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The retrieval abilities of spatially uniform attractor networks can be measured by the global overlap between
patterns and neural states. However, we found that nonuniform networks, for instance, small-world networks,
can retrieve fragments of patterns �blocks� without performing global retrieval. We propose a way to measure
the local retrieval using a parameter that is related to the fluctuation of the block overlaps. Simulation of neural
dynamics shows a competition between local and global retrieval. The phase diagram shows a transition from
local retrieval to global retrieval when the storage ratio increases and the topology becomes more random. A
theoretical approach confirms the simulation results and predicts that the stability of blocks can be improved by
dilution.
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I. INTRODUCTION

Attractor neural networks �ANNs� often deal with global
overlapping between patterns and neural states, employing
uniform connectivity to perform retrieval tasks. They are
useful when the information involved is spatially distributed
because pattern learning is resistant to damage of parts of the
network �1�. When these networks start from only local
stimuli, however, no global information can be achieved.

More structured ANN architectures have recently been
studied, especially small-world topologies �2–4�. Such
graphs are modeled by two parameters, the connectivity and
the randomness of the links, and they can capture most fea-
tures of a wide range of networks �5,6�. The retrieval ability
of such networks are commonly measured by the overlap
between neuron states and memorized patterns, and the load
parameter expressed as the ratio between stored patterns and
links per node �7�. Indeed, above a critical value of the load
parameter no retrieval is possible and the overlap goes to
zero. In addition, the mutual information between the stored
patterns and the neural states has been proposed to compare
the performance of different topologies in terms of memory
retrieval �4,8,9�. Although the critical load increases mono-
tonically with dilution and randomness, the information is a
nonmonotonic function of the load and reaches a maximum
that corresponds to a nontrivial optimal topology �4�.

Most studies into associative memory networks with spa-
tial structure �3,10–13� focus on the global retrieval of a
pattern, without considering the possibility of spatially local-
ized states. In general, these papers deal with the relation
between the storage capacity and the degree of randomness
in the network. The only source of information in a long-
range connected ANN �either fully connected or random�, is
the standard uniformly distributed overlap along the net-
work. However, for spatially structured topologies one might
measure local overlaps inside blocks of contiguous neurons.

Although the information about a pattern is invariant un-
der the reverse transformation of the global overlap, it van-
ishes if only half of the neuron states are flipped. If we sup-

pose a case where sequential blocks of pixels of a binary
image are flipped, the overall pattern is probably still recog-
nizable. As an example, Fig. 1 shows a natural image in
black and white pixels in the left panel, while the central
panel has two blocks of information and the right panel has
four blocks. The configuration of such block states has van-
ishing average �global� overlap with the original pattern.
However, the structured distribution of local overlaps carries
some spatially ordered information, the blocks oscillating be-
tween negative and positive overlaps. In other words, it is
possible to recognize the image even if the information about
the original pattern is zero. We call this a local retrieval, to
distinguish it from the usual global retrieval of the full pat-
tern.

The existence of locally organized memories rises some
questions that we have attempted to answer. First, can stable
block states emerge spontaneously in an associative net-
work? Second, how can be measured the information hidden
in these blocks? Third, which neural architectures are able to
convert this local information into global information?

Unlike previous studies about structured information in
memory networks �bumps� �14,15�, we have considered the
simplest model of binary uniform neurons, with small-world
connectivity and without any reinforcement mechanism. In
this way we can single out the effect of topology on the
structure of the retrieval attractor. In addition to this issue,
we have considered nontrivial block structures. We will show
that blocks of memories can appear spontaneously as a con-
sequence of neural dynamics combined with the network to-
pology. We have also studied the conditions, for the topology
of synaptic connectivity, in which local overlaps are either
stable or unstable and in which cases they help to retrieve
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FIG. 1. Image with different spatial distributions of overlaps.
Left: Original picture. Center: two-blocks. Right: four-blocks. Both
spatial distributions, two-blocks and four-blocks, have null global
overlap with the original picture.
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complete patterns. In addition, we propose a method to mea-
sure local information and compare it with the global infor-
mation.

