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abstract: We present the formal definition of a domain specific visual language (Traffic) for the area of 
traffic networks. The syntax has been specified by means of meta-modelling. For the semantics, two 
approaches have been followed. In the first one, graph transformation is used to specify an operational 
semantics. In the second one we include timing information and a denotational semantics is defined in 
terms of Timed Transition Petri Nets (TTPN). The transformation from the Traffic formalism into TTPN 
was also defined by graph transformation. Both approaches have been used for the analysis of Traffic 
models. The ideas have been implemented in the AToM3 tool and are illustrated with examples. 
Keywords: Meta-Modelling, Graph Transformation, Domain Specific Visual Languages, Traffic Net-
works, Petri nets. 

1 INTRODUCTION 

Domain Specific Visual Languages (DSVL) are 
specialized notations for specific business areas, 
such as manufacturing, logistics or traffic 
networks (Vangheluwe and de Lara, 2004) . They 
offer high-level building blocks that encapsulate 
patterns commonly used in the specific domain. 
Thus, in well understood domains, DSVL have 
the potential to greatly increase productivity, due 
to the power of such high-level primitives. 
Nonetheless, one important issue is how to 
formally define the syntax and semantics of such 
DSVL. 
 
The approach we take in the present work is to 
formally define the DSVL syntax by means of 
meta-modelling. In meta-modelling, a model 
(called meta-model) describes the valid models in 
the DSVL. For the specification of such meta-
models, one can use languages such as UML 
class or entity relationship diagrams. In addition, 
constraint languages such as OCL can be used to 
reduce the kind of admissible models. A meta-
model defines the abstract syntax of a visual 

language. In addition, information has to be given 
about how the elements are visualized. This is 
called the concrete syntax. With information 
about the concrete and abstract syntax, a meta-
modelling tool is able to generate a customized 
modelling environment for the defined language 
(de Lara and Vangheluwe 2002). 
 
For a formal specification of the DSVL 
semantics, we use graph transformation 
(Rozenberg, 1997) (Ehrig et al. 1999). In this 
framework, and in a similar way as Chomsky 
grammars, rules specify modifications to be 
performed on the models. In this way, one can 
use graph transformation to specify the 
operational semantics of the DSVL (by defining a 
simulator). Another approach is to define a 
transformation of the original DSVL into a 
formally defined semantic domain. This can be 
seen as the definition of a denotational semantics. 
For both approaches, graph transformation has 
the advantage of being a graphical and formal 
framework, which makes transformations subject 
to analysis. In the case of the definition of the 
operational semantics by graph transformation, 
one can use the theortical results of graph 
grammars (Rozenberg 1997) for behaviour 
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analysis. In the case of specification of model 
transformations into semantic domains, 
theoretical results of graph grammars can be used 
to verify the correctness of the transformation. 
Once the transformation is performed, it is 
possible to use the analysis techniques of the 
target formalism. 
 
In this paper, we present an improvement of our 
Traffic DSVL (Vangheluwe and de Lara, 2004). 
This language allows the user to build traffic 
networks with intersections, vehicles sources and 
sinks and maximum capacities for road segments. 
The semantics of the formalism were defined in 
(Vangheluwe and de Lara, 2004) by a model 
transformation into Petri nets. In this work, we 
describe the operational semantics by means of 
graph transformation. This allows us to use graph 
transformation techniques to specify global safety 
properties and ensure that they are met by the 
semantics. In addition, this definition permits the 
animation of the models in our AToM3 tool. We 
have also improved the Traffic formalism with 
traffic lights and timing information and defined 
a transformation for the timed model into TTPN 
(Ramchandani, 1973), which allows for 
simulation and performance evaluation. 
 
The rest of the paper is organized as follows: 
section 2 presents a brief introduction to graph 
transformation. Section 3 shows the traffic 
formalism and how it has been implemented in 
AToM3. Section 4 gives the (untimed) 
operational semantics in terms of graph 
transformation systems. Section 5 shows the 
timed semantics by a transformation into TTPN. 
In section 6 we discuss some related research. 
Finally, section 7 terminates with the conclusions 
and proposes directions for future work. 

