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Many real complex networks are believed to belong to a class called
small-world (SW) networks. SW networks are graphs with high local
clustering and small distances between nodes. A standard approach to
constructing SW networks consists of varying the probability of rewiring
each edge on a regular graph. As the initial substrate for the regular
graph some specific topologies are usually selected such as ring-lattices
or grids. However, these regular graphs are not suitable for modeling
certain hierarchical topologies. A new regular substrate is proposed in
this paper. The proposed substrate resembles topologies with certain
hierarchical properties more accurately. Then, different dynamics inspired
by networking protocols are used to characterize dynamical properties
of a network. Measuring transmission times and error rates lead us
to consider networks with SW features as the most reliable and fastest,
regardless of the routing policies.

1. Introduction

In the past few years, growth in the field of communication networks
[2, 3, 4], multi-agent systems [5], architectures [7], and complex sys-
tems have generated many studies focused on network topologies. In
this framework graphs represent the most adequate abstract representa-
tion of a network, where each node represents a router or host and each
edge represents a connection between routers or hosts. There are many
investigations that deal with graphs that model networks [8, 9, 10]. A
common feature in all these studies is the set of graphs subjected to study
such as star, ring, grid, regular, and random networks. Recently the use
of transit-stub networks [11] has been proposed as an improvement for
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modeling real communication networks. Transit-stub networks capture
most of the relevant topological characteristics in terms of the follow-
ing metrics: diameter, average degree, average path length, number of
connected components, and number of biconnected components.

Many interesting properties arise when the network topology itself
is an intrinsic parameter that can be modified using some specific rules.
These methods allow slowly varying the metrics of the graphs in such a
way that the dynamical behavior of any given problem can be carefully
analyzed. In [13] a method to study the dynamic behavior of networks
when the network is shifted from a regular, ordered network to a random
one is proposed. The method is based on random rewiring with a fixed
probability p for every edge in the graph. We obtain the original regular
graph for p # 0, and a random graph for p # 1. This method shows
that the characteristic path length (i.e., the average distance between
nodes measured as the minimal path length between them) decreases
with increasing values of p much more rapidly than does the clustering
coefficient (i.e., the average number of neighbors of each node that are
neighbors between them). It was found that there is a range of values for
p where paths are short but the graph is highly clustered. The topologies
in this range are known as small-world (SW) topologies. SW topologies
present some very interesting features that make them suitable for effi-
cient transmission of commodities [13, 14, 15]. Moreover, they appear
in many real life networks [16, 17], the World Wide Web [18], as a result
of natural evolution [19], or as result of a learning process [20]. In [6],
for example, it is shown that on SW networks coherent oscillations and
temporal coding can coexist in synergy in a fast time scale on a set of
coupled neurons.

As the initial substrate for the generation of SW, the use of a ring-
lattice or a grid is usually proposed [14, 21]. They are used because
these graphs are connected, present a good transition from regular to
random, and there are no specific nodes on them. The substrate se-
lected in [13] presents a single biconnected component, independent of
the number of nodes in the graph and does not present a hierarchical
structure. In many networks there are special nodes that connect back-
bones with subnetworks. Furthermore, in [11], the graphs generated
are organized following a clear hierarchical structure and present a high
number of biconnected components. Formally, a biconnected compo-
nent is a maximal set of edges such that any two edges in the set lie
on a common single cycle. Intuitively, a biconnected component is a
subnetwork connected by a set of outputs to the network. The number
of biconnected components in the stub-domain graphs grows with the
number of nodes in the graph. Realistic models of network topologies
are necessary in order to obtain correct behavior for most kinds of algo-
rithms and policies over these hierarchical networks [12]. These models
and methods should also scale to increasingly larger networks because
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communication networks continue to grow in size and importance. Our
objective is to construct regular graphs that can resemble the topology
of hierarchical networks but are able to shift from regular to random in
the same way ring-lattices do. We also want to study some well known
routing policies over this new kind of regular graph.

In this work we present a theorem of existence along with a method
for building regular graphs with a high number of biconnected com-
ponents. In these graphs the number of biconnected components is a
function of the number of nodes in the graph and the number of neigh-
bors of each node. We provide an analytic expression for the number
of biconnected components, the characteristic path length, and the clus-
ter coefficient. Next, we investigate the behavior of some networking
inspired dynamics using this transit-stub based network. In particular,
we analyze by means of intensive computer simulations the dynamical
behavior of information broadcasting, multicasting, and unicasting on
a set of graphs ranging from transit-stub regular to random.

The structure of the article is as follows. First, we show the existence
of regular graphs with several biconnected components and present an
algorithm for building this type of graph. Additionally we provide an
analytic expression for the characteristic path length and cluster coeffi-
cient for this type of graph. Second, we study several static parameters
for this kind of graph and investigate topological metrics when the graph
is shifted from a regular to a random situation. Then, we compare these
metrics with the results obtained by the regular-lattice substrate. And
finally, we analyze by means of computer simulations the behavior of
information broadcast, multicast, and unicast over both types of subs-
trates to determine those graphs that achieve minimum transmission
error and delivery delay.

2. Biconnected small-worlds

This section describes an algorithm to generate a SW graph with a higher
number of biconnected components than do lattices. In the literature
about SW, the ring-lattice is used as the initial graph substrate due to
the following advantages.

Ring substrates are connected.

They have a good transition from “large” to “small.”

They have no special nodes such as trees or stars do.

