alteración, suelen tener roca muy alterada que rara vez aflora in situ, y si lo hace nunca aparece con las características de la superficie superior. Esta a ras de suelo, sin morfologías individualizadas características, rodeada de fragmentos desprendidos más bien pequeños. En la mayoría de los casos hay una cobertura coluvial de arena espesa.

Estos niveles alterados pueden llegar a formar por coalescencia una superficie más general, que a diferencia de la flamígrana puede presentar varios sentidos de orientación y grados de inclinación diversas. Arranca en ocasiones de los restos que se conservan de la superficie de arranque dispersos por los pedimentos; otras veces sale del interior de los bloques deprimidos, aunque no suele conectar directamente con las laderas monofonásicas, pues se interponen las retazos de la superficie superior, que quedan colgados y sepulcros a ellas.

Desde sus distintos puntos de origen los tramos pertenecientes a esta segunda superficie de modelado tienden a converger hacia ciertos lugares, formando corredores largos y anchos, que deben significar el comienzo de la canalización del drenaje en los pedimentos, pues divisoria es las mismas que las de las cuencas hidrográficas actuales. Es decir, que la escorrentia posterior se canaliza a través de los citados corredores, sin modificar básicamente sus direcciones de flujo ni la ordenación de las influencias principales; tan sólo se han producido encajes lineales, de valor diferente según los casos.

Esta superficie tiene mayor importancia en el pedimento sur que en el norte, quizás a causa de la menor anchura de este y de un valor inferior de los reajustes tectónicos pósitos. En el bloque monofonásico...
ñoso oriental se ha observado que la organización de las divisorias principales de los valles que discurre por el data también de periodos precuaternarios, y los recuentos en los que se instalan las cabece ras fluviales vienen a coincidir con los alveoles de alteración y quedan deprimidos entre laderas de modelado similar al de la superficie de erosión fini mociosa, que estaban con los restos de esta que aparecen en los piedemontes, por lo que se ha interpretado que ambas unidades de relieve son contemporáneas. En el bloque occidental o de Maimun la sucesión de niveles finiúlceros es más clara, apareciendo, incluso, la superficie de erosión desarrollada alveoles de grandes dimensiones, en los que se aprecian a menudo dos niveles de alteración sucesivos, caracterizados en la actualidad por la red fluvial que habría gargantas profundas en los tramos situados entre alveoles.

La red fluvial que se define después de las fases de alteración se adapta a los modelos previsores, formando valles estrechos y encañados cuando discurre por las superficies de erosión recesos, donde aprovecha el entramado de fracturas, extendiéndose notablemente a los fondos de depresiones y alveoles, con recubrimiento de tipo plana aluvial.

En todas las cuencas hidrográficas analizadas se han detectado tres niveles morfológicos diferentes de erosión o alteración previos a los de acumulación cuaternaria, lo que indica la homogeneidad de la evolución del modelado en todo el sector de la Sierra de Guadarrama que se analiza por las intensidades de los fenómenos, el grado de conservación de los niveles antiguos y el modo en que éstos se integran en el relieve actual. En la montaña es interesante diferenciar los restos recesos que aparecen relacionados con niveles equivalentes a los de la superficie de erosión finiúlceros, de los que dan lugar a relieve de laderas, a través de dianchas actuales, de bordes rectílinios, con muy escasos recubrimientos de alteración, que aparecen en lugares con fuentes pendientes de los tramos altos de las cabece ras fluviales, en el interior o en los pendientes escarpados de algunas gargantas profundas. Es decir, en sitios donde la roca ha estado sometida a un proceso de desgaste importante, tanto dentro del límite del periglacial generalizado como fuera de él. Ello indica que son modelados de tipo dinámico que aparecen cuando las condiciones de pendiente o de relieve favorecen en este sector de la Sierra de Guadarrama. Son además formas relativamente recientes, posteriores, bajo nuestro punto de vista, al período de alteración Pleistoceno, sometida a un régimen morfológico en el que las acciones mecánicas o el barrido de alteración dominan sobre las de alteración química.

Las crísis frías quaternarias han producido una fuerte remodelación del ámbito de cubiertas y cabece ras fluviales, con numerosos fenómenos de crioclástia, que han dado lugar a acumulaciones de piedras importantes; recubrimientos geliflúneos en las laderas hasta altitudes relativamente bajas, y modelados de tipo glacio-oral recesos y muy localizados, indicando que el régimen periglacial que afectó a este conjunto montañoso tenía cierta tendencia árida, que no facilitaba la acumulación de importantes espesores de nieve capaces de transformarse en hielo, y dejaba descubiertos durante los meses de mayor rigor invernal una gran cantidad de superficie en cubiertas y laderas, cuyas rocas se veían afectadas por una crioclástia generalizada.

Existen dos etapas de modelado cuaternario, según se deduce de la observación de los depósitos aluviales presentes en el fondo de los valles (T. Bu lón, 1981, 1986 b), pero las acumulaciones periglaciares relucen con el más bajo de ellos, lo que viene a indicar que, aunque posiblemente el primer momento de actividad periglacial fue más intenso, sus depósitos fueron erosionados y sus formas de modelado ocupados o recubiertos por los nuevos dinas mismos o sedimentos.

En todos los tramos de cabece ría la influencia periglacial es importante. Destacan las vertientes NW en el sector oriental y las NNE en el occidental como más favorables a la formación periglaciares. Asimismo se observan oscilaciones del límite del periglacial generalizado condicionadas por la exposición general de la cuenca. Es más bajo en las externas orientadas al NW, que en los valles interiores, y dentro de ellos hay diferencias entre las abiertas al norte (Valdes y Acebeda) de los que se dirigen al sur (Fuente y Moros). Las cabece ras del frente externo meridional apenas tienen una influencia periglacial. En los piedemontes, especialmente en las gargantas que rodean la superficie de erosión, no se conservan depósitos, a excepción los del último periodo de aluvionamiento y con poca cantidad, pero sí aparecen en las cuencas terciarias, formando con niveles de terrenos con abundantes cantos y bloques de material cristalino, modelados bajo un régimen periglacial.

Existen un límite inferior del periglacial generalizado sobre los 1.700 - 1.800 m, pudiendo os-

Fig. 10. Pediplanos periglaciares de grandes bloques, característicos de los dos más elevados con higroclásticis. Cumbre y valle de la Panareja.
las hojas. Las hojas tienden a moverse hacia abajo en exposiciones significativas. No obstante, también hay que tener en cuenta que la altura de la corteza de los pétalos puede ser influida por la lluvia. De hecho, a menor altura, es más probable que las hojas estén expuestas a fuertes vientos, lo que puede afectar su desgaste. En general, las hojas de las plantas de la familia de las asteráceas tienden a ser más duras y resistentes que las hojas de otras plantas.

VI.- CONCLUSIÓN

Es interesante destacar el papel que las morfoestructuras tienen en la morfogénesis tanto de los tramos montañosos como de penínsulas, a los que hasta ahora se les consideraban exclusivamente como una singular morfología y también insistir sobre la influencia que sobre el desarrollo de los distintos procesos y patrones morfodinámicos. Las morfoestructuras son los responsables de las subdi

BIBLIOGRAFÍA