
MODELLING AND ANALYSIS OF TRAFFIC NETWORKS BASED ON
GRAPH TRANSFORMATION

Juan de Lara 1, Hans Vangheluwe 2, Pieter J. Mosterman 3
1 Escuela Politécnica Superior, Universidad Autónoma de Madrid
Address: Campus Cantoblanco, Ctra. Colmenar Km. 15., 28045 Madrid (Spain)
Phone: (+34) 91 497 22 77, Fax: (+34) 91 497 22 35, e-mail:Juan.Lara@ii.uam.es
2 School of Computer Science, McGill University
Address: 3480 University Street, Montreal, Canada H3A 2A7
Phone: +1 (514) 398 44 46, Fax: +1 (514) 398 38 83, e-mail: hv@cs.mcgill.ca
3 The Mathworks Inc.
Address: 3 Apple Hill Dr., Natick, Massachusetts 01760, USA
Phone: +1 (508) 657 7765, Fax: +1 (508) 647 7712, e-mail: pieter_j_mosterman@mathworks.com

abstract: We present the formal definition of a domain specific visual language (Traffic) for the area of
traffic networks. The syntax has been specified by means of meta-modelling. For the semantics, two
approaches have been followed. In the first one, graph transformation is used to specify an operational
semantics. In the second one we include timing information and a denotational semantics is defined in
terms of Timed Transition Petri Nets (TTPN). The transformation from the Traffic formalism into TTPN
was also defined by graph transformation. Both approaches have been used for the analysis of Traffic
models. The ideas have been implemented in the AToM3 tool and are illustrated with examples.
Keywords: Meta-Modelling, Graph Transformation, Domain Specific Visual Languages, Traffic Net-
works, Petri nets.

1 INTRODUCTION

Domain Specific Visual Languages (DSVL) are
specialized notations for specific business areas,
such as manufacturing, logistics or traffic
networks (Vangheluwe and de Lara, 2004) . They
offer high-level building blocks that encapsulate
patterns commonly used in the specific domain.
Thus, in well understood domains, DSVL have
the potential to greatly increase productivity, due
to the power of such high-level primitives.
Nonetheless, one important issue is how to
formally define the syntax and semantics of such
DSVL.

The approach we take in the present work is to
formally define the DSVL syntax by means of
meta-modelling. In meta-modelling, a model
(called meta-model) describes the valid models in
the DSVL. For the specification of such meta-
models, one can use languages such as UML
class or entity relationship diagrams. In addition,
constraint languages such as OCL can be used to
reduce the kind of admissible models. A meta-
model defines the abstract syntax of a visual

language. In addition, information has to be given
about how the elements are visualized. This is
called the concrete syntax. With information
about the concrete and abstract syntax, a meta-
modelling tool is able to generate a customized
modelling environment for the defined language
(de Lara and Vangheluwe 2002).

For a formal specification of the DSVL
semantics, we use graph transformation
(Rozenberg, 1997) (Ehrig et al. 1999). In this
framework, and in a similar way as Chomsky
grammars, rules specify modifications to be
performed on the models. In this way, one can
use graph transformation to specify the
operational semantics of the DSVL (by defining a
simulator). Another approach is to define a
transformation of the original DSVL into a
formally defined semantic domain. This can be
seen as the definition of a denotational semantics.
For both approaches, graph transformation has
the advantage of being a graphical and formal
framework, which makes transformations subject
to analysis. In the case of the definition of the
operational semantics by graph transformation,
one can use the theortical results of graph
grammars (Rozenberg 1997) for behaviour

RKL:p
rl

→←

analysis. In the case of specification of model
transformations into semantic domains,
theoretical results of graph grammars can be used
to verify the correctness of the transformation.
Once the transformation is performed, it is
possible to use the analysis techniques of the
target formalism.