2 GRAPH TRANSFORMATION 

Graph grammars are a generalization of Chomsky 
grammars for graphs (Rozenberg, 1997) (Ehrig et 
al. 1999). Graph grammars are composed of 
production rules, each having graphs in its left 
and right hand sides (LHS and RHS). In the 
Double Pushout Approach (DPO), productions 
have the form: 
 

 
(1) 

 

where L (left hand side), K (interface graph) 
and R (right hand side) are graphs and l and r are 
(usually injective) morphisms. That is, K is the 
set of nodes and edges that are preserved by the 
production, L-K is the set of nodes and edges that 
are deleted and R-K is the set of nodes and edges 
that are created by the production. The diagram 
in Figure 1 sketches the application of a rule on a 
graph G, resulting in graph H.  

 

 
 

Fig. 1 Application of a Rule to Graph G 
 
Thus, in order to apply a production to a graph G, 
a match m should be found between the produc-
tion’s LHS L and the graph G. This can be either 
an injective or non-injective morphism. The next 
step is to delete all the elements in G matched 
with elements of L-K. Finally, the elements of R-
K are added. Note how this process can be ex-
pressed in terms of category theory as two 
pushouts in category Graph. Additionally, the 
double pushout approach needs two additional 
conditions. The dangling condition specifies that 
if an edge is not deleted its source and target 
nodes should be preserved. The identification 
condition specifies that if two nodes or edges are 
matched into a single node or edge in the host 
graph (via a non-injective morphism), then both 
should be preserved.  
 
Productions can be extended with sets of applica-
tion conditions (AC) (Heckel and Wagner, 1995) 
of the form: 

 
(2) 

and a morphism x from L to P. This means that in 
order to apply the rule to a host graph, if an 
occurrence of P is found then an occurrence of Q 
must be found in order for the rule to be applica-
ble. Note that, if ci is empty, we have a negative 
application condition (NAC). In this case, if an 
occurence of graph P is found, then the rule is not 
applicable. If x=idL, then we have a positive 
application condition.  

}QP{ ic→



3 THE TRAFFIC FORMALISM 

In this section we use meta-modelling to formally 
define the syntax of the Traffic formalism. We 
first define an untimed version of the formalism, 
and later extend it with timing information.  
Traffic models are made of “RoadSections”, 
which can be connected by “FlowTo” relation-
ships. “RoadSections” contain the number of 
vehicles at a certain moment. “Capacity” entities 
limit the number of vehicles that can be present at 
the same time in a number of “RoadSections”. 

“Source” entities generate vehicles, while “Sink” 
entities consume vehicles, eliminating them from 
the model. Finally, “TrafficLights” can be placed 
in “RoadSections” by means of the “Controlled-
Section” relationship. This models the fact that 
the semaphore is physically placed in a certain 
road segment. The second relationship “Direc-
tion” indicates which outgoing road the traffic 
light is controlling. Two traffic lights can be 
synchronized, in such a way that one changes to 
red when the other changes to green. 

 

 
 
Fig. 2: The Traffic Meta-model (left) 
 

We have extended the untimed model with 
timing information. This is done by adding new 
classes that add the timing attributes. For exam-
ple, the “TimedSource” entity adds the “in-
ter_arrival_time” attribute to indicate the time 
interval at which new vehicles should be gener-
ated. In this way two kinds of models can be 
built. In untimed models, it is possible to use only 
the untimed version of the classes. In timed 
models, only the timed version can be used, 
together with instances of classes “Sink” and 
“Capacity” which do not have a timed counter-
part. Note how both formalisms can be used to 
specify a traffic network at two different levels of 
abstraction. The untimed models have less detail 
(do not considers timing information) and permit 
different kinds of analyses (for example mapping 
into untimed Petri nets and subsequently reach-
ability analysis). Note how, this higher level of 
abstraction can always be deduced from the 
timed model simply by ignoring the timing 
information. 

 

With this meta-model and information about how 
the elements should be visualized, the AToM3 
tool (de Lara and Vangheluwe, 2002) is able to 
generate a modelling environment for the Traffic 
formalism. Figure 3 shows an example with a 
simple (timed) Traffic model. 

 
The circle-like icon on the left is a “source” 
entity, the square-like icons on the top-right and 
bottom are “sinks”. Two synchronized traffic 
lights control the perpendicular road sections of 
the crossing. Note also that a customized user 
interface is generated for the defined visual 
language. It allows inserting the domain specific 
elements and to execute further functionality 
specified as Python programs or as graph trans-
formation. 

