
HIERARCHICAL VISUALIZATION IN A SIMULATION-BASED
EDUCATIONAL MULTIMEDIA WEB SYSTEM

Juan de Lara1,2

1School of Computer Science, McGill University, 3480 University Street, Montreal, Canada
Email: Juan.Lara@ii.uam.es

Manuel Alfonseca2

2ETS Informática, Universidad Autónoma de Madrid, Ctra. De Colmenar, km. 15, 28049 Madrid, Spain
 Email: Manuel.Alfonseca@ii.uam.es

Keywords: Web-based simulation, distance learning, courseware, electronics, OOCSMP.

Abstract: This paper presents a system that generates web documents (courses, presentations or articles) enriched with
interactive simulations and other hypermedia elements. Simulations are described using an object oriented
continuous simulation language called OOCSMP. This language is complemented by two higher language
layers (SODA-1L and SODA-2L). SODA-1L describes pages or slides, while SODA-2L builds courses,
articles or presentations. A compiler (C-OOL) has been programmed to generate Java applets for the
simulation models and HTML pages for the document pages. The paper focus on some new capabilities
added to OOCSMP to handle different graphic detail levels of the system being simulated. Different views
are shown as cascade windows, whose multimedia elements can be arranged and synchronized with the
simulation execution. The new capabilities have been tested by extending a previously developed course on
electronics.

1. INTRODUCTION

Distance learning is ever more popular as a result
of the increasing use of computers and the Internet.
The growing demand is creating a need of better
tools and techniques to build educational materials
that can take advantage of all the possibilities
offered by the Web (Schutte 1997).

Higher education is moving from a teacher-
centered paradigm to a student-centered paradigm
(Maly et al., 1997) where the student plays a more
active role in the learning activity. Visual Interactive
Simulation (VIS) (Campos and Hill, 1998) is an
effective framework for such learning, because it
simplifies theory understanding, encourages
'learning by discovery' and experimentation and
makes the learning process more pleasant.

Our approach is to integrate simulation tools with
multimedia elements. This makes it possible to
express in a richer way the knowledge being

provided, and gives the student a better
comprehension of the problem: explanations by
means of video, images, texts, etc. are not statically
included in an HTML page, but are dynamically
synchronized with the simulation execution.

Using the Internet for distance education, one has
the advantage that it offers common communication
protocols and standards. It is also possible to install
extensions in web browsers, that permit a richer
interaction with the HTML pages. These extensions
are called plug-ins. We use the Java Virtual Machine
(Java, 2002) and VRML browsers (VRML, 2002) to
make interactive simulations available in the
Internet.

Hierarchical thinking is a common strategy for
systems modelling. Systems are usually made of
subsystems, which in their turn are built by coupling
other simpler components, and so forth. This
procedure, which makes complex systems easier to
tackle, is specially useful in electronic circuit design.
To simulate such hierarchical systems, one needs to
visualize the results at different levels in the

hierarchy. This approach is also appropriate from an
educational point of view.

This paper describes some extensions added to
our system to generate web documents based on
interactive simulations. The extensions make it
possible to show and interact with different levels of
the system being simulated. Detail levels are
arranged in cascade windows and can be combined
and synchronized with multimedia elements. The
extensions have been tested by simulating an
electronic circuit at different detail levels. This
model has been added to a previously developed
web course on electronics. The tool puts stress in
key aspects of web development, such as
maintainability, reusability, common look, etc.

The paper is organized as follows: section 2
presents an overview of our system; section 3
describes the extensions added to show different
detail levels (an example of an electronic circuit is
presented); section 4 explains the extensions added
to include multimedia elements in the detail
windows; section 5 shows how the sample electronic
circuit was added to the course; finally, section 6
presents the conclusions and the future work.

