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 Abstract 
 Leptin levels during the perinatal period are important for the development of metabolic sys-
tems involved in energy homeostasis. In rodents, there is a postnatal leptin surge, with circu-
lating leptin levels increasing around postnatal day (PND) 5 and peaking between PND 9 and 
PND 10. At this time circulating leptin acts as an important trophic factor for the development 
of hypothalamic circuits that control energy homeostasis and food seeking and reward behav-
iors. Blunting the postnatal leptin surge results in long-term leptin insensitivity and increased 
susceptibility to diet-induced obesity during adulthood. Pharmacologically increased leptin 
levels in the postnatal period also have long-term effects on metabolism. Nevertheless, this 
effect is controversial as postnatal hyperleptinemia is reported to both increase and decrease 
the predisposition to obesity in adulthood. The different effects reported in the literature could 
be explained by the different moments at which this hormone was administered, suggesting 
that modifications of the neonatal leptin surge at specific time points could selectively affect 
the development of central and peripheral systems that are undergoing modifications at this 
moment resulting in different metabolic and behavioral outcomes. In addition, maternal nutri-
tion and the hormonal environment during pregnancy and lactation may also modulate the 
offspring’s response to postnatal modifications in leptin levels. This review highlights the im-
portance of leptin levels during the perinatal period in the development of metabolic systems 
that control energy homeostasis and how modifications of these levels may induce long-last-
ing and potentially irreversible effects on metabolism.   Copyright © 2012 S. Karger GmbH, Freiburg 
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 Introduction 

 Leptin is a 167 amino acid peptide mainly produced by adipose tissue  [1]  whose main 
function is to maintain body weight by regulating the balance between energy intake and 
expenditure  [2] . Leptin mRNA and protein levels in adipose tissue and plasma are positively 
correlated with body fat and adipocyte size  [3] . Thus, obese individuals generally have 
higher leptin mRNA and protein levels than lean individuals  [4–5] . 

  Leptin acts on feeding centers in the hypothalamus and other brain areas, modifying 
the expression and release of orexigenic and anorexigenic neuropeptides, including neuro-
peptide Y (NPY) and pro-opiomelanocortin (POMC). In the arcuate nucleus (ARC), NPY and 
POMC neurons express the long form of the leptin receptor (Lep-Rb), which is functionally 
coupled to the Janus kinase signal transducer-signaling pathway  [6] . Although there are at 
least six alternatively spliced isoforms of the leptin receptor (Lep-Ra, Rb, Rc, Rd, Re and Rf) 
in mice  [7] , it is activation of Lep-Rb that is reported to be most involved in metabolic control. 
The shorter isoforms are thought to act as leptin transporters at different sites, including 
plasma and the blood-brain barrier  [8, 9] .

  Binding of leptin to Lep-Rb results in phosphorylation of Janus activated kinases 1 
(JAK-1) and 2 (JAK-2) and tyrosine phosphorylation of the cytoplasmic domain of Lep-Rb 
and downstream transcription factors of the signal transducer and activators of tran-
scription (STAT) family. These signaling molecules are highly expressed in the hypo-
thalamus, brainstem, and other brain regions that control food intake and autonomic and 
neuroendocrine functions  [10] . Reduction in the sensitivity or activation of this signaling 
pathway results in leptin resistance and underlies the obese phenotype of  db/db  mice and 
fatty rats  [7, 11] . Leptin’s actions are terminated by induction of silencer of cytokine signaling 
3 (SOCS-3), a member of a family of proteins induced by cytokines, that blocks the JAK-STAT 
signaling cascade by inhibiting leptin-mediated tyrosine phosphorylation of JAK-2  [12] . 
SOCS-3 may also play a role in leptin resistance as SOCS-3 levels are elevated in the ARC in 
diet-induced obese (DIO) mice, and this is associated with reduced sensitivity to leptin’s 
effect on food intake, body weight, and neuropeptide secretion  [13] . Protein-tyrosine phos-
phastase 1B (PTP-1B) is also a critical downstream regulator of leptin signal transduction 
 [14, 15] . Overexpression of PTP-1B decreases phosphorylation of JAK-2 and blocks leptin-
induced transcription of SOCS-3 and c-fos  [16] , while deletion of the  PTP-1B  gene enhances 
leptin sensitivity in mice, preventing obesity  [17, 18] . In addition to this cascade involving 
JAK-STAT, leptin also modulates other intracellular pathways including ERK, AMPK, PI3K, 
and cAMP  [19, 20]  ( fig. 1 ).

