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Abstract. This paper presents the approach taken in the multi-paradigm tool
AToM3 for the integration of textual and visual languages in a uniform frame-
work. The tool is used for the modelling, analysis and simulation of complex
(physical or software) systems, where each system component may have to be
described using a different formalism. The different visual or textual formalisms
can be described in the form of meta-models using graphical, high-level nota-
tions such as Entity Relationship or UML class diagrams. From these descrip-
tions, AToM3 is able to generate a customized modelling tool for the specified
formalism. Models at any meta-level are stored as attributed, typed graphs and
thus can be manipulated (simulated, transformed, optimized, etc.) by attributed
graph grammars.
In the case of a textual notation, from the meta-model description a front-end
parser is semi-automatically generated that transforms the textual models into
abstract syntax graphs (instances of the meta-model), and thus can be manipu-
lated in a uniform way with the other visual notations. To illustrate these concepts,
we present an example in which we define a meta-model for Computational Tree
Logic and generate visual and textual parsers for the formalism.

1 Introduction

Complex (physical or logical) systems are made of different components or views, each
one of them may have to be described using a different notation, due to their different
nature. Thus, for the modelling of such a system, one would like to use the most ap-
propriate formalism for each component. Some of these formalisms may be graphical,
while others may be textual.

Visual models of software systems are ever more frequently not just a mere de-
sign or analysis documentation, but play a more active role in the development process.
In ideal automated development environments, software is actually built by means of
high-level, visual notations. This approach can be seen as a further step in the search for
higher-levels of productivity and quality by raising the abstraction level of languages.
This, in fact, is an evolution we are witnessing for as long as computers were invented
more than half a century ago: from bits to assembler to procedural programming lan-
guages to object-oriented languages up to visual notations. Using higher abstraction
level notations, programs become more compact and easier to understand, write and



maintain. In this way, developers deal with less (accidental) details about the system
they are building and concentrate on describing its essential properties [2]. Although
highly expressive, for convenience, visual notations are often combined with textual
languages. This is the case of the different UML diagrams and the textual constraint
language OCL [20].

Multi-Paradigm Modelling [19] proposes the combination of meta-modelling, multi-
formalism and multiple levels of abstraction for the modelling and analysis of complex
systems. By means of meta-modelling one can reduce the effort of obtaining a cus-
tomized modelling tool for a certain formalism. Meta-modelling consists on modelling
the formalisms themselves (its syntax) by means of high level languages such as En-
tity Relationship or UML class diagrams. From these meta-models, a meta-modelling
tool is able to produce a customized modelling tool for the specified formalism (see for
example [13] [11] [6]).

Multi-formalism modelling allows the description of complex systems using differ-
ent formalisms. For the analysis of such a system, each component or view is translated
into a common formalism, where the properties of interest can be investigated. The
Formalism Transformation Graph [19] (FTG) may help in finding such a common for-
malism. It is shown in Figure 1 and depicts in the form of a graph a small portion of the
“formalism space”. Formalisms are shown as nodes in the graph. Some of them – those
shown enclosed in rounded rectangles – are graphical (such as automata, Petri nets,
Statecharts, etc.), while some others are inherently textual (for example, formalisms
based on equations). Thus, for the specification and analysis of a multi-formalism sys-
tem it is necessary to integrate textual and graphical modelling tools. It is also desirable
to have an easy and uniform way to specify and obtain both kinds of modelling tools.

The arrows between the nodes in the FTG denote behaviour-preserving transforma-
tions, but they may indeed lead to a loss of information. For example, when transform-
ing from Petri nets into Automata (that is, when calculating the coverability graph), the
information about the exact number of tokens at each state (marking) may be lost if the
net is unbounded. Nonetheless, by performing the transformation we are able to solve
questions that were harder or impossible to answer in the source formalism. The verti-
cal, dashed arrows denote the existence of a simulator for the formalism. This indeed
can be seen as a special case of iterative transformation into the “execution traces” for-
malism. The dotted loop-arrows denote the existence of optimization transformations
(to reduce complexity, improve performance, etc.) for the formalism.