The ring-lattice substrate has some characteristics that make it un-
suitable for modeling some specific types of networks such as hierarchi-
cal multi-agent networks or the Internet. These networks have special
nodes, the ones that connect stubs with backbones, and present a num-
ber of biconnected components greater than one. However, the number
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of biconnected components for any graph obtained from the ring-lattice
substrate by the Watts–Strogatz method is close to one.

In this section we develop a constructive method for building a finite
regular graph with multiple biconnected components that we call a
“transit-stub regular graph.” This graph is the initial substrate for our
SW model of hierarchical networks. It is not clear a priori that such
graphs exist and, if they exist, it needs to be proved that they can be
built algorithmically for given values of n and k. For a given graph G,
we use n, $G$ as the number of nodes in the graph, ki as the number
of neighbors that node i has, and we use k to denote !n

i#1 ki/n, that is,
the average number of neighbors for each node. Remember that these
graphs must be connected and have a good transition from large to small
in the same way that ring-lattice substrates have.

Here we present a theorem that establishes the existence of regular
finite graphs with several biconnected components. The theorem is
constructive, that is, it proves existence by building such a graph. The
algorithm builds a regular ring-lattice and then attaches an almost-
regular stub to every node in the central ring. This algorithm produces a
k-regular graph with n nodes and a number of biconnected components
higher than one. We show that for fixed k the number of biconnected
components grows linearly with n. The pseudocode of the algorithm is
given in appendix A. We now state our theorem.

Theorem 1. Provided that k is odd and (k % 3) divides n, there is a
regular graph with n nodes, k neighbors per node, and 2n/(k % 3) % 1
biconnected components.

Proof. The proof is constructive. First we build a central ring-lattice
with n/k % 3 nodes and k & 1 neighbors per node. Then we build a
subgraph for each node in the ring-lattice with k % 2 nodes where each
node connects to k neighbors, except for one of them, which connects
only to k & 1 neighbors (this is possible since k is odd, and therefore
k % 2 is also odd). This last node connects to its corresponding node in
the ring-lattice. We call this special node (i.e., the node in the subgraph)
the stub node.

For convenience, we also call the subgraph joint to the node in the
ring-lattice the stub graph, such that every node in the ring-lattice be-
longs to one single stub graph. The previous algorithm generates a
regular graph with n nodes and k neighbors per node. The number of
biconnected components can be calculated by observing that the central
ring is one biconnected component. Every stub generates a new bicon-
nected component since it is only connected by a single node to the
central ring. The edges that connect the stubs to the central ring gener-
ate another biconnected component. Finally, 2n/(k% 3)% 1 biconnected
components exist in the graph.
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Figure 1. Nodes of stub graphs for k # 3 left, and k # 4 right. Note that, by our
definition, the two nodes at the extremes of each base do not belong to the stub
graph but are depicted here for clarity.

A similar theorem can be established when k is even.

Theorem 2. Provided that k is even and (k % 3) divides n, there is a
regular graph with n nodes, k neighbors per node, and n/(k % 3) % 1
biconnected components.

Proof. The proof is again constructive. First we build a central ring-
lattice with n/k%3 nodes and k&2 neighbors per node. Then we build a
subgraph for every node in the ring-lattice with k% 2 nodes where each
node connects to k neighbors, except for two of them, which connect
only to k & 1 neighbors (this is possible since k is even, and therefore
k % 2 is also even). These nodes connect to their corresponding node in
the ring-lattice.

Figure 1 shows how the stub graphs are built for k even and odd.

3. Characteristic path length and cluster coefficient scaling

In this section we give analytical expressions for both the cluster coeffi-
cient and the characteristic path length for regular transit-stub graphs.

3.1 Cluster coefficient

Intuitively the cluster coefficient is the average number of neighbors
of each node that are neighbors between them. More precisely, for a
vertex v let us define '(v) as the subgraph composed by the neighbors
of v (without v itself). Let us define the cluster coefficient for a given
node v as:

Cv #
$E('(v))$

1
2kv(kv & 1)

, (1)
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Figure 2. Distribution of nodes in a stub for k # 3.

where $E('(v))$ is the number of edges in the neighborhood of v. The
cluster coefficient for a given graph G can now be defined as

C #
!n

i#1 Ci

n
. (2)

In order to obtain an expression for the cluster coefficient for regular
odd transit-stub graphs, let us observe that there are four types of nodes
in each stub. These are distributed in the following way (as shown in
Figure 2).

One node in the central ring, node “a.”

One stub node in each stub, node “b.”

k & 1 nodes in each stub connected with the stub node, node “c.”

Two nodes in each stub not connected with the stub node, node “d.”

We count the nodes by type to obtain

Ca #
3
4

k & 3
k

, Cb #
k & 3

k
,

Cc #
(k & 3)(k % 1) % 2

(k)(k & 1)
, Cd #

k & 1
k

. (3)

Then we weight them by averaging over all vertices in the stub:

C #
1

k % 3
"Ca % Cb % Cc % Cd# # 1

k % 3

( $3
4

k & 3
k
%

k & 3
k
% (k & 1)

(k & 3)(k % 1) % 2
(k)(k & 1)

% 2
k & 1

k
% , (4)

which can be simplified to

C # 1 &
1
4
$5 k % 33

k2 % 3k
% . (5)

Note that the transit-stub graphs differ from the most clustered ones
only by an amount O(1/k). Furthermore, when n ) *, k can be made
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arbitrarily large without violating the sparseness condition (n + k).
This makes a clear difference with respect to ring-lattices, where

C #
3
4

(k & 2)
(k & 1)

.