2. GENERATING SIMULATION
BASED WEB DOCUMENTS

The OOCSMP continuous simulation language
was designed in 1997 (Alfonseca et al., 1997) as an
object oriented extension to CSMP (IBM, 1972), a
language sponsored by IBM in the seventies and the
eighties. A compiler (C-OOL) was built to translate
OOCSMP code into C++ or Java applets. This
approach simplifies the generation of simulation
based web courses for technical and scientific
subjects, containing interactive simulations. A few
of these courses (gravitation, partial differential
equations, ecology and basic electronics) can be
accessed from:

http://www.ii.uam.es/~jlara/investigacion

Other approaches are possible, such as
developing an API to a standard simulation package,
but this would force the user to install such a
package, which usually is not free. With our
approach, the user just needs a web navigator (most
of them come with a Java Virtual Machine
nowadays). On the other hand, the integration of the
simulation language (OOCSMP) with the page
building system (SODA-1L and 2-L) makes it more

compact and permits some degree of interaction
between the three language layers.

The language and the compiler have been
designed with an educational focus. Some of their
features are:

• Several forms of output display can be used by
the same simulation.

• With our user interface, the student may modify
parameters and object attributes, or sometimes
add or delete objects during the simulation
execution. This enhances the possibilities of
student interaction and problem exploration.

• The user interface can be configured by means
of compiler options to fit the student
background. For example, to present a
simulation to a naive user, the interface will be
restricted to prevent the student to change
model parameters. On the other hand, if the
student is an expert, more possibilities can be
provided to change the model, such as buttons
to add or delete simulation objects.

• Alternative models can be designed, to be
accessed from the main simulation. In this way,
the teacher can plan interesting situations that
arise when a parameter is changed, an object is
added, etc.

• Multimedia elements may be included in the
main simulation panel, and synchronized with
the simulation execution. Thus, model behavior
explanations will be presented in the appropriate
moment.

Figure 1 shows a working scheme of C-OOL
when it is used to compile OOCSMP simulation
models.

Figure 1: Working scheme of C-OOL

On the left-hand side of Figure 1, MGEN is
shown. This is a graphical, interactive tool written in
Java that helps in the modelling of systems
described by partial differential equations. This tool
is able to generate OOCSMP code that can be reused
in OOCSMP models.

It must also be noted that automatic
documentation for the OOCSMP models is
automatically obtained in the form of HTML pages.

The language has been extended to produce, not
only web courses, but also other kinds of documents,
such as presentations and articles. For this purpose,
the language was provided with two higher level
layers (shown in Figure 2):

• The description of document pages is covered
by a set of instructions called SODA-1L (de
Lara and Alfonseca, 2001) (Simulation Course
Description Language 1st Level). This set of
instructions allows us to describe web
documents containing hypermedia elements that
are not available in plain HTML, such as
simulations, two and three dimensional
graphics, and maps of isosurfaces. SODA-1L
forms a higher language abstraction layer than
OOCSMP, because models defined in
OOCSMP can be treated as hypermedia
elements from the SODA-1L viewpoint.

• The level called SODA-2L (Simulation Course
Description Language 2nd Level) can group
several SODA-1L pages to build a course, a
presentation or an electronic article. SODA-2L
has primitives to add navigation links, headers,
footnotes and indexes to the pages. These
elements can be embedded in the resulting
HTML pages, or added as frames. At this level,
interface details that are common to all the
pages are defined, which makes the SODA-1L
pages very easy to reuse.

Figure 2: Our Three-Layered System

Both SODA-1L and 2L are able to deal with
different user profiles: texts, images and simulations
can be put in the page depending on this. These
profiles are set by the course designer and are fixed.
The adaptive abilities are supported by technologies
such as JavaScript and cookies, which run entirely
on the client side (Alfonseca et al., 2001). At the

beginning of the course, the student chooses a
profile, which can be changed during the navigation
through the course pages. The user may also access
information prepared for users with other profiles,
although if these accesses occur very often, the
system will suggest a permanent profile change.

3. EXTENSIONS TO SHOW
DIFFERENT DETAIL LEVELS

OOCSMP has different output forms that can be
combined in a single problem. One of these is called
a CONNECTIONPLOT and is used to generate a
visual representation of the equations to be solved.
This is also an input form, because the compiler
generates widgets to change the values of the inputs.
This output form is especially useful when the
equations represent electric or electronic circuits,
and has been used to generate the course on basic
electronics mentioned in the previous section.

