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Abstract. In this paper we present a new model of semantic features
that, unlike previously presented methods, does not rely on the presence
of a labeled training data base, as the creation of the feature extraction
function is done in an unsupervised manner.
We test these features on an unsupervised classification (clustering) task,
and show that they outperform primitive (low-level) features, and that
have performance comparable to that of supervised semantic features,
which are much more expensive to determine relying on the presence of
a labeled training set to train the feature extraction function.

1 Introduction

Several authors have proposed, in the last few years, the use of class informa-
tion in the definition of features or, to say it in a nother way, the definition
of features based not only on the image data but also on certain, limited, se-
mantic information. The general schema of these features is as follows. Consider
a reference database of images D = {x1, . . . , xn}, and a reference partition of
D into classes (according to some semantically meaningful criterion), D, with
D = {D1, . . . , Dq},

⋃
iDi = D, and for all i 6= j, Di ∩Dj = ∅. The subsets Di

may or may not have associated labels. Also, let I be a space of images, and
φ : I → X a feature extractor function from images to a suitable feature space
X.

These features and the reference data base are used to train, in a supervised
way, q classifiers C1, . . . Cq with Ci : X → [0, 1] determining the degree to which
the feature vector X belongs to the category i. The outputs of these classifiers
are then used, in combination with the low level feature extractor φ, to create a
semantic feature vector for an unknown image x. That is, an image is represented
by the q-dimensional vector

F (x) = [C1(φ(x)), . . . , Cq(φ(x))] (1)

we call F : I → [0, 1]q a supervised semantic feature extraction function. This
general scheme is sometimes implemented with a slight modification, which has
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been shown to improve perfoamance in certain cases. The feature space X is
partitioned into p parts (the nature of this partition depends on the specific
method used), and q classifiers corresponding to the q categories are trained
separately on these p partitions. In this case, the feature vector will have di-
mension pq. The recent literature proposes several instantiations of this general
scheme. Vogel and Schiele presented an image representation formed by local
semantic descriptions [18]. They classify local image regions into semantic con-
cept classes such as water, rocks, or foliage. Images are represented through the
frequency of occurrence of these local concepts. Li et al. [12] in their object bank
system use 177 object recognizers at 12 different scales, over 21 image regions,
obtaining a vector of 177× 12× 21 = 44, 604 components.

Ciocca et al. presented an image descriptor, that they called “prosemantic
features”, based on the output of a number of image classifiers [3]. The feature
vector is created, by concatenating the output of 56 different soft classifiers
trained to identify 14 different classes on the basis of four different low-level
features.

Torresani et al. [17] presented a descriptor composed of the output of 2,659
classifiers trained to recognized scene-level visual concepts (called “classemes”)
taken from the LSCOM ontology [13].

In [4] we tested these supervised features against a representative sample of
primitive features (low-level features extracted directly fom the images) on an
unsupervised classification task. We wanted to test whether the use of supervised
learning in the feature definition phase would help in the unsupervised classifica-
tion of hitherto unseen classes. We performed tests on three different data bases:
the Simplicity data set [19] (a subset of the Corel data set), the GIST scene data
set [14], and Li and Fei-Fei’s event data set [11]. The results were that supervised
features outperform primitive ones in all the unsupervised classification tasks.
The relative merits of the three types of features that were tested (classemes,
prosemantic, object bank) are more debatable and depend on the data set on
which we are testing, but the advantage of using semantic information in order
to define the features have been clearly estabished.

The work in this paper begins with an important observation from [17]:

It is not required or expected that these base categories will provide use-
ful semantic labels [...]. On the contrary, we work on the assumption that
modern category recognizers are essentially quite dumb: so a swimmer

recognizer looks mainly for water texture, and the bomber plane rec-
ognizer contains some tuning for the “C” shapes corresponding to the
airplane nose and perhaps the “V” shapes at the wing and tail. [..] The
true building blocks are not the classeme labels that we can see, but
their underlying dumb components, which we cannot.

If this observation is correct, then the class labels (that is, the a priori di-
vision into semantically defined classes) adds nothing, in the best scenario, to
the classifiers. In the worst scenario, the use of an a priori division can actually
be counterproductive, as class divisions might cut across the underlying dumb
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components that are what the classifiers really identify. For example, the exis-
tence of two classes, airplane and bird forces the classifiers to disregard the
“C” shape of the nose, which is a feature common to two classes. A classifier not
forced to distinguish between planes and birds could make a better use of this
important low-level clue.

