
Magneto-optical Kerr effect in resonant
subwavelength nanowire gratings

H Marinchio1, R Carminati1, A García-Martín2 and J J Sáenz3,4,5

1 Institut Langevin, ESPCI ParisTech, CNRS, 1 rue Jussieu, F-75238 Paris Cedex 05, France
2 IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760
Tres Cantos, Madrid, Spain
3 Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia
Condensada and Instituto ‘Nicolás Cabrera’, Universidad Autónoma de Madrid, E-28049
Madrid, Spain
4 Donostia International Physics Center (DIPC), Paseo Manuel Lardizabal 4, E-20018
Donostia-San Sebastian, Spain
E-mail: juanjo.saenz@uam.es

Received 29 June 2013, revised 14 November 2013
Accepted for publication 21 November 2013
Published 9 January 2014

New Journal of Physics 16 (2014) 015007

doi:10.1088/1367-2630/16/1/015007

Abstract
Periodic arrays of nanorods can present a resonant response at specific geometric
conditions. We use a multiple scattering approach to analyze the optical response
of subwavelength nanowire gratings made of arbitrary anisotropic materials.
When the rods are made of magneto-optical dielectrics we show that there is
a complex interplay between the geometric resonances of the grating and the
magneto-optical Kerr effects (MOKE) response. As we will show, for a given
polarization of the incident light, a resonant magneto-optical response can be
obtained by tuning the incidence angle and grating parameters to operate near the
resonance condition for the opposite polarization. Our results could be important
to understand and optimize MOKE structures and devices based on resonant
subwavelength gratings and could open new perspectives in sensing applications.
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1. Introduction

Periodic structures and the propagation of light through them has been an interesting topic for
more than a century. Even before the boost in activity with the development of the photonic
crystals Wood [1], in 1902, reported the existence of singularities (known as Wood’s anomalies)
in the reflectance of one-dimensional (1D) metallic gratings. In fact, there were two different
types of anomalies identified by Fano [2]. One can be identified as discontinuous changes of
intensity along the spectrum at given frequencies [3]. The other is due to a resonance effect [4]
that takes place when the external wave couples with quasi-stationary waves confined in the
grating. After the observation of enhanced transmission through a two-dimensional (2D) array
of subwavelength holes drilled in an otherwise opaque metallic film [5], there was a renewed
interest in studying the physics of both reflection and transmission ‘anomalies’. The enhanced
transmission in noble metals is commonly associated with the excitation of surface plasmons,
but other type of diffraction resonances, due to constructive interference effects, can give rise
to similar phenomena [6] even if the periodic arrays are made of dielectric particles [7–10]
. Related to the electromagnetic (EM) field spatial profile, it has been shown that arrays of
transparent dielectric nanorods [9] are able to produce huge field enhancements when driven at
specific resonant conditions.

The magneto-optical (MO) effect can be used to actively control the behavior of resonant
structures or to modulate field enhancements, and, conversely the very same field enhancements
can be used to boost the MO signal, which would open new perspectives in device applications,
particularly where the resonances have a metallic nature [11, 12]. Also, the use of periodic
arrays of micron size MO materials have been used to obtain the magnetic domain structure
by means of the study of the MO properties of the diffracted beams [13–16]. The routes to
integrated MO systems have been shown recently by different studies, such as those on non-
reciprocal optical isolators [17] and sensors [18], or by opening up new perspectives, such
as plasmonic interferometry [19, 20], unidirectional plasmonic waveguiding [21], controlled
molecular energy transfer [22] and random lasers [23]. A common shortcoming is the relatively
weak MO response of usual materials (including ferromagnetics), that needs to be compensated
by an enhancement of light–matter interaction, usually from an enhancement of local electric
fields. This can be done combining ferromagnetics and noble metals to take advantage of
the large local electric field produced by the excitation of surface-plasmons [11, 12, 24].
Another approach is through a periodic molding of the MO structure [25–30]. This magneto-
plasmonic enhancement has been demonstrated in multilayer structures [31–34] and nanodiscs
or nanoholes arrays [35–39] and is the subject of intense research [40–44].