The models included in the course represent
electronic circuits. Complex circuits have been built
by encapsulating simpler ones as block modules. In
this way, 4 bit adders are modeled using 1-bit
adders, which on their turn are built using basic
logic gates.

The new extensions added to the language make
it possible to visualize different system detail levels.
Our previous version of the tool only allowed to see
the top level (for example, the 4-bit adder module).
With the new extensions, when the user clicks on a
module, an emerging window shows its internal
circuits, e.g. a set of connected 1-bit adders; and so
on, until we reach the bottom level, with no
compound blocks.

The designer of the simulation can control which
levels the user can access. This is useful if the
simulation is going to be presented to people with
different levels of expertise. If the user is naive, the
system can be tailored to show only the top level; if
the user is an expert, more freedom can be given,
allowing all the detail levels to be displayed.

The extensions have been implemented by
allowing the OOCSMP programmer to insert
CONNECTIONPLOT sentences inside OOCSMP
classes. Objects of classes that contain such
instructions can be expanded. If a class contains
several methods, the CONNECTIONPLOT
instruction can have a parameter to indicate the
method whose equations will be shown.

These extensions will be explained with an
example: a model that computes the 2-complement
of a 4-bit number. To build this model, five 1-bit
remainder blocks will be used, each of them made of

basic gates. Thus, the system will have three detail
levels.

Listing 1 shows part of the OOCSMP code that
defines the 1-bit remainder modules.

CLASS REST1
{

 ICON ic:=”rest1.gif” [64,64]
 ACTION A0, B0, C0

 ACTION := IOR(AND(NOT(A0),EOR(B0,C0)),...
 C1 := IOR(AND(NOT(A0),IOR(B0,C0)),AND(...
 GETCARRY

 GETCARRY := C1

 CONNECTIONPLOT ACTION
}

Listing 1: Definition of a 1-bit remainder module

The ICON instruction assigns an icon to the
class, which will be used to represent objects in this
class in the output forms that will be chosen later. In
this case, the selected icon is a predefined gif file,
which can be changed in subsequent constructor
invocations. It also specifies the size of the graphic
file in pixels.

The class also defines two methods (ACTION
and GETCARRY), the first is used to compute the
remainder of three bits, the third one being a carry. It
also computes a new carry (C1), which is returned
by method GETCARRY.

The last instruction in the class
(CONNECTIONPLOT) lets objects of this class to
be expanded. This instruction may specify the
method that must be shown (ACTION in our case). If
the parameter is not given, the method to be shown
is the DYNAMIC (which is the main simulation loop
of the class). The OOCSMP basic logic blocks IOR,
AND, NOT, etc. have associated predefined icons
that will be used for this representation.

In the next step, a complementer is defined,
using objects of class REST1. The OOCSMP code is
shown in listing 2.

As before, a predefined icon is declared,
followed by 5 objects of class REST1. This class has
a method (DYNAMIC) that connects the 1-bit
remainder modules to obtain the 2-complement of
the binary number represented by B0...B3.
Instruction CONNECTIONPLOT is included to
allow the expansion of this level. The instruction
does not carry any parameters, thus DYNAMIC is the
method to be expanded. The icon associated to the

REST1 objects is used to build the graphical
representation.

INCLUDE “REST1.csm”
CLASS COMP2
{

 ICON ic:=”comp2.gif” [64,64]
 REST1 re1()

 REST1 re2()

 REST1 re3()

 REST1 re4()

 REST1 re5()

 DYNAMIC B0, B1, B2, B3
 R0 :=re1.ACTION (0, B0 , 0)

 R1 :=re2.ACTION (0, B1 , re1.GETCARRY())

 R2 :=re3.ACTION (0, B2 , re2.GETCARRY())

 R3 :=re4.ACTION (0, B3 , re3.GETCARRY())

 R4 :=re5.ACTION (1, re4.GETCARRY(), 0)

 CONNECTIONPLOT
}

Listing 2: Definition of a 4-bit complementer

We also need a main simulation model, which
basically has to declare some input and output
variables, connect them to an object of class COMP2,
set some simulation parameters and select also a
CONNECTIONPLOT as the output form. Once this
model is compiled with C-OOL, the applet shown in
figure 3 is obtained.