In this paper we propose to replace the supervised classification used to train
the classifiers C1, . . . , Cq with unsupervised classification, in which the only ex-
ternal constraint is the number of classes q, which determines the dimension of
the semantic feature space. We see two main advantages in this: on the one hand,
it will be possible to derive the feature computing function using an unlabeled
training set, rather than a labeled one as it is the case for supervised features.
On the other hand, we hope that the classifiers will “latch” directly to the sig-
nificant visual cues that determine the structure of the training set rather than
having categories imposed from outside.

2 Unsupervised classeme

Our method is a simple modification of the supervised (semantic) feature extrac-
tion. We are given a training data set D and, possibly, a desired dimensionality
q. The method operates as follows:

i) define a low-level feature extractor φ : I → X for a suitable low-level feature
space X;

ii) use a clustering algorithm on the feature space X to divide the data base D
into q classes D1, . . . , Dq;

iii) use the classes D1, . . . , Dq as ground truth in order to train q classifiers
C1, . . . , Cq with outputs in [0, 1] to recognize the classes.

iv) define the unsupervised classemes feature vector for an image x as

U(x) = [C1(φ(x)), . . . , Cq(φ(x))] (2)

with U : I → [0, 1]q.

The value q can either be a design parameter (this is the case of our tests,
in which we used a k-means clustering algorithm for the first unsupervised clus-
tering) or be determined automatically by the system if a clustering algorithm
is used that autonomously determines the number of classes (such as affinity
propagation [7] of hierarchical clustering [20]). This possibility adds flexibility
to the use of these features: if the design calls for a feature vector of a specific
size, then the designer can use k-means, thus establishing the number of classes
and therefore the size of the vector. Otherwise, the designer can use a clustering
algorithm without a predefined number of clusers and let the system determine
the size of the feature vector based on the characteristics of the training set.

Note that although the classifiers C1, . . . , Cq are trained using a supervised
algorithm, the method, as a whole, is unsupervised. This gives it an important
advantage with respect to supervised semantic features, as the determination of
the feature extraction function doesn’t need a labeled data base.
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2.1 Implementation details
In the tests that we propose in this paper, we used four feature sets: a RGB
histogram, the first and second YUV moments on a 9 × 9 subdivision, an edge
direction histograms (EDH) computed on a 8× 8 subdivision, and bag of SIFT
descriptors. Each one of the four features was considered separately. Moreover,
each of the feature spaces was partitioned in four sub-spaces, and classifiers
were trained separately for each one of them (e.g. the 512 bin RGB histogram
was divided in four sub-histograms of 128 bins each), except the YUV block-
histogram, which was partitioned in three sub-spaces. In the end, the feature
space was partitioned in p = 4 + 4 + 4 + 3 = 15 sub-spaces.

Each sub-space of the partition resulted in q clusters (so that we have a
total of 15q clusters, which is also the dimension of the final feature vector).
The number of clusters was 5 or 10 depending on the test (see below), giving us
feature vectors of size 150 or 75.

For each sub-space of the partition, we trained classifiers to recognize the
q classes derived from the clusters, using for each cluster a one-vs-all training
(samples from the selected cluster are used as positive examples, and samples
from all the others are used as negative examples, subsampling the negative
classes so as to obtain a balanced set). The classifiers C1, . . . , C15q were SVM
with Gaussian kernels.

3 The comparison methods

We have compared our unsupervised classemes with ten other features on an un-
supervised classification problem, three supervised methods, and seven primitive
features.

3.1 Classemes
Torresani et al. use as feature vector the output of a large number of weakly
trained object category classifiers [17].

In terms of our schema, the low level spaceX was composed of Color GIST [15],
Pyramid of Histograms of Oriented Gradients [5], Pyramid self-similarity [1],
and bag of SIFT descriptors. The space was not partitioned. A large number of
classifiers (q = 2659) was trained on categories taken from the LSCOM ontol-
ogy [13]. Each classifier has been trained one-vs-all on a category with the LP-β
multi-kernel algorithm [8].

Classemes has been presented as a descriptor for image retrieval. Torresani
et al. have shown that classification accuracy on object category recognition is
comparable with the state of the art, but with a computational cost orders of
magnitude lower.

3.2 Prosemantic Features
Prosemantic features are based on the classification of images into a set of 14
categories (q = 14): animals, city, close-up, desert, flowers, forest, indoor, moun-
tain, night, people, rural, sea, street, and sunset. Some classes describe the image
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at a scene level (city, close-up, desert, forest, indoor, mountain, night, rural, sea,
street, sunset), while other describe the main subject of the picture (animals,
flowers, people).

