

SEMI-AUTOMATIC WEB SERVICE
GENERATION AND CLASSIFICATION
Automated assistance to the web service life cycle

Miguel Angel Corella, José María Fuentes, Pablo Castells
Universidad Autónoma de Madrid, Escuela Politécnica Superior, Campus de Cantoblanco,
28049 Madrid, Spain

Abstract: The convergence of semantic web techniques with web service technologies
has enabled the emergence of so-called semantic web services. This new kind
of services enacts the automatic manipulation of services by software
programs, to perform tasks such as automatic service location, composition,
and invocation. In this paper, we propose methods and techniques that enable
the semi-automatic generation, deployment, semantic annotation and
classification of web services.

Key words: semantic web services; web service generation; web service classification; web
service ontologies; reasoning; WSDL; OWL

1. INTRODUCTION

Since the emergence of the semantic web (Berners-Lee et al., 2001),
many research efforts have been aiming to use semantics to endow web
services with a much higher potential for automation. These efforts have
resulted in a new research trend called semantic web services (Terziyan et
al., 2003). The basis of this trend is to attach some semantic information to
current WSDL-based web service descriptions (Christensen et al., 2001) in
order to enable their analysis and manipulation by software programs. This
manipulation would be useful to enact powerful capabilities such as
automatic location, selection, invocation or composition of web services.

Nevertheless, semantic web services are facing today some problems and
limitations that restrain their advancement and evolution. From our point of
view there are two main problems to be solved:

2 Miguel Angel Corella, José María Fuentes, Pablo Castells

• There is no consensus on which language has to be used when

describing the semantic information about web services, although
there are two main proposals that are gaining momentum at the present
time, OWL-S (Martin et al., 2004) and WSMO (Roman et al., 2005).

• There is a lack of automatisms to help web service developers in the
creation of services, the annotation of their semantic information or
any other task related to the web service life cycle.

The research presented here is set forth to help overcome these problems.

More specifically, our work proposes:

• A realistic approach to the semantic information that can be obtained

and used from a web service.
• A set of automatisms that will allow web service developers to perform

some tasks related to web services. More precisely: creation,
deployment, testing, semantic annotation, and classification.

The solutions developed in this work have been implemented and

integrated in a web platform called Federica. Besides describing this
platform in some detail, the focus of this paper will be to explain our
research ideas and discuss the results achieved so far.

The rest of the paper is structured as follows. Section 2 shows all the
details of our work towards the semi-automatic generation of web services.
Next we explain our approach to the semi-automatic classification of web
services. Finally, on Section 4, we provide some conclusions, as well as the
next foreseen steps.

2. WEB SERVICE GENERATION

The critical mass of available web services, let alone semantic ones, is
still quite limited today. This is an important practical barrier for the
advancement of research and innovation in this field, which is difficult to
achieve without a sufficient testbed to try and evaluate the innovations.
Artificial examples (i.e. built by the innovators themselves) hardly provide
an objective basis for measuring the usefulness and performance of new
proposals, not to mention the considerable cost implied in building the
testbed, just for experimentation purposes.

The semi-automatic generation of web services, from such a widespread
commodity as are web applications, can help with this necessity, and is an
interesting research problem by itself. Of course, the expected quality of

Semi-automatic web service generation and classification 3

automatically generated services should not be the same as that of manually
defined ones, but we aim at achieving a sufficient quality for the services to
be useful for a variety of purposes, where of course, if needed, the generated
web services can be completed or refined by a programmer. Moreover, such
a facility as we are proposing here can be helpful in the transition from the
current World Wide Web of applications to a (Semantic) Web of services.

The idea of the automatic generation of web services from web
applications has already been addressed in former research works. Because
of its relevance for our research, it is worth citing the work developed by
Pham (2004), which already proposes the creation of web services from web
applications. In Pham’s proposal, web services are used only as gateways to
web applications, so that any program can invoke programmatically the
functionalities provided by web applications. When the generated web
services are called, they translate their input parameters to HTTP parameters,
send them to the application server, and wait for the response. Our work
takes a step further from this, by recognizing or generating data types,
finding associations of types with ontology concepts, if any, and
automatically classifying the generated services. Overall, our research aims
to push forward the goals undertaken by Pham et al towards the generation
of semantically-enhanced web service descriptions.

