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Abstract. We present here, an image description approach based on
prosemantic features. The images are represented by a set of low-level
features related to their structure and color distribution. Those descrip-
tions are fed to a battery of image classifiers trained to evaluate the
membership of the images with respect to a set of 14 overlapping classes.
Packing together the scores vectors of prosemantic features are obtained,
and used to index the images in an image retrieval system. To verify the
effectiveness of the approach, we designed a target search experiment
in which both low-level and prosemantic features are embedded into a
content-based image retrieval system exploiting relevance feedback. The
experiments show that the use of prosemantic features allows for a more
successful and quick retrieval of the query images.

1 Introduction

Many content based-retrieval systems have been proposed to manage and retrieve
images on the basis of their content. Among the others we can cite [1-6]. A survey
of some of the most important techniques used in Content-Based Image Retrieval
(CBIR) systems can be found in [7]. To overcome the necessity of manually
describing the images content, many of these systems are essentially based on
low-level image features that are directly and automatically computed from the
images themselves. However, the use of low-level features can’t overcome the
gap between the content and the semantic of the images. In order to cope with
this problem and to provide satisfactory retrieval performance, new techniques
are introduced in the retrieval process that take into account the subjectivity of
human perception. One of these techniques is relevance feedback [8]. Relevance
feedback is based on the interaction with the user who provides the system with
examples of images relevant to the query. The system then refines its result
depending on the selected images. The user’s feedback provides a way to learn
short term and case-specific query semantics. An example of this can be found in
[9] where the system learns a non-linear embedding that maps clusters of images



into a hidden space of semantic attributes. Long term learning can be achieved
by logging the previous user’s interactions for further processing [10].

Other systems explicitly extract and embed in the retrieval process semantic
information about the image content by exploiting automatic classification tech-
niques [11]. These techniques can then be employed to automatically annotate
the image content by keywords, which are then used in the retrieval process. If
the underlying annotation is reliable, text-based image retrieval can be seman-
tically more meaningful than other indexing approaches [10]. Concept detection
techniques categorize images into general concepts such as city, landscape, sun-
set, forest, sea, etc. .., via supervised classification [12,13].

The annotation approaches described above can be considered as crisp anno-
tation: if an image is annotated with a given label then the image expresses that
concept or belong to that class. In [14] the authors tested two classification ap-
proaches, support vector machines (SVMs) and Bayes point machines (BPMs),
to perform a soft image annotation. At the end of the annotation process, each
image is annotated with a label vector, and a confidence factor is assigned to
each label in the vector. These confidence factors can then be exploited in a text-
based search where images are retrieved and ranked according to the confidence
factors of the matching labels.

One of the first works that try to bring semantic information under the
same model vector paradigm used in query-by-example systems is [15]. Semantic
information is learned directly from the image content and forms a vector of
semantic weights. Each weight is associated to a concept and is derived from the
confidence score obtained by a support vector machine trained to recognize that
concept. Retrieval in the semantic space corresponds to performing a similarity
comparison between two model vectors using the Ly measure. A similar approach
is followed in [16].

With the exception of a few examples, all the above techniques tackle the
problem of semantic image retrieval from the point of view of indexing, viz. they
focus on the accuracy of the indexing scheme. Few have been used and evaluated
in CBIR systems or tested on large image databases.

One of the first attempts to integrate and compare semantic keyword and low-
level features into a single CBIR framework is the SIMPLIcity system [17]. The
semantic classification is used to categorize images so that different semantically-
adaptive search methods can be applied to each category. The system is also able
to narrow down the subset of images to be searched by selecting those in the
same category as the query. The reference categories chosen by the author are
textured vs. non textured and graph-photograph. A more recent work [14] defines
a new paradigm denoted as query-by-semantic-example (QBSE) that combines
a query-by-example approach with semantic retrieval. Using the vector model
to describe image content, the authors define a vector of semantic multinomial
values, where each value is associated to a specific concept. They compared the
QBSE and the query-by-visual-examples approaches in a CBIR system within a
minimum probability error retrieval framework.



Following a similar paradigm, we designed an approach to CBIR based on
the information provided by several image classifiers. One of the main problems
in integrating automatic image classification into a content-based retrieval sys-
tem is the choice of classes. It is very hard to identify a set of categories that are
representative of the majority of the pictures and that can be used to reliably
approximate their semantics. Moreover, state of the art image classification sys-
tems are far from perfect and, consequently, their use in image retrieval requires
a high degree of tolerance with respect to misclassification errors.

