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Fast Response and Temporal Coherent Oscillations in Small-World Networks
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We have investigated the role that different connectivity regimes play in the dynamics of a network
of Hodgkin-Huxley neurons by computer simulations. The different connectivity topologies exhibit the
following features: random topologies give rise to fast system response yet are unable to produce coherent
oscillations in the average activity of the network; on the other hand, regular topologies give rise to
coherent oscillations, but in a temporal scale that is not in accordance with fast signal processing. Finally,
small-world topologies, which fall between random and regular ones, take advantage of the best features
of both, giving rise to fast system response with coherent oscillations.

PACS numbers: 87.18.Sn, 05.45.–a, 84.35.+ i, 87.18.Bb
In a recent Letter by Watts and Strogatz [1] it was
shown that small-world (SW) networks enhance signal-
propagation speed, computational power, and synchro-
nizability. SW stands for a network whose connectivity
topology is placed somewhere between a regular and a
completely random connectivity. The main properties of
these specific networks are that they can be highly clus-
tered like regular networks and, at the same time, have
small path lengths like random ones. Therefore, SW
networks may have properties given neither in regular nor
in random networks [2]. In this Letter we have extended
Watts and Strogatz’s general framework by introducing
dynamical elements in the network nodes. Our source of
inspiration is based on a phenomenon observed in the
olfactory antennal lobe (AL) of the locust [3]. The AL is
a group of around 800 neurons whose functional role is to
relay information from the olfactory receptors to higher
areas of the brain for further processing. Two main fea-
tures have been observed in the dynamics of the AL. First,
there is a fast response of the AL when the stimulus is
presented. Second, when an odor is presented to the insect,
coherent oscillations of 20 Hz in the local field potential
(LFP) are measured [3]. Summarizing, fast coherent os-
cillations are observed. There are also other systems in the
brain that present coherent LFP oscillations, hence, hinting
to the generality of these phenomena (see [4,5]).

The cooperative behavior of large assemblies of dynami-
cal elements has been the subject of many investigations
[6–10]. In all of them the connectivity between the ele-
ments of the network was either regular (local or global
all-to-all) or random. However, none of these studies in-
corporates a comparative analysis of network dynamics for
all the different connectivity topologies.

In the present work we want to show that in order to
provide fast response and coherent oscillations a SW topol-
ogy is required. Without the coherent oscillations the AL
seems to lose its ability to process the information incom-
ing from the sensors [3]. The model we propose for this
study is made of an array of nonidentical Hodgkin-Huxley
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elements coupled by excitatory synapses. The unit dynam-
ics is described by the following set of coupled ordinary
differential equations:

Cm
�Vi � Ie 2 gLV̂L 2 gNam3hV̂Na 2 gKn4V̂K 1 Is�t� ,

(1)

�m � am�V � �1 2 m� 2 bm�V �m , (2)

�h � ah�V � �1 2 h� 2 bh�V �h , (3)

�n � an�V � �1 2 n� 2 bn�V �n , (4)

where Vi represents the membrane potential of unit i; Cm

is the membrane capacitance per unit area; Ie�t� is the
external current, which occurs as a pulse of amplitude
I0; Is�t� is the synaptic current; V̂r � Vi 2 Vr , where
Vr are the equilibrium potentials for the different ionic
contributions (r � Na, K) and passive channel (r � L),
and gr are the corresponding maximum conductances per
unit area; h, m, n are the voltage dependent activating and
inactivating variables; and a, b are functions of V adjusted
to physiological data by voltage clamp techniques. We
have used the original functions and parameters employed
by [11]. The model neuron is sitting below the bifurcation
point (quiescent state) until the input arrives that forces
the system to undergo a saddle-node bifurcation on a limit
cicle [12]. The system was integrated using the Runge-
Kutta 6(5) scheme with variable time step based on [13].
The synaptic current Is is given by

Is
i �t� � gijrj�t� �Vs�t� 2 Es� , (5)

where i stands for the postsynaptic and j for the presynap-
tic neuron, and gij is the maximum conductance, which de-
termines the degree of coupling between the two connected
neurons. Vs is the postsynaptic potential, Es is the synaptic
reversal potential, and rj�t� is the fraction of bound recep-
tors [14] given by the equation �r � a�t� �1 2 r� 2 br.
The rise and decay constants a�t� and b are given by
© 2000 The American Physical Society
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a�t� � 0.94u�t0 1 t 2 t�u�t 2 t0� msec21 and b �
0.18 msec21, where u�x� is the Heaviside function, t0 is
the time when the presynaptic neuron fires (membrane
potential over 27 mV), and t � 1.5 msec.