It is also interesting to cite the early work by Sahuguet et al (1999) in a
similar direction. Although this work does not use an explicit notion of web
service, since web service standards had not yet seen the light by that time,
their approach is very similar to the one proposed by Pham. The main
differences can be attributed to the status of the technology at the time of
publication – while Pham uses web service languages and tools to build a
gateway to web applications, Sahuguet et al. use non-standard descriptions
(manually generated) and generate Java applications as a gateway to the
functionality.

The process flow of our approach to the generation of web services is
shown in Figure 1. The input to the automatic generation system is the entry
web page of an application. The page is parsed (“HTML parser” box in the
figure) into a easier to process in-memory data structure, which is analyzed
in order to produce a WSDL description (WSDL Generator module) for the
service to be generated, plus some additional semantic descriptions
(Semantics Generator module). An implementation of the WSDL service is
automatically generated (Service Implementor module) and deployed into a
web service support platform (Axis and Tomcat have been used). Once the
service is deployed, it can be invoked from any web service client that
adheres to the generated WSDL description. One such client is automatically
generated for testing purposes. Calls to the generated web service (SOAP
requests) are automatically deferred to the original web application (HTTP

4 Miguel Angel Corella, José María Fuentes, Pablo Castells

request) by the generated service implementation. The result (a web page
source code) is returned to the service client (SOAP response).

The steps enumerated above will be explained in more detail in each of
the following subsections. More precisely, in section 2.1, we explain how
WSDL descriptions are extracted from the web interface of applications. In
section 2.2, the linkage of web services with web application functionality,
and the deployment of the service, are described. Then, in section 2.3, we
show how the execution of the generated web services is managed.

HTML

HTML

Web Service Client

Web Server

Web App

Tomcat Server

Axis Server

Deployed
Service

Deployed
Service

Federica

HTML
Parser

WSDL
Generator

Service
ImplementorWSDL

Semantic
GeneratorPage

Description Semantic
Descriptions

H
TTP R

equest

SOAP Request

SOAP Response

D
eploy Service

Figure 1. Overview of the web service generation and deployment process in Federica

2.1 Extracting web service descriptions

For the automatic analysis and description of the functionality provided
by a web application, the system we propose takes as input a) the URL of the
web page which gives access to the application, and b) a name to identify the
service to be generated. Our approach for the generation of WSDL
descriptions is based on the inspection of the source code of the entry web
page to the application, more specifically the HTML forms, as the basic UI
construct for web applications. Of course web application UIs are being
implemented today using other client-side technologies (JavaScript, Flash,
etc.) beyond plain HTML, but as a first approach to the problem, we have
circumscribed it to HTML forms.

In addition to the UI elements to interact with the application, the source
code of a web page through which a web application is accessed includes all
kinds of additional content, just as any other web page does: purely
informative contents (titles, instructions, logos, advertisements, etc.),

Semi-automatic web service generation and classification 5

navigation elements (hyperlinks), plus page style and layout details.
Although all these elements surrounding UI controls could be exploited to
find cues which help in the analysis of forms, in our current approach we
only inspect the UI elements themselves.

From the analysis of the web UI, our system determines the operations of
the web service to be generated, their inputs, and the type of these, and this
information is retained in a WSDL description. The generation procedure
works through the following steps:

1. A service with a unique wsdl:portType is defined for the whole

application.
2. The application page source is read from its URL, and the HTML

forms that the page contains are extracted using an HTML parser.
3. A wsdl:operation is created for each of the forms found in the page.
4. An output message and an input message are defined for each

wsdl:operation.
5. The “input”, “select” and “textarea” HTLM components are identified

as inputs for the service (that is to say, as wsdl:part elements in the
“in” wsdl:message) for each of the forms.

6. Depending on the HTML control type and attributes, a different data
type is assigned to each service input, a new XML schema type being
defined in some cases. Table 1 shows the correspondence between UI
controls and service message part data type.