To circumvent these problems, we did not exploit the classifiers to obtain
a “crisp” semantic description of the images (e.g. “sunset on the beach”), but
rather to provide a rich description of visual content that correlates low-level
features to prototypical scenes (e.g. “image with an edge distribution that can
easily be found in seaside scenes”). In our approach, this level of description
is provided by a set of prosemantic features. These features are obtained by
training several image classifiers so designed that their output can be interpreted
as membership values of an image in the class that they embody. For each class,
we trained multiple classifiers using different low-level features. This choice is not
motivated by the need of a more robust classification (which is the most common
reason for adopting a multiple classifiers strategy), but because we wanted to
exploit the relationship between the classes and the individual features. We let
the retrieval system, which is based on a relevance feedback algorithm, to select
which features and which classes are appropriate on a case by case basis.

The proposed approach consists of three major steps: first, the images are
described by a set of low-level features; then, those descriptions are fed to a
battery of image classifiers trained to evaluate the membership of the images with
respect to a set of 14 overlapping classes; finally, the output of the classifiers is
used to index the images in an image retrieval system, using relevance feedback.

2 Image description by low-level features

Our aim is to train several classifiers for a set of classes. Therefore, we need a
fairly general description of the images in terms of low-level features. We con-
sidered four features: two that convey shape information, and two that describe
color distribution.

For their simplicity and satisfactory performance, bag-of-features represen-
tations have become widely used for image classification and retrieval [18-20].
The basic idea is to select a collection of representative patches of the image,
compute a visual descriptor for each patch, and use the resulting distribution
of descriptors to characterize the whole image. In our work, the patches are the
areas surrounding distinctive key-points and are described using the Scale In-
variant Feature Transform (SIFT) which is invariant to image scale and rotation,
and has been shown to be robust across a substantial range of affine distortions,
changes in 3D viewpoint, additions of noise, and changes in illumination [21].
More in detail, we adopted the implementation described in [22] for both key-
points detection and description. The SIFT descriptors extracted from an image



are then quantized into “visual words”, which are defined by clustering a large
number of descriptors extracted from a set of training images [23]. The final
feature vector is the normalized histogram of the occurrences of the visual words
in the image (1096 components).

Statistics about the direction of edges may greatly help in discriminating
between images depicting natural and man made objects [24]. To describe the
most salient edges we used a 8 bin edge direction histogram: the gradient of the
luminance image is computed using Gaussian derivative filters tuned to retain
only the major edges. Only the points for which the magnitude of the gradient
exceeds a set threshold will contribute to the histogram. The image is subdivided
into 8 x 8 blocks, and a histogram for each block is computed (for a total of 512
components).

Spatial color distribution is one of the most widely used feature in image
content analysis and categorization. In fact, some classes of images may be char-
acterized in terms of layout of color regions, such as blue sky on top or green
grass on bottom. Similarly to Vailaya et al. [12], we divided each image into
9 x 9 blocks and computed the mean and standard deviation of the values of
the color channels of the pixels in each block. The LUV color space is used here,
since moments in this color space are more discriminant than in other spaces, at
least for image retrieval [25]. This feature includes 486 components (six for each
block).

Color moments are less useful when the blocks contain heterogeneous color
regions. Therefore, a global color histogram has been selected as a second color
feature. The RGB color space has been subdivided in 512 bins by a uniform
quantization of each component in eight ranges.

3 Image description by prosemantic features

In order to provide a semantically meaningful information about the content of
the images, several categories in which images may be automatically classified
have been proposed [12,24,26-28]. Based on this work, we selected a set of 14
classes: animals, city, close-up, desert, flowers, forest, indoor, mountain, night,
people, rural, sea, street, and sunset. Some classes describe the image at a scene
level (city, close-up, desert, forest, indoor, mountain, night, rural, sea, street,
sunset) other describe the main subject of the picture (animals, flowers, people).
The set of classes is not meant to be exhaustive, or to be able to characterize
the content of the images with sufficient specificity for our purposes. Our intent,
here, was to select a variegated set of concepts proving a wide range of low-level
descriptions of typical scenes.

We queried various image search engines on the web with several keywords
related to the classes, and downloaded the resulting pictures. Images have been
manually inspected in order to remove those which were not relevant to the
classes. Low-quality images have also been removed. The final dataset consist
of 30084 pictures, divided into 14 sets of more than 2000 images each. For each
class, a set of negative examples has been selected by considering pictures of



the other classes. Since the classes may overlap, a manual inspection was needed
to verify that all the selected images were actually negative examples. Note
that this dataset is completely separated from the one we used in the retrieval
experiments.