The emergence of spatial structures is of interest in com-
putational neuroscience, for example, when considering that
distinct sensory organs receiving independent stimuli man-
age to generate a unified response �16�. In particular, the role
of the columnar structure of the neocortex has been the sub-
ject of much recent research, see Ref. �17�, and references
therein. Indeed, the cortical model with biologically imposed
constraints behaves as a modular attractor memory, which
improves its representational abilities while complying with
experimental data.

In the next section we describe the topology of the net-
work and its neural dynamics, as well as proposing a mea-
sure for the local information. In the third section we identify
the topological conditions for the transition between phases
of local and global retrieval, both by simulation and theory.

II. THE MODEL

A. Topology and dynamics

At any given time t, the network state is defined by a set
of binary neurons �� t= ��i

t� �1, i=1, . . . ,N�. The purpose of
the network is to recover a set of independent patterns

���� ,�=1, . . . , P� that have been stored by a learning process.

Each pattern, ���= ��i
�� �1, i=1, . . . ,N�, is a set of site-

independent unbiased binary random variables p��i
�= �1�

=1 /2.
The synaptic couplings between the neurons i and j are

given by the adjacency matrix Jij �CijWij, where the topol-
ogy matrix C= �Cij� describes the connection structure of the
neural network and in W= �Wij� are the learning weights.
The topology matrix is split into local and random links. The
local links connect each neuron to its Kl nearest neighbors in
a closed ring, while the random links connect each neuron to
Kr others uniformly distributed in the network. Hence, the
network degree is K=Kl+Kr. The network topology is then
characterized by two parameters, the connectivity ratio and
the randomness ratio, respectively, defined by

� = K/N, � = Kr/K , �1�

where � plays the role of a rewiring probability in the small-
world model �6�. An extremely diluted network is obtained
as �→0, and the storage cost of this network is �J�=N�K if
the matrix J is implemented as an adjacency list of K neigh-
bors.

The task of the network is to retrieve a pattern �say, ��

����� starting from a neuron state �� 0 which is close to it.
This is achieved through the neuron dynamics

�i
t+1 = sgn�hi

t� , �2�

hi
t �

1

K
	

j

Jij� j
t, i = 1, . . . ,N , �3�

where hi
t denotes the local field of neuron i at time t. We used

stochastic asynchronous updating in the present work, except

in Sec. III D and Fig. 6, where parallel dynamics were used
to compare simulations with theory. Stochastic macrodynam-
ics take place due to the extensive learning of P=	K pat-
terns, where 	 is the load ratio. The weight matrix W is
updated according to the Hebb’s rule

Wij
� = Wij

�−1 + �i
�� j

�. �4�

Weights start at Wij
0 =0 and after P learning steps, they reach

the value Wij =	�
P�i

�� j
�. The learning stage displays slow dy-

namics, being stationary within the time scale of the faster
retrieval stage Eq. �2�.

B. The information measures

Previous studies have only dealt with global measures of
information, which are adequate to describe networks with
no local connectivity. For small-world connectivity it is use-
ful to define blocks as the structured pieces of information
that emerge in the network. If the contiguous neurons are
distributed within b blocks, for simplicity each of size L
=N /b, then the block’s overlap between the neural states and
one individual pattern restricted to the lth block �l
=1, . . . ,b� is

ml �
1

L
	
i�l

�i�i, �5�

at an unspecified time step. We can consider ml as a random
variable and estimate the average of this variable across the
blocks as 
f l�b� 1

b	l=1
b f l.