7. The wsdl:output message will contain only one wsdl:part of xsd:string
type which, once the service is invoked, will return the source code for
the web page that is returned from the web application form.

HTML control XML Schema

data type
text
password
textarea

xsd:string

submit
radio
checkbox
hidden
select (simple selection)
inputs (same name)
inputs (with value and
readOnly attributes)

xsd:string,
enumeration

select (multiple selection) xsd:string array,
enumeration

Table 1. Mapping between HTML components and XML Schema data types

6 Miguel Angel Corella, José María Fuentes, Pablo Castells

Figure 2 shows an example of the generated WSDL description for the
Google home page.

<?xml version="1.0" encoding="ISO-8859-1"?>
…
<wsdl:types>

…
<simpleType name="hlEnumeration">

<restriction base="xsd:string">
<enumeration value="es" />

</restriction>
</simpleType>
…
<simpleType name="btnGEnumeration">

<restriction base="xsd:string">
<enumeration value="Búsqueda en Google" />
<enumeration value="" />

</restriction>
</simpleType>
…
<simpleType name="metaEnumeration">

<restriction base="xsd:string">
<enumeration value="" />
<enumeration value="cr=countryES" />
<enumeration value="lr=lang_es" />

</restriction>
</simpleType>

</schema>
</wsdl:types>
<wsdl:message name="fRequest">

<wsdl:part name="hl" type="tns1:hlEnumeration" />

<wsdl:part name="ie" type="tns1:ieEnumeration" />

<wsdl:part name="q" type="xsd:string" />

<wsdl:part name="btnG" type="tns1:btnGEnumeration" />

<wsdl:part name="btnI" type="tns1:btnIEnumeration" />

<wsdl:part name="meta" type="tns1:metaEnumeration" />

<wsdl:portType name="GoogleSearchIF">

<wsdl:operation name="f" parameterOrder="hl ie q btnG btnI meta ">
<wsdl:input name="fRequest" message="impl:fRequest" />
<wsdl:output name="fResponse" message="impl:fResponse" />

</wsdl:operation>

</wsdl:portType>
…

</definitions>

1

1

1

2

3

2

3

3

4

4

4

5

<form action=/search name=f>

...

<table cellspacing=0 cellpadding=0>
<tr>
<td width=25%> </td>
<td align=center>

<input type=hidden name=hl value=es>

<input type=hidden name=ie value="ISO-8859-1">

<input maxLength=256 size=55 name=q value="">

<input type=submit value="Búsqueda en Google" name=btnG>

<input type=submit value="Voy a Tener Suerte" name=btnI>

</td>

...

</tr>
<tr>
<td colspan=3 align=center>
Búsqueda:

<input id=all type=radio name=meta value="" checked> ...
<input id=lgr type=radio name=meta value="lr=lang_es" > ...
<input id=cty type=radio name=meta value="cr=countryES" > ...

</td>

</tr>
</table>

</form>

5

Google Home Page

Generated WSDL

<?xml version="1.0" encoding="ISO-8859-1"?>
…
<wsdl:types>

…
<simpleType name="hlEnumeration">

<restriction base="xsd:string">
<enumeration value="es" />

</restriction>
</simpleType>
…
<simpleType name="btnGEnumeration">

<restriction base="xsd:string">
<enumeration value="Búsqueda en Google" />
<enumeration value="" />

</restriction>
</simpleType>
…
<simpleType name="metaEnumeration">

<restriction base="xsd:string">
<enumeration value="" />
<enumeration value="cr=countryES" />
<enumeration value="lr=lang_es" />

</restriction>
</simpleType>

</schema>
</wsdl:types>
<wsdl:message name="fRequest">

<wsdl:part name="hl" type="tns1:hlEnumeration" />

<wsdl:part name="ie" type="tns1:ieEnumeration" />

<wsdl:part name="q" type="xsd:string" />

<wsdl:part name="btnG" type="tns1:btnGEnumeration" />

<wsdl:part name="btnI" type="tns1:btnIEnumeration" />

<wsdl:part name="meta" type="tns1:metaEnumeration" />

<wsdl:portType name="GoogleSearchIF">

<wsdl:operation name="f" parameterOrder="hl ie q btnG btnI meta ">
<wsdl:input name="fRequest" message="impl:fRequest" />
<wsdl:output name="fResponse" message="impl:fResponse" />

</wsdl:operation>

</wsdl:portType>
…

</definitions>

1

1

1

2

3

2

3

3

4

4

4

5

<form action=/search name=f>

...