In this paper, we present an improvement of our
Traffic DSVL (Vangheluwe and de Lara, 2004).
This language allows the user to build traffic
networks with intersections, vehicles sources and
sinks and maximum capacities for road segments.
The semantics of the formalism were defined in
(Vangheluwe and de Lara, 2004) by a model
transformation into Petri nets. In this work, we
describe the operational semantics by means of
graph transformation. This allows us to use graph
transformation techniques to specify global safety
properties and ensure that they are met by the
semantics. In addition, this definition permits the
animation of the models in our AToM3 tool. We
have also improved the Traffic formalism with
traffic lights and timing information and defined
a transformation for the timed model into TTPN
(Ramchandani, 1973), which allows for
simulation and performance evaluation.

The rest of the paper is organized as follows:
section 2 presents a brief introduction to graph
transformation. Section 3 shows the traffic
formalism and how it has been implemented in
AToM3. Section 4 gives the (untimed)
operational semantics in terms of graph
transformation systems. Section 5 shows the
timed semantics by a transformation into TTPN.
In section 6 we discuss some related research.
Finally, section 7 terminates with the conclusions
and proposes directions for future work.

2 GRAPH TRANSFORMATION

Graph grammars are a generalization of Chomsky
grammars for graphs (Rozenberg, 1997) (Ehrig et
al. 1999). Graph grammars are composed of
production rules, each having graphs in its left
and right hand sides (LHS and RHS). In the
Double Pushout Approach (DPO), productions
have the form:

(1)

where L (left hand side), K (interface graph)
and R (right hand side) are graphs and l and r are
(usually injective) morphisms. That is, K is the
set of nodes and edges that are preserved by the
production, L-K is the set of nodes and edges that
are deleted and R-K is the set of nodes and edges
that are created by the production. The diagram
in Figure 1 sketches the application of a rule on a
graph G, resulting in graph H.

Fig. 1 Application of a Rule to Graph G

Thus, in order to apply a production to a graph G,
a match m should be found between the produc-
tion’s LHS L and the graph G. This can be either
an injective or non-injective morphism. The next
step is to delete all the elements in G matched
with elements of L-K. Finally, the elements of R-
K are added. Note how this process can be ex-
pressed in terms of category theory as two
pushouts in category Graph. Additionally, the
double pushout approach needs two additional
conditions. The dangling condition specifies that
if an edge is not deleted its source and target
nodes should be preserved. The identification
condition specifies that if two nodes or edges are
matched into a single node or edge in the host
graph (via a non-injective morphism), then both
should be preserved.

Productions can be extended with sets of applica-
tion conditions (AC) (Heckel and Wagner, 1995)
of the form:

(2)

and a morphism x from L to P. This means that in
order to apply the rule to a host graph, if an
occurrence of P is found then an occurrence of Q
must be found in order for the rule to be applica-
ble. Note that, if ci is empty, we have a negative
application condition (NAC). In this case, if an
occurence of graph P is found, then the rule is not
applicable. If x=idL, then we have a positive
application condition.

}QP{ ic→

3 THE TRAFFIC FORMALISM

In this section we use meta-modelling to formally
define the syntax of the Traffic formalism. We
first define an untimed version of the formalism,
and later extend it with timing information.
Traffic models are made of “RoadSections”,
which can be connected by “FlowTo” relation-
ships. “RoadSections” contain the number of
vehicles at a certain moment. “Capacity” entities
limit the number of vehicles that can be present at
the same time in a number of “RoadSections”.

“Source” entities generate vehicles, while “Sink”
entities consume vehicles, eliminating them from
the model. Finally, “TrafficLights” can be placed
in “RoadSections” by means of the “Controlled-
Section” relationship. This models the fact that
the semaphore is physically placed in a certain
road segment. The second relationship “Direc-
tion” indicates which outgoing road the traffic
light is controlling. Two traffic lights can be
synchronized, in such a way that one changes to
red when the other changes to green.

Fig. 2: The Traffic Meta-model (left)

We have extended the untimed model with
timing information. This is done by adding new
classes that add the timing attributes. For exam-
ple, the “TimedSource” entity adds the “in-
ter_arrival_time” attribute to indicate the time
interval at which new vehicles should be gener-
ated. In this way two kinds of models can be
built. In untimed models, it is possible to use only
the untimed version of the classes. In timed
models, only the timed version can be used,
together with instances of classes “Sink” and
“Capacity” which do not have a timed counter-
part. Note how both formalisms can be used to
specify a traffic network at two different levels of
abstraction. The untimed models have less detail
(do not considers timing information) and permit
different kinds of analyses (for example mapping
into untimed Petri nets and subsequently reach-
ability analysis). Note how, this higher level of
abstraction can always be deduced from the
timed model simply by ignoring the timing
information.