Most of the previous theoretical approaches to periodic MO structures have been focused
on numerical simulations. In this paper we develop an analytical theory to analyze different
mechanisms of control and enhancement of the MO response in resonant free-standing MO
nanorod arrays. Recent work on arrays of transparent rods [7–9], predicted the existence of high
finesse resonances at specific wavelengths and incidence angle of the incoming beam. Recent
experiments on free-standing gratings of nanorods [10], made of isotropic dielectric material,
reveal the existence of sharp resonances with nearly perfect optical extinction in full agreement
with theory [7–9]. Our main goal here is to explore new phenomena arising from the interplay
between MO material properties and the geometric optical resonances of the grating.

Based on previous work on the polarizability tensor of anisotropic electrically small
particles [45, 46], we first discuss (section 2) the MO response of a single nanowire, under
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the assumption of a weak MO response (in comparison to the standard dielectric response). In
section 3 we develop an analytical theory of the optical response of subwavelength nanowire
gratings made of arbitrary anisotropic materials. When the rods are made of MO dielectric
material, we show (section 4) that there is a complex interplay between MO Kerr effects
(MOKE) and the geometric resonances of the grating. We will show that, for a given polarization
of the incident light, resonant MOKE can be obtained by tuning the incidence angle and grating
parameters to operate near the resonance condition for the opposite polarization.

2. Magneto-optical (MO) response of single nanowire

In the presence of a static external magnetic field, the dielectric function of the, otherwise
isotropic, nanowire material becomes a tensor of the form [47, 48]

ε = ε I + 1ε with 1ε = iQεA, (1)

where Q is the MO coefficient, ε the isotropic dielectric function in the absence of external
magnetic field and I the unit tensor. A is the following antisymmetric tensor

A =

 0 −mz m y

mz 0 −mx

−m y mx 0

 (2)

written in a direct orthonormal reference frame, with m̂ the unit vector in the direction of
magnetization.

Let us first define the polarizability of a infinitely long rod made of an anisotropic material
with a dielectric tensor ε. We consider a cylindrical rod with its axis along the z-axis of
subwavelength radius rc located in air or vacuum (i.e. in a homogeneous isotropic dielectric
medium of permittivity εh = 1). We will restrict ourselves to the case in which the external
EM fields do not depend on z, i.e. both the electric and the induced dipole in the wire do
not depend on z. For simplicity, we will assume incoming monochromatic EM plane waves,
E0(r) = E0eik0.r , with frequency ω and wave vector, k0 = (K0 x̂ − q0 ŷ), perpendicular to the
nanowire axis with |k0| = k = 2π/λ = ω/c (the symbol ‘ˆ’ denotes a unit vector).

The induced dipole moment pd at a frequency ω can be written as the product of the
incident exciting field and the polarizability tensor α,

pd j
= ε0αE0. (3)

The free-space electric polarizability of an anisotropic nanorod can be written as [45]

α−1
= α−1

0 − i
k2

4

(
1

2
x̂ x̂ +

1

2
ŷ ŷ + ẑ ẑ

)
, (4)

where α0 is the quasi-static polarizability,

α−1
0 =

1

π r2
c

{(
1

2
x̂ x̂ +

1

2
ŷ ŷ
)

(ε + I) + ẑ ẑ
}

(ε − I)−1 . (5)

For a MO cylindrical nanorod with ε given by equation (1) we find

α−1
0 = α−1

0I − 1MO, with α−1
0I =

1

2π r2
c


ε+1
ε−1 0 0

0 ε+1
ε−1 0

0 0 2
ε−1

 , (6)
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Figure 1. Sketch of the MO nanorod array and of both s and p components of the plane
wave incoming at an incidence angle θ0. The ‘s’ component of the electric field, Es0

is parallel to the nano rod axis ( ẑ) and perpendicular to the plane of incidence (x̂, ŷ)
spanned by the surface normal ( ŷ) and the wave vector k0.

where α0I is the quasi-static polarizability of a cylinder with isotropic dielectric function ε and
∆MO describes the MO response in the quasi-static limit [46]

1MO = i
εQ

π r2
c(ε − 1)2

A ≡ i1MOA, (7)

where we have kept only first-order terms in the MO constant Q.

3. Periodic array of anisotropic nanorods: general results

We consider an infinite set of identical parallel anisotropic nanorods with their axes along the
z-axis as sketched in figure 1. The cylinders are located at r j = ja x̂ (with j an integer number).
Following previous works on isotropic nanorod gratings [7, 9], we solve the scattering problem
using Twersky’s [4] multiple-scattering approach.