For each combination of low-level feature and class, a Support Vector Machine
(SVM) has been trained using the implementation described in [29]. We chose to
adopt a Gaussian kernel. There are two parameters that need to be tuned (the
cost parameter C and the scale of the Gaussian kernel 7), they have been selected
by maximizing the cross validation performance of the resulting classifier (see
Table 1). The classification performance varies greatly depending on classes and

Table 1. Percentage of classification errors of the classifiers on the 14 classes, using the
four low-level feature considered (Bag of features (BoF), color histogram in the RGB
color space (RGB), color moments in the YUV color space (YUV), and edge direction
histograms (EDH)). The errors have been estimated by a five-fold cross validation on
the training sets. For each class, the best result is reported in bold.

Class BoF RGB YUV EDH

Animals 22.5 30.0 22.9 25.5
City 10.1 20.6 17.1 12.5
Closeup 17.7 27.3 17.2 15.0
Desert 18.7 15.7 14.1 22.0
Flowers 12.8 12.0 12.6 13.3
Forest 7.0 136 9.8 94
Indoor 14.7 18.5 18.3 12.9
Mountain 14.1 16.8 13.7 20.3
Night 13.5 83 6.6 27.5
People  17.0 23.8 20.2 20.5
Rural 18.5 15.7 12.2 22.6
Sea 23.1 21.9 194 16.7
Street 18.6 24.5 18.8 17.4
Sunset 125 84 6.6 16.3

Average 15.8 18.4 15.0 18.0

features, ranging from 6.6% of misclassifications for the “night” class using color
moments, to a 30% for the class “animals” using the color histogram. There is
not a clearly superior feature and each feature obtained the lowest classification
error for at least one class.

Better results can probably be obtained by combining the four scores for
each class. However, our goal is not to achieve low misclassifcation rates, but
rather to use the classifiers to warp the high-dimensional feature space into a
low-dimensional semantic space without losing valuable information about the
visual content of the images. Therefore we decided to keep the information about
the individual scores obtained with the four features.



In the end, for each class ¢ and for each low-level feature f, a SVM has been
trained. Given a new image @), represented by the feature vector xg), the SVM
provide a score s(&f):

seD () = peh) 4 3 oDy exp (77(c,f)||ng)7x(Qf)”2)7 (1)
IeT(e)

where T(¢) is the training set for class c, X(If ) denotes the feature vectors com-

puted on the image I, y}c) is the label in {—1, 41} which indicates wether I is a

positive or a negative example, b(¢f) and agc"f ) are the parameters determined

by the training procedure, and ~(¢f) is the scale parameter of the kernel. The
score is expected to be positive when the image belongs to the class ¢, and neg-
ative otherwise. It is well known [30] that the higher the score, the more likely
is that the image belongs to the class. Packing together the 56 scores we obtain
a compact vector of prosemantic features.

4 The QuickLook? CBIR System

We choose to test the prosemantic features within the framework of the QuickLook?
content based retrieval system [5] which easily allows the incorporation and test-
ing of different numerical image representations. The system adopts low-level
pictorial features coupled with a relevance feedback mechanism.

With QuickLook?, an image database can be queried with the aid of sample
images, or user-made sketches, and /or textual image descriptions. When a query
is submitted to the system, the retrieved items are presented in decreasing order
of relevance, the user is then allowed to progressively refine the system’s response
by indicating their relevance, or non-relevance. A query refinement mechanism
and a relevance feedback algorithm are used to define the new query representing
the user needs and to modify the metric used in the retrieval process respectively.
For the purpose of this test we use only the low-level pictorial features retrieval
capabilities of the system while discarding the textual retrieval functionalities.

Let x; be the representation of the image I. Images can be described by
different features so x; is composed of different numerical vectors, each one
representing an image characteristic (e.g. color histogram, shape, etc...). We
indicate these vectors for image I as xgl), x§2), e ,xgp ) Given a query @ and a
image I, the dissimilarity between the two representations is computed as:

1 P
D@Q.1)==> DD (=) )y, (2)
f=1

where D) and wf) are the dissimilarity metric and the weight associated to
the feature f respectively. The weights w/) allow to tune the contribution of
each features in the overall similarity measure. According to the images selected
by the user, the weights are determined by the relevance feedback algorithm
while the query @ is computed by the query refinement algorithm.