 
The meta-model presented before only defines 
the abstract and concrete syntax of Traffic mod-
els. To define the semantics, AToM3 allows the 
definition of graph transformation rules. The next 



section shows two approaches for the definition 
of such semantics.  

 

 
 

Fig. 3: Building a Traffic model with AToM3. 

4 OPERATIONAL SEMANTICS (UN-
TIMED) 

In this section we show how to use graph trans-
formation rules to define the operational seman-
tics of untimed Traffic models. In addition, graph 
transformation techniques permit the definition of 
global conditions, undesired states or safety 
properties that must hold in all possible execu-
tions of the models (Heckel and Wagner, 1995). 
The global conditions can be translated into local 
application conditions for each rule in the trans-
formation (see section 2). In this way, the trans-
formation system satisfies the safety properties 
by construction. 

 
Figure 4 shows some of the rules of the graph 
grammar that defines the operational semantics. 
The interface graph K mentioned in section 2 is 
ommited, but the morphisms between LHS and 
RHS are indicated by numbers (only in nodes). In 
this way, the elements of the interface graph K 
are those with the same number in LHS and RHS. 

 
Rule “Generate Vehicle” moves a vehicle from a 
“Source” node into a connected “RoadSegment” 
node. The number of vehicles in the “Source” 
node is decreased if it does not have an infinite 
capacity. The NAC prohibits the application of 
the rule if the “RoadSegment” node is connected 
to a “Capacity” node which has a capacity of 

zero. Note how, if the rule is applied, the state of 
the “RoadSegment” node is changed to “added”. 
This means that all the connected “Capacity” 
nodes should be decreased. This is performed by 
rule “Update Capacities”.  

 
Rule “Change Traffic Light State” simply 
changes the traffic light state. There are addi-
tional rules not shown in this paper, for example 
to move vehicles between two “RoadSegment” 
nodes, to increase the capacity, to consume 
vehicles by “Sink” nodes, and to synchronize 
traffic lights. 

 

 
Fig. 4: Some Rules for the Definition of Traffic 
Operational Semantics (Untimed). 

 
The graph grammar defines the semantics of a 
given start model as all the reachable models that 
result from the application of the rules. Note how 
there is no control flow for the execution of the 
rules, but they are tried at random. Execution 
finishes when there is no applicable rule. 

 
Figure 5 shows a simple global safety condition, 
which specifies a non desired situation in Traffic 
models. The condition specifies that two sema-
phores which control an intersection cannot be in 
green at the same time. Following the procedure 
shown in  (Heckel and Wagner, 1995) it is possi-
ble to translate this global negative application 



condition into local (pre-)conditions for each rule 
in the graph grammar. In this way, we assure that 
the non desired situation cannot happen in any 
reachable model. For example, for rule “Change 
Traffic Light State”, the safety condition induces 
a NAC that does not let the rule to be applied if it 
sets to green a traffic light that is in an intersec-
tion and there is already another one in green. 

 
 
Fig. 5: A Safety Condition. 
 
Additional graph grammar techniques allow 
further analysis of models. For example, we can 
use critical pair analysis (Heckel et al., 2002)  to 
check if rules are independent. If they are, then 
they can be applied in parallel. In our example, 
the possibility to apply the rules for moving 
vehicles in parallel shows the independent parts 
of the traffic network. 

5 DENOTATIONAL SEMANTICS 
(TIMED) 

In this section we briefly present a graph trans-
formation system for translation of timed traffic 
models into TTPN. Note how, in a timed model 
(which is made of instances of the timed version 
of the classes in the meta-model) it is still possi-
ble to apply the transformation of previous sec-
tion. The reason is that in AToM3 a node in a rule 
can match with nodes of the same class, or any of 
their subclasses in the meta-model (Bardohl et 
al., 2004). However the (denotational) semantics 
we present in this section is only applicable to 
timed models. 

 
The graph grammar rules for the translation are 
similar to the ones we showed in (Vangheluwe 
and de Lara 2004), but the target formalism in the 
present work is TTPN, where transitions have a 

delay. In this way, transitions have to be enabled 
for a certain period of time before they can fire. 
We use this delay to simulate the time it takes a 
vehicle to move from one “RoadSegment” to 
another. 