In this case, we have that C ) 3/4 as k ) *, which will never reach the
optimal value of the cluster coefficient.

3.2 Characteristic path length

The characteristic path length of a graph indicates how far the nodes are
from each other. For a vertex v let us define its characteristic length as

L(v) #
!n

i#1 d(v, i)
n

, (6)

where d(v, i) indicates the length of the shortest path connecting v and
i. Using L(v) we define the characteristic length over a graph as

L #
!n

i#1 L(i)
n

. (7)

In order to estimate the characteristic path length of a transit-stub
regular graph we calculate the average distance between the nodes in
the same stub dl, the average distance between nodes in different stubs
dg, and two length scales: Ll as the characteristic path length for nodes
in the same stub, and Lg as the characteristic path length between stubs.
This method for estimating the characteristic path length of a regular
graph is similar to the method followed in [21].

In each stub we have (k % 3)(k % 2)/2 possible connections organized
as follows.

Two of them with a distance of 3 (these correspond to connections be-
tween a and d nodes).

There are k % 1 pairs of nodes with a distance of 2 (a, c and d, b pairs).

There are k(k % 3)/2 pairs of nodes with a distance of 1.

Hence:

dl # Ll #
2

(k % 2)(k % 3)
&2 ( 3 % 2 (k % 1) %

k(k % 3)
2
'

# 1 %
2(k % 5)

(k % 2)(k % 3)
. (8)

We can see that dl ) 1 when k+ 1. If we think of each stub graph as a
super-vertex of the central ring, the average distance between the nodes
of different stubs dg is determined by Lg and Ll. In [21] it is shown that
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a regular ring-lattice with n nodes and k neighbors has the following
value:

L #
n(n % k & 2)
2k(n & 1)

. (9)

In the transit-stub graph the central ring that connects the stubs is a
regular ring-lattice with nr # n/(k % 3) and kr # k & 1 where nr and kr
represent the values of n and k for the central ring. Hence, we have

Lg #
n

k%3 " n
k%3 % (k & 1) & 2#

2(k & 1) " n
k%3 & 1# #

n " n
k%3 % k & 3#

2(k & 1)(n & k & 3)
. (10)

A path from a node v in one stub to a node u in another stub consists
of three components: the edges contained in the stub with v, the edges
in the central ring, and the edges in the stub with u. We add up these
terms to obtain

dg # 2Ll % Lg # 2 %
4(k % 5)

(k % 2)(k % 3)
%

n
k%3 " n

k%3 % (k & 1) & 2#
2(k & 1) " n

k%3 & 1# (11)

that, for n+ k+ 1, we have

dg ,
1
2k
$ n
k % 3

% k% .
There are Nl # n(k % 2)/2 pairs of nodes that are in the same stub

and Ng # n(n & k & 3)/2 pairs of nodes that are in different stubs. We
average them to calculate

L #
2

n(n % 1)
(Nl ( dl %Ng ( dg)

,
k % 2
n % 1

%
(n & k & 3) " n

k%3 % k#
2k(n % 1)

,
1
2k
$ n
k % 3

% k% (12)

where we assume that n + k + 1, that is, sparseness. Note that this
transit-stub network has a shorter characteristic path length than the
characteristic path length of ring-lattices.

In a random graph with fixed k it can be shown that L scales as
log(n) and C scales to 0 as n tends to infinity [27]. This means that
the transit-stub graphs have a different scaling regime than the random
graph model. This makes us expect that at some point, when we shift
from these regular models to a random graph, there must be a phase
change both in the value of L and C. If this phase change is produced
at different values of p for L and C we can build SW graphs using
this regular substrate, and therefore, SW graphs exist for these models.
Furthermore, if the value of p that changes the phase of L is small, the
SW graphs generated from regular transit-stub graphs will have a high
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number of biconnected components. This is because each rewired edge
will decrease the number of biconnected components at most by one.
This means that we need to rewire a minimum of 2n/(k%3)%1 edges for
k odd and n/(k % 3) % 1 edges for k even in order to reduce the number
of biconnected components to one.

4. Static metric behavior

In order to study the static metric behavior of our graphs, we follow
a modified version of the standard procedure described in [13]. Our
method consists of rewiring iteratively every edge with probability p.
Once an edge is evaluated, it is not reconsidered. Other procedures
for building SW graphs have been described in [22, 23, 24]. However
these methods increase the number of edges and/or nodes in the graph
or can only be applied to ring-lattice substrates. Our method maintains
a constant number of nodes and edges and can be applied to any kind
of substrate.

Figure 3 displays the process of shifting a regular transit-stub graph
to random. When p # 0 no changes are made over the substrate and
the graph remains unchanged. As p increases shortcuts appear in the
graph. In the limit of p # 1 a random graph is fully developed.

The metrics used to classify the graphs are the characteristic path
length L, the characteristic cluster C [21], the number of biconnected
components B [25], and the average edge euclidean length D. These
parameters are the most extensively studied in the existing literature.
The diameter of the graph is tightly related to L (being in fact an upper
bound) [27]. Therefore we consider L because it provides more specific
information about the distance of the nodes in the graph. In the same
way, the length diameter [11] is an upper bound of D.