The relevant order parameters measuring quality of re-
trieval are the mean �m� and the variance �v� of the block
overlap distribution, defined as

m � 
ml�b, v � 
ml
2�b − m2. �6�

Note that m is the usual global overlap, also written as m
� 1

N	i�i�i. When the global overlap is zero and the size of
the blocks is taken as L=1, the network carries no macro-
scopic order. On the other hand, if there is only one block,
b=1, the variance is zero and no local information is carried.
However, if the size is large but 1
L�N, the variance is
finite and the blocks convey only local information. The
standard deviation, which we name the local overlap, is �
=�v. It is worth mentioning that the blocks are macroscopi-
cally scaled and hence the parameter � is not related to a spin
glass, which is a microscopic ordering.

Together with the overlap, the load ratio 	� P /K, that
accounts for the storage capacity, is needed. As the number
of stored patterns grows the network is not able to retrieve
them and the overlap goes to zero. To fully describe the
performance of a structured network with a unique measure,
it is useful to use tools from information theory �4�. Let us
first calculate the global mutual information M, a quantity
used to measure the information that an observer can receive
at the output of a channel. The recall process of stored pat-
terns that we are considering here can be regarded as a chan-
nel, with the pattern as the input and the neuron states as the
output. The mutual information can be defined in terms of
the order parameter m= 
����,�, in the limits K ,N→. The
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brackets represent an average over the joint distribution
p�� ,�� for a single neuron, which is understood as an en-
semble distribution for the neuron states ��i� and patterns
��i

��. This will give M�� ;��=S���−S�� ���, with the en-
tropy of the output channel S���=1�bit� and the conditional
entropy obeying �9�

S����� = −
1 + m

2
log2

1 + m

2
−

1 − m

2
log2

1 − m

2
. �7�

Hence we define the global information ratio as

im�	,m� � 	M��;�� , �8�

for independent neurons and uncorrelated patterns. The glo-
bal information ratio is useful to evaluate the network per-
formance when there is a global stimulus �4�. Below, we
estimate the local information due the distribution of blocks
when the global overlap is m=0.

We consider a sample of b independent blocks of pattern
overlaps, their distribution being described by their mean m
and variance v. The local information can be estimated from
a Gaussian channel with the output state comprised of a sig-
nal term ml with variance v and a noise term z, whose vari-
ance is assumed to be vz1 �maximal for the signal�. Thus,

the mutual information satisfies M��� , ������S�ml+z�
−S�z� and the local information ratio is roughly �18�

iv�	,ml� � 	 log2�1 + v� . �9�

It should be noted that the underlying block distribution is
unknown, except its first and second moments. The approxi-
mation in Eq. �9� supposes that the block distribution is
Gaussian, and therefore it provides an upper bound estima-
tion of the local information. The estimation for iv is not as
exact as the expression for the global information im. Never-
theless, it works well when v=0 �all blocks have same over-
lap�, such that iv=0 and there is only global information im
�0. Moreover, it also scales well with v in the case of per-

fect blocks �v=1�, since the information regarding the blocks
corresponds to iv=	 bits. Note that if no spatial correlation
emerges, ml provides no information at all and it can be
regarded as pure noise �both im=0 and iv=0�. Equation �9�
holds as long as the block is sufficiently large, L�1. Both
global and local information are not manipulated jointly in a
unified formula, and therefore, they are analyzed separately.

The validity range for each expression in Eqs. �8� and �9�,
for the global and local information, are either the global
��=0� or the local retrieval regime �m=0�, respectively. Fi-
nally, note that the global and local overlaps evolve with
time according to the neuron dynamics Eq. �2�, such that at
each step they have a time index mt and �t.

III. RESULTS

A. Simulations: the retrieval evolution

We simulated the dynamical neuron equations �2�–�4�
with the topology parameters defined according to Eq. �1�.
The block overlaps time evolution is illustrated in Fig. 2 for
a network of N=106 neurons distributed in b=10 blocks and
with connectivity �=10−4. The initial block overlaps were
chosen at random from a discrete uniform distribution ml