  Leptin’s effects on metabolism are not limited to modifications in neuropeptide 
production or secretion, as it also induces rapid modifications in synaptic connectivity of 
neuronal populations involved in metabolic control  [21]  as well as in astrocyte morphology 
 [22] . Leptin may also control food intake by modulating taste perception as this hormone 
selectively reduces the sweet taste response, most likely through direct action on the Lep-Rb 
expressed in sweet-sensitive receptor cells  [23] . Leptin receptors are also expressed in 
areas involved in eating behavior  [24–26] , and this hormone has been shown to affect food 
seeking behavior, by modifying both the hedonic and motivational aspects of reward, 
anxiety, and food preference  [27–30] . Furthermore, leptin not only regulates energy homeo-
stasis by acting in the brain but also increases basal metabolism through stimulation of the 
sympathetic nervous system and thyroid hormones thus increasing energy expenditure 
 [31] . 

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

id
ad

 A
ut

on
om

a 
de

 M
ad

rid
   

   
   

   
   

   
   

   
 

15
0.

24
4.

13
9.

10
2 

- 
10

/3
0/

20
14

 1
2:

40
:4

8 
P

M



140Obes Facts 2012;5:138–150

 DOI: 10.1159/000336967 
 Published online: March 2, 2012   

 GranadoFuente-MartínGarcía-CáceresArgenteChowen: Leptin in Early Life: A Key 
Factor for the Development of the Adult Metabolic Profile  

www.karger.com/ofa
© 2012 S. Karger GmbH, Freiburg

  Metabolic Programming: A General Overview 

 In the last decades, the prevalence of obesity during childhood has dramatically 
increased worldwide  [32–34] . This phenomenon is of great concern since infant and juvenile 
obesity are significantly correlated with an increased risk of suffering health problems in 
adulthood, including cardiovascular diseases, hypertension, and obesity  [35, 36] . Based on 
multiple epidemiological studies, it is now clear that environmental factors acting early in 
life, including nutrition, play an important role in the pathogenesis of diseases in adulthood, 
particularly in obesity development  [37–39] . Interestingly, both overnutrition and undernu-
trition during pregnancy and lactation are reported to induce long-lasting effects on energy 
balance and predispose the offspring to incurring metabolic diseases in adulthood  [40–42] .

  Barker and colleagues in their hypothesis ‘‘developmental origins of health and disease’’ 
proposed that an adverse environment in early life can cause disruptions in normal growth 
and development, increasing the propensity to obesity and other related diseases in 
adulthood  [43] . There is considerable evidence supporting this proposal, such as the repre-
sentative example of the Dutch famine during the last 6 months of World War II where males 
born to women exposed to poor nutrition in the first and second terms of pregnancy were 
more likely to become obese than those whose mothers did not experience poor nutrition 
during gestation  [44, 45] . In support of the Barker hypothesis, it is well established that 
abnormal fetal growth affects long-term metabolic health  [46] . Indeed, high maternal body 
mass index (BMI) is a risk factor for large-for-gestational-age (LGA) infants, with these 
children having increased susceptibility to disease throughout life  [47] . Maternal obesity 
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  Fig. 1.  Schematic representation of the intracellular signaling mechanisms of the leptin receptor 1b 
(Lep-b): Leptin binds to the leptin receptor, which activates JAK-2 leading to nuclear translocation of 
STAT3 to mediate the transcriptional regulation of neuropeptides and SOCS-3. SOCS-3 and PTP-1B 
inhibits leptin signaling. 
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increases the risk of metabolic complications in children approximately twofold  [46, 48]  and 
doubles the risk of stillbirth and neonatal death  [49] . Likewise, women with poor glycemic 
control and/or gestational diabetes have a high risk of giving birth to a macrosomic baby 
that is more likely to develop obesity and insulin resistance later in life  [50, 51] . 

  Not only is the prenatal environment important but also the immediate postnatal period 
since critical windows of organ development extend into early postnatal life. For example, 
in rodents, pancreatic islets and brain circuits continue their development after birth  [52–
54] . In humans, the postnatal feeding regime affects infant growth trajectories since weight 
gain during the first weeks of life is positively associated with later obesity  [55] . In addition, 
an earlier age of adiposity rebound is also associated with a higher risk of obesity later on 
 [56] . 

  Thus, both gestational and early postnatal cues are critical for the development of 
central and peripheral systems involved in metabolic control, including the hypothalamus 
and adipose tissue, modulating their responses to metabolic signals and increasing the 
probability of excess weight gain in adulthood. Moreover, recent evidence suggests that 
behaviors associated with feeding can also be affected by early nutritional influences.