The background window shows the top
simulation level, where the COMP2 object is
represented using its associated graphical file and
the inputs and outputs are shown as labeled boxes.
The user can change the inputs (from 1 to 0 and vice
versa) by clicking on them. The compiler generates
digital or analog valued widgets appropriately. If
there are several levels open (as in this case) any
change to one input (or output) is propagated
automatically to all the level windows.

The foreground window represents the second
level, showing the innards of the COMP2 object.
Constants in the equations, labeled as “CONST”, are
shown in blue and cannot be changed.

If the user should not be able to open the detail
windows, the programmer just has to remove the
CONNECTIONPLOT instructions inside the classes
(in Listings 1 and 2). In the future, this will be done
automatically, as it is possible to define different
user levels in the SODA-2L language.

Figure 3: A moment in the simulation, the first two
levels are shown.

4. ADDING MULTIMEDIA TO
THE DETAIL WINDOWS

In previous versions of the language, it was
possible to include multimedia elements (video,
audio, dynamic text and images) in the main
simulation window. The video and audio elements
were implemented using the Java Media Framework
(JMF) (JMF2.0, 2002). These elements can be
placed in the simulations by including one or several
instructions (VIDEOPANEL, AUDIOPANEL,
TEXTPANEL or IMAGEPANEL) in the main
simulation program. These instructions have
parameters to synchronize the presentation of the
multimedia elements with the simulation execution.
Different texts or images can be shown, depending
on the values of OOCSMP expressions. In this way,
explanations are given to the student in the correct
instant, when something is happening in the
simulation, in a richer way than with static HTML
pages.

The new extensions let us place multimedia
elements in detail windows. This is useful, because
sometimes explanations specific to the detail
windows have to be given.

To implement these extensions, no change in the
language grammar was needed, it was enough to

allow the programmer to include the multimedia
instructions inside a class. The programmer can
arrange different panels in a detail window, which is
theoretically divided into a 3x3 grid. Thus one can
place at most 9 different panels in each detail
window (CONNECTIONPLOTs or multimedia
elements), although the latter can also be shown in
separate windows. Their position is specified in the
first parameter of these instructions, which can take
the values N, S, E, W, NW, SW, NE, SE, C,
WINDOW, or several, if a panel should occupy more
than one position.

For example, assume that we want to place an
explanatory text and an image in the first detail level
window (the foreground window in figure 3). The
text will describe the construction of the electronic
circuit, and the image will change depending on the
user inputs and will show a scheme of the operations
to be performed when computing the 2-complement.
As we have a 4-bit number, we will need 16
different pictures. In this way the student will be
able to compare the behavior of the circuit with the
manual operations, see why the circuit works, and
understand why the circuit has been built in this
way.

To implement these changes, we only have to
change in listing 3 the last instruction of the COMP2
class (CONNECTIONPLOT), and declare some new
attributes to store the parameters of the DYNAMIC
section. This is necessary, because we want to use
these values in the IMAGEPANEL instruction to
display the appropriate image. The final code is:

INCLUDE “COMP2.csm”
VALUE B0, B1, B2, B3

 VALUE := B0+B1*2+B2*4+B3*8

CLASS MMCOMP2 : COMP2
{

 DYNAMIC B0, B1, B2, B3
 A0 := B0

 A1 := B1

 A2 := B2

 A3 := B3

 CONNECTIONPLOT [C,S]
 IMAGEPANEL [E],
START (VALUE(A0,A1,A2,A3)=0),”i0.gif”,
START (VALUE(A0,A1,A2,A3)=1),”i1.gif”,
...

START (VALUE(A0,A1,A2,A3)=15),”i15,gif”
 TEXTPANEL [SE], DEFAULT “cirexpl.txt”
}

Listing 3: 4-bit complementer with multimedia
elements

Figure 4: A moment in the execution of the multimedia enhanced model

Notice that we inherit all the simulation code
from the previous module, but the DYNAMIC
method is extended to store the parameters in
auxiliary variables. This class also changes and adds
some output forms. We have also defined a global
function to calculate the decimal value of a binary
number, which is used by the IMAGEPANEL
output to decide the appropriate file to display at
each moment. Notice that the textual explanation is
static. The DEFAULT parameter makes the output
display the associated file if none of the previous
conditions is true (all the conditions are tested at
every time step in the simulation). In this example,
where there are no previous conditions, the text
never changes.