 
For the specification of the transformation, we 
use the source language meta-model, as initial 
model are instances of this meta-model. After the 
transformation, the resulting models are instances 
of the TTPN meta-model. During the transforma-
tion, we use auxiliary elements to relate source 
language elements to target language elements. 
For example, during the transformation, each 
“RoadSegment” is assigned a “Place”. But before 
the transformation ends, “RoadSegments” and 
their connection to the newly created “Places” are 
deleted. The relationships between both meta-
models are shown in Figure 2. 

 
Some of the transformation rules are shown in 
Figure 6. The first rule associates a unique 
“Place” to each “RoadSegment”. Note how the 
NAC prohibits assigning more than one “Place” 
to each “RoadSegment”. The second rule creates 
a “Transition” for each “FlowTo” relationship 
between two “RoadSegment” nodes. The delay 
for the transition is calculated in seconds (veloc-
ity and length for “FlowTo” were in km/h and km 
respectivelly). 

 

 
 
Fig. 6: Some Rules for the Transformation into 
TTPN 
 



The semantics we use in case of conflicts of 
enabled transitions is preselection with a random 
probability. Otherwise the transition representing 
the shorter segment would always be fired when 
in conflict with other transitions. We also use 
“atomic firing” (tokens stay in places until transi-
tions fire), “infinite server” semantics (transitions 
are provided with infinite timers) and “enabling 
memory” (i.e. timers of transitions being disabled 
due to a transition firing are reset). 

 
We can use graph transformation techniques 

[some of them presented in (de Lara and 
Taentzer, 2004)] to analyze the transformation 
itself. For example, we are interested in termina-
tion, confluence (that a unique target model can 
be obtained with the transformation), syntactic 
consistency (that the target model we obtain is a 

correct instance of the target meta-model) and 
semantic consistency (that the transformation 
preserves some semantic properties, like behav-
iour). 

 
Once the model has been translated, we can 

use Petri net techniques for analysis. In (Vanghe-
luwe and de Lara, 2004) we used untimed Petri 
net techniques for analysis, in particular the ones 
based on the coverability graph. With timing 
information, we can use simulation to evaluate 
the performance of the designed system. 

 
Figure 8 shows the resulting TTPN model 

from the transformation of the model in Figure 3. 
 
 
 

 

 
 
Fig. 8: TTPN Model Resulting from the Transformation of Model in Fig. 3 
 
 

6 RELATED WORK 

There are several tools that allow the defini-
tion of Visual Languages and their manipulation 



by means of graph grammars. Among them 
GenGED (which does not follow an approach 
based on meta-models). With respect to the 
analysis of graph transformations, it is possible to 
use the attributed graph grammar (AGG) too 
(Taentzer et al., 1999), which allows finding 
critical pairs. In our case, we have used AToM3 
for the definition of the visual language and the 
specification of the transformations. We built a 
translator to export from the AToM3 format into 
AGG (de Lara and Taentzer, 2004), which allows 
the analysis of the graph transformation rules. 

 
Extensive research has been carried out in 

the area of traffic network modelling and simula-
tion [for a survey, see for example (Pursula 
1999)]. Nonetheless, the presented work is origi-
nal in the sense that uses a combination of meta-
modelling and graph transformation for the 
definition and analysis of the system semantics. 

7 CONCLUSIONS 

In this paper we have presented a DSVL for the 
definition of traffic networks. We have defined 
its semantics by means of graph transformation 
and by its mapping into untimed and timed 
transition Petri nets. In the first case, graph 
transformation allows the definition of the opera-
tional semantics and the specification of safety 
properties that the system behaviour must pre-
serve. The mapping into Petri nets is also speci-
fied by means of graph transformation, which 
allows the analysis of the transformation itself. 
Once the model is transformed into a Petri net, 
we can exploit Petri net analysis and synthesis 
techniques to apply to the model in the DSVL. 
 
Note how mappings of Traffic models into other 
simulation formalisms, such as GPSS (Schriber, 
1974) and DEVS (Zeigler et al. 2000) are also 
possible. This allows the use of the different 
formalisms analysis and simulation tools. 
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