Our approach is describing formalisms (of any kind) in the FTG by means of meta-
modelling. As models at any meta-level can be stored as attributed, typed graphs, they
can be manipulated using graph grammars [15]. Thus we model the arrows (of any kind)
in the FTG as graph transformations.

These ideas have been implemented in the multi-paradigm tool AToM3 [6], which
was built in collaboration with McGill University in Montreal. This paper describes the
first steps towards the uniform processing and integration of textual and graphical no-
tations, and its implementation in AToM3. The approach consists on describing textual
formalisms in the same way as graphical notations, through a meta-model. Instead of
assigning a visual concrete syntax to the notation, we transform the meta-model (us-
ing a graph grammar) into a string grammar. This grammar is input into an automatic
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Fig. 1. Formalism Transformation Graph (adapted from [19]).

parser generator (we have used TRAP [9]). The generated parser is then able to pro-
cess textual programs and generate abstract syntax graphs that are valid instances of
the original meta-model. Integrating the generated textual parser into AToM3 makes it
possible to process textual as well as graphical notations in a uniform way.

The problem we are dealing with in this paper is highly relevant for the UML com-
munity, which faces a similar problem: integrating the different UML diagrams with the
textual constraint language OCL [20]. The OMG has taken a similar approach to the one
we are trying to automate (although of course, for much simpler languages than OCL).
They defined the abstract syntax of OCL by means of a (MOF compliant) meta-model.
The (textual) concrete syntax is defined by an attributed (EBNF) string grammar. Pro-
ductions build a valid instance of the meta-model by means of synthesized attributes
(see section 5).

This paper is organized as follows: section 2 gives a brief, informal overview of
graph grammars. Section 3 introduces the AToM3 tool. Section 4 presents a meta-model
for Computational Tree Logic made with AToM3. Section 5 shows the transformation of
the meta-model into a string grammar for the generation of the textual parser. Section 6
presents some related research, and finally section 7 ends with the conclusions and the
future work.

2 Graph Grammars: An Informal Introduction

Graph grammars are a generalization of Chomsky grammar for graphs [15], devised in
the seventies at TU Berlin by H. Ehrig and others. Graph grammars are composed of
production rules, each having graphs in its left and right hand sides (LHS and RHS). In



the Double Pushout Approach (DPO), productions have the form: p : L
l
←− K

r
−→ R,

where L (left hand side), K (interface graph) and R (right hand side) are graphs and l
and r are (usually injective) morphisms. That is, K is the set of nodes and edges which
are preserved by the production, L−K is the set of nodes and edges which are deleted
and R−K is the set of nodes and edges that are created by the production. The diagram
in Figure 2 sketches the application of a rule on a graph G, resulting in graph H.

L

m

��

K
loo

d

��

r // R

m∗

��

G D
l∗oo r∗ // H

Fig. 2. Application of a Graph Gramamr Rule on a graph G.

Thus, in order to apply a production on a graph G, a match m should be found
between the production’s LHS L and the graph G. This can be either an injective or
non-injective morphism. The next step is to delete all the elements in G matched with
elements of L −K. Finally, the elements of R −K are added. Note how this process
can be expressed in terms of category theory as a double pushout (DPO) in category
Graph [15]. Additionally, the double pushout approach needs two additional condi-
tions, namely the dangling and the identification conditions. The dangling condition
specifies that if an edge is not deleted its source and target nodes should be preserved.
The identification condition specifies that if two nodes or edges in the interface are
matched into a single node or edge in the host graph (via a non-injective morphism),
then both should be preserved. In the single pushout approach (SPO) [15], a production
is represented as a single mapping from L to R. If applied, dangling edges are deleted,
and nodes or edges in conflict due to the identification condition are also deleted. Thus,
in the SPO approach rules may have secondary effects.

Productions can be extended with negative application conditions (NAC), in such
a way that for a production to be applied, there must not be a morphism between any
of the production’s NAC and the host graph. Thus, rules with NAC have the form:

p : N
o
←− L

l
←− K

r
−→ R (in the DPO approach).