In Figure 4 we show the behavior of L and C in a ring-lattice and in a
regular transit-stub graph for both k even and odd when they are shifted

(a) (b) (c)

Figure 3. Transit-stub graphs for n # 120 and k # 3. (a) Regular transit-stub
graph for p # 0. (b) SW transit-stub graph for p # 0.02. (c) Random graph for
p # 1.
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Figure 4. L (squares) and C (triangles) for ring-lattices with n # 2992 and k # 8,
transit-stub graphs (k odd) with n # 3000 and k # 9, and transit-stub graphs (k
even) for n # 2992 and k # 8.

from a regular to a random situation. Note that all of them present a
clearly visible SW area (i.e., low L and high C). However the decrease
of L in the transit-stub models is smoother because the characteristic
paths are shorter for regular transit-stub substrates than for ring-lattice
ones. In the ring-lattice substrate the value of the characteristic path
L is very close to the maximum for any regular graph and has a very
fast descent. On the other hand, when we calculate the characteristic
cluster C we do not find significant differences between these types of
substrates.

The number of biconnected components in a graph is a useful mea-
sure of “connectedness” or “edge redundancy.” Formally speaking a
biconnected component is a set of edges such that any two edges in
the set lie on a common single cycle. A biconnected component cannot
be disconnected by removing a single node or a single edge. Further-
more, each pair of nodes in a biconnected component is connected by
at least two paths. Intuitively a biconnected component is a subgraph
connected to the rest of the graph by articulation nodes (see [25] for
more information about biconnectivity). Figure 5 displays the number
of biconnected components in the graph as a function of p. Observe that
the number of biconnected components is reduced to a very low number
as p increases in an initially regular transit-stub graph substrate. How-
ever it remains almost constant when a ring-lattice graph is employed.
Therefore, we can see that the main difference between the regular and
the transit-stub graph is found in the number of biconnected compo-
nents. Notice also that in both models, there is a small increase in the
number of biconnected components in the random graph area.

Finally, for a given embedding - of a graph G into an euclidean space
! we can assign a length to each edge in the graph. This length is the
euclidean distance between the two vertices connected by the edge. As
the graph becomes more random, the edges get longer in the euclidean
space. In Figure 6 we plot the average length D of the edges for both
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Figure 5. Number of biconnected components for ring-lattices with n # 2992
and k # 8, transit-stub graphs (k odd) with n # 3000 and k # 9, and transit-
stub graphs (k even) for n # 2992 and k # 8 (the average of 100 experiments is
plotted).

10!5 10!4 10!3 10!2 10!1 100

p

0

200

400

600

800

D

Ring

10!5 10!4 10!3 10!2 10!1 100

p

0

50

100

150

200
Stub Odd

10!5 10!4 10!3 10!2 10!1 100

p

0

50

100

150

200
Stub Even

Figure 6. Average euclidean edge length for ring-lattices with n # 2992 and
k # 8, transit-stub graphs (k odd) with n # 3000 and k # 9, and transit-stub
graphs (k even) for n # 2992 and k # 8. The nodes of the ring-lattice lie over a
circumference with 600 units of radium. In the case of the transit-stub graphs
the backbone nodes are over a circumference of 578 units of radium, each stub
has 1 unit of radium and is 20 units away from its corresponding node in the
backbone (the average of 100 experiments is plotted).

kinds of substrates when they are shifted from regular to random, that is,

D- #
!$E$i#1 d-(i)
$E$

, (13)

where d-(i) is the euclidean length of edge i. The embeddings selected
are such that the nodes of the ring-lattice lie over a circumference with
600 units of radium. In the case of the transit-stub graphs the backbone
nodes are over a circumference of 578 units of radium, each stub has 1
unit of radium and is a distance of 20 units from its corresponding node
in the backbone. Notice that both substrates behave in a similar way.

We can now define the euclidean path length H-(v) for a vertex v as

H-(v) #
!n

i#1 H-(v, i)
n

, (14)
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Figure 7. Normalized characteristic euclidean path length for ring-lattices with
n # 2992 and k # 8, transit-stub graphs (k odd) with n # 3000 and k # 9, and
transit-stub graphs (k even) for n # 2992 and k # 8. The circumferences and
distances are the same as Figure 6 (the average of 100 experiments is plotted).

where H-(v, i) is the total euclidean length of the edges that lie in the
shortest path between vertices v and i with the embedding -. Now, the
characteristic euclidean path length for a given graph G and a euclidean
embedding - can be defined as

H-(G) #
!n

i#1 H-(i)
n

. (15)

The average euclidean path length of a graph is a measure of how far
the nodes are in terms of the euclidean distance, instead of the number
of hops.

In contrast with the average edge euclidean length, observe in Figure 7
the different qualitative behavior in the characteristic euclidean path
length for both kinds of substrate. The ring-lattices display an average
euclidean path length with a “plateau” in the SW area. The highest
value for the average euclidean path length is reached in the regular
area, and the lowest value is reached in the random area. For transit-
stub graphs, the minimum value is reached near the random area (p , 1
but p < 1), meanwhile the highest euclidean path length is observed in
the SW area. The embeddings considered are the same utilized in the
calculus of H.