4.1 Relevance Feedback

The QuickLook? system uses a relevance feedback mechanism to update the
weights of the similarity function. The key concept of the relevance feedback
mechanism, is that the statistical analysis of the image feature distributions the
user has judged relevant, or not relevant, can be used to determine what features
the user has taken into account (and to what extent) in formulating this judg-
ment, and then accentuate the influence of these features in the overall evaluation
of image similarity, as well as in the formulation of a new query. The structure
of the relevance feedback mechanism is entirely description-independent, that
is, the index can be modified, or extended to include other features without
requiring any change in the algorithm as long as the features can be expressed
as numerical vectors. The relevance feedback algorithm works as follows: let R
the set of relevant images and R_ the set of non relevant images. The feature
weights are computed as:

: if Ry | < 3
1 . o
o = | S if [Ry]| 2 3 and R =0 5

ﬁ — a% otherwise
T e+

e+u

where € and « are positive constants, u(j) is the average of the dissimilarities

computed on the f—th feature between each pair of images in Ry, and MSf ) the
average of the dissimilarities computed on the f—th feature between each image
in R4 and each image in R_. If a weight is negative it is set to 0. A weight is
large if the corresponding feature is present in all the relevant images while it is
small or dampened if the corresponding feature is variable within the relevant
image or is also present in the non relevant images respectively.

4.2 Query Refinement

In content-based retrieval images are sometimes considered relevant because they
resemble the query image in just some limited low-level features. Consequently,
after an initial query, a given retrieved image may be selected by the user as rel-
evant because it has one of the characteristics of the query (e.g. the same color),
and another be selected for another characteristics (e.g. the shape), although
the two are actually quite different from each other. To cope with this problem,
QuickLook? adopts a new method, called query refinement, for computing the
query vector. On the basis of the images selected by the user, the system for-
mulates a new query that better represents the images of interest to the user,
taking into account the features of the relevant images, without allowing any
one particular feature value to bias the query computation. Let ng )(k) be the
k—th value of the f—th feature of image I. By considering only the images in
the relevant set R, the query @ is computed as:

Y = x| x (k) = x@ (k) |< 301}, (4)
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where @ is the average query and o,gf ) is the standard deviation of the k—th
values in the f—th feature. The query is thus computed from the feature values
that mostly agree while the outliers are removed from the computation.

5 Experiments

A user study has been conducted to evaluate the performance of our prosemantic
features against the corresponding low-level ones. For our purpose, we substi-
tuted the original features in the QuickLook? system with ours and asked 20
subjects to perform ten target search retrieval sessions. All subjects came from
the computer science department of the University of Milan - Bicocca: four of
them have a background on image processing or computer vision (two Ph.D.
students and two post-doctoral fellows), the other 16 are graduate (three) or
undergraduate (13) students.

The subjects did the user study one by one on the same desktop with the
same instructor. Each subject was constrained to retrieve the target image by
selecting any number of relevant and not relevant images within the top 60
retrieved images. They were also allowed to deselect all the previously selected
images. Both the search and the deselection accounted as one retrieval operation
each and the subjects were instructed that they must retrieve the target image
in a maximum of 20 operations without a time limit. During each session the
operation performed, the images selected, and the position of the target image
within the retrieved results were recorded. In order to minimize user adaptation,
the retrieval sessions were conducted alternatively with the low-level features and
with the prosemantic features (i.e. one query with the low-level feature and one
query with the prosemantic features). For the same reason, each user searched
the ten query images in a different order. The subjects were oblivious to what
kind of features they were currently using.

The retrieval sessions were organized in such a way that at the end of the
user study, each target image was searched half the time by using the low-level
and half the time by using the prosemantic features. Before starting each session,
the users have been instructed in the use of the system by performing a guided
retrieval test.

The dataset used consists of 1875 images taken from the Benchathlon dataset
[31]. The dataset includes typical consumer photographs showing a very different
distribution of concepts with respect to the dataset used to train the classifiers.
For instance, very often the image would fall in the “people” class, while very few
images can be considered as belonging to the “desert” or “flowers” classes. The
target images have been randomly selected and are shown in Figure 1. Other 60
images have been randomly selected to compose the page from which the users
started all their searches. These images are shown in Figure 2.



House Painting
with NCS
in the USA

Fig. 2. The 60 images which compose the starting page of the searches.
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The outcome of the 200 searches clearly demonstrates the effectiveness of
prosemantic features with respect to low-level features. Using the prosemantic
features, only seven times were the users not able to retrieve the target images
within the limit of 20 retrieval operations. By contrast the limit has been ex-
ceeded 49 times in the case of low-level features. Figure 3 shows the cumulative
success rate for the two sets of features as a function of the number of iterations.
The plot shows how prosemantic features allows the retrieval of more target im-
ages and with less iterations. In particular, in the case of prosemantic features
in more than one third (35/100) of the cases the retrieval of the target image
required only one iteration (i.e. without really exploiting the relevance feedback
algorithm). Using low-level features this happened only in 11 cases.