The field scattered by the nanorod j is given by

Escatt
j (r) = (k2/ε0)G0(r, r j) pd j

= {k2 pd j
+ ( pd j

.∇)∇}g(r, r j),

where G0(r, r j) and g(r, r j) = (i/4)H0(k|r − r j |) are the 2D free-space Green tensor and
scalar function, respectively (H0 is the Hankel function). The induced dipole, pd j

, is
proportional to the actual incident field on the scatterer, pd j

= ε0αEin(r j). For a periodic array
Ein(r j) = Ein(r0)eiK0 ja and the total field can be written as

E(r) = E0(r) + k2


∞∑

j=−∞

eiK0 jaG0(r, r j)

αEin(r0) ≡ E0(r) + k2G±(r)αEin(r0), (8)

where the tensor lattice sum G±(r) can be written as a sum over all diffracted spectral orders
(m = . . . , −2, −1, 0, 1, 2, . . .) as

G±(r) ≡

{
∞∑

m=−∞

eiKm xeiqm |y|
i

2aqm
( p̂±

m p̂±

m + ŝ ŝ)

}
, (9)
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where, following the notations in [49], we have used the unit vectors ŝ, p̂+
m and p̂−

m that define the
directions of the electric field in s and p polarizations (for p-polarization, the electric field has
two different directions. Here ‘−’ (‘+’) corresponds to downward transmitted (upward reflected)
diffracted waves):

qm ≡ +
√

k2 − K 2
m, Km ≡ K0 +

2mπ

a
, (10)

ŝ = x̂ × ŷ = ẑ,

p̂+
m = (Km/k) ŷ − (qm/k)x̂ = sin θm ŷ − cos θm x̂,

p̂−

m = (Km/k) ŷ + (qm/k)x̂ = sin θm ŷ + cos θm x̂.

(11)

3.1. Self-consistent field, depolarization tensor and effective polarizability

Each nanorod is excited by the incident plane wave plus the waves scattered from the rest of the
grating [4]. The self-consistent incident field, on the j = 0 rod, is then given by the solution of

Ein(r0) = E0(r0) + k2

∑
j 6=0

eiK0 jaG0(r0, r j)

αEin(r0) ≡ E0(r) + k2GbαEin(r0), (12)

where we introduced the ‘depolarization’ dyadic Gb,

Gb ≡

∑
j 6=0

eiK0 jaG0(r0, r j) = lim
r→r0

{
G±(r) − G0(r, r0)

}
. (13)

(The components of the depolarization dyadic, Gb (defined by equation (13)) are given in the
appendix.)

The self-consistent incident field is then given by

Ein(r0) =
(
1 − k2Gbα

)−1
E0(r0), (14)

which includes the contribution of both incident (external) and depolarizing (multiple scattering)
fields. After substitution of equation (14) in (8) we obtain a simple expression of the total field
(outside the nanorods) in terms of the incident plane wave

E(r) = E0(r) + k2G±(r)α
(
1 − k2Gbα

)−1
E0(r0) ≡ E0(r) + k2G±(r)αeff E0(r0), (15)

where αeff is the effective (dressed) polarizability tensor of each nanorod in the grating,

α−1
eff = α−1

0 − k2 Re {Gb} − ik2 Im {G(0)} . (16)

For a subwavelength grating (SWG),

Im {G(0)} =
1

2aq0

(
ŝ ŝ +

1

2
p̂+ p̂+ +

1

2
p̂− p̂−

)
=

1

2aq0

{
ẑ ẑ +

q2
0

k2
x̂ x̂ +

K 2
0

k2
ŷ ŷ
}

. (17)

3.2. Fresnel transmission and reflection amplitudes in subwavelength gratings

In order to discuss the Fresnel reflection and transmission amplitudes for s and p polarizations,
we first write the incident plane wave as

E0(r) =
(
Es0 ŝ + E p0 p̂−

0

)
eik0r (18)
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where the unit vectors ŝ and p̂−

0 were defined in equation (11). We shall restrict our discussion
to SWGs with period a < λ below the onset of the first diffracted beam (this takes place at the
Rayleigh condition |K0 ± 2π/a| = k). This limits the study to angles of incidence verifying

