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Abstract

This paper presents a language for the creation of data sources in mediation systems through navigation
in web sites. The general idea of the language is to “thread together,” so to speak, existing systems that parse
and analyze single web pages into a navigation procedure spanning several pages of a web site, pages from
different web sites, or web pages and other data repositories.

1 INTRODUCTION
Many data access problems today require, more that the creation of new repositories, the integration of existing
ones. Traditionally, there are two classes of techniques for doing so. On one hand, one can bring all the
necessary data into a single data base, using techniques such as data warehousing; on the other hand, one
can leave the data in their original repositories and send, so to speak, the query to the data, using a mediator
system—or something to that extent—to break the query into parts that the individual data repositories (data
sources, in the mediation jargon) can answer, and then composing the partial results into a single answer, as
required by the user (Chawathe et al., 1994; Garcia-Molina et al., 1995; Wiederhold, 1992)

In this paper we are mainly interested in the point of view of data mediation, which has several impoerant
advantages over warehousing when it comes to managing web data. Since data mediation uses the data in situ,
there is no unnecessary replication, and no periodic update so that, no matter how often the sources are updated,
each query will access the latest version of the data. On the other hand, a mediation system has to deal with a
plethora of data structures, and with data sources of widely different query capabilities, so that decomposing
and optimizing a query is in general a rather formidable problem, whose solution is much more uncertain and
problematinc than the corresponding data base problem.

Mediation systems are seen as an interesting solution for the integration of web data, because their charac-
teristics adapt well to the volatile nature of the web substratum (Liu et al., 2002). One important issue to be
considered in this respect is that, while the mediator system typically assumes a logical and declarative model
for a data source, web sites are quintessentially procedural. Representing a web source as, say, a collection of
relations, as done, among others, by da Silva et al. (2002) and Zadorozhny et al. (2002) requires a method to
map declarative queries against the conceptual relational model into a procedural plan to navigate the web site.
The theory of such a mapping was developed, e.g., by Santini & Gupta (2004), and it relies on the definition
of “navigation procedures” that would recurr the web site extracting data that would then be integrated into an
answer to the query. While Santini & Gupta (2004) showed how to assemble a group of navigation procedures
to answer queries expressed against a conceptual model of the web site, they left the definition of the navigation
procedures open. In this paper we shall present a language for such a definition.

A number of systems have been developed in the past decade to analyze the content of web pages, select
some desired data from them, and place the data in some specified structure. One can take as prototypical
systems such as Nodose (Adelberg, 1998) or the more recent Roadrunner (Crescenzi et al., 2001). These
systems are, by and large, oriented towards the syntactic analysis of single web pages, and take the form of
declarative statements about the web page and the structure in which the data are to be mapped.

What we are after in this paper is of a different nature.
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In a significant number of cases, the data that are needed to answer a single query are not conained in a
single page, but can be collected by traversing links and obtaining several interconnected pages of the same
web site, obtaining several interconnected pages from different web sites, or accessing web pages and other
types of data repositories. For example, asking for the price of a given book on a bookseller’s site consists
of entering an author’s name in a suitable query field, obtaining a page with a list of titles from that author,
searching the desired title in the page, traversing the link attached to the title to retrieve the book’s page, and
searching the price figure in the book’s page.

In this paper we present the design and teh implementation of a language for searches such as this one. The
main idea here is to provide a system that will take care of the procedural aspects of a “navigation,” but that
will rely on existing systems to analyze individual pages or to access other data repositories.

2 LANGUAGE GENERALITIES
We set to design a language that was simple to implement and to use. The general plan was to use the language
itself to integrate data from different sources and present a mediator system with a unified view (e.g. a relational
view) over the set of sources. As mentioned in the introduction, there are many languages for parsing a web
page and returning the data that it contains in a structured fashion, as well as languages for querying other
sources of data. Our aim was to create a language for navigating these sources, be them web page or whatnot.