The low-level feature space X is defined by four low-level features. The space
is partitioned by features, that is, for each class, four different classifiers are
defined, each one based on one of the four low-level categories (p = 4).

Each classifier has been independently trained on images downloaded from
various image search engines with different parameters. The classifiers’ output
was normalized by a linear transformation

φ′c,p(x) = ac,pφc,p(x) + bc,p, (3)

where the parameters ac,p and bc,p are determined by a logistic regression which
maps the score of the classifier to an estimate of the posterior probability

p(c|x) ' (1 + exp(−φ′c,p(x)))−1. (4)

3.3 Object Bank
Object Bank is an image representation constructed from the responses of many
object detectors, which can be viewed as a “generalized object convolution” [12].
Two state-of-the-art detectors are used: the latent SVM object detectors [6] for
most of the blobby objects such as tables, cars, humans, etc, and a texture
classifier [9] for more texture-based objects such as sky, road, sand, etc.

A large number of object detectors are run across an image at different scales.
Each scale and each detector yield an initial response map of the image. The
authors used 177 object detectors at 12 detection scales. Each response map is
then aggregated according to a spatial pyramid of three levels (1 + 4 + 16 =
21 regions). The final descriptor is thus composed of 177 × 12 × 21 = 44, 604
components (q = 44, 604).

The authors evaluated the object bank descriptor in the context of scene cat-
egorization. By using linear classifiers, they obtained a significant improvement
against low-level representations on a variety of data sets.

3.4 Primitive Features
We also compared our feature vector with seven state of the art primitive fea-
tures. We considered three descriptors defined by the MPEG-7 standard–namely
the Scalable Color Descrptor (SCD), the Color Layout Descriptor (CLD), and
the Edge Histogram Descriptor (EHD) [16]–the Color and Edge Directivity De-
scriptor (CEDD) [2], the Gist features [14], bag of features [21], and the spatial
pyramid representation [10].

4 The data sets

We tested these feature vectors for unsupervised classification on three data
bases representative of different situations common in the applications. The first
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experiment has been conducted on the Simplicity data set [19], which is a subset
of the COREL data set, formed by ten categories containing 100 images each. It
can be considered an “easy” data set, since the ten categories are clearly distinct,
with little or no ambiguity. On the one hand, this restricts the significance of
the experimentation, but on the other hand, it makes the results more reliable
(since there is only a single, reasonable way of dividing the data in ten meaningful
clusters).

The second group of tests was done on the scene recognition data set collected
by Oliva and Torralba [14] to evaluate features and methods for scene classifi-
cation. This data set contains eight outdoor scene categories: coast, mountain,
forest, open country, street, inside city, tall buildings and highways, for a total
of 2,688 images (260–410 images per class). With respect to the Simplicity data
set, there is less inter-class variability, and are therefore the classes are expected
to be harder to separate.

The third data set considered contains images of eight different classes of
events [11]. This data set has been collected in order to evaluate event classifica-
tion methods. It is composed of 1,579 images (eight classes, 137–250 images per
class) showing people performing various sport activities (rock climbing, rowing,
badminton, bocce, croquet, polo, sailing, and snowboarding). Of the three data
sets, this is undoubtedly the most challenging, as events can’t be classified only
at a scene level, but object detection and pose recognition are often required.

5 The tests

For each of the three data bases that we are using, we have a ground truth
with a definite number of categories (ten for Simplicity, eight for the Torralba
data base and for the Event data set). Since our purpose here was to test the
features, we avoided possible instabilities deriving from the performance of the
clustering algorithm by using k-means, where k was set to the same number of
classes as the ground truth. In the following, to avoid confusion, we shall refer to
the classes discovered by the clustering algorithm as u-classes, and to the actual
(ground truth) classes as g-classes.

In order to compute the classification rate, for each one of the u-classes
obtained by the clustering algorithm, we determine which one of the g-classes is
most represented, and assign that u-class to it. This entails that several u-classes
can be taken as representatives of the same g-class. In this case, all images of
the g-class classified in either of the u-classes is taken as correct. An example
of this can be seen in table 2 (matrix on the bottom-left), which shows the
confusion matrix for the classeme features on the Simplicity data set. In both
u-classes 6 and 7, the most represented g-class is Horses, so both these u-classes
are considered as representatives of Horses, and both the 44 images of horses in
u-class 6 and the 43 images in u-class 7 are considered as correct classifications.
On the other hand, it may happen that a g-class is not the most represented
class in any u-class. This is the case, in the same matrix, of the class Elephants.
In this case, all elephant images are considered misclassified.
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The results are summarized in table 1. A first general observation is that