  The Hypothalamus in the Control of Energy Homeostasis 

 The hypothalamus plays a key role in the control of energy homeostasis, with special 
attention being paid to neurons in the ARC as these neurons express receptors for circu-
lating hormones involved in appetite regulation and energy expenditure such as leptin, 
insulin, or ghrelin  [57] . In the ARC, orexigenic neurons expressing NPY and AgRP are acti-
vated by appetite-stimulating signals such as ghrelin to promote food intake  [58] . Another 
population of neurons express POMC and CART and are activated by anorexigenic signals 
such as leptin or insulin to promote appetite inhibition and weight loss  [59] . Both NPY/AgRP 
and POMC/CART neurons extend projections to other key parts of the hypothalamus 
including the paraventricular (PVN), ventromedial (VMH) and dorsomedial (DMH) nuclei 
and the lateral hypothalamus (LHA), with these regions also participating in food intake 
regulation  [57, 59] . Extrahypothalamic brain areas involved in the regulation of feeding and 
energy balance include the ventral tegmental area (VTA) and the nucleus of tractus soli-
tarius (NTS) which receive signals from the gastrointestinal system through the dorsal 
vagal complex. 

  There are also behavioral aspects of feeding that must be taken into consideration, as 
some inputs are based on the palatability and reward of food that can override the satiety 
signals. These hedonic neurocircuits include the nucleus accumbens (NAc), the ventral 
pallidus (VP), the VTA, and higher cortical areas such as the prefrontal cortex, all of which 
converge on the LHA. These pathways use biological substrates such as glutamate, opioids, 
endocannabinoids, and dopamine and are responsive to peripheral metabolic signals like 
leptin  [60, 61]  and ghrelin  [62, 63] . The effects of these compounds on mood highly contribute 
to the impact of the hedonic pathways in food intake.

  Hypothalamic Development 

 Hypothalamic development differs between species. Whereas in nonhuman primates 
this process is thought to occur entirely during the third trimester of pregnancy  [64, 65] , 
in rodents it begins prenatally but does not finalize until the second week of postnatal life 
 [66] . In rodents, development of hypothalamic nuclei begins around embryonic day (E) 12 
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with neurogenesis in the neuroepithelium of the third ventricle. Once generated, the post-
mitotic neurons migrate from the proliferative zone of the third ventricle to form the 
various nuclei and areas that constitute the hypothalamus  [52, 67, 68] . The neurons from 
the different hypothalamic areas are created at different time points, with neurons of the 
PVN appearing around E 12 and those of other nuclei such as the ARC being born between 
E 12 and E 16. Neurons in the ARC express POMC around E 12  [69]  and NPY around E 14 
 [70] . The expression of both orexigenic and anorexigenic neuropeptides continues to 
increase during the postnatal period, reaching their maximum values around postnatal 
day (PND) 15  [71] . Although neurogenesis occurs prenatally, the establishment of connec-
tions between neurons in the different nuclei takes place postnatally, with innervation 
between neurons of the ARC and DMH being established at PND 6 and between neurons of 
the ARC and PVN and LH occurring at PND 10 and PND 12, respectively  [72] . Since projec-
tions from the DMH and VMH develop prior to those from the ARC  [72] , it is suggested that 
these neural pathways could be the primary regulators of feeding and metabolism during 
early postnatal life  [67] . 

  Leptin’s Impact on Hypothalamic Development 

 Apart from its actions in the control of energy homeostasis in adult life, leptin plays an 
important role in brain development and specifically in the establishment of hypothalamic 
circuitry  [73] . Indeed, leptin-deficient  ob/ob  mice show several brain disruptions such as 
reduced brain weight, structural abnormalities, and impaired myelination  [74, 75]  as well 
as a reduction in cell density and synaptic and glial proteins in various brain regions, 
including the hypothalamus  [76] . These mice also have modifications in the number of 
projections and synaptic inputs to hypothalamic areas and neuronal populations that 
control metabolism  [21, 77] . 

  Leptin can restore normal brain weight in  ob/ob  mice only when this hormone is injected 
during early life  [78] , suggesting that specific critical periods exist for its developmental 
actions. Indeed, Bouret et al.  [77]  demonstrated that leptin has a powerful trophic action in 
the brain, increasing the density and length of axons from ARC neurons in vitro, and that 
leptin treatment to  ob/ob  animals only restored the abnormalities in ARC projections when 
it was administered during the first days of postnatal life, and not in adulthood.