t=0

= �0.3. In the left panel 	=0.05 and �=0.1, in the right
panel 	=0.20 and �=0.5. To improve the clarity of the fig-
ures, the neuron overlaps mi have been smooth averaged
across uniform windows �of size �L=103� inside the blocks
�of size L=105�. Hence the plotted curves mx, with x= i /N
are smoother than the actual mi, although some of the struc-
ture can still be appreciated in ml. In these plots time evolves
from t=0 �bottom� to t=20 �top�, which is close to the sta-
tionary state. The left panels show that the network retains its
initial block configuration: the blocks are retrieved as inde-
pendent patterns increasing their overlaps to the fixed point
m

l
* �1.0. In the right panel, the blocks lose their starting

signals and the full pattern is completed, m*1.0. While for
local topology ��=0.1� the block structure persists, for ran-
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FIG. 2. Evolution of blocks
with ml

0= �0.3, from t=0 �bot-
tom� to t=20 �top�, for �=10−4,
with N=106. Left: �=0.1, 	
=0.05. Right: �=0.5, 	=0.20, x
� i /N.

STRUCTURED INFORMATION IN SMALL-WORLD NEURAL … PHYSICAL REVIEW E 79, 021909 �2009�

021909-3



dom topology ��=0.5� the local information is converted
into global information.

The time evolution of a network starting in blocks with
ml

t=0� �0.2 is depicted in Fig. 3. The randomness is �
=0.3. For a low load ratio 	=0.1, the network maintains its
block configuration and the local overlap fluctuates slightly
around the fixed point �*0.94, as seen in the left panel. For
a larger load 	=0.2, the network evolves to the global attrac-
tor in a more complex way, as seen in Fig. 3 right. Initially
the network approaches the local state, improving the blocks’
overlap �mt0, �t0.8�. After t=90 time steps, the network

quickly loses its block structure, and evolves into a global
state with the completion of the learned pattern m�1. We
have checked for the stability in both cases, by running the
simulation for up to t=106 time steps. Although there may be
microscopic cycles, the macroscopic state converges to either
the local or the global retrieval phase �19�.

B. Simulations: Learning capacity

We studied the stationary states of the network as a func-
tion of the load ratio 	 for different values of the topological
parameter �. A sample of the simulation results is shown in
Fig. 4. The stationary global and local overlaps m* and �*,
respectively, are plotted in the top panels for �=10−3 and
randomness ranging from �=0.0 to �=1.0. The network
starts in a block configuration with b=10, m0=0, and �0=1.
We observed that the global overlap remains close to m*

1 for random networks, while for local networks the local
overlap increases to �*1, up to the respective global and
local critical capacities.

One reason for this behavior is that randomness decreases
the mean-path length between neurons, facilitating the
propagation of the information around the network and
yielding a global ordering. On the other hand, locality in-
creases the clustering of neurons, slowing down the trans-
mission of information across the network and stabilizing the

FIG. 3. �Color online� Network evolution, with N=106, �
=10−4, �=0.3. Left: B phase, 	=0.1. Right: R phase, 	=0.2.
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formation of the blocks. It is worth noting that the network
can retrieve the full pattern achieving m*1 even starting at
m0=0, thanks to the role of the topology and the � block
overlaps,.

There is also a critical load for the global and local over-
laps 	R and 	B, respectively. For instance, in the middle
panel ��=0.5� the local overlap decays sharply to �*=0 at
	B0.05, coinciding with an increase of the global overlap
to m*1. Later in the learning process �increasing further on
the load ratio�, at 	R0.11, it establishes a second transition
for the global overlap close to m=0.

Figure 4 �bottom� displays the global and the local infor-
mation as function of the load ratio. The panels show that
both local and global are a nonmonotonic function of the
load ratio. It can be seen that the maximal local �global�
information iv �im� decreases �increases� with the values of
�. Indeed, the maximum of the local information iv0.17
for a local topology �=0.0 is comparable to the maximum of
the global information im0.22 for a random topology �
=1.0. Intermediate randomness �middle panels� led to com-
petition between blocks and global structures. Indeed, above
some load critical ratio 	B, the blocks lose stability and the
neurons shift to the global information mode.