With this meta-model and information about how
the elements should be visualized, the AToM3
tool (de Lara and Vangheluwe, 2002) is able to
generate a modelling environment for the Traffic
formalism. Figure 3 shows an example with a
simple (timed) Traffic model.

The circle-like icon on the left is a “source”
entity, the square-like icons on the top-right and
bottom are “sinks”. Two synchronized traffic
lights control the perpendicular road sections of
the crossing. Note also that a customized user
interface is generated for the defined visual
language. It allows inserting the domain specific
elements and to execute further functionality
specified as Python programs or as graph trans-
formation.

The meta-model presented before only defines
the abstract and concrete syntax of Traffic mod-
els. To define the semantics, AToM3 allows the
definition of graph transformation rules. The next

section shows two approaches for the definition
of such semantics.

Fig. 3: Building a Traffic model with AToM3.

4 OPERATIONAL SEMANTICS (UN-
TIMED)

In this section we show how to use graph trans-
formation rules to define the operational seman-
tics of untimed Traffic models. In addition, graph
transformation techniques permit the definition of
global conditions, undesired states or safety
properties that must hold in all possible execu-
tions of the models (Heckel and Wagner, 1995).
The global conditions can be translated into local
application conditions for each rule in the trans-
formation (see section 2). In this way, the trans-
formation system satisfies the safety properties
by construction.

Figure 4 shows some of the rules of the graph
grammar that defines the operational semantics.
The interface graph K mentioned in section 2 is
ommited, but the morphisms between LHS and
RHS are indicated by numbers (only in nodes). In
this way, the elements of the interface graph K
are those with the same number in LHS and RHS.

Rule “Generate Vehicle” moves a vehicle from a
“Source” node into a connected “RoadSegment”
node. The number of vehicles in the “Source”
node is decreased if it does not have an infinite
capacity. The NAC prohibits the application of
the rule if the “RoadSegment” node is connected
to a “Capacity” node which has a capacity of

zero. Note how, if the rule is applied, the state of
the “RoadSegment” node is changed to “added”.
This means that all the connected “Capacity”
nodes should be decreased. This is performed by
rule “Update Capacities”.

Rule “Change Traffic Light State” simply
changes the traffic light state. There are addi-
tional rules not shown in this paper, for example
to move vehicles between two “RoadSegment”
nodes, to increase the capacity, to consume
vehicles by “Sink” nodes, and to synchronize
traffic lights.

Fig. 4: Some Rules for the Definition of Traffic
Operational Semantics (Untimed).

The graph grammar defines the semantics of a
given start model as all the reachable models that
result from the application of the rules. Note how
there is no control flow for the execution of the
rules, but they are tried at random. Execution
finishes when there is no applicable rule.

Figure 5 shows a simple global safety condition,
which specifies a non desired situation in Traffic
models. The condition specifies that two sema-
phores which control an intersection cannot be in
green at the same time. Following the procedure
shown in (Heckel and Wagner, 1995) it is possi-
ble to translate this global negative application

condition into local (pre-)conditions for each rule
in the graph grammar. In this way, we assure that
the non desired situation cannot happen in any
reachable model. For example, for rule “Change
Traffic Light State”, the safety condition induces
a NAC that does not let the rule to be applied if it
sets to green a traffic light that is in an intersec-
tion and there is already another one in green.

Fig. 5: A Safety Condition.

Additional graph grammar techniques allow
further analysis of models. For example, we can
use critical pair analysis (Heckel et al., 2002) to
check if rules are independent. If they are, then
they can be applied in parallel. In our example,
the possibility to apply the rules for moving
vehicles in parallel shows the independent parts
of the traffic network.