<table cellspacing=0 cellpadding=0>
<tr>
<td width=25%> </td>
<td align=center>

<input type=hidden name=hl value=es>

<input type=hidden name=ie value="ISO-8859-1">

<input maxLength=256 size=55 name=q value="">

<input type=submit value="Búsqueda en Google" name=btnG>

<input type=submit value="Voy a Tener Suerte" name=btnI>

</td>

...

</tr>
<tr>
<td colspan=3 align=center>
Búsqueda:

<input id=all type=radio name=meta value="" checked> ...
<input id=lgr type=radio name=meta value="lr=lang_es" > ...
<input id=cty type=radio name=meta value="cr=countryES" > ...

</td>

</tr>
</table>

</form>

5

Google Home Page

Generated WSDL

Figure 2. Generated WSDL for Google home page

2.2 Linking web services to web applications

Once an WSDL is generated, our system provides an automatic
implementation of the service, consisting of an application wrapper from
which calls to the service are transferred as requests to the initial web
application. To achieve this, a link engine has been implemented using Axis
for sending and receiving SOAP messages (Gudgin et al., 2003) in the
communication with web services.

Using the Axis WSDL2Java tool, a set of empty Java classes is generated
from a WSDL description, which once implemented will define the desired
web service functionality. Service deployment is also done with Axis, the
engine of which processes the SOAP messages received by the service.

The result of this process is a fully functional web service, whose
operations carry out the same tasks as those the web application provides.

Semi-automatic web service generation and classification 7

2.3 Execution of generated web services

In order to try the generated services, our environment provides the
automatic generation of a client and a web interface to invoke the generated
services. This facility is an invaluable tool for development and testing.
Furthermore, we plan to integrate this capability with a sophisticated editor
with which developers can refine the service response description, and make
it more precise, e.g. as an XML Schema data type, rather than a plain web
page fragment source. Furthermore, this option opens further possibilities to
augment descriptions with richer semantics, in the spirit of the Semantic
Web Services vision. These would also be useful, in particular, for the
automatic classification of the service, which is addressed in the next
section. We have started the development of this edition tools, but, at the
present time they are not yet integrated with the rest of the platform.

3. WEB SERVICE CLASSIFICATION

With the techniques described in previous sections, we have the capacity
to generate functional web services almost automatically and have them
deployed (and stored) in a repository. Nevertheless, those services are stored
in a chaotic way, without any type of structure. This lack of structure in the
service storage can be seen as a problem because tasks such as, for instance,
searching for a concrete service, gain much complexity. In addition, if we
analyze the current situation of web services we see that classification is
already an important concern by itself.

Nowadays, UDDI (OASIS UDDI, 2004) is the most accepted and used
protocol for publishing, searching, and finding services over the web. These
actions are usually performed using UDDI registries, which can be seen as
service repositories easily accessed through a URL. In these registries, the
published services are classified using some kind of taxonomy (i.e.
UNSPSC, NAICS, etc.). Nevertheless, this classification is performed
manually by the human publisher of the service. Due to the huge quantity of
service classes in taxonomies as the ones mentioned above, the classification
process could be very complex and tedious.

What we are proposing here is to use a software agent to help service
publishers in the classification task. In order to meet this goal, in the context
and spirit of the generation process described in previous sections, our basic
starting point for any automated processing of the generated services are
WSDL descriptions. Nevertheless, the information contained in a WSDL
description is not sufficient to perform any type of classification. So, we
need more information about services, their parameters, their operations, etc.

8 Miguel Angel Corella, José María Fuentes, Pablo Castells

In conclusion, we need a higher level description of the service including
some semantic information that enables a software agent to help publishers
in the classification task.