  In 1998 Ahima et al.  [79]  reported that there is a postnatal leptin surge in rodents, with 
leptin levels increasing around PND5 and peaking between PND 9 and PND 10. However, 
these increased leptin levels were not related to increased fat mass although a transient 
upregulation of leptin mRNA was found in adipose tissue during this period  [79] . In sheep 
this peak occurs between PND 6 and PND 9  [80],  and in humans leptin levels decrease after 
birth  [81] . 

  The characteristics of the leptin peak can be modified by both the prenatal and post-
natal nutritional environment. Both maternal under- and overnutrition are reported to 
increase the leptin surge in the offspring  [82, 83]  while the postnatal rise in leptin does not 
occur in lambs born to obese mothers  [80] . However, all of these scenarios result in increased 
weight in the offspring during later stages of life.

  Although the leptin receptor is expressed and functional during neonatal life  [84, 85] , 
leptin is unable to modulate feeding or energy expenditure until the second postnatal week 
 [86] . Thus, during this period leptin seems to be more involved in hypothalamic devel-
opment than in the regulation of body weight and food intake. 

  The fact that leptin levels are elevated during embryonic development in humans  [87] , 
particularly during the third trimester of pregnancy  [65, 88] , and the observation that leptin 
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levels at birth are correlated with head circumference  [89]  supports the hypothesis that 
leptin also influences brain development in humans. In addition, leptin-deficient patients 
show modifications in different brain structures  [90–92] . These changes are anatomically 
specific, with leptin administration exerting sustained effects on neural tissue composition. 

  Moreover, modifications in leptin levels during development also induce long-term 
effects in some leptin-modulated behaviors. Fraga-Marques et al.  [93]  reported that 
increased neonatal leptin levels program anxiety-like behaviors, but not memory in rats. In 
humans with congenital leptin deficiency, leptin replacement modifies brain activity in 
areas associated with emotions, including hunger and reward in response to food-related 
stimuli  [90, 94, 95] . Likewise, in mice neonatal leptin treatment has been recently shown to 
have long-term effects on behavior and brain anatomy  [96] .

  Adipose Tissue Development 

 Adipose tissue has been historically considered as an inert organ with little influence 
on physiology apart from its role as a storage depot for excess energy. However, in recent 
years much evidence has highlighted it as a dynamic participant in regulating whole-body 
metabolism. In fact, changes in the distribution, structure, and function of adipose tissue 
dramatically influence the ability of an individual to maintain energy balance and resist 
weight gain  [97, 98]  ( fig. 2 ). 
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  Fig. 2.  Adipocytes secrete different adipokines such as leptin, visfatin, resistin, apelin, TNF- �  and adipo-
nectin among others. 
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  In humans adipogenesis occurs primarily during late fetal and early postnatal life 
although it can also be stimulated in adulthood under certain conditions like obesity  [99, 
100] . The first traces of adipose tissue are detectable between the 14th and 16th week of 
human gestation  [101] . Some of the key regulators identified in the adipogenic process 
include peroxisome proliferator-activated receptors (PPARs), CAAT enhancer binding 
proteins (C/EBPs) and sterol regulatory element-binding protein (SREBP-1)  [102] , which are 
expressed early in immature adipocytes. These transcription factors operate synergisti-
cally, regulating the expression of other adipocyte-specific genes and resulting in the 
formation of mature adipocytes with capacity for lipid storage, lipid degradation, and 
adipokine secretion  [103]  ( fig. 3 ). 

  From the beginning of adipogenesis until the 23rd week of prenatal life, the number of 
fat lobules remains constant, with the size of the lobules growing in subsequent weeks and 
acquiring the typical multilocular morphology of adipocytes  [101, 104, 105] . Around the 
third trimester, small adipocytes can be found in the main sites of fat deposition, with body 
fat accounting for approximately 16% of body weight at birth. During the first 12 months of 
postnatal life the increase in body fat is due to an increase in fat cell size, while adipocyte 
numbers remain unchanged  [105, 106] . However, it has been reported that both changes in 
adipocyte volume and number can also occur at later stages of life under certain conditions 
like obesity  [100] .
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  Fig. 3.  Adipogenesis is regulated by peroxisome proliferator-activated receptor  �  (PPAR � ) that is acti-
vated by CAAT enhancer binding proteins (C/EBPs) and regulatory element-binding protein 1 (SREBP-1). 
Different factors can initiate the differentiation process, with insulin being and indispensable factor for 
the formation of mature adipocytes. 
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  Leptin’s Impact on Adipose Tissue Development 