5 DENOTATIONAL SEMANTICS
(TIMED)

In this section we briefly present a graph trans-
formation system for translation of timed traffic
models into TTPN. Note how, in a timed model
(which is made of instances of the timed version
of the classes in the meta-model) it is still possi-
ble to apply the transformation of previous sec-
tion. The reason is that in AToM3 a node in a rule
can match with nodes of the same class, or any of
their subclasses in the meta-model (Bardohl et
al., 2004). However the (denotational) semantics
we present in this section is only applicable to
timed models.

The graph grammar rules for the translation are
similar to the ones we showed in (Vangheluwe
and de Lara 2004), but the target formalism in the
present work is TTPN, where transitions have a

delay. In this way, transitions have to be enabled
for a certain period of time before they can fire.
We use this delay to simulate the time it takes a
vehicle to move from one “RoadSegment” to
another.

For the specification of the transformation, we
use the source language meta-model, as initial
model are instances of this meta-model. After the
transformation, the resulting models are instances
of the TTPN meta-model. During the transforma-
tion, we use auxiliary elements to relate source
language elements to target language elements.
For example, during the transformation, each
“RoadSegment” is assigned a “Place”. But before
the transformation ends, “RoadSegments” and
their connection to the newly created “Places” are
deleted. The relationships between both meta-
models are shown in Figure 2.

Some of the transformation rules are shown in
Figure 6. The first rule associates a unique
“Place” to each “RoadSegment”. Note how the
NAC prohibits assigning more than one “Place”
to each “RoadSegment”. The second rule creates
a “Transition” for each “FlowTo” relationship
between two “RoadSegment” nodes. The delay
for the transition is calculated in seconds (veloc-
ity and length for “FlowTo” were in km/h and km
respectivelly).

Fig. 6: Some Rules for the Transformation into
TTPN

The semantics we use in case of conflicts of
enabled transitions is preselection with a random
probability. Otherwise the transition representing
the shorter segment would always be fired when
in conflict with other transitions. We also use
“atomic firing” (tokens stay in places until transi-
tions fire), “infinite server” semantics (transitions
are provided with infinite timers) and “enabling
memory” (i.e. timers of transitions being disabled
due to a transition firing are reset).

We can use graph transformation techniques

[some of them presented in (de Lara and
Taentzer, 2004)] to analyze the transformation
itself. For example, we are interested in termina-
tion, confluence (that a unique target model can
be obtained with the transformation), syntactic
consistency (that the target model we obtain is a

correct instance of the target meta-model) and
semantic consistency (that the transformation
preserves some semantic properties, like behav-
iour).

Once the model has been translated, we can

use Petri net techniques for analysis. In (Vanghe-
luwe and de Lara, 2004) we used untimed Petri
net techniques for analysis, in particular the ones
based on the coverability graph. With timing
information, we can use simulation to evaluate
the performance of the designed system.

Figure 8 shows the resulting TTPN model

from the transformation of the model in Figure 3.

Fig. 8: TTPN Model Resulting from the Transformation of Model in Fig. 3

6 RELATED WORK

There are several tools that allow the defini-
tion of Visual Languages and their manipulation

by means of graph grammars. Among them
GenGED (which does not follow an approach
based on meta-models). With respect to the
analysis of graph transformations, it is possible to
use the attributed graph grammar (AGG) too
(Taentzer et al., 1999), which allows finding
critical pairs. In our case, we have used AToM3
for the definition of the visual language and the
specification of the transformations. We built a
translator to export from the AToM3 format into
AGG (de Lara and Taentzer, 2004), which allows
the analysis of the graph transformation rules.

Extensive research has been carried out in

the area of traffic network modelling and simula-
tion [for a survey, see for example (Pursula
1999)]. Nonetheless, the presented work is origi-
nal in the sense that uses a combination of meta-
modelling and graph transformation for the
definition and analysis of the system semantics.

7 CONCLUSIONS

In this paper we have presented a DSVL for the
definition of traffic networks. We have defined
its semantics by means of graph transformation
and by its mapping into untimed and timed
transition Petri nets. In the first case, graph
transformation allows the definition of the opera-
tional semantics and the specification of safety
properties that the system behaviour must pre-
serve. The mapping into Petri nets is also speci-
fied by means of graph transformation, which
allows the analysis of the transformation itself.
Once the model is transformed into a Petri net,
we can exploit Petri net analysis and synthesis
techniques to apply to the model in the DSVL.