Consider, as an example, a query in which one wants to know the price of Miguel de Unamuno’s Niebla. A
query such as this one can be answered using the web page of a bookseller; let us say, for the sake of example,
that we want to use the web site of Barnes and Noble booksellers, with which most of us are quite familiar.
Using such a web site, our query would result in the following plan:

i) go to the main page of the site and enter the words “Unamuno” in the text entry area provided;

ii) if the page returned is the page with the information about a single book, then

ii.a) if the title of the book is not “Niebla”, then report an empty result;

iii) otherwise, if the page returned contains a list of titles, then

iii.a) look for the title “Niebla”;

iii.b) if the title doesn’t exist, report an empty result;

iii.c) if the title exist, then traverse the link associated to it;

iv) read the price from the page and return it as a result.

This plan is executed completely within the same web site but this may not be the case: the plan might
include access to several web sites, and to data repositories that are not web sites. As an example, one of the
problems that motivated this project was the creation of a data integration system to assign a clone number to a
genetic sequence derived with an access number. In this case, given an access number, a web data base (namely
the data base of the national center for biotechnology information, an organization of the American National
Institutes of Health) was searched to obtain a genetic sequence and, once the genetic sequence was obtained, a
search was made in a local data base to obtain the desired access number.

In all these cases we note that, in addition to the extraction of information from web pages or from local
data bases, the search problem involves the procedural specification of the “navigation” of a web site, or the
specification of a procedure for dealing with data in various repositories.

The requirements for our integration language and system were then the following:

i) the language should allow the integration of query systems that operate on specific repositories (“wrappers”
for web pages, the “BLAST” system (Altschul et al., 1997) for querying data bases of genetic sequences,
systems to query relational and XML data bases, etc.);

ii) the language should connect these query systems together, which implies that it should be as much as
possible neutral with respect to the formats that these systems adopt;
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iii) the language should be of enough complexity to implement the common procedural structures (alternativs,
cycles), but not overly complex, since the detailed processing of the data repositories is done by the query
subsystems.

We found a compromise between these requirement by implementing a stack language, reminiscent of
FORTH (Rather, Colburn & Moore, 1993): a language without variables in which the only storage structure is
a stack on which functions deposit values and from which they read them.

The individual data sources are searched through a general-purpose query predicate that acts as the language
interface with specialized modules that deal with the different sources with which the system deal. These
modules are connected to the navigation language through a standard interface, so that it is (relatively) easy to
create new modules for integrating new data sources.

To facilitate the creation of the results, we keep the partial construction in a structure distinct from the
stack: this will somewhat hurt the simplicity of the language, but it will avoid the programmer the task of
shifting partial results and intermediate data around in the same structure. Moreover, the stack is a “first in,
last out” structure, whereas the results are often created in the same order in which they will have to appear at
the end of the execution. Therefore, we have introduced a list of output token and an instruction (print) that
adds tokens to the list. Keeping with the spirit of the language, the list is used only for the creation of the final
result, and it doesn’t take part in the computation. In particular, there is no function to read the values of the
list once they have been written there. In this sense, the list is very much analogous to the output stream of a
programming language like C. The program is read from an input tape (the input is formalized as a tape because
the interpreter has the possibility of jumping back and forth in it and therefore the input is not a stream) at a
location maintained by the program counter “pc”. The controller of the execution is composed of an interpreter
which reads the next instruction and calls the appropriate function, and a scheduler, which determines which
instruction must be read next. In addition to these elements, the controller has a list of auxiliary local storage,
which are used to build the parameter lists for function calls.

The stack controller manages the stack, which is, as we mentioned before, the only storage used by the
programs. The print controller implements the function “print” and writes on the output stream. The query
controller implements the function “query” and connects to the appropriate source drivers.