Figure 4 shows an instant in the execution of the
previous model (embedded in a main simulation
model).

5. INTEGRATING THE
EXAMPLE IN THE COURSE ON
ELECTRONICS

In (Alfonseca et al., 2001) we described a course
on electronics which was built using older versions
of our tools. In this section, we show how to add the
previous example to the old course. We will take
advantage of the SODA-1L and SODA-2L levels to
describe the course page where the example is going
to be placed, and to add the page at the appropriate
position in the course. We have also prepared a
SODA-2L script to compile the entire course.

The course page is described using the SODA-
1L language. SODA-1L is a label-based language
that makes it possible to invoke simulations written
in OOCSMP. When describing the course pages, the
focus must be set on the contents, because the
common features (the appearance) of all the pages
are described in the upper level (SODA-2L). This
level distinction improves reusability, integration
and maintainability.

The SODA-1L code is similar to the examples
presented in (de Lara and Alfonseca, 2001) and
(Alfonseca et al, 2001). A scheme of the SODA-2L
script is shown in listing 4.

[1] INCLUDE "macros.csm"
[2] INCLUDE "styles.csm"
[3] COURSE "Digital systems"
[4] BACKGROUND="WHITE"
[5] FONT TITLE TYPE="Tahoma", SIZE="+4",

COLOR="BLACK"
[6] AUTHOR Juan de Lara, Manuel Alfonseca
[7] EMAIL Juan.Lara@ii.uam.es,

Manuel.Alfonseca@ii.uam.es
[8] WEBADDRESS www.ii.uam.es/~jlara

www.ii.uam.es/~alfonsec
[9] FOOTNOTE “footnote.csm”
[10] SIMULATIONS -noFrame -noScaleWindow -

noLeyenda -WIDTH= 500 -HEIGHT= 350
[11] PAGE "modules.csm"
[12] PAGE "comb.csm"
[13] PAGE "seq.csm" ...

Listing 4: Script to compile the course on electronics

The first two lines include files with macros and
styles used in the course. SODA macros show the
compiler how to translate certain patterns into
HTML, SODA styles are similar to those used in
usual text processing applications.
The third line declares that the document will be a
course (it is also possible to generate presentations
and interactive articles). This line and the next
configure the fonts and the colors to be used in the
course.

Lines 5-7 declare information about the course
authors. This information can be accessed by means
of the SODA variables \AUTHOR, \EMAIL and
\WEBADDRESS anywhere in the SODA-2L files.
This makes it possible to define headers or footnotes
in a general way, increasing reusability and
maintainability. For example, line 8 includes a
footnote (a reference to the SODA-1L file
“footnote.csm”) which will appear in all the pages in
the course. This footnote shows some information
about the authors. As this is done using the
aforementioned SODA variables, the footnote
remains completely general and can be used in other
courses, even those authored by other people.

Lines 9-10 configure the user interface of the
simulations described in OOCSMP, which are
invoked from the SODA-1L pages of the course.
The pages in the course are defined in lines 11 and
following.

This script is input to C-OOL, which compiles
every page in the course, generating HTML. If one
of the pages invokes a simulation, C-OOL also
compiles it, generating several Java files.

In this way, adding or deleting a page from the
course only means adding one line to the SODA-2L
script. Navigation links between pages are included
automatically, by means of the SODA-2L instruction
NAVIGATION (not shown in this example), thus the
rest of the script would remain unchanged.

The course is accessible at the Internet in:
http://www.ii.uam.es/~jlara/investigaci
on/ecomm/electronica/modules.html

6. CONCLUSIONS AND FUTURE
WORK

This paper describes some extensions to several
tools and languages that we have used to simplify
the generation of Internet courses based on
simulations. These extensions allow us to show
different detail levels, optionally placing and
synchronizing multimedia elements inside those
detail levels. The extensions have been described by
means of a model of a 4-bit complementer, which
has been integrated with an existing course on
electronics.