’ low-level ====---
prosemantic
I I I I

Fraction of target images found

2 4 6 8 10 12 14 16 18 20
Iterations

Fig. 3. Fraction of images successfully retrieved as a function of the number of itera-
tions.

Since the performance changes significantly for different target images, we
reported in Table 2 the results obtained on each of the ten queries. On nine cases
out of ten, the use of prosemantic features obtained a higher success rate. The
only exception is query (g) which has been quite difficult to find with both the
features considered. Two images have never been found using low-level features
(d and f), while they have been considered among the easiest to find using
prosemantic features. There are two cases (queries e and h) which present clearly
distinguishable visual characteristics (one is a grayscale image, the other presents
a strong color cast). This fact has been recognized by the majority of users which
exploited it to quickly find the targets using low-level features; however, the few
users who have not been able to master how low-level similarity works failed the
retrieval task. In these two cases retrieval with prosemantic features required
(on average) a higher number of iterations, but with only one failure.

Observing the users and discussing with them after the experiment, we made
the hypothesis that the effectiveness of the prosemantic features derives from
their capability of encoding characteristics of the images which allow a better
match against users’ intuition about the similarity of the images. Very often,
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Table 2. Detail of the results obtained on the ten query images using the two sets
of features considered. For each query image are reported the number of successful
searches (over 10 attempts for each feature set), the number of iterations needed to re-
trieve the image (averaged over the succesful searches), and the corresponding standard
deviation.

Successful Iterations
Query Image Features searches Average Std deviation
Moyl low-level 8 9.75 5.49
(a) A prosemantic 10 6.80 4.21
2 7 low-level 5 4.20 4.35
(b) prosemantic 9 4.00 2.11
o low-level 6 3.67 5.09
(c) u prosemantic 9 1.11 0.31
low-level 0 - -
(d) & prosemantic 9 3.33 1.70
low-level 7 1.29 0.45
prosemantic 10 3.80 3.16
low-level 0 - -
prosemantic 10 1.30 0.64
low-level 9 7.78 4.39
prosemantic 7 8.00 5.63
low-level 7 5.29 4.40
prosemantic 9 8.11 4.56
low-level 6 7.50 5.41
prosemantic 10 1.10 0.30
low-level 3 9.00 5.10

.43 prosemantic 10 1.80 1.60
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the users started by selecting pictures with the same “general theme” of the
target image (e.g. pictures of people, city shots, ... ). Conversely, reasoning about
low-level features would require specific training. To verify this intuition we
considered the variation of the number of successfully retrieved images during
the sessions. Therefore, we counted for each feature set how many images has
been retrieved among the first two searches of each user. We did the same for
the second two searches and so on...We considered pairs of searches because
the two feature sets have been used alternatively by each subject. The results
are shown in Figure 4. Using the prosemantic features performances are very
close to the maximum attainable (i.e. 20 successes) straight from the beginning
of the retrieval sessions. Therefore, it is not possible to distinguish any user
adaption phenomenon. For what concern low-level features, instead, it seems
that performance actually increased during the sessions: from only four retrieved
images within the first two searches, to 14 within the last two searches. So it
is possible that, provided a sufficient amount of training of the user, low-level
features may reach the same retrieval performance of prosemantic features.

T T T T T

° low-level —3
5 rosemantic
3 20} -
[%]

(]

&

£ 15 B
5]

=g

s 10 1
G

9]

kel 5F -
£

>

z

0

1-2 3-4 5-6 7-8 9-10
Order of the search in the session

Fig. 4. Number of images successfully retrieved as a function of the order in the se-
quence of searches.

6 Conclusions

We have presented here, an image description approach based on prosemantic
features. These features are obtained by multiple classifiers trained to identify 14
semantic concepts, on the basis of different low-level representations. To verify
the effectiveness of the approach, we designed an image retrieval experiments
in which low-level and prosemantic features are embedded into a content-based
image retrieval system based on relevance feedback. The experiments show that
the use of prosemantic features allows for a more successful and quick retrieval
of the query images.
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To further assess the generalization capabilities of prosemantic features, we

plan to extend the experimentation by recruiting more subjects and by consid-
ering additional queries. We are also considering to test prosemantic features in
other application scenarios such as automatic image annotation and classifica-
tion.
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