In addition, as we are trying to classify web services in a taxonomy, we
will need, of course, to define that taxonomy. For this purpose, our system
can use any available taxonomy, such as the standards currently
recommended by UDDI registries, e.g. UNSPSC or NAICS.

Now starting from a taxonomy and a means to represent the semantic
information of a web service, the classification process is based on
comparing the new generated web services with some services previously
classified in the taxonomy. From this comparison, we obtain a similarity
measure representing the probability that a service should be placed under a
certain classification category in the taxonomy. The definition of similarity
measures between taxonomy concepts has been already addressed, for
example, by Bernstein et al. (2005).

All the details about each issue taking place in the classification process
can be found in the following subsections. More precisely, in section 3.1, all
the information about the representation of web service semantics can be
found. Next, in section 3.2, we will explain some details related to the
taxonomy we are going to use and the previously classified services we will
use for comparisons. Finally, in section 3.3, we will show the complete
process we will apply to obtain the similarity measure between services and
taxonomy classes.

3.1 Semantic annotation of web services

Our first step towards the achievement of the classification mechanism is
to obtain, define and represent all the extra needed semantic information for
a service. As it has been already said, there are mainly, at the present time,
two initiatives on semantic description languages for web services: OWL-S
and WSMO. Both of these languages provide a highly generic way to
describe semantic information about a web service. Because of this, they are
considerably complex and difficult to use, even for very simple services.
Therefore, we have decided to define a simpler ontology that fits better with
our purposes. We do not discard using one of these initiatives in the future,
as we gain more generality in our own service descriptions.

We have chosen OWL (McGuiness et al., 2004), widely accepted in the
semantic web community, as the ontology-definition language for our
service ontology. With this language, we have developed a simple ontology
containing all the concepts (classes) and relations (properties) that are
described in WSDL service descriptions. The ontology is shown in Figure 3.
In the current status of our research, the ontology does not include much

Semi-automatic web service generation and classification 9

semantics about the different service concepts, but we expect to extend it
with new information as soon as it can be automatically or semi-
automatically retrieved.

Using the aforementioned ontology we have an OWL representation of
the service in terms of the information described in WSDL. The “extra
semantics” in this description with respect to plain WSDL is held:

• In the “serviceType” property of the “WebService” class. This allows

linking the description of the service to a type of service defined in
other ontologies (or taxonomies), i.e. the one explained on the section
3.2.

• In the “parameterType” property of the “Parameter” class. This allows
linking the description of a data type to a type defined in other data
type ontologies.

WebService

Input Output

Parameter

hasParameter

Method

hasMethod

fromMessage

hasParameter

Message

hasInputMessage
hasOutputMessage

xsd:string xsd:string
wsdlName label

xsd:string wsdlName

xsd:string
label

xsd:string
label

xsd:string
wsdlName

xsd:string

portType

xsd:string
wsdlName

xsd:string

label

Class

Type

SubClassOf

Property

ServiceType

serviceType

DataType parameterType

WebService

InputInput OutputOutput

ParameterParameter

hasParameter
hasParameter

MethodMethod

hasMethod
hasMethod

fromMessage

hasParameter

MessageMessage

hasInputMessage
hasOutputMessage

xsd:string xsd:string
wsdlName label

xsd:string wsdlName

xsd:string
label

xsd:string
label

xsd:string
wsdlName

xsd:string

portType

xsd:string
wsdlName

xsd:string

label

Class

Type

SubClassOf

Property

ServiceType

serviceType

DataType parameterType

Figure 2. Web service ontology

With this ontology we add to WSDL the possibility of representing the
classification of a web service and a higher-level description of data types.
Regarding the latter, and in order to enrich service parameter descriptions,
we have defined a data type ontology to which parameter data types will be
mapped. This mapping means that the range of the “parameterType”
property of the web service ontology described above is conformed by the
classes of the data type ontology, the main elements of which are shown in
Figure 4.