3 AToM3: A Brief Overview

AToM3 [6] is a multi-paradigm tool (written in Python) that one of the authors devel-
oped in collaboration with McGill University in Montreal. The tool allows defining the
abstract and concrete syntax of visual languages by means of meta-modelling. UML
class diagrams and Entity Relationship (ER) meta-formalisms are available for meta-
modelling, other formalisms and meta-formalisms can be described using them. Thus,
from the (graphical) description of a meta-model (expressed in ER or UML classes)
AToM3 is able to generate a modelling tool for the described formalism. The meta-
model describes the abstract syntax of the formalism. The concrete syntax is given by



assigning graphical attributes to the entities (or classes) and relationships (or associa-
tions) in the meta-model. Entities (or classes) can be provided with icon-like graphics,
while relationships (or associations) can be assigned arrow-like graphics. An icon edi-
tor is available to design both kinds of graphics.

Fig. 3. CTL Meta-Model (left) and Generated Tool (right).

Figure 3 shows, on its left a meta-model for Computational Tree Logic [4] (CTL)
defined with AToM3, and on the right an automatically generated tool from the infor-
mation in the meta-model. This example is discussed in more detail in next section.
Note however that in this example the (graphical) concrete syntax is very simple, as
predicates are assigned rectangles with the predicate name inside, binary operators are
assigned ovals, with its type inside, and finally unary operators are assigned squares.
More complex graphical concrete syntaxes can be defined with AToM3, taking into
account more advanced spatial relationships such as hierarchy or insideness (see for
example [7]). Note also that the columns of buttons to the left of both windows are
different. These buttons allow creating the elements of the formalism and are automati-
cally generated from the meta-model of the formalism. This part of the user interface is
indeed a model (under the “buttons” formalism), that the user can change. For example,
it is possible to add extra buttons to perform computations on the current model.

In AToM3, computations on models can be expressed either directly in Python, or
using graph transformations. These are graphically modelled, and the AToM3 graph
grammar engine can be configured to work either in the Single Pushout or Double
Pushout approaches [15]. To control the graph grammar execution, rules are assigned
priorities (partial order), in such a way that the rules with the highest priority are
checked first, if none of them makes a match, the control is passed to the set of rules in
the next priority order. When a rule is executed, the control goes back to the set of rules
with the highest priority. The execution ends when no rule could be applied in the set
of lowest priority rules.

Additionally, the AToM3 graph rewriting engine can be configured to allow (in the
matching process) either an exact type matching between the nodes of the LHS and



the nodes in the host graph or a subtype matching. In the latter case AToM3 checks at
run-time whether the node (or the connection) in the host graph has at least the same set
of attributes as the node in the LHS, that is, if the node in the host graph is a subtype of
the node in the LHS. We do not need to express the subtyping relationship in the meta-
models (in fact, if the Entity Relationship meta-formalism is used, we cannot include
inheritance relationships in the meta-models), but this relationship is found at run-time.
Finally, productions can be applied step-by-step, animated or in continuous mode. In
the first mode, the rewriting engine waits for the user to press a button after each rule
application. The second mode makes use of the delay attribute of rules to produce an
animation of the graph grammar execution. This attribute can be changed by the rules.
Finally, in the third mode, only the initial and the final graphs are shown.

4 An Example: Defining the Visual Computational Tree Logic
Formalism

Computational Tree Logic (CTL) is a logic that allows expressing properties of com-
putation paths. In particular it is widely used for model checking techniques [4]. Using
CTL one can specify properties about the behaviour of a system. These properties are
verified by a model checker against some representation of the system (a Kripke struc-
ture). We have implemented a simple explicit model checking algorithm in AToM3 [5]
that we use to check properties of reachability graphs obtained from a Petri net model.
In its turn, this Petri net model could be the result of the transformation of several com-
ponents of a multi-formalism system into a common semantic domain for analysis.

Thus, as we needed a tool inside AToM3 for specifying CTL formulae, we meta-
modelled CTL. This meta-model is shown to the left of Figure 3. A CTL expression
(CTLExpression abstract class) is either a simple predicate (CTLPredicate class), an
expression starting with a unary operator (CTLUnary class) or an expression starting
by a binary operator (CTLBinary class). The meta-model also specifies the classes’
attributes. Predicates have a name (attribute value, of type string), while unary and
binary relationships have an attribute (called value in both cases) of enumerate type.
This attribute stores the kind of operator: AND, AU (for all paths ... until ...) and EU
(exists one path such that ... until ...) in the case of binary operators and NOT, AX (in all
paths, in next step...) and EX (exists a path, such that in next step...) in the case of unary
operators. This is a minimal set of operators, other ones can be defined using these. We
have defined three special predicates: True, False and Deadlock. The latter evaluates to
true in nodes without outgoing transitions.