Feature Simplicity Scene Events

Unsupervised classemes 81.7 65.0 57.0

Classemes 65.0 76.4 62.0
Prosemantic 73.7 78.3 64.9
Object Bank 57.8 70.0 43.1

GIST 33.7 57.1 46.2
Bag of SIFT 49.0 39.1 36.6
Spatial Pyramid 47.4 43.0 36.7
CEDD 62.2 38.3 40.4
SCD 42.3 27.1 27.9
CLD 54.1 32.1 32.1
EHD 50.4 59.5 49.6

Table 1. Summary of the classification results for the ten methods on the three test
data bases.

unsupervised classemes work better than supervised semantic on the Simplicity
data base and slightly worse on the scene and event data base. In any case,
they outperform all primitive features. Apart from the better performance of
unsupervised classemes on the Simplicity data base, this is in line with what
one can intuitively expect: unsupervised classemes use more information than
primitive features (they use a training set of images) but less than supervised
(they don’t need a labeled data set), and their performance is placed accordingly.
Nevertheless, in some cases, unsupervised classemes can outperform semantic
features, despite the absence of labels.

In order to analyze more closely these differences, we show, in tables 2–4 the
confusion matrices for unsupervised and supervised semantic features. If we con-
sider again Torresani’s observation reported in the introduction, it is clear that
unsupervised classemes lock-in to the most salient visual features independently
of the presence of labels, and form clusters based on these salient features, while
supervised features have to find a compromise between salient visual features
and the labels that are given to them. If we compare unsupervised classemes
with prosemantic on the Simplicity data base, we notice, for instance, the 68
misclassifications of prosemantics between Africa people and Food. Some pic-
tures of Africa people have a color structure similar to pictures of food, so the
labeling would in this case give indications contrary to the visual features, and
this probably provokes the creation of weaker classifiers (viz. classifiers with a
narrower margin). The same happens in the case of classemes between horses
and elephants, to the extent that the g-category Elephants disappears, and two
u-categories are assigned to Horse. On the other hand, in the scene data base,
we see that, in spite of the lower overall performances, unsupervised classemes
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Unsupervised classemes Prosemantic
Class 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Africa people 79 - - 7 - 1 6 3 3 1 2 - 6 - 68 4 - 18 - 2
Buses - 93 - 1 - - 1 5 - - 94 - - - - - 5 1 - -
Dinosaurs - - 100 - - - - - - - - 100 - - - - - - - -
Elephants 3 - - 77 - - 19 - - 1 - - 61 - 3 11 - 9 14 2
Flowers 3 - - 1 87 2 - 1 6 - - - - 99 1 - - - - -
Food 4 - - 15 2 75 - 1 2 1 - 5 1 11 71 - - 12 - -
Horses - - - - - - 97 1 2 - - - - - - 88 - 12 - -
Monuments 6 1 - 8 2 - 3 67 9 4 9 - 4 1 1 1 56 23 4 1
Mountains 1 - - 5 - - 4 2 74 14 - - 7 - - - 3 1 77 12
Sea 2 - - 7 - - 2 4 17 68 1 - 6 - 3 - 5 7 10 68

Classemes Object Bank
Class 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Africa people 61 - - 14 8 10 - 5 1 1 32 1 - 9 - 41 8 2 6 1
Buses - 92 - - - - - 6 2 - - 97 - 1 - - - 2 - -
Dinosaurs - - 98 - 2 - - - - - - - 99 - - - - - - 1
Elephants 14 - - - 1 42 7 3 33 - 1 - - 42 - 1 18 5 14 19
Flowers 5 - - 91 4 - - - - - 6 - - - 58 36 - - - -
Food 15 - - 6 65 4 - - 10 - 10 - 1 4 2 56 - - 25 2
Horses 4 - - - - 44 43 4 5 - 2 - - 5 - - 66 8 18 1
Monuments 4 2 1 - 3 5 - 64 20 1 12 8 2 13 - 4 2 39 13 7
Mountains 2 - 1 1 3 31 - 1 47 14 4 - - 37 - 1 3 2 31 22
Sea 1 - - 1 5 4 - 3 41 45 1 - - 20 - 2 2 3 14 58

Table 2. Confusion matrices for unsupervised classemes, Prosemantic, classemes, and
Object Bank features on the Simplicity data base.