This measure is important when the cost of the network is considered
as, for example [14, 15], or when the error rate in the transmission of in-
formation packages depends on the distance from source to destination.
If each edge has a probability which reflects how prone it is to trans-
mission error, longer links tend to produce more transmission errors. In
our model, the probability of error in an edge is linearly proportional to
its length. This is due to the fact that if p is the probability of error by
unit of length, the probability pm of error in an edge of length m units
of length is given by:

pm # 1 & (1 & p)m , mp if p. 1. (16)
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From the definition of H it is clear that the average number of cor-
rupted packages due to transmission errors should be proportional to
H when the routing protocol transports packages from a source node
to a destination node using the shortest path between both nodes.

5. Dynamic metrics

We consider two metrics for evaluating the efficiency of information
transmission over the network. One of the them is the error rate, which
may determine the degree of redundancy to include in messages. The
second one is the transmission time. Forecasting transmission times
of the Internet has been studied using neural networks and ergodic
techniques [31]. As pointed out in [13, 14], transmission times should
decrease with the graph characteristic path length.

We define the transfer time as the average time a packet takes to reach
the target starting from a given source node in several experiments. We
compute it by the number of time steps it takes to deliver a set of packets
to the given set of target agents in the network averaged by the number
of nodes in the target set and the number of packets sent to each agent,
that is,

T #
t

l(n & 1)
, (17)

where t is the number of time steps until the system stops, l is the number
of packets, and n is the number of nodes in the target set. The error rate
increments with the length of the edges and with the characteristic path
length of the graph.

The other metric we compute is the average error rate that we define
as the number of packets that become corrupted on their way through
the network. We use the Hamming distance between the original pa-
ckages and the packages at each node:

E #
!n

i#2!l
v#1 f (H(p0v, piv))
l(n & 1)

, (18)

where piv is the package v at node i, H is the usual Hamming distance,
and f (x) is the step function

f (x) # ( 0 if x / 0,
1 otherwise. (19)

The node 0 is assumed to be the source. The error rate would depend
essentially on the characteristic path length and on the number of long-
range connections present in the graph.
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To better understand the balance between time delay and error rate
we arbitrarily propose analyzing an average of both normalized mea-
sures:

P #
1
2
$ T & Tmin

Tmax & Tmin
%

E & Emin

Emax & Emin
% , (20)

where Tmin, Tmax are the minimum and maximum values of T and Emin,
Emax are the minimum and maximum values of E.

6. Dynamical simulations over the networks

Comparisons based on topological metrics provide differences between
graph types. However, it does not mean much unless a link to a function
is established. Therefore, we study how different static topologies affect
performance in some networking inspired dynamics, such as broadcast,
multicast, and unicast of information packages.

As pointed out in [1], performance parameters associated with a
telecommunication network warrants a meaningful model for the com-
plexity of the communication system. A relevant modeling of such
complexity should include stochasticity of interacting resources and in
the flow of information between the nodes of the network. Furthermore,
some of these parameters are fuzzy in nature [26]. An accurate modeling
of the Internet, or even smaller communications systems, is not an easy
task and is out of the scope of this work due to the high heterogeneity
of the elements present in the network and the high number of variables
that affect the performance of a modern communication network.

In our model, a set of qualitative properties found in communication
networks has been added to each of the agents in the network. In fact,
all sorts of additional information about the network can be added to
the topological structure by associating information with the nodes and
edges. For instance, nodes may be assigned numbers representing their
buffer capacity, that is, the number of packages that they can hold in
the queue (including a stop symbol). The queue has a saturation limit
beyond which new incoming packages are discarded. An edge may also
have values of several types; including costs, such as the propagation de-
lay on the link; and constraints, such as the bandwidth of the link. In our
experiments most of the parameters were constant between the different
networking problems (queue sizes, number of packages per file, lifetime
of each package, etc.). This means that some of the parameters have no
influence on the result of the experiments for a particular problem but
does allow us to maintain some consistency between experiments.

For our simulations we assume that the substrates are embedded in
the usual two-dimensional euclidean space. The nodes of the ring-lattice
substrate lie over a circumference with 600 units of radium. In the case
of the transit-stub graphs we assume that the backbone nodes are over
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a circumference of 578 units of radium. Each stub has 1 unit of radium
and is 20 units away from its corresponding node in the backbone.
These distances (but not the topology) correspond with the measures of
the Spanish Research network RedIris [33]. We also assume that the
probability of corrupting a package per unit length is 10&5.

6.1 Simulations based on broadcasting

This section presents a dynamics inspired by simplified broadcasting
using the selective diffusion algorithm described in [32] to understand
the dynamic advantages of different substrate-based network topologies.
Broadcast is the process of sending a package or a set of packages to
all possible destinations in the network. Broadcast is a costly process
in terms of the amount of packages that are introduced in the network.
Moreover, broadcast is frequently used both as stand-alone processes
(e.g., military networks, live TV and radio broadcast, etc.) and as a part
of more complex routing algorithms (e.g., OSPF [35]).

In our simulations each node maintains a finite queue of packages. In
the l first time instants l packages of a file containing routing information
are sent by one fixed agent using selective diffusion to the whole set of
nodes in the network. Each package has an unique identification number
and a time-to-live (ttl) counter that decreases by one for each hop the
package crosses. The package also maintains a list of visited nodes in
order to trace the route the package has followed and to effectively
implement the selective diffusion. When the ttl counter becomes 0,
the package is considered obsolete and removed from the network. In
addition, the package can become corrupted at any bit, including ttl,
route, or identification number. For convenience, the packets are of
fixed size.

The following happens at each time instant for each node.

The first valid package is obtained from its queue and the package is sent
by selective diffusion. A package becomes obsolete if there is another
copy of the package in the queue with a higher ttl or its ttl takes the
value 0.