Right of Figure 3 shows a valid instance of the previous meta-model, which ex-
presses the property E(True U (waiting AND AX NOT waiting). The tool in which the
model is built is AToM3 itself, loaded with the CTL meta-model defined on the left
of the figure. This tool is used by the model checker built in AToM3 to specify CTL
formulas. This meta-modelling solution is effective in the sense that one can generate
a visual modelling tool in very little time. But unlike for other graphical formalisms,
CTL formulae can be more naturally specified in textual form. Thus, one would like a
tool to process textual formulas in CTL. Note how, one could think of the meta-model
as describing the structure of the abstract syntax graphs produced by a parser of the



textual notation. Our aim is to automate as much as possible the generation of such a
parser given the meta-model.

This is just a particular example of a more general problem that we face in multi-
formalism modelling, where we specify a composite system using several formalisms.
Some of them may be graphical, while others may be textual. Thus, one would like a
general means to specify and process both kind of formalisms. Our solution relies on
meta-modelling to describe the abstract syntax of the (graphical and textual) formalism.
In an ideal solution one could define mappings to graphical or textual concrete syntaxes.
In the more general case, one could even define different (graphical or textual) concrete
syntax mappings for a given formalism.

5 Transforming Simple Meta-Models into String Grammars

For the purpose of processing textual languages, our approach is to define them with
a meta-model, and then transform them into the “string grammars” formalism, also
defined with a meta-model. The string grammars we consider are composed of pro-
ductions with a unique non-terminal symbol in the left hand side (LHS) and several
terminal or non-terminal symbols in the right hand side (RHS). This meta-model is de-
picted to the left of Figure 4, enclosed in the rectangle labelled as “String Grammars
Meta-Model”. Abstract class Symbol has an attribute called value of type string. In the
case of a terminal symbol (TSymbol), it contains a regular expression. On the contrary,
if the symbol is non-terminal (NTSymbol), it contains the name of the symbol. Note
how (symbols in the production’s RHS) can be connected via the RHSnext relationship.

RHSnext

ModelElement
name : String

Generalization

DataType

Production

NTSymbol

TSymbol

Symbol
value: String

Class

child parent
11

0..* 0..*

participant
AssociationEnd
multiplicity: MultiplicityisAbstract : Boolean

1 0..*

UML Class Diagrams to String Grammars Transformation Meta−Model

UML Class Diagrams Meta−Meta−ModelString Grammars Meta−Model

feature
0..1

0..*

Attribute
initialValue: Expression

type 1
0..*

1

connection

Association

2

isSource: Boolean
1

LHS

0..1

0..1 0..*

Included >

represents >

RHS
0..1

1..*

1

0..1

0..1

1

Fig. 4. Meta-Model for the Transformation from UML Simple Meta-Models into String Gram-
mars.

The model to the right of Figure 4 shows a subset of the UML meta-metamodel
(see [18]) that we use in AToM3 for the modelling of formalisms. It simply defines



classes composed of a number Attributes (their possible types are not shown for sim-
plicity). Classes can be connected through Generalization, or via simple Associations.
These have two Association Ends, attributed with the multiplicities. The window to the
left of Figure 3 shows an instance of this meta-metamodel, although once the meta-
metamodel has been provided with a concrete syntax.

As stated before, we use graph grammars to describe the transformation of models
between formalisms. During the transformation process, the model becomes a blend of
elements of the source and target formalisms, but at the end of the transformation, the
model should be entirely described in the target formalism. Thus, we also need a meta-
model describing the kind of models that can arise during the transformation [8]. In our
example, for transforming models defined with this subset of UML into string gram-
mars, we need to define a meta-model combining both formalisms. This meta-model
is the disjoint union of both formalisms, plus some extra auxiliary elements needed
for the transformation. These are typically relationships relating elements of the source
(UML meta-models) and target (string grammars) formalisms. In the figure, these ex-
tra elements are relationships “represents” and “included”. Relationship “represents”
models the fact that we assign a production (its LHS) to each class. Relationship “in-
cluded” models the fact that a class can be included in the RHS of a production.