Unsupervised classemes Prosemantic
Class 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Coast 224 3 68 5 19 37 2 2 294 2 14 - 27 20 - 3
Forest - 311 - - 4 13 - - - 291 - 1 26 10 - -
Highway 51 3 158 18 5 8 13 4 8 1 206 7 4 12 14 8
Inside city 8 2 1 185 2 2 38 70 - - 5 178 - 2 84 39
Mountain 10 36 9 3 260 53 1 2 9 9 2 - 332 22 - -
Open country 36 96 20 2 54 197 3 2 24 32 4 - 54 294 2 -
Street - - 3 43 12 2 203 29 - - 5 32 2 1 245 7
Tall building 3 6 15 72 28 11 12 209 2 - 2 53 9 1 25 264

Classemes Object Bank
Class 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Coast 201 2 92 - 1 62 - 2 254 3 1 2 41 58 1 -
Forest - 312 - - 14 2 - - - 302 - 23 - - 3 -
Highway 21 - 202 9 5 15 8 - 129 - 6 5 22 86 12 -
Inside City 1 - - 249 - - 51 7 3 - 241 - - 3 27 34
Mountain 4 17 6 - 274 71 2 - 4 29 - 253 31 47 8 2
Open Country 11 19 57 - 46 276 - 1 37 13 - 54 205 98 3 -
Street - - 1 30 - - 259 2 1 2 9 4 - 9 248 19
Tall Building - 4 - 26 1 - 45 280 - 4 53 6 - 1 12 280

Table 3. Confusion matrices for the unsupervised classemes, Prosemantic, classemes,
and Object Bank features on the Scene data base.

correctly identify all the g-classes, although in some cases there is consider-
able confusion, such as between the classes. Consider, for example, the classes
Mountain and open country. What brings down the performance of unsuper-
vised classemes is in this cases the presence of g-classes poorly separated from
the visual point of view. Many images of Mountain do satisfy the visual condi-
tions to be considered open country and, in the absence of a label that forces the
two g-classes to be separated, they form similar clusters, leading to the rlatively
high confusion between the two g-classes. Many cases of high-confusion in un-
supervised classemes can be ascribed to the presence of classes poorly separable
from the visual point of view, with many images that could belong to one or
the other (Forest vs. open country, street vs. inside city vs. tall building, etc.).
In this case, the supervised features have the advantage that the presence of
the label forces the classifiers to focus on certain visual features rather ignoring
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others (e.g. the classifier of tall building is forced to concentrate on long vertical
lines). In the event data base, most methods work rather poorly, as many classes

Unsupervised classsemes Prosemantic
Class 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Rock climbing 171 2 3 6 5 2 2 3 170 1 - - 5 3 - 15
Rowing 3 165 12 6 32 14 8 10 5 156 6 2 9 25 42 5
Badminton 3 14 89 67 5 13 4 5 1 3 168 6 2 14 3 3
Bocce 38 1 15 13 50 13 1 6 10 1 15 15 60 28 2 6
Croquet 24 2 65 13 109 13 - 10 3 2 12 109 76 31 - 3
Polo 4 2 8 52 29 83 - 4 5 1 19 56 13 82 - 6
Sailing 5 23 5 9 7 1 115 25 - 16 5 - 4 5 126 34
Snowboarding 21 5 7 15 20 8 9 115 12 13 1 - 5 11 10 138

Classemes Object Bank
Class 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Rock climbing 158 - - 27 - 3 1 5 97 78 - - - 5 3 11
Rowing 1 187 6 19 19 8 4 6 2 1 106 76 17 5 3 40
Badminton - 1 150 5 28 7 - 9 - - 14 4 145 17 8 12
Bocce 7 2 8 82 15 21 1 1 7 7 4 4 16 17 54 28
Croquet 15 2 1 88 83 44 - 3 5 9 22 44 15 73 38 30
Polo 5 3 14 29 36 90 3 2 2 1 11 29 24 49 42 24
Sailing - 15 2 5 12 5 146 5 - 2 28 43 41 43 28 5
Snowboarding 8 10 3 44 13 14 21 77 27 5 8 16 15 14 63 42

Table 4. Confusion matrices for unsupervised classemes, Prosemantic, classemes, and
Object Bank features on the Event data base.

are not distinguishable based on the general characteristics of the scene, their
identification depending on the presence of specific objects (such as the presence
of a mallet to distinguish croquet from bocce).

6 Conclusions

We have presented a new model of semantic features that, unlike previous meth-
ods, does not rely on the presence of a labeled training data base, as the creation
of the feature extraction function is done in an unsupervised way.

We have compared our features with three supervised semantic features and
seven primitive ones, showing that the performance of unsupervised classemes is
definitely better than that of primitive features and of the same order as that of
supervised ones. Given the broad availability of large collections of non labeled
images, we believe that the method presented here represents a viable alternative
to primitive features and supervised semantic features.
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