C. Phase Diagram

According to the definitions of the order parameters, and
following the results presented in the previous sections, we
define the stationary states of this small-world ANN. The
network may exhibit either a global retrieval �R� phase, with
m�0, �=0, or a local retrieval �B� phase, with m=0, ��0,
which carries nonvanishing information. Furthermore, there
is a zero �Z� phase, with m=0 and �=0, without any infor-
mation. When the network starts in the vicinity of a pattern,
it will move closer to that pattern if the load ratio is lower
than that of the global retrieval saturation 	R���. When the
blocks of a network start successively near to a pattern or the
inverse of that pattern, the block configuration will persist if
the load is lower than the local retrieval saturation 	B���.
For large �, the stable phase is the R whereas for small � ,B
is the stable phase.

In order to study these phases, extensive Monte Carlo
simulations of the system were performed, with K=100 and
N=106 neurons ��=10−4�. The phase diagram is shown in
Fig. 5, for a network with b=2 blocks. The initial condition
for the B phase is m0=0 and �0=1. The separation between
the R1 and R0 phases �the thin dashed line� is justified by
their distinct dynamical character: while R1 is the usual re-
trieval attractor for initial conditions m0�0, �0=0, the R0 is
the retrieval attractor when the network starts with no initial
global overlap m0=0, �0�0.

There is a transition from the Z to R phases at a 	R���,
represented by the thick dashed line, below which the global
retrieval information is always stable. The local information
appears at the line 	B��� �solid line�, below which the B
phase coexists with R. We could see that the B region holds
steady at a larger 	 for local networks than for random net-
works. We also noted that mixed states, with both m�0, �
�0, also emerged from no pure R or B-like initial condi-

tions, as seen in Fig. 2. We checked through extensive simu-
lations that the local solution is robust for a wide range of
numbers of blocks, and we found that the transition 	B��� in
the phase diagram of Fig. 5 shrinks to zero for b�103. The
R region also collapses to the 	=0 axis and only the Z phase
survives.

D. Theory

In this section we consider a strongly diluted network and
we propose theoretical equations for the macroscopic order
parameters. The sketch of a proof that is valid for stationary
equations can be found in the Appendix. Here we add em-
pirical dynamical equations whose fixed points coincide with
the stationary solutions. This extrapolation is justified for
parallel dynamics, for which all neurons are updated once at
each time step. We suppose that the neurons are distributed
within b blocks, with positive and negative overlaps, ml
�m�. Hence the global overlap is m= �m++m−� /2 and the
fluctuation between blocks is �= �m+−m−� /2.

An approximation for the local field of neurons at block
ml at time step t gives

�hl
t � �mt + �1 − ���mt + yl�

t��1 − �b� + �t, �10�

where � is the pattern being retrieved. The pattern-
interference noise follows a Gaussian distribution �
�N�0,	r�, where r=�rr+ �1−��rl is the sum of the random
and local feedback terms r=�rr+ �1−��rl, with rr=1 and
rl= �1−��−2. The susceptibility � arises from the local con-
nections

�t =
1

�	rl


z sgn��ht��y,z. �11�

With the field in Eq. �10�, the macrodynamics for the
global and local overlap are
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mt+1 = 
sgn��ht��y,z,

�t+1 = 
y sgn��ht��y,z. �12�

The averages are over the binary distribution of y� �1 and
a Gaussian z�N�0,1�. There are two types of stationary
states: �1� m�0, �=0, with m=erf�m /�2	rl� and �2� m=0,
��0, with �=erf���1−�� /�2	rl�. The first is the usual Am-
it’s solution �1�, while the second is the local solution, which
is stable if �1−�����	r /2. Adjusting the solid curve 	B in
the Fig. 5 to �1−���A0	A1, gives A1=0.51, which fits well
with this theoretical prediction if one assumes r is constant in
the transition.