06 | sin θ0|6
2π

ka
− 1 =

λ

a
− 1 or (K0 ± 2π/a)2 > k2, (19)

such that only the zero (specular, m = 0) order can propagate in the far field (|y| � λ) input
and output regions, being higher-order diffracted beams evanescent and confined in the grating
region. From equations (9), (15) and (18) the SWG reflected and transmitted fields are given by

Erefl(r) =

{
ŝ
(
rss Es0 + rsp E p0

)
+ p̂+

0

(
rps Es0 + rpp E p0

) }
eiK0xe+iq0 y, (20)

Etrans(r) =

{
ŝ
(
tss Es0 + tsp E p0

)
+ p̂−

0

(
tps Es0 + tpp E p0

) }
eiK0xe−iq0 y, (21)

where

rss =
ik2

2aq0
ŝ · αeff ŝ, rps =

ik2

2aq0
p̂+

0 · αeff ŝ, (22)

rpp =
ik2

2aq0
p̂+

0 · αeff p̂−

0 , rsp =
ik2

2aq0
ŝ · αeff p̂−

0 , (23)

tss = 1 +
ik2

2aq0
ŝ · αeff ŝ, tps =

ik2

2aq0
p̂−

0 · αeff ŝ, (24)

tpp = 1 +
ik2

2aq0
p̂−

0 · αeff p̂−

0 , tsp =
ik2

2aq0
ŝ · αeff p̂−

0 . (25)

In the absence of absorption, equation (16) (with α0 Hermitian) ensures power
conservation

|rss|
2 + |rps|

2 + |tss|
2 + |tps|

2
= 1, (26)

|rpp|
2 + |rsp|

2 + |tpp|
2 + |tsp|

2
= 1. (27)

3.3. Dynamic geometrical resonances

Below the onset of the first diffracted beam, all the diffracted modes are evanescent and there
is only specular reflection. Near the Rayleigh condition (|K0 ± 2π/a|& k) both Re(Gb)yy and
Re(Gb)zz diverge [7, 8] and the lattice sums (see the appendix) can be approximated as

Re(Gb)xx ≈ 0, (28)

Re(Gb)yy ≈
1

2ak2

(
(K0 + 2π/a)2√

(K0 + 2π/a)2 − k2
+

(K0 − 2π/a)2√
(K0 − 2π/a)2 − k2

)
, (29)

Re(Gb)zz ≈
1

2ak2

(
k2√

(K0 + 2π/a)2 − k2
+

k2√
(K0 − 2π/a)2 − k2

)
. (30)
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(b)

(a)

(c)

weak coupling

possibility of a resonant 
coupling

Figure 2. Coupling of dipoles in the grating. The arrows represent the dipole moment
induced in the nanorods and the thin lines sketch their respective radiation pattern. (a)
The radiation scattered by the dipoles oriented along x is weak in the grating plane and
there is no resonant coupling. On the contrary, the coupling between dipoles along y (b)
and z (c) can be very strong near the condition of constructive interference, i.e. near the
onset of new propagating modes.

The divergences are due to the constructive interference of the scattered fields and are
responsible for the so-called geometric resonances of the grating. In the absence of an external
magnetic field, for a grating of isotropic rods, the effective polarizability, αeff = αI, is diagonal
with

(αI)
−1
xx ≡

1

2πr 2

ε + 1

ε − 1
− k2 Re(Gb)xx − i

q2
0

2aq0
, (31)

(αI)
−1
yy ≡

1

2πr 2

ε + 1

ε − 1
− k2 Re(Gb)yy − i

K 2
0

2aq0
, (32)

(αI)
−1
zz ≡

1

2πr 2

2ε

ε − 1
− k2 Re(Gb)zz − i

k2

2aq0
. (33)

The coupling of the induced dipoles in the grating, illustrated in figure 2 for non-MO cylindrical
nanorods, becomes resonant when the real part of α−1

I yy or α−1
I zz vanishes.
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(b) LMOKE

(a) TMOKE

pI

pMO

B

pMO

pI

B

Ep0

kPMOKE

Es0

k0

possibility of a resonant 
coupling between MO dipoles

Figure 3. Grating resonances turned on by the MO effect in (a) PMOKE and
(b) LMOKE for a normal incidence. In the framework of a first-order study, the dipole
moment of a rod is represented by its two components: pI (blue vector) the isotropic
dipole moment (unchanged by the presence of an external magnetic field) and pMO the
MO dipole due to the anisotropic response of the nanorod (see part 2 and [46]).