If the destination node is congested (i.e., its queue is full) the package
is removed from the network reflecting the congestion properties of the
network. At every time instant all obsolete packages are removed from
the queues. This allows queues to maintain the most recent version of
the package.

At each crossed hop, the package decrements its ttl and updates its route
register. The package has a maximum number of hops that corresponds
to its ttl, if the maximum is reached (i.e., ttl # 0), the package is removed
from the network.

At each hop the package has a probability of becoming corrupted as it
crosses links with a certain probability of corrupting packages.
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Figure 8. T, E, and P for broadcast in ring-lattices with n # 2992 and k # 8,
transit-stub graphs (k odd) with n # 3000 and k # 9, and transit-stub graphs (k
even) for n # 2992 and k # 8. l # 10, queue size = 100, and ttl # 380. Results
are averaged over 100 experiments.

The system stops when the whole set of nodes owns a copy of the
complete file or there are no more packages to deliver in the agent’s
queue. When the system stops the transfer time T and the average error
rate E are computed.

We have carried out our simulations for each of the different topolo-
gies obtained by applying the modified Watts–Strogatz method in ring-
lattice and transit-stub substrates. All the metrics are averaged over 100
different experiments. In Figure 8 we display the transfer time T, the
error rate E, and the time/error average P for the three substrates. The
left column shows the dynamic metrics values for the ring-lattice, the
central and right columns show the dynamic metrics for the transit-stub
graphs.

We can observe that, in both substrates, the average time T decreases
when p grows (i.e., when the graph becomes more random). The re-
duction in the average time rate is due to shorter paths that are typical
of random graphs (see Figure 4). On the other hand, the error rate
E behaves differently in the case of ring-lattices than for transit-stub
graphs. In the case of ring-lattices, the error increases with the value
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of p; meanwhile, the error decreases with p in the case of transit-stub
substrates. In both substrates the error rate is related with the behavior
of the characteristic euclidean path length.

If an average measure of the two normalized parameters P is used
as in [14, 15], an optimal point for building networks with an optimal
error-time delay ratio would be those corresponding to the random area
p , 1 for transit-stub graphs. Meanwhile the optimal ratio for ring-
lattices is when the graph is in the SW area. Note that we do not
intend to establish a comparison between ring-lattice and transit-stub
networks, but, given a specific substrate and an embedding, we want to
determine the best performance.

6.2 Simulations based on multicast

In the past few years, especially with the emergence of multimedia over
the Internet and distributed database systems, there has been an increase
in the number of applications that need to establish communications
between groups of hosts. Specific algorithms have been developed for
multicast, and even some specific networks with their own topologies
as, for example, MBONE [34], have been developed for multicast ser-
vices.

Multicast requires the existence and management of groups of nodes.
Each node of the network can join one or several groups or can be sepa-
rate from any group to serve as a mere transport node. The creation and
management of groups are independent tasks of the package delivery
process over the network and have their own algorithms and protocols.
For this reason, as a step prior to each multicast simulation, two groups
composed of 1% of the nodes in the network are created. The nodes
that form a group are selected at random with uniform probability over
the whole set of nodes in the network. A node can belong to none, one,
or several groups. The nodes that do not belong to any group work
as transport nodes. We assume that the members of each group do
not change once they are established. In our simulations we have im-
plemented a multicast routing algorithm based on spanning trees [32].
A prerequisite to carrying out the simulations is the calculation of the
spanning trees that originate in the source node.

As in section 6.1, each node maintains a queue of packages. In the
l first time steps, 2l packages of two different files are sent by a source
agent. Each file consists of l packages and is addressed to one of the two
groups in the network. Each package has a file number, an identification
number inside the file, and a ttl counter. The package also maintains a
list of visited nodes and when the ttl counter becomes 0, the package
is considered obsolete. As in the previous experiment, the package can
become corrupted at any bit, including ttl, route, file, or identification
number. Fixed-size packages are again used.
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The following happens at each time instant for each node.

The first valid package is obtained from its queue and the group to which
the package is addressed is checked.

The node sends the package only to neighbor nodes that belong to the
group to which the package is addressed, or are on the way to nodes of
that group, avoiding the neighbor node that sent the package.

When the destination node is congested, the package is lost on its way to
that node.

At every time instant all obsolete packages are removed from the queues.

At each crossed hop, the package decrements its ttl and updates its route
register.

The packages have some given probability of becoming corrupted as they
cross links.

The system stops when the whole set of nodes expecting files (i.e., the
nodes belonging to the two groups) owns a copy of the corresponding
file or files or there are no more packages to deliver. When the system
stops, the average error and transfer time are computed.

As in section 6.1 the Watts–Strogatz method has been applied in ring-
lattice and transit-stub substrates. All the metrics are averaged over 100
different experiments.

Multicast results for T, E, and P are plotted in Figures 9 and 10. As an
illustration of the consistency of the results we can observe in Figure 10
the same qualitative results when the number of packages and ttl are
increased. Multicast presents its worst results both for transfer time
and error rate in the regular area (p # 0). Optimal points are obtained
for the SW area in the case of ring-lattices and in the random area for
transfer-stub graphs. This is consistent with the broadcast results due
to the fact that both are minimal path based algorithms.