Figure 5 shows some of the graph grammar rules for the transformation of simple
UML meta-models into string grammars. In particular, the models we can transform by
now are formed by a single abstract class (the initial symbol), with a number of child
classes. These are considered tokens if they are unconnected, unary operators if they
have a single outgoing association, or binary operators if they have two outgoing asso-
ciations. Note how, although very simple, many textual formalisms can be described in
this way (for example, algebraic equations and several kinds of logic). In particular, the
meta-model for CTL presented in Figure 3 falls into this category of models.

Rule 1 creates a production for each abstract class found in the meta-model. The
negative application condition (NAC) in the rule prohibits the application of the rule if
the class has been already assigned a production. In all the rules, we have indicated the
type of each node besides it in italics, and used the abbreviations “Rep” and “Incl” for
relationships “represents” and “included” respectively. We use numbers to represent
the morphisms between NAC, LHS and RHS. That is, nodes and edges with the same
number in LHS and RHS belong to the interface graph K (see Figure 2) and represent
the same element in the host graph.

Rule 2 creates right hand sides of productions for each child class of an abstract
class with no associations. As stated before, these classes represent the tokens, which
will be defined by another graph grammar rule (not shown in the picture). Rule 3 is
similar to the previous one but creates the right hand side of the string production for
unary operators (classes with exactly one association). Note how in this case, the asso-
ciated class is added as the second symbol of the production right hand side (through
the RHSnext relationship). Finally, additional rules (not shown in the figure) create pro-
ductions for binary operators, and for the description of tokens and operators. Classes
representing unary and binary operators are supposed to have a distinguished attribute
called value, of type enumerate, which contains the allowed operators. In our example,
the unary operators are NOT, AX and EX and the binary operators AND, AU and EU.



For tokens (in our case class Predicate), the value attribute can be string, integer or
float, in such a way that a regular expression accepting these data types is generated for
them. Furthermore, in the case of a string type, we set the regular expression to accept
only valid identifiers (those starting by a letter). Finally, some other rules remove the
elements of the UML formalism, in such a way that at the end of the transformation,
only elements of the string grammar formalism remain.
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Fig. 5. Some Rules for the Transformation of Simple Meta-Models into String Grammars.

Figure 6 shows the resulting model (in the string grammars formalism) once we ap-
ply the previous transformation rules to the CTL meta-model shown in Figure 3. Note
how the resulting grammar is left-recursive. This can be eliminated implementing the al-
gorithm for eliminating left recursion as a graph grammar. Once the transformation has
been performed, it is easy to dump the string grammar model into a file (by traversing
all the productions, an excerpt is shown in Figure 7), to be processed by some parser-
generating program. In our case, we used TRAP [9] to generate a parser for the CTL
grammar. The reason for choosing TRAP is that it is able to generate Python parsers,
easy to integrate with AToM3, also written in Python. The excerpt shown in Figure 7



shows three of the string grammar rules. The first one (CTLPredicate) just describes the
String type by means of a regular expression (as the value attribute of CTLPredicates is
of type String). The second one (CTLUnary) has three right hand sides, and describes
the three unary operators. The AToM3 model is built by means of semantic actions that
invoke the AToM3 API for creating objects (createNewCTLUnary). The actions associ-
ated with a string grammar are executed whenever the production is used, and build the
abstract syntax graph according to the meta-model. The last production (CTLBinary)
is similar to the previous one, but describes the three binary operators.

value = "[a−z][A−Za−z0−9_]*"

value = "CTLUnary"

value = "CTLBinary"

value = CTLExpression value = "CTLPredicate"
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Fig. 6. String Grammar Model Resulting from the Transformation of the CTL Meta-Model.

In AToM3, graph grammar rules can have actions (specified in Python) that are
executed if the rule is applied. We have provided the graph grammar rules with actions
to annotate the productions and NTSymbols of the string grammar model with semantic
actions that call the AToM3 API (createNewCTLUnary and createNewCTLBinary in
Figure 7.)