10 Miguel Angel Corella, José María Fuentes, Pablo Castells

As can be seen, the ontology defines three kinds of data types:

• Simple data types: This is an ontological representation of XML

Schema data types. The subclasses represent the different kind of data
types that can be used in XML Schema (although the classes
represented each data type have not been shown in the figure).

• Complex data types: This is an ontological representation of XML
Schema complex types, i.e. structures, which could appear in a WSDL.
Obviously, as we do not know, a priori, which structures will be in the
analyzed WSDL descriptions, this class is initially empty.

• Enumerated data types: Despite these data types could be seen as
restricted simple types, we have decided to place them under a
separate class. This decision is based on the fact that, due to the basis
of the generated web services (this is, web applications), the
appearance of enumerated data types is very common (i.e. every
combo box of an HTML form).

DataType

Class

Type

SubClassOf

Property

EnumeratedType ComplexTypeSimpleType xsd:string
xsdType

BinaryDataType

TextType

LogicType

NumericType

TemporalType

GeographicalType

TouristicType

PersonalDataType

MonetaryType

TimeType

DataType

Class

Type

SubClassOf

Property

EnumeratedType ComplexTypeSimpleType xsd:string
xsdType

BinaryDataType

TextType

LogicType

NumericType

TemporalType

GeographicalType

TouristicType

PersonalDataType

MonetaryType

TimeType

Figure 3. Data type ontology (main classes)

Thus, with this ontology we have an OWL representation of the different
data types used by a service. These representations are very useful when
trying to classify a service, as they can be used as source for a data type
similarity comparison between two services.

Then, with the union of both ontologies we have all the service
information needed represented in an ontological way and the possibility of
using software agents (i.e. based on OWL reasoners) to perform the
classification of the service.

Semi-automatic web service generation and classification 11

3.2 Classification procedure

Given a set of classified WSDL descriptions under some classification
taxonomy, and a newly generated web service description, based on the
service ontology and techniques described in previous sections, in order to
deploy the new service, and make it available in a service registry, an
appropriate classification category should be assigned to the new service,
e.g. for easy retrieval.

As it has been already said, we use the classification standards used by
UDDI registries (such as UNSPSC or NAICS) as the taxonomy where our
web services will be classified, but our techniques are independent from the
standard used. To facilitate our development, and in anticipation of future
semantic-web-oriented extensions of our work, we are using an OWL
representation of the taxonomy. This has the advantage that the same tools,
e.g. OWL reasoners, can be used to process service descriptions and
classification hierarchies in a uniform way (e.g. for the computation of
similarity measures between services and categories, reasoning about class
hierarchies, etc.).

We have developed a heuristic for automated service classification, based
on the comparison of an unclassified service with available classified
services, whereby a measure of the likelihood that the service can be
correctly classified under some category is computed. This problem is
related but different from the ones addressed by other service comparison
techniques found in the literature (Bernstein et al., 2005; Sirin et al., 2004;
Bansal and Vidal, 2003; Field and Hoffner, 2003). In particular, in our
approach, the fact that two services are found similar does not mean they are
interchangeable for e.g. automatic service selection, composition, or
invocation. Instead, the similarity measures provide a ranking of candidate
classifications for a new service, which can be of great help for a human
service administrator that is facing classification taxonomies with thousands
of categories.

Our heuristic works as follows. Let S be the set of all web services, and
let C be a classification taxonomy. Since C is used to classify the services in
S, we may define C as a subset of the parts of S, P(S), i.e. each c∈C is a
labelled set of services c ⊂ S (note that it is possible that c = ∅). Given a
new service s∈S, we want to find the category c∈C that maximizes its
similarity with s. We measure the similarity between s and c is by the
following formula:

' 1

' ' '

sim(,) (1) sim(, ')c

c c s c

s c s+

⊂ ∈

= −∑ ∏ s

12 Miguel Angel Corella, José María Fuentes, Pablo Castells

whereby the similarity between a service and a category is computed in
terms of the similarity between the service and the services classified under
that category. We have chosen the above formula because it meets the
following desired properties:

• sim(s,c) ∈ [0,1] provided that sim(s,s’) ∈ [0,1] ∀s’∈c
• sim(s,c) ≥ sim(s,s’) ∀s’∈ c (in particular this means that sim(s,c) = 1 if

sim(s,s’) = 1 for some s’).
• sim(s,c) increases monotonically with respect to sim(s,s’) ∀s’∈c,
• Since ∀s’∈c, sim(s,c) = sim(s,s’) + (1 – sim(s,s’)) sim(s, c – {s}),

sim(s,c) can be computed efficiently (i.e. with linear Θ(|c|)
complexity).