6.3 Point-to-point transport (unicast)

In unicast, or point-to-point transmission, a package has to cross a num-
ber of intermediate machines (routers) in order to go from the source
to the destination. Multiple routes or paths of different length are po-
ssible. In this framework, routing algorithms play an important role
in the efficient transmission of packages. In the Internet, for example,
each router obtains routing information (link state, topology, conges-
tions, etc.) from other routers. Routing information can be provided
by routers in the same subnetwork or, for border network routers,
from the neighbor subnetwork [35]. The information provided by the
routers allows maintaining the best possible route at each moment. In
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Figure 9. T, E, and P for multicast with spanning trees routing in ring-lattices
with n # 2992 and k # 8, transit-stub graphs (k odd) with n # 3000 and k # 9,
and transit-stub graphs (k even) for n # 2992 and k # 8. l # 10, queue size =
100, and ttl # 380. Results are averaged over 100 experiments.
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Figure 10. T, E, and P, for multicast with spanning trees routing in ring-lattices
with n # 2992 and k # 8, transit-stub graphs (k odd) with n # 3000 and k # 9,
and transit-stub graphs (k even) for n # 2992 and k # 8. l # 100, queue size =
110, and ttl # 750. Results are averaged over 100 experiments.
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our model, each agent maintains a routing table based on minimal dis-
tance to the other agents in the network. Note that in reality the routing
process does not follow minimal paths [36]. However, minimal distance
routing can be considered as a lower bound of routing algorithms.

In our unicast experiment, each node maintains a queue of packages.
In the l first time steps, one node selected at random sends a file of l
packages to each of two different randomly selected destination nodes.
Each package has an origin and destination number, a file number, an
identification number inside the file, and a ttl counter. The package also
maintains a list of visited nodes and when the ttl counter becomes 0,
the package is considered obsolete. As in the previous experiment, the
package can become corrupted at any bit, including destination, origin,
ttl, route, file, or identification number. Fixed-size packages are again
used.

The following happens at each time instant for each node.

The first valid package is obatined from its queue and the node to which
the package is addressed is checked.

The node sends the package to a neighbor node that is closer to the
destination address.

When the destination node is congested, the package is lost on its way to
that node.

At every time instant all obsolete packages are removed from the queues.

At each crossed hop, the package decrements its ttl and updates its route
register.

Packages have a probability of becoming corrupted as they cross links.

Unicast results for T, E, and P are plotted in Figures 11 and 12.
Both substrates present a very similar qualitative behavior with respect
to the transfer time. The transfer time in unicast is clearly related to
the characteristic path of the substrate. Both substrates now present
different characteristics in the error rate. The error rate increases with p
in the case of ring-lattices, whereas in transit-stub graphs the error rate
has a minimum in the random region, reaching its worst values in the
regular extreme of p (p # 0). The optimal time/error average is in the
SW area for ring-lattices and in the random area for transit-stub graphs.

6.4 Multihop networks simulations

Multihop networks have a small number of neighbors per node and have
been mainly used for computer clusters and lightwave networks. Some
very specific topologies have been studied for multihop networks, such
as the toroidal and diagonal mesh [37] or the Manhattan street [38].

Complex Systems, 14 (2003) 1–28



10!5 10!4 10!3 10!2 10!1 100

p

0
0,2
0,4
0,6
0,8

1

P

10!5 10!4 10!3 10!2 10!1 100

p

0

0,02

0,04

E

10!5 10!4 10!3 10!2 10!1 100

p

0
50

100
150
200
250
300

T

Ring

10!5 10!4 10!3 10!2 10!1 100

p

0
0,2
0,4
0,6
0,8

1

10!5 10!4 10!3 10!2 10!1 100

p

0

0,01

0,02

10!5 10!4 10!3 10!2 10!1 100

p

20
25
30
35
40
45
50

Stub Odd

10!5 10!4 10!3 10!2 10!1 100

p

0
0,2
0,4
0,6
0,8

1

10!5 10!4 10!3 10!2 10!1 100

p

0

0,01

0,02

0,03

10!5 10!4 10!3 10!2 10!1 100

p

20

30

40

50

60
Stub Even

Figure 11. T, E, and P for unicast with minimal distance routing in ring-lattices
with n # 2992 and k # 8, transit-stub graphs (k odd) with n # 3000 and k # 9,
and transit-stub graphs (k even) for n # 2992 and k # 8. l # 10, queue size =
100, and ttl # 380. Results are averaged over 100 experiments.
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Figure 12. T, E, and P for unicast with minimal distance routing in ring-lattices
with n # 2992 and k # 8, transit-stub graphs (k odd) with n # 3000 and k # 9,
and transit-stub graphs (k even) for n # 2992 and k # 8. l # 100, queue size =
110, and ttl # 750. Results are averaged over 100 experiments.
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Deflection routing or “hot potato” routing is a popular unicast routing
strategy, specially used over multihop networks. Deflection routing
is a bufferless routing algorithm. Packages are sorted by a deflection
criterion as, for example, the time the package is in the network, or the
distance to its destination. Packages with higher priority are routed to
the optimal links. Store and forward routing is another algorithm used
over multihop networks. Store and forward is a buffered algorithm and
all packages are routed over the shortest path.

In this experiment, l packages of a file are sent by a source node to a
random destination node. Each package has an identification number,
a destination address, and a ttl counter. As in the previous sections,
the package maintains a list of visited nodes and when the ttl counter
becomes 0, the package is considered obsolete. Package corruption is
also possible.