A comparison between the theoretical results �upper pan-
els� and the simulation �bottom panels� for parallel dynamics
is shown in Fig. 6. Qualitatively, the behaviors predicted by
theory, of local retrieval with small � and global retrieval
with large �, agree quite well with that checked by simula-
tions. The transition from local to global retrieval at a given
	��� �for intermediate randomness 0.3���0.7�, as well as
the maximal local and global information, are also in agree-
ment. Moreover, Eq. �10� explains why local retrieval fails
for LK, for which �b1 and the boundary effects be-
tween blocks are relevant when compared to the bulk of the
connected neurons. The degree of dilution plays the role of a

resolution scale for the boundary effects. Therefore, only di-
luted networks are able to stabilize blocks.

Finally note that both the theoretical results and the simu-
lations start with m0=0.04, because m*�0 would never be
achieved if the initial global overlap is zero, as we observed
in the simulation for asynchronous update �see Fig. 4�. The
theoretical equations for the asynchronous dynamics are
more involved than the parallel macrodynamics and they
lead to differential equations, the calculation of which is be-
yond the scope of this work.

Except for this different dynamical behavior, both parallel
and asynchronous updating produce similar attractors. It is
worth comparing the simulation results of the lower panels
of Fig. 6 with those of Fig. 4. First, it should be noted that
they were calculated for different values of the network pa-
rameters �see the figure legends�. For instance, in Fig. 6 the
connectivity is K=103 while in Fig. 4 it is K=300. The pat-
tern storage capacity is related to K, hence the Fig. 6 displays
more points for each learned pattern. In Fig. 4 the networks
are also more diluted ��=10−3� than in Fig. 6 ��=10−2�,
which should lead to a larger storage capacity for the global
overlap in Fig. 4 than in Fig. 6 �4�. However, with a �
=0.5 and �=0.7 in both panels, the more diluted network
�Fig. 4� reaches a smaller critical load 	R. In fact, there are
many holes in the curve that represent failures in the recov-
ery of the pattern. The reason for this disagreement with the
expected result is that the network has only b=2 blocks in
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Fig. 6, in contrast with the b=10 blocks in Fig. 4. The more
blocks that the network is initialized with, the more difficult
it is to complete the pattern. This occurs because the borders
between each block make them less stable.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have studied a type of solution for an
attractor neural network: the local retrieval phase �B� with
overlaps structured in blocks. The dependence of the stability
of the local B and the global retrieval �R� phases on the
topological parameters of connectivity ��� and randomness
��� was analyzed. Although the storage capacity is severely
disrupted when the long-range nature of the connections is
lost, we found that local information emerges when the net-
work has a more local topology. The local information cor-
responds to configuration states which carry information in
blocks of neighboring neurons, and are attractors of the net-
work dynamics. A block structure might resemble the meta-
stable mixed states studied in the seminal work of Amit �1�.
These spurious states, where the network only recognizes
mixture of patterns, may provide useful information, as
might the B phase, because the blocks are spatially ordered.
However, while the local field arising from different patterns
can cooperate to retrieve both of them, the local field induced
by negative and positive patterns cancels each of these out,
and the blocks are unstable in networks without the type of
topology studied here.

Both in biology and in hardware implementations of neu-
ral systems, mainly neighboring neurons are connected in
networks. Such short-range architectures are much cheaper
in terms of the wiring cost than long-range ones, but the
downside is that the network loses most of its global retrieval
capacity. In this paper we have shown that such a structure
induces another information retrieval capacity: that of local
retrieval. Another novel situation that arises from this
memory structure is that the information from blocks may be
transferred to a global retrieval if the range of links is long
enough, or if more patterns are stored. Hence, the topology
complexity improves the retrieval attractor basin. We found
that the transition from R→B takes place for 	�	B��1
−��2, and we propose a theory for strongly diluted networks,
which fits well with our simulations. We also estimated the
information entropies, for both R and B phases.