3 SYNTAX OF THE LANGUAGE
The fundamental construct of the language is the block, which is simply a list of instructions such that, if the
first instruction of the block is executed, then all the instructions of the block are (unless, of course, the program
stops on an error). Some instructions may include other blocks, but blocks are not part of the same block to
which their containing instruction belongs. Consider, for instance, the following sequence:

A
if B then {

C
}
else {

D
}
E

There are three blocks in this sequence: one is composed of the instructions A, B, and if...then...else, the
second is composed of the instruction C, and the third is composed of the instruction D. Note that there is
no guarantee that all instructions will be executed (as a matter of fact, we are here guaranteed that not all the
instructions will be executed); nevertheless, if one instruction in any of the blocks above is executed all will be.

A block is composed of commands, of the following categories:

stack commands: push, pop, swap, empty, dup, rotr, rotl, depth;

execution control: stop, if, while, repeat;
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navigation: traverse, query;

ouput: print, clear, stack.

arithmetic: +, -, *, /, mod;

string: sub, cat;

boolean: =, !=, >, <, >=, <=, and, or, not;

All operators work on the first n elements of the stack, where n is the arity of the operator. For instance,
the operation + removes the first two elements from the stack and replaces them with their sum. As in the C
programming language, boolean values are represented by numbers: zero means false, and every other number
means true. So, the operator > removes the first two elements of the stack and replaces them with 1 if the top of
the stack is greater than the second element, with 0 otherwise. This solution makes operators very fast and easy
to implement. One possible drawback is that mathematical and logic expression are written in reverse Polish
notation, and tend to be at first cryptic to people use to the common notation (unless they happen to be familiar
with Hewlett & Packard pocket calculators). We consider this drawback a minor one, as, due to its application
area, programs written in this language will seldom contain complex mathematical or logical expression. The
syntax of the language is shown in table 1. Most of the syntax is self-explanatory; note however the difference
between the operators while and repeat: the latter reads a number n from the top of the stack and executes its
inner block n times, that is, the operator itself reads the stack only once. The while operator reads the top of
the stack, then executes the block, then reads the stack again, and so on until a 0 (false) is read. An empty stack
will result in an error. Writing a constant (number or string) is equivalent of doing a “push” of that constant.
So, “2 3 - print” is a simple program that computes 2-3 and prints it.

<program> ::= <block>
<block> ::= <statement> | <statement> | <block>
<statement> ::= <stack> | <control> | <output> | <aritmethic>

| <stringop> | <navigation> | <boolean>
<stack> ::= push <constant> | pop | top | swap | swap <number> |

| rotr | rotl | depth | empty | dup | <constant>
<control> ::= stop | if { <block> } | while { <block> }

repeat { <block> }
<output> ::= clear | print
<arithmetic> ::= + | - | * | / | mod
<stringop> ::= cat | sub
<boolean> ::= > | < | = | ! = | >= | <= | and | or | not
<constant> ::= <string> | <number> | NIL
<navigation> ::= traverse | query <auxlist>
<auxlist> ::= <pair> | <pair>, <auxlist>
<pair> ::= <string> : <string> | <string> : <number>

Table 1: The grammar of the laguage.

The <auxlist> in the query function is meant to give special directives to the query drivers: it consist of a
list of “name: value” pairs, separated by commas (see the following sections for details).
Example:
Consider the Niebla query given in the introduction. We assume that there is a driver for the bookseller’s main
page that, given a page, puts 1 on the stack if the page is a list of titles, and puts 0 if the page is a book page.
We’ll call this driver “verify.”

The second driver takes a page with a list of titles, and returns a list of the links of that page. This driver is
called “titlelist”. The third driver takes a book page and returns the title of the book; this driver is called “title”.
The final driver (“pagequery”) takes a book page, and a name (such as “price”) and returns the corresponding
entry , or NIL if the entry was not found. Note that we have considered all these as separate drives for the
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sake of exemplification: in reality all these functions will be executed by sending different queries to the same
driver. In this example, however, we want to avoid the details of the query process.