For deflection routing the highest priority is given to packages that
have low ttl. This is the optimal criteria as shown in [37, 39]. At each
time instant, the algorithm works as follows.

Each node gets every valid package from its queue.

If the package has a high ttl, it is sent to a random neighbor. If the ttl of
the package is below a given threshold (in our experiments we take this
threshold to be the diameter of the ring-lattice of size n), then it is sent to
the following node by using the shortest path to the destination node.

Deflection routing results for T, E, and P are plotted in Figure 13.
As expected, the ring-lattice presents the worst transfer time, but there
are no big differences in respect to the transfer time of the transit-stub
graphs. This is due to the fact that transfer time is mainly determined
in both substrates for the “random walk” part in the route of each
package. Some differences are found in the error rate. In the case of
ring-lattices, the error decreases until the minimum value is situated in
the SW region, then the error rate increases to a similar value observed
in the regular ring substrate. For transit-stub graphs, the error rate
remains almost constant during the SW area, increasing only when p
is close to 1. Note also that in both substrates the optimal time/error
average is obtained in the SW area. Deflection routing is not a minimal
distance algorithm, so we cannot expect the error rate to follow the
behavior of the characteristic euclidean path length. In this algorithm,
the error rate is determined mainly by the random walk part of each
route.

We now analyze store and forward routing. This routing algorithm
performs the following at each time instant.

Each node gets the first valid package from its queue and sends it to the
following node using the shortest path to the destination node of the
package.
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Figure 13. T, E, and P for the deflection routing policy in ring-lattices with
n # 2992 and k # 8, transit-stub graphs (k odd) with n # 3000 and k # 9, and
transit-stub graphs (k even) for n # 2992 and k # 8. l # 10, and ttl # 380.
Results are averaged over 100 experiments.

As in the previous experiments, node congestion, obsolete packages,
corruption of packages, and ttl countdown have been implemented.

Store and forward results for T, E, and P are plotted in Figure 14.
When very few packages l # 10 are present in the network the algorithm
shows a high velocity, with a very small (close to the optimal) transfer
time. The transfer time results respond to the expected values (decrease
in p and higher T values for the ring-lattice substrate). The error rate
increases with p in the ring-lattice substrate and decreases for transit-
stub graphs, resembling the plot of the characteristic euclidean path
length. Note that the optimal time/error average is obtained in the SW
area for the ring-lattice substrate, while the transit-stub graphs reach
the optimal value in the random area.

7. Conclusions and discussion

We have developed a method for building initial regular substrates by
considering topological metrics different from the usual ones, as for
example, the number of biconnected components. We studied a set of
networking inspired dynamics over these new topologies by comparing
them with the same dynamics over the usual small-world (SW) substrate.
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Figure 14. T, E, and P for the store and forward routing policy in ring-lattices
with n # 2992 and k # 8, transit-stub graphs (k odd) with n # 3000 and k # 9,
and transit-stub graphs (k even) for n # 2992 and k # 8. l # 10, queue size =
100, and ttl # 380. Results are averaged over 100 experiments.

In our simulations we study a very simplified deterministic model
based on a set of homogeneous agents that interact following policies in-
spired by some of the dynamics found in intercommunication networks.
The results obtained could be very far from the performance parameters
given in real communication systems such as the Internet. However, we
think that these results can possibly be appliyed to small, homogeneous
systems and can show that, in these situations, the underlying network
topology heavily determines the dynamic behavior of the network.

We conclude with the following remarks.

Regular graphs exist that present a high number of biconnected com-
ponents. These networks better resemble hierarchical networks than
structures like stars, rings, or grids.

These new transit-stub networks present a similar SW area when they are
shifted from a regular to a random situation in a way similar to ring-lattice
substrates. However, transit-stub networks present a slower descent in
their characteristic path.

The selected substrate changes the values of the dynamical metrics of a
set of well known internetworking inspired dynamics over a network of
agents.
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The SW area is an optimal region for time/error averages for ring-lattice
graphs over several internetworking inspired dynamics. There is one
exception, the deflection routing algorithm, because this parameter is
controlled mainly by a “random walk” part of the route.
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Appendix

Pseudocode to generate regular multi-biconnected graphs for k odd.

Procedure CreateRegularStubsOdd(n,k)

//n number of nodes in the graph
//k neighbors per node

// Build the central ring

For j = 1 to n/(k+3)
For l = 1 to (k-1)/2

// bidirectional edge
AddEdge (j, (j+l) mod (n/k+3))

// Attach a stub to each
// node of the central ring

For j = 1 to n/k+3
AddStubOdd(j)

End Procedure CreateRegularStubs

Procedure AddStubOdd(x)
// x = node to attach the stub

// for each node in the stub

For j = n/(k+3) + x*(k+2)
to n/(k+3) + x*(k+2) + k + 1

// number of neighbors
For v=1 to (k-1)/2

// check cyclic connections in the stubs
if j+v < n/(k+3) + x*(k+2) + k + 2

ind = j+v
else

ind = (j+v)-(k+2)

Complex Systems, 14 (2003) 1–28
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AddEdge(j,ind)

// join pairs of nodes in the
// stub except the connection
// with the central ring

For j = n/(k+3) + x*(k+2)+1 to
n/(k+3) + x*(k+2) + (k + 1)/2
AddEdge(j,j+((k+1)/2))

// and last connect the stub
// with the central ring
AddEdge(n/(k+3) + x*(k+2),x)

End Procedure AddStubOdd
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