The textual parser was integrated into AToM3 in order to perform (explicit) model
checking of systems described as Kripke structures. In particular we have used the
model checker to verify properties of physical [5] (described with Statecharts and Petri-
Nets) as well as logical systems (described using different UML diagrams).

6 Related Work

Other approaches – such as for example in Glide [10] – go the other way around: the
definition of the languages is done through a textual grammar (in the BNF style), and
optionally, a concrete visual syntax can be assigned to the language. This approach has



compiler CTL

token CTLPredicate ’[a-z][A-Za-z0-9_]*’

# This production is called CTLUnary and returns an object of type CTLUnary
nterm CTLUnary::CTLUnary

<- "NOT" :
# Semantic action to create (and return) a CTLUnary object of type ’NOT’
at3.createNewCTLUnary(’NOT’)

<- "AX" :
# Semantic action to create (and return) a CTLUnary object of type ’AX’
at3.createNewCTLUnary(’AX’)

<- "EX" :
# Semantic action to create (and return) a CTLUnary object of type ’EX’
at3.createNewCTLUnary(’EX’)

# This production is called CTLBinary and returns an object of type CTLBinary
nterm CTLBinary::CTLBinary

<- "AND" :
# Semantic action to create (and return) a CTLBinary object of type ’AND’
at3.createNewCTLBinary(’AND’)

<- "AU" :
# Semantic action to create (and return) a CTLBinary object of type ’AU’
at3.createNewCTLBinary(’AU’)

<- "EU" :
# Semantic action to create (and return) a CTLBinary object of type ’EU’
at3.createNewCTLBinary(’EU’)

...

Fig. 7. Excerpt of the TRAP Grammar Created from the Model in Figure 6.

the disadvantage that it is not very appropriate for purely visual languages, which are
more naturally described through a graphical meta-model.

The approach taken in the ESPRESS project [3] is to integrate heterogeneous mod-
elling, analysis and simulation tools by defining adaptors for them, that should be coded
by hand. For the semantic integration of the tools, the different formalisms are trans-
lated into a common notation. In this paper we deal with the automatic generation of
textual parsers given a meta-model of the formalism. The idea is that once the programs
are successfully parsed, they are converted into abstract syntax graphs, valid instances
of the original meta-model. That is, we can think of this work as a means to automati-
cally obtain basic adaptors for tools based on textual formalisms. Additionally, in our
work translators between formalisms are specified using graph grammars.

Other possibility is to use an idea similar to pair grammars [14], where a graph
grammar rule is assigned to each string grammar production. Whenever a string pro-
duction is used, the associated graph grammar rule is executed. This is a way to specify
a string to graph translation and allows building an instance model of some meta-model
starting from a string grammar. The drawback is that one has to code by hand the string
grammar, the graph grammar for the generation of the visual language and the meta-
model. Our aim is to automate the whole process in such a way that one only has to
provide the meta-model. We could have still applied this approach by assigning graph
grammar rules to the automatically generated productions in Figure 7 (instead of call-
ing the AToM3 API to build the model), but in this case, we would have to create the
generation graph grammar for the visual CTL.

With respect to the specification of transformations, other approach is the use of
triple graph grammars [16]. Using triple graph grammars one can obtain translators
from the source to the target formalism and vice versa with the same triple graph



grammar. The approach is mostly useful for syntax-directed environments, in which
the editing actions are specified by means of graph grammar rules. In AToM3 this is
not the default approach, as the user can create and connect entities of the formalism,
and model correctness is guaranteed by constraints (defined in the meta-model) that are
evaluated when certain events are triggered. Additionally, in AToM3 one could define
graph grammar rules to model the editing actions, although as stated before, this is not
necessary. With triple graph grammars, while the user is building a model in the source
formalism, an equivalent model is created at the same time in the target formalism. It is
not straightforward to use this approach to translate an existing model, as in this case the
graph grammar rules must be monotonic (that is any production’s left-hand side must
be part of its right-hand side [16]). Additionally AToM3 does not have the capability to
work with triple graph grammars.

For a formalism transformation to be really useful, one has to proof several prop-
erties, such as confluence (that the result of the transformation is deterministic), ter-
mination, consistency (the resulting models are valid instances of the target formalism
meta-model) and behavioural equivalence of source and target models. Some initial
work in the verification of these properties has already been done [8], although it is out
of the scope of this paper.