Now, the similarity between two services is measured in terms of the

similarity of their operations and parameters. If we denote by Ps the set of
the parameters of service s, and by OPs the set of its operations, the
similarity of two services is defined as:

' 'sim(, ') (sim(,),sim(,))s s s ss s f P P OP OP=

Developing a measure for comparing service operations is still work in
progress in our research as of this writing, so in the meantime we are
working with (,)f x y x= .

The similarity between two parameter sets P and P’ is computed as the
average of the best possible pairwise similarities obtained by an optimal
pairing of the elements from the two sets. This can be formalized as follows.
We define top(P,P’) as the pair (p,p’) ∈ P × P’ that maximizes sim(p,p’).
Then let P1 = P, P1’ = P’, Pk = Pk-1 – {pk-1} and Pk’ = P’k-1 – {p’k-1}, where
(pk-1,p’k-1) = top(Pk-1,P’k-1). With these definitions, the similarity between two
parameter sets is given by:

()()
()

()

min , '

1
sim top , '

sim(, ')
max , '

P P

i i
i

P P
P P

P P
==
∑

In our current model, the similarity between two parameters is defined as
the similarity between their respective types. Let T denote the set of all types
(i.e. the set of domain ontology classes). We define the similarity between
two types t∈T, t’∈T as:

Semi-automatic web service generation and classification 13

(, ')

(',)

1 if '
'

 if and ' are subclasses of
'

sim(, ')
0.5 if subtype of '
0.5 if ' subtype of

0 otherwise

h t t

h t t

t t
t t

t t
t t

t t
t t
t t

⎧ =
⎪ ∩⎪
⎪ ∪⎪= ⎨
⎪
⎪
⎪
⎪⎩

EnumeratedDataType

where h(t, t’) denotes the distance between t and t’ in the type hierarchy (e.g.
the distance between a type and its immediate supertype is 1).

With this process, we can have finally a vector of similarity measures
between a new analyzed service and all the taxonomy classes. Then it is time
for service publishers to decide on which class (from a ranked list) the
service best fits.

4. CONCLUSIONS AND FURTHER WORK

Our work shows that automatic web service generation is feasible. In
fact, we have implemented all the ideas shown in this document and have
developed a first version of the Federica platform (accessible at
http://rhadamanthis.ii.uam.es:8080/federica). In that platform it can be seen
that tasks such as generation and deployment of web services are done
automatically. It also includes the tools needed for web service execution
and testing. Nevertheless, the edition tools that have been discussed in
section 2 are not yet integrated with the rest of the platform.

Our work on semi-automatic classification has some commonalities with
the research on web services matchmaking (Sirin et al., 2004; Bansal and
Vidal, 2003; Field and Hoffner, 2003). The approaches in those proposals
are based on the matching between IOPEs (input, output, precondition and
effects). As available datasets providing such descriptions are scarce today,
at present we restrict our matching methods to service inputs and outputs. Of
course, as both semantic web services technology and our research evolve,
we could extend and improve our classification techniques by exploiting
these new semantic features. We expect this to be an important direction of
progress for our work, since the richer the description of services, the more
advanced automation techniques can be devised.

Meanwhile, the goal of this paper is to show it is possible to develop
automated assistance capabilities for service generation and classification,
using only syntactic descriptions (WSDL), service taxonomies, and data type
ontologies (in OWL), which are already in use in the current state of
semantic web and web service technology development and adoption, or

14 Miguel Angel Corella, José María Fuentes, Pablo Castells

which can be created or completed with little effort. Some current gaps, that
are requiring an effort from our part in compensation, include the
construction of a large-enough repository of manually classified WSDL
service descriptions (say, by the hundreds), to serve as testbed for our
techniques, and some current limitations of available semantic web tools,
such as the OWL reasoners. It is to be expected that our workarounds can be
removed as these tools keep reaching maturity.