Note how mappings of Traffic models into other
simulation formalisms, such as GPSS (Schriber,
1974) and DEVS (Zeigler et al. 2000) are also
possible. This allows the use of the different
formalisms analysis and simulation tools.

ACKNOWLEDGEMENTS: Juan de Lara’s
work has been partially sponsored by a grant
from the E.U. SEGRAVIS research network
(HPRN-CT-2002-00) and the Spanish Ministry of
Science and Technology (TIC2002-01948). Hans
Vangheluwe gratefully acknowledges partial
support for this work by a National Sciences and
Engineering Research Council of Canada
(NSERC) Individual Research Grant.

LITERATURE

Bardohl, R., Ehrig, H., de Lara J., and Taentzer,
G. 2004. “Integrating Meta Modelling with
Graph Transformation for Efficient Visual
Language Definition and Model Manipula-
tion”. In proceedings of ETAPS/FASE'04,
LNCS 2984, pp.: 214-228. Springer.

Bardohl, R. 2002. “A Visual Environment for
Visual Languages”. Science of Computer
Programming 44,pp.: 181-203. See also the
GenGED home page: http://tfs.cs.tu-
berlin.de/~genged/

Ehrig, H., Engels, G., Kreowski, H.-J. and
Rozenbergs, G. editors. 1999. The Handbook
of Graph Grammars and Computing by
Graph Transformation. Vol 2. World Scien-
tific.

Heckel, R., Wagner, A. 1995. “Ensuring consis-
tency of conditional graph rewriting - a con-
structive approach”. Proc. of SEGRAGRA
1995, Joint COMPUGRAPH/SEMAGRAPH
Workshop on Graph Rewriting and Compu-
tation, In ENTCS Vol 2, 1995.

Heckel, R., Küster, J. M., Taentzer, G. 2002.
“Confluence of Typed Attributed Graph
Transformation Systems”. In ICGT'2002.
LNCS 2505, pp.: 161-176. Springer.

de Lara, J., Taentzer, G. 2004. “Automated
Model Transformation and its Validation
with AToM3 and AGG”. In DIA-
GRAMS'2004 (Cambridge, UK). Lecture
Notes in Artificial Intelligence 2980, pp.:
182-198. Springer.

de Lara, J., Vangheluwe, H. 2002. “AToM3: A
Tool for Multi-Formalism Modelling and
Meta-Modelling”. In ETAPS/FASE'02, Lec-
ture Notes in Computer Science 2306, pp.:
174 - 188. Springer-Verlag. See also the
AToM3 home page at:
http://atom3.cs.mcgill.ca

Pursula, M., 1999. “Simulation of Traffic Sys-
tems - An Overview”. Journal of Geographic
Information and Decision Analysis, vol.3(1),
pp. 1-8.

Ramchandani, C. 1973. “Performance Evaluation
of Asynchronous Concurrent Systems by

Timed Petri Nets”. Ph.D. Thesis, Massachu-
setts Inst. of Tech., Cambridge.

Rozenberg, G. (ed) 1997. “Handbook of Graph
Grammars and Computing by Graph Trans-
formation”. World Scientific. Volume 1.

Schriber, T. J., “Simulation Using GPSS”. Wiley,
1974.

Taentzer G., Ermel C., Rudolf M. 1999. “The
AGG Approach: Language and Tool Envi-
ronment”, in (Ehrig et al. 1999), See also the
AGG Home Page: http://tfs.cs.tu-
berlin.de/agg

Vangheluwe, H., de Lara, J. 2004. “Computer
Automated Multi-paradigm Modelling for
Analysis and Design of Traffic Networks”,
to appear in proc. 2004 Winter Simulation
Conference. Washington, USA.

Zeigler, B. P., Praehofer, H., Kim, T. G. 2000.
“Theory of Modeling and Simulation 2nd
Edition. Integrating Discrete Event and Con-
tinuous Complex Dynamic Systems”. Aca-
demic Press.