The blocks behave as independent pieces of information.
Thus, instead of the small number P of patterns of size N that
a diluted network can store, this phase is able to retrieve b
� P patterns, each with size N /b. We believe that the exis-
tence of an information phase with no global overlap may
play a relevant role in natural neural networks, for instance,
to manage a successful response to stimuli activating sepa-
rated cortical areas �20�. Also in many applications of pattern
classification, such as image recognition, by carrying local
spatial information the overlaps may have opposite signals in
separate blocks, although overall information might be gen-
erated. Minor changes in the topology C, for instance, that
suppress symmetry constraints, will lead to complex dynam-
ics for the blocks, including cycles and chaos, which could
model higher functions of the brain �21�. A more detailed

study of the block distribution also warrants further investi-
gation.
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APPENDIX: MACRODYNAMIC EQUATIONS

Let the neurons be randomly distributed within b blocks
and for simplicity, each of size L=N /b, with positive and
negative overlaps ml=m�. The blocks l=1, . . . ,b are built as
the sets �l= �i= �l−1�L+k ;k=1, . . . ,L�. Then, according to
Eq. �6� the global overlap is m=	l

bml /b and the fluctuation
between blocks is �=�v, with v�	l

bml
2 /b−m2. The block’s

overlap can be written as

ml = m + yl� , �A1�

where yl� �1 �according to the block� is a random variable.
The local field of the neuron �i, Eq. �3�, applying Eq. �4�

for the weights, can be separated into a signal and a noise
term, if a given pattern is being retrieved, say ����=1:

hi � �imi + �i, �A2�

where

mi
� �

1

K
	
j�C

� j
�� j, �i � 	

��1
�i

�mi
� �A3�

are the overlap restricted to the neighbors C of neuron �i,
and the cross-talk noise, respectively.

There are local and random neighbors for each neuron,
hence the signal term itself splits into localized and random-
ized terms, namely,

mi =
Kr

K
mi

r +
Kl

K
mi

l, �A4�

with mi
x� 1

Kx
	 j�Cx

� j� j , �x� l ,r� where Kl
i and Kr

i are the lo-
cal and random sets of neighbors of the neuron �i, respec-
tively.

From Eq. �5�, whenever the neighbors belong to a block
the local field depends on its block’s overlap ml. On the other
hand, the randomized field is a sample of a global field that
does not depend on a block. Using the definition in Eq. �1�,
one arrives at an approximation for the local field of neurons
in the block �l

�hl � �m + �1 − ���m + yl���1 − �b� + � , �A5�

where � is the pattern being retrieved. The correction term
�1−�b� accounts for the boundary effects between m�

blocks.
The equation for the block’s overlap is then ml

= 
sgn��h���, where the average in the angular brackets are
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over the noise �. But from Eq. �A1� ml=m+yl�, and thus,
after averaging over yl one gets

m = 
ml�y = 
sgn��h��y,z,

� = 
yml�y = 
y sgn��h��y,z. �A6�

The average over z stands for the noise distribution �.
This noise is a large sum of almost-independent terms,

which converges to a Gaussian distribution ��N�0,�� �7�.
Its variance �=	r is given by the sum of random and local
feedback terms r=var�mi

��=�rr+ �1−��rl. To deal with
them, one can consider the residual overlaps ���1� as sto-
chastic variables. If one expands the residual overlaps around
hj

��hj −�i
�mi

� it holds that

mi
� 

1

K
	
j�C

� j sgn�hj
�� + mi

��i, �A7�

�i �
1

K
	
j�C

d

dhj
� sgn�hj

�� , �A8�

where �i is the susceptibility. The first term on the right-hand
side of Eq. �A7� is not correlated with the second term, and
its variance is 	. So, the stochastic equation reads mi

��1
−���N�0,	�, and the feedback term is

rx = �1 − �x�−2, x = l,r . �A9�

Let us now suppose only strongly diluted networks �K

N�. For random connections, �r can be neglected since
there is no feedback in the dynamics and rr=1 �9�. However,
for local connections, even extreme dilution does not elimi-
nate the feedback and thus, susceptibility can also be written
as

�l =
1

�	rl


z sgn��h��y,z. �A10�
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