4. Magneto-optical Kerr effects (MOKE) in subwavelength nanorod gratings

In what follows we will analyze the effect of the geometric lattice resonances on the MO
response of the grating. We shall focus the discussion on the lattice resonance effects on the
complex Kerr rotation θK = θrot + iϕell ( where θrot is the rotation and ϕell is the ellipticity) which
can be defined in terms of the ratio between the p and s components of the specular reflected
field. Instead of considering an arbitrary external static magnetic field B, in order to simplify
the discussion, we will consider two different MOKE configurations separately, as illustrated in
figure 3. The case B = B ẑ (TMOKE) is not studied here since, for k0 ⊥ ẑ, such a magnetic field
orientation does not cause an s–p conversion (for a general discussion, see [30]).

In order to illustrate the main physics involved in the different resonant phenomena,
we will consider iron garnet materials, which are being used for enhancement of the MO
response in various recent applications [42–44]. We will assume a typical iron garnet with
approximately real and frequency-independent permittivity ε ≈ 5.5 (for visible and infrared
spectral regions) [50, 51] with off-diagonal elements Qε ≈ 0.02 in the visible range [50, 51].
The rod radius rc = 50 nm and the lattice parameter a = 500 nm are chosen to have a fixed
ratio rc/a = 0.1. Notice that assuming that the permittivity tensor is frequency independent, the
results only depend on rc/a and a/λ and are scale invariant.

8
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4.1. Polar MOKE (B = Bŷ)

In the ‘polar’ configuration (PMOKE), the magnetization vector (the external magnetic field) is
oriented perpendicular to the grating plane (and parallel to the plane of incidence) as sketched
in figure 3(a). The effective polarizability and Fresnel coefficients can be computed analytically
from equation (16) and (7) with mz = mx = 0 and m y = 1. After some algebra, it is easy to find

rss =
ik2

2q0a

(αI )zz

1 − (αI )xx(αI )zz1
2
MO

(34)

rsp = rps = −
ik

2a

(αI )xx(αI )zzi1MO

1 − (αI )xx(αI )zz1
2
MO

(35)

rpp =
iK 2

0

2q0a
(αI )yy −

iq2
0

2q0a

(αI )xx

1 − (αI )xx(αI )zz1
2
MO

(36)

Assuming normal incidence, K0 = 0 and q0 = k, as is usually done in PMOKE experimental
configurations, there is no resonance for p-polarized waves due to the weak coupling between
the scattered field of individual rods (see figure 2(a)). However, the grating presents a sharp
resonance for s-polarized incident light for wavelengths close to the onset of diffraction
(a <≈ λ) as illustrated in figure 4(a) where we plot |rss|

2 and |rpp|
2 versus a/λ for a SWG.

Although |rsp|
2 is much smaller than |rss|

2 or |rpp|
2, it presents a clear peak at the s resonance

as shown in figure 5(a).

4.1.1. s-polarized incident field For s-polarized incident field, apart from a small shift in the
resonance frequency or angle (proportional to 12

MO), the s resonance is not affected by the
external magnetic field. As in the case of isotropic rods, in absence of absorption, the grating
present almost perfect reflection at the resonance (i.e. at resonance rss ≈ 1 −O(Q2)).

For incident s-polarized light the complex Kerr rotation θK is given by

θ s
K

∣∣
polar ≡ −

rps

rss
= i

q0

k
(αI )xx1MO. (37)

Although both rss and rps present a large enhancement at resonance, in this configuration the
Kerr angle does not reflect any resonant behavior due to the poor coupling between x dipoles.

4.1.2. p-polarized incident field As we already mentioned, at normal incidence there is no
reflection resonance for p-polarized waves (see blue line in figure 4(a)). However, as sketched
on figure 3(a), there is a resonant PMOKE effect when the grating is tuned to be resonant for
s-polarized waves. At normal incidence the complex Kerr angle, given by

θ
p

K

∣∣
polar ≡

rsp

rpp
= i(αI )zz1MO, (38)

is proportional to the effective polarizability (αI )zz. The rotation θrot is then proportional to
Im(αI )zz and presents a peak at the s-resonance condition. Analogously, the ellipticity ϕell is
proportional to Re(αI )zz and changes sign at the resonance (see figure 4(b) and (c)). It is worth
noticing that the resonant Kerr rotation has a pure MO origin (coming from rsp, see figure 5(a))
since rpp, in the denominator of equation (38), is a smooth function of a/λ.