4 SEMANTICS
The stack organization of the language makes the definition of the semantics relatively easy, since the state is
constituted just of the contents of the stack. Here we define the denotational semantics of the language. The
stack is represented as a list, with the list operations “::” (insert an element at the head of a list), and @ (join
of two lists). When convenient, we will represent a list using the notation [u1, . . . , un] rather than the more
cumbersome u1 :: u2 :: · · · :: un :: []. Also, if u us a url, we will denote with → u the content of the page
pointed by u. The semantics of an operator is, in this scheme, a funcion from stacks to stacks.

The semantics of the stacks operators is shown in table 2. The semantics of the control operations is shown

Operator Semantics
push u |[pushu]|(s) = u :: s

pop |[pop]|(u :: s) = s

empty |[empty]|(s) =
{

1 :: [] if s = []
0 :: s otherwise

swap |[swap]|([n, u1, u2, . . . , un−1, un, . . . , uk]) =
{

[un, u2, . . . , un−1, u1, . . . , uk] if k ≥ n
ERROR otherwise

rotr |[rotr]|([n, u1, u2, . . . , un, . . . , uk]) =
{

[u2, u3, . . . , un, u1, . . . , uk] if k ≥ n
ERROR otherwise

rotl |[rotl]|([n, u1, u2, . . . , un, . . . , uk]) =
{

[un, u1, . . . , un−1, . . . , uk] if k ≥ n
ERROR otherwise

depth |[depth]|([u1, . . . , un]) = [n, u1, . . . , un]
dup |[dup]|(u :: s) = u :: u :: s

Table 2: Denotational semantics of the stack operators.

in table 3 Note that, as it is usually the case, the denotational semantics of the while loop is recursive, and it

Operator Semantics
sequence |[AB]|(s) = |[B]|(|[A]|(s))

stop |[stop]|(s) = ERROR

if |[if { A } else { B }]|(u :: s) =
{

|[A]|(s) if u 6= 0
|[B]|(s) otherwise

|[if { A }]|(u :: s) =
{

|[A]|(s) if u 6= 0
s otherwise

while |[while { A }]|(u :: s) =
{

|[while { A }]|(|[A]|(s)) if u 6= 0
s otherwise

repeat |[repeat { A } ]|(n :: s) = |[A]|n(s)

Table 3: Denotational semantics of the control operators.

must be defined as a suitable fixpoint of the semantics of the block A. The technique is well known (Tennent,
1991), and we will not go into the issue here.

The denotational semantics of the arithmetic, logic, boolean, and output operators is shown in figure 4.
Finally, the semantics of the navigation operators is shown in figure 5

Note that the arithmetic operators have all the same semantics, with trivial variations, so we have reported
it as the semantics of the generic operation ⊕, and similarly for the logic operatos and the operation ρ. In the
semantics of the output operator, we have introduced the output stream as part of the state. Strinctly speaking,
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Operator Semantics
arithmetic |[⊕]|(u :: v :: s) = (u⊕ v) :: s

logic |[ρ]|(u :: v :: s) =
{

1 :: s if uρv
0 :: s otherwise

boolean |[and]|(u :: v :: s) =
{

1 :: s if u 6= 0 ∧ v 6= 0
0 :: s otherwise

|[or]|(u :: v :: s) =
{

1 :: s if u 6= 0 ∨ v 6= 0
0 :: s otherwise

|[not]|(u :: s) =
{

1 :: s if u = 0
0 :: s otherwise

string |[cat]|(”a1a2 · · · an” :: ”b1b2 · · · bn” :: s) = ”a1a2 · · · anb1b2 · · · bn” :: s
|[sub]|(k :: ”a1a2 · · · an” :: s) = ”a1a2 · · · ap” :: s (p = min{k, n})

print |[print]|(u :: s, o) = (s, o@[u]);
clear |[print]|(s, o) = (s, []);

Table 4: Denotational semantics of the arithmetic, logic, output, and string operators.

Operator Semantics
traverse |[traverse]|(u :: s) = (→ u) :: s
query |[query]|([u1, . . . , un]@s) = r :: s

(stackdepth = n; r is the query result)

Table 5: Denotational semantics of the navigation operators.

we should have introduced the output stream as part of the state of all the operators, and have all the operators
leave it untouched. This would have made the notation heavier without adding anything to the rigour of the
presentation, so we have omitted the output stream from the state except when explicitly needed.