Rather than aiming at, or starting from, a maximum semantic web service
representation expressiveness, as in OWL-S and WSMO, we have
approached our research objectives in a bottom-up approach, starting from
consolidated, ready-to-use technology, such as WSDL and OWL, already
being adopted by industry as of today. From this standpoint, our long-term
goals are the same as those of OWL-S and WSMO, namely to bridge the gap
between current web service technology, and the vision of Semantic Web
Services.

Our next steps in this direction include: growing the collection of
services generated by our platform, stored in our repository; extend the
semantic information represented in our service ontology, that can be
obtained in an automated way; complete the development of the
edition/administration tools to customize and improve the quality of the
generated services; further testing, evaluation, and tuning of the automatic
web service classification techniques.

5. ACKNOWLEDGEMENTS

We would like to thank Ruben Lara for his thorough revision, comments,
and suggestions on the early drafts of this paper, which greatly helped to
improve our work.

REFERENCES

Bansal, S., Vidal, J. M., 2003, Matchmaking of web services based on the DAML-S service
model, Autonomous Agents & Multiagent Systems 2003 (AAMAS 2003), pp. 926 – 927.

Berners-Lee, T., Hendler, J., Lassila, O., 2001, The semantic web, In Scientific America.
Bernstein, A., Kaufmann E., Bürku, C., Klein, M., 2005, How similar is it? Towards

personalized similarity measures in ontologies, Wirstchaftsinformatic 2005, pp. 1347 –
1366.

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., 2001, Web Service Description
Language (WSDL), v1.1; http://www.w3.org/TR/wsdl

Field S., Hoffner., Y., 2003, Web services and matchmaking, Int. J. Networking and Virtual
Organisations, Vol. 2, pp. 16 – 32.

Semi-automatic web service generation and classification 15

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J-J., Nielsen, H. F., 2003, SOAP Version

1.2 - Part 1: Messaging framework. http://www.w3.org/TR/soap/
Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S.,

Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Scycara, K., 2004, OWL-S:
Semantic markup for web services, v1.1; http://www.daml.org/services/owl-s/

McGuiness, D. L., van Harmelen, F., 2004, OWL: Web Ontology Language overview, 2004.
http://www.w3.org/TR/owl-features/

OASIS UDDI, 2004, UDDI: The UDDI technical white paper; http://www.uddi.org/
Pham, H-H., 2004, B2B with Toshiba Web Service Gateway, In Proc. Recherche

Informatique Vietnam & Francophonie 2004 (RIVF 2004), pp. 137 – 142.
Roman, D., Lausen, H., Keller, U., de Brujin, J., Bussler, C., Domingue, J., Fensel, D., Hepp,

M., Kifer, M., König-Ries, B., Kopecky, J., Lara, R., Oren, E., Polleres, A., Scicluna, J.,
Stollberg, M., 2005, Web Service Modeling Ontology (WSMO); http://www.wsmo.org/

Sahuguet, A., Azavant, F., 1999, WysiWyg web wrapper factory (W4F)”. Unpublished, 1999.
Sisrin, E., Parsia, B, Hendler, J., 2004, Filtering and selecting semantic web services with

interactive composition techniques, IEEE Intelligent Systems, 19(4): 42 – 49.
Terziyan, V. Y., Kononenko, O., 2003, Semantic web enabled web services: State-of-the-art

and industrial challenges, In Proc. International Conference on Web Services 2003 (ICWS
2003), pp. 183 – 197.

	1. INTRODUCTION
	2. WEB SERVICE GENERATION
	2.1 Extracting web service descriptions
	2.2 Linking web services to web applications
	2.3 Execution of generated web services
	3. WEB SERVICE CLASSIFICATION
	3.1 Semantic annotation of web services
	3.2 Classification procedure

	4. CONCLUSIONS AND FURTHER WORK
	5. ACKNOWLEDGEMENTS