To the knowledge of the authors, other well-known tools [1][12] in the graph gram-
mars community for the definition of visual languages do not consider by now the
possibility to integrate textual languages.

7 Conclusions

In this paper we have presented our approach for integrating visual and textual lan-
guages in a uniform framework. The approach consists on defining both kinds of lan-
guages by means of meta-modelling. In the case of a visual language, a graphical con-
crete syntax is assigned. In the case of a textual language, the meta-model is translated
into the “string grammars” formalism, and a parser is then obtained that transform
textual programs into instances (abstract syntax graphs) of the textual language meta-
model. Once textual and graphical models are expressed as attributed, typed graphs,
they can be manipulated using graph grammars. We have presented an example in which
we have created textual and graphical parsers for Computational Tree Logic for their
integration in a model checking engine for AToM3.

The work presented in the paper is in its initial state, although we have successfully
used these ideas to generate the visual and textual parser for CTL. At present, we are
finishing the actual implementation of the string grammars meta-model and the rules
for its manipulation. We want to use these ideas to generate visual and textual parsers
for other formalisms, such as differential algebraic equations.

There are additional problems to be solved, for example the issue of operator’s
precedence. This precedence is not explicitly specified if the model is built graphically,
but it is realized by traversing the model. On the contrary, it may have to be specified
with parenthesis if we specify the model in a textual way. Thus, parenthesis may have
to be automatically added in the string grammar model.



Finally, we are also working in integrating parallel graph grammars [17] into AToM3.
This is an extension of graph grammars for coordinating the parallel application of dif-
ferent subproductions.

Acknowlegdments

We would like to aknowledge the Spanish Ministry of Science and Technology (project
TIC2002-01948) for partially supporting this work.

References

1. Bardohl, R., Ermel, C., Weinhold, I. 2002 AGG and GenGED: Graph Transformation-Based
Specification and Analysis Techniques for Visual Languages In Proc. GraBaTs 2002, Elec-
tronic Notes in Theoretical Computer Science 72(2).

2. Brooks, F. P. 1995. The Mythical Man Month. Addison-Wesley.
3. Büssow, R., Grieskamp, W., Heicking, W. 1998. An Open Environment for the Integra-

tion of Heterogeneous Modelling Techniques and Tools International Workshop on Current
Trends in Applied Formal Methods; Boppard Germany LNCS 1641. Springer. See also the
ESPRESS project home page: http://www.first.gmd.de/∼espress

4. Clarke, E. M., Grumberg, O., Peled, D. A. 1999. Model Checking. MIT Press.
5. de Lara, J., Guerra, E., Vangheluwe, H. 2003. Meta-Modelling, Graph Transformation,

and Model Checking for the Analysis of Hybrid Systems. To appear in Proceedings of
AGTIVE’2003 (Applications of Graph Transformation with Industrial Relevance). Char-
lottesville (USA).

6. de Lara, J., Vangheluwe, H. 2002 AToM3: A Tool for Multi-Formalism Modelling
and Meta-Modelling. In European Conferences on Theory And Practice of Soft-
ware Engineering ETAPS02, Fundamental Approaches to Software Engineering (FASE).
LNCS 2306, pp.: 174 - 188. Springer-Verlag. See also the AToM3 home page:
http://atom3.cs.mcgill.ca.

7. de Lara, J., Vangheluwe, H. 2002 Computer Aided Multi-Paradigm Modelling to process
Petri Nets and Statecharts. ICGT’2002. LNCS 2505. Pp.: 239-253.

8. de Lara, J., Taentzer, G. 2003. Automated Model Transformation and its Validation with
AToM3 and AGG. Submitted to Diagrams’04.

9. Ernst, T. 1999. TRAPping Modelica with Python In Proc. ETAPS/CC’99. LNCS 1575, pp.:
288-291. Springer-Verlag. See also: http://www.first.gmd.de/smile/trap.

10. Kleyn, M. F. E. 1995. A High Level Language for Specifying Graph-Based Languages and
their Programming Environemnts. PhD. Thesis in the University of Texas at Austin.
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