9
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Figure 4. PMOKE at normal incidence: (a) SWG’s reflection coefficients, |rss |
2 (red

line) and |rpp|
2 (blue line) versus a/λ for normal incident. (b) Kerr rotation angle, θ

p
rot,

and (c) ellipticity, ϕ p
ell, of the reflected field versus a/λ for p-polarized incident light. The

resonant deep in θ
p

rot, as well as the zero ellipticity, coincides with the resonant condition
for s-polarized waves. (System parameters: ε = 5.5, Qε = 0.02, rc/a = 0.1 and θ0 = 0,
see text.)

Just at the s resonance, in absence of absorption, the real part of (αI )zz is zero and

θ
p

rot

∣∣
polar = −Q

ε

(ε − 1)2

aλ

π2r2
c

, (39)

ϕ
p
ell

∣∣
polar = 0. (40)

Since rc � λ, the reflected light, at resonance, is linearly polarized with a large Kerr rotation. For
metallic rods, however, the real part of ε is typically negative and there are no s resonances [7].

10



New J. Phys. 16 (2014) 015007 H Marinchio et al

6 5 

Figure 5. Non-diagonal reflectance, |rsp|
2 (accounting for polarization conversion),

(a) versus a/λ for normal incidence and (b) versus the angle of incidence θ0 for
fixed a/λ = 2/3. At normal incidence |rsp|

2 presents a single maximum (just at the
s-resonance wavelength of the SWG). In contrast, at fixed wavelength, the peaks at two
different angles correspond to the MO coupling to both s and p grating resonances.
(System parameters: ε = 5.5, Qε = 0.02, rc/a = 0.1.)

This configuration should then be useful for dielectric MO materials but not very appropriate
for metallic nanowires.

4.2. Longitudinal MOKE (B = B x̂)

Let us assume that the external magnetic field is in the plane of incidence but oriented parallel
to the grating plane (and perpendicular to the nanorods) with mz = m y = 0 and mx = 1. For this
magnetic field configuration, known as longitudinal MOKE (LMOKE), we have

rss =
ik2

2q0a

(αI )zz

1 − (αI )yy(αI )zz1
2
MO

, (41)

rsp = rps = −
ikK0

2aq0

(αI )yy(αI )zzi1MO

1 − (αI )yy(αI )zz1
2
MO

, (42)

rpp = −
iq2

0

2q0a
(αI )xx +

iK 2
0

2q0a

(αI )yy

1 − (αI )yy(αI )zz1
2
MO

. (43)

At normal incidence rsp = 0 and there is no LMOKE effect. However, at fixed wavelength
(a < λ < 2a), the SWG’s reflection coefficients show well-defined peaks as a function of the
angle of incidence (again, near the onset of diffracted beams) as shown in figure 6(a) where we
plot |rss|

2 and |rpp|
2 versus θ0 for a/λ = 2/3. |rsp|

2 (see figure 5(b)) exhibits two resonant peaks
associated to both s and p resonances, the peak at the p resonance being almost one order of
magnitude larger than the corresponding s resonance (the latter is of the same order than the one
discussed for normal incidence as shown in figure 5(a); notice the different scales in figures 5(a)
and (b)).

4.2.1. s-polarized incident field For s-polarized incident light, the complex Kerr angle is given
by

θ s
K

∣∣
long

≡ −
rps

rss
= i

K0

k
(αI )yy1MO (44)

11
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(a)

(c)

a/  = 2/3 

(b)

Figure 6. LMOKE at fixed wavelength: (a) SWG’s reflection coefficients, |rss |
2 (red

line) and |rpp|
2 (blue line) versus the angle of incidence θ0. (b) Kerr rotation angles

versus θ0 for p-polarized (θ p
rot, blue line) and s-polarized (θ s

rot, red line) incident light.
(c) Ellipticity of the reflected field, ϕ

p
ell (blue line), and ϕs

ell (red line) versus aλ. Notice
that, for a given polarization of the incident light, resonant LMOKE rotation is obtained
at the resonance condition for the opposite polarization. (System parameters: ε = 5.5,
Qε = 0.02, rc/a = 0.1 and a/λ = 2/3, see the text.)