The system saves the course designer the need to
program in low level languages such as Java or
HTML, putting stress in key points in web
development such as maintainability, reusability,
integration and easy testing. It also makes easy to
enhance the web materials with multimedia
elements. Adding new pages to existing courses is
also simplified, as the new page is inserted in our
SODA-2L script, and the links are updated
automatically by the compiler.

Due to technological and cultural changes,
teachers will put more and more materials and
courses on the web. Most teachers are not experts in
Web programming. In this context, our system is
very useful, and in fact it is being used in several
teaching innovation projects, in such diverse areas as
electronic circuits or mechanics. Evaluations based
on the student use and view of the courses are still to
be collected in these two cases.

A simplified version of the model described in
section 4 has also been included in a course under
development on basic computer science. The course
is being developed in the framework of a teaching
innovation project, sponsored by the Universidad
Autónoma de Madrid. This will provide us with
feedback about the student reactions.

At present, we are working in a graphical
modelling environment, called AToM3 (de Lara and
Vangheluwe, 2002), (A Tool for Multi-Formalism
and Meta-Modelling). That is, we can model in
different formalisms, and also define the formalisms

themselves. This flexibility will permit building both
simulation models and HTML pages in a graphical
way. This would simplify the design of the courses
and the selection and inclusion of multimedia
elements.

We also intend to automate the decision of
opening new detail levels during the simulation.
This decision will be made depending on the profile
assigned to the user. Details about user profiles are
defined in the SODA-2L language layer.

We are also working on an OOCSMP
interpreter, with the aim of letting the student to
make changes in the simulation models at run time,
thus extending the possibilities of experimentation.
In our example, changes to the electronic circuits
could be made on the fly.

7. ACKNOWLEDGMENTS

This paper has been sponsored by the Spanish
Interdepartmental Commission of Science and
Technology (CICYT), project number TEL1999-
0181

REFERENCES

Alfonseca, M., Pulido, E., Orosco, R., de Lara, J. 1997.
"OOCSMP: an object-oriented simulation language".
ESS'97, Passau, pp. 44-48.

Alfonseca, M., de Lara, J., Ortega, A. 2001. "Developing
Adaptive Web Courses Based on Simulation: A Thick
Client Approach". EUROMEDIA'01. Valencia. April
2001.

Campos, A.M.C., Hill D.R.C. 1998. “An Agent-Based
Framework for Visual-Interactive Ecosystem
Simulations”. TRANSACTIONS of the SCS
International 15, 4: 139-152.

de Lara, J., Alfonseca, M. 2001. “Constructing
Simulation-Based Web Documents”. IEEE
Multimedia, Special Issue on Web Engineering,
January-March 2001, pp. 42-49

de Lara, J., Vangheluwe, H. 2002. “AToM3: A Tool for
Multi-Formalism and Meta-Modelling”. In
Proceedings of Fundamental Approaches to Software
Engineering, FASE’2002. Lecture Notes in Computer
Science, Springer. To Appear. See also the AToM3

home page: http://moncs.cs.mcgill.ca/MSDL/research
/projects/AtoM3.html

IBM Corp. 1972. Continuous System Modelling Program
III (CSMP III) and Graphic Feature (CSMP III

Graphic Feature) General Information Manual. IBM
Canada, Ontario, GH19-7000.

Java home page: http://java.sun.com

Java Media Framework home page:

 http://java.sun.com/products/java-media/jmf/2.0
Maly, K., Overstreet, C.M., González, A., Denbar, M.,

Cutaran, R., Karunaratne, N., Srinivas., C. J. 1997.
“Use of Web Technology for Interactive Remote
Instruction”. Proceedings of the Web’97 Conference.
In Internet at :
http://www7.scu.edu.au/programme/posters/1855/com
1855.htm

Schutte. 1997. “Virtual Teaching in Higher Education:
The New Intellectual Superhighway or Just Another
Traffic Jam?”.

 http://www.csum.edu/sociology/virexp.htm

VRML97 Specification in Internet at:
http://www.web3d.org/Specifications/VRML97