5 LANGUAGE EXECUTION
The language parser creates an intermediate structure that an interpreter reads in order to execute a program.
Each block is represented as a list of instructions, and blocks nested into if, while, or repeat statements are
represented as additional lists attached to the instruction from which they depend. Each instruction is contained
in a list element whose skeleton is as follows:

typedef struct _statm {
char *name;
par *parlist; /* list of the parameters (if any) */
struct _statm *trueblock; /* nested block (for while, if, repeat) */
struct _statm *falseblock; /* nested block (for the else part of the if) */
struct _statm *next; /* next instruction in the block */

} statement;

Figure 1 shows a sample program and its representation for execution. A function exec(statement *s)
executes a block that begins with the given statement. The function is called recursively to execute the blocks
contained in the while, repeat, and if commands.

5.1 Query Interfaces
An important component of the language is the query statement, which represents the interface between
the navigation language and the systems that interrogate data sources (individual web pages, data bases, file
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push 1
dup
-
if {

push ”it doesn’t work!”
print

} else {
”yes! 1-1 = 0”
print

}

b
b b b bb

b
bb

b

- - -

- -

push dup - if

push print push print
1

”it...”

”yes!...”

-
- -

?

?

Figure 1: A simple program and the structure created for its execution.

push ”query text”
push ”http://page.to.query.edu”
query source:wquery

stackdepth:2
traverse:true

push ”query text”
push ”http://page.to.query.edu”
traverse
query source:wquery

stackdepth:2
traverse:false

Table 6: Example of use of the query instruction: two equivalent code fragments.

systems, etc.). The language is extensible in this component, in that there is a standard communication interface
between the interpreter and the query subsystems that makes it easy to add new query capabilities.

The query instruction in the language is of the form

query α1 : β1 · · ·αn : βn

where the αi : βi’s are pairs composed of the name of a parameter (αi) and its value (βi). The first
such pair must always be of the form source: <name>, and is used by the interpreter to determine which
source driver should be called. The second parameter may be of the form stackdepth: <number>; if this
parameter is present, the interpreter will remove the first <number> elements from the stack to pass them to
the driver as a query specification; the default number of elements to be removed from the stack is one.

The other pairs are passed to the drivers without interpretation, and are used to set specific parameters of
each driver.

Upon execution of the query the interpreter will place on the stack a list of results and (at the top) the
number of results written.
Example:
Suppose that a driver “wquery” will query a web page in two possible ways: if the parameter “traverse” is set
to true, the driver will take a query, a link to a page, traverse the link an dexecute the query. If the parameter
is false, the driver will take a query, the text of a page, and run that query on the page. Then the two code
fragments of table 5.1 are equivalent.

6 CONCLUSIONS
In this paper we have presented a language to “thread together,” so to speak, systems that analyze web pages
or access data bases, allowing the creation of complete web site and data base navigation systems to be used in
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data integration systems. Our requirements were to define a langauge that would be simple to interpret to avoid
the addition of a heavy infrastructure to the web page analysis systems that, quite often, tend to be rather heavy
themselves. At the same time the language was to be powerful enough to incorporate decisions based on the
status of partial results and cycles. We found a good compromise with the implementation of a stack language.

Thanks to the simplicity of the language, the intepreter could easily be implemented in Java in a self-
contained manner, without having to rely on any additional library and software beyond the basic Java libraries.
This makes the installation of the system very easy modulo, of course, the possible complication of installing
the individual query subsystems. We see this simplicity as an important feature of any software development,
and a contribution to fighting the increased complexity and multiple dependencies of internet software, often a
primary cause of teh poor quality of internet software.

The language is extensible in that additional query subsystems can be added with moderate development
effort through a standard interface.

This paper presents the first version of the language, which will undoubtedly be extended in the future. The
most important extension that we are planning is the possibility of defining functions.
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