which is now proportional to (αI )yy and, as a consequence, rotation and ellipticity for s
incidence present a resonant dip at θ0 = θp−res (see red line in figure 6(b)), the angle at which
the reflectance presents a maximum for p-polarized waves (see blue line in figure 6(a)). At the
resonant condition, θ0 = θp−res, we have

θ s
rot

∣∣
long

= −Q
ε

(ε − 1)2

aλ

π2r2
c tan θp−res

(45)
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ϕs
ell

∣∣
long

= 0. (46)

Again, we obtain a resonant enhancement of the Kerr rotation due to the lattice geometrical
resonances as described in figure 3(b).

4.2.2. p-polarized incident field For K0 6= 0, rpp can present the well-known zero reflection
condition at the Brewster’s angle. This would lead to an ‘optically’ enhanced Kerr angle which
is not actually related to an enhanced MO response. Near the diffraction onset, and far from the
Brewster’s angle, we can neglect the contribution of (αI )xx in equation (43) obtaining

θ
p
K

∣∣
long

≡ −
rsp

rpp
≈ i

k

K0
(αI )zz1MO, (47)

i.e. near the onset of diffraction, the Kerr angle is proportional to (αI )zz. We then find that
rotation and ellipticity for p incidence present a resonant dip at θ0 = θs−res (see blue line in
figure 6(b)), the angle at which the reflectance presents a maximum for s-polarized waves (see
red line in figure 6(a)). At the s resonance,

θ
p

rot

∣∣
long

= −Q
ε

(ε − 1)2

aλ tan θs−res

π2r2
c

, (48)

ϕ
p
ell

∣∣
long

= 0. (49)

5. Conclusions

We have presented an analytical theory of the optical response of subwavelength nanowire
gratings made of anisotropic materials. We have shown that when the rods are made of MO
dielectrics there is a complex interplay between the geometric resonances of the grating and the
MOKE response. As a general conclusion, for a given polarization of the incident light, resonant
MOKE can be obtained by tuning the incidence angle and grating parameters to operate near
the resonant reflectance condition for the opposite polarization, i.e. for s incidence the grating
should be at the resonance condition for p polarization and viceversa.

It is worthwhile to mention that in our theoretical description we assumed a perfect
(infinite) periodic grating with infinitely long nanowires as well as plane wave illumination.
In practice, for actual laser beams, we expect to see important differences if the beam waist is
smaller than a few wavelengths or larger than the grating size. In the case of very small nano
rods (i.e. nanorod lengths much smaller than the wavelength), the system will be similar to a
one-dimensional chain of parallel ellipsoids [21]. Our discussion did not consider any possible
resonant (antenna-like) effects associated with intermediate nanowire length, which could be a
very interesting topic in itself.

Our results may be important to understand and optimize MOKE structures and devices
based on resonant SWGs. Extension of the analysis presented here will allow one to understand
further unexplored resonant effects in diffracted beams.
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Appendix

The sums involved in the calculation of the depolarization dyadic Gb in equation (13) are, in
this form, dramatically slowly convergent. Fortunately, they are found to be equal to (see, after
correction of a minor sign error, equations (7), (20), (21) in [7]):

(Gb)xx =
1

2ak2

∞∑
m=1

(
iqm + iq−m + 2km −

k2

km

)
+

q2
0

k2

i

2aq0
+

1

4π

[
ln

(
ka

4π

)
+ γE −

1

2

]
+

π

6a2k2
−

i

8
,

(Gb)yy =
1

2ak2

∞∑
m=1

(
i(km − K0)

2

qm
+

i(km + K0)
2

q−m
− 2km −

k2

km

)
+

K 2
0

k2

i

2aq0

+
1

4π

[
ln

(
ka

4π

)
+ γE +

1

2

]
−

π

6a2k2
−

i

8
,

(Gb)zz =
1

2a

∞∑
m=1

(
i

qm
+

i

q−m
−

2

km

)
+ i

(
1

2aq0
−

1

4

)
+

1

2π

[
ln

(
ka

4π

)
+ γE

]
,

(A.1)

where km = 2πm/a, qm =
√

k2 − (K0 + km)2, γE is the Euler constant. These expressions can be
easily computed.
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