 During early life, adipocyte proliferation and differentiation are highly sensitive to the 
nutritional environment, in particular to the concentrations of circulating hormones and 
nutrients such as insulin-like growth factors, glucose, insulin, and glucocorticoids  [107, 
108] . Nutrient availability during this period is reported to determine fat mass in adulthood 
since overfeeding during the first weeks of life induces an overexpansion of adipose tissue 
in rats which is associated with an increase in the number of fat cells  [109–111] , whereas 
undernutrition permanently reduces adipose cell number  [112] . Studies in sheep and pigs 
also show that exposure to excess nutrients during late gestation significantly increases fat 
mass, adipocyte size, and the capacity of fat cells for storing lipids in postnatal life  [113] . 
Some of these nutrition-induced changes may be mediated through modifications in leptin 
levels.

  In the fetus, leptin levels follow the evolution of adipose tissue development, with low 
levels being found during the first half of gestation and dramatically increasing during the 
last part of the third trimester  [87, 114] . Shortly after birth, circulating leptin levels decline 
 [81] . The conversion of preadipocytes into mature adipocytes is accompanied by an increase 
in leptin gene expression  [115],  and abundance of leptin in fetal adipose tissue is related to 
fetal body weight  [116] . Indeed, children born small for gestational age have lower cord 
blood leptin levels than those born normal for gestational age  [117] . Leptin levels in cord 
blood have been suggested to predict adiposity in later years  [118] , suggesting that in utero 
leptin levels also have long-term influences on metabolism in humans.

  Since leptin is produced by the placenta and is also found in breast milk  [119] , maternal 
leptin levels during pregnancy and lactation may have an impact on adipose tissue devel-
opment in the offspring. Studies show that diet-induced hyperleptinemia in the mother 
results in increased body weight and adiposity in the offspring  [53, 120] . However, in 
addition to hyperleptinemia, obesity is associated with many other alterations; so it is 
difficult to determine the exact influence of leptin from overweight mothers on the increased 
adiposity of their offspring. 

  Controversial results have been obtained regarding maternal leptin administration 
during pregnancy. In lean rats, maternal leptin treatment during the first 10 days of lactation 
results in increased food intake and body weight gain as well as in increased visceral fat, 
leptin resistance, hyperglycemia, and hyperleptinemia in the offspring, with these altera-
tions becoming evident after puberty and aggravating with age  [121] . In contrast, leptin 
treatment of pregnant rats during the last week of gestation prevents the diet-induced 
increase in body and fat pad weights when the offspring are later exposed to a high-fat diet 
 [122] . In sheep, maternal leptin infusion until the end of gestation altered adipose tissue 
morphology, increasing the number of multilocular adipocytes and the expression of UCP-1 
 [123] . 

  The effect of leptin administration during the postnatal period is far from being clear 
since it has been reported to both protect  [124]  and predispose  [125]  to obesity later in life. 
The nutritional status of the mother seems to play a key role in the offspring’s response to 
postnatal leptin administration  [126] . The controversial effects could also be explained by 
differences in the dosages used, the routes of administration, the treatment duration, or the 
different time points of leptin administration. Indeed, recent data from our laboratory 
indicate that not only are leptin levels important in the suckling period for the development 
of metabolic systems but also the exact moment in which they are modified. We found that 
acute hyperleptinemia on PND 2 reduces food intake in the adult offspring without affecting 
body weight gain, whereas blunting leptin levels on PND 9 decreases adiposity at adulthood 
without affecting food intake  [127] . 
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  Prolonged neonatal hypoleptinemia also has delayed effects on metabolism. Blunting 
the postnatal leptin surge from PND 2 to PND 13 results in long-term leptin insensitivity and 
increased susceptibility to diet-induced obesity  [128] . In addition, maternal deprivation-
induced hypoleptinemia decreases body weight and leptin levels in adult rats  [129–130] .

  In conclusion, leptin levels during early life are important for the development of the 
adult metabolic profile as they affect the development of central and peripheral systems 
involved in energy homeostasis. Moreover, it is clear that modulation of the levels of this 
important hormone during development, whether increased or decreased, acutely or chron-
ically, can have diverse effects on these systems. Further elucidation of this phenomenon 
and the mechanisms involved may help us to understand the recent and dramatic rise in 
obesity in many countries and to develop a strategy for its prevention. 
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