In this model three different kinds of connectivity pat-
terns have been tested: regular, random, and small world.
To interpolate between regular and random networks we
follow the procedure described in [1] which we summa-
rize here for convenience: we start from a ring lattice with
N vertices and k edges per vertex, and each edge is rewired
at random with probability p. The limits of regularity and
randomness are for p � 0 and p � 1, respectively, and
the SW topology lies somewhere in the intermediate region
0 , p , 1. The quantification of the structural properties
of these graphs is performed using the characteristic path
length L� p� and the clustering coefficient C� p�. L� p� is
defined as the number of edges in the shortest path between
two vertices, averaged over all pairs of vertices. C� p� is
defined as follows: suppose that a vertex y has ky neigh-
bors; then at most ky�ky 2 1��2 edges can exist between
them. Let Cy denote the fraction of these allowable edges
that actually exist, and define C as the average of Cy over
all vertices y. Figure 1a replicates that of [1] for ease of
reference.

Next we investigate the functional significance of SW
topologies for the dynamics of the network. To study the
global behavior of the network we compute its average
activity V �t� � �1�N�

PN
i�1 Vi�t�. The quantities used to
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FIG. 1. (a) Characteristic path length L� p� and clustering
coefficient C� p� for the family of randomly rewired graphs,
normalized to the values L�0� and C�0� of the regular case.
(b) Average activity oscillation amplitude s� p�, and (c) degree
of coherence b� p� for the whole range of networks, calculated
between T1 � 100 and T2 � 200. All curves are averages over
ten realizations of the simulation with parameters N � 797,
k � 30, and g � 0.015. An input signal I0 � 1.5 was injected,
at t � 50, to 80 contiguous neurons (10% of the total).
detect the onset and degree of coherent oscillations are the
average activity oscillation amplitude [10] and the degree
of coherence [15]. The amplitude of the oscillations is
measured by

s2� p� �
1

T2 2 T1

Z T2

T1

��Vp�t� �t 2 Vp�t� �2 dt , (6)

where Vp�t� is the average activity of the network for a
given value of the probability p, and the angle brackets
denote temporal average over the integration interval. A
high value of s� p� would imply a high amplitude of the
oscillations of the average activity, while a low value would
indicate an almost nonoscillatory behavior. The degree of
coherence is determined by fitting a Gaussian to the highest
peak of the power spectra and calculating

b � Hv�Dv , (7)

where H is the height of the peak, v is the frequency at
which it appears, and Dv is the width of the peak at the
half maximum height [15].

In Fig. 1b we plot s� p� for each of the different net-
works characterized by its probability p, and in Fig. 1c we
do the same for b� p�. Notice that coherent oscillations in-
crease in the region in which a high C� p� and a low L� p�
occur simultaneously; this is precisely the SW region. This
can be better observed in Fig. 2, which shows the average
activity of the network and the power spectra (inset) in
three cases corresponding to the three different topological
configurations: regular, random, and SW. Both the regular
and the SW topologies display coherent oscillations, but in
the regular network they appear much later and their ampli-
tude is smaller than in the SW case. On the other hand, the
random network displays only irregular variations over an
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FIG. 2. Average activity and power spectrum (inset) in a net-
work of 797 neurons. (a) Regular network � p � 0�. (b) Small-
world network � p � 0.032�. (c) Random network � p � 1�.
The input onset occurs at t � 50 and is offset at t � 350.
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almost constant pattern of activity. A more extensive study
in the �k, p� plane has been performed in order to establish
the limits for the appearance of coherent oscillations and to
check that our previous results can be generalized within a
certain range of parameters. We have computed the aver-
age activity oscillation amplitude for a total of 180 points
in the �k, p� plane. An interpolation of these results is plot-
ted in Fig. 3, where the clear zones indicate high values of
s. We can conclude from this figure that fast coherent os-
cillations appear only in the region of intermediate proba-
bilities, that is, the SW. The a priori limits on k are based
on the fact that for k lower than �10 the activation of the
network is very weak, while for k higher than �35 some
neurons become saturated.

Temporal coding in the AL is represented by the timing
of action potentials with respect to an ongoing coherent
collective oscillatory pattern of activity. When an odor
is presented, some neurons in the AL respond to the odor
with some particular timing with respect to the LFP [3]. As
a measure of this temporal coding, we have divided time
in periods of the global average activity and calculated for
each period the quantity

Ai�n� �
1
C

Z
T

�ai�t� 2 V �t� �2 dt , (8)

where i represents a particular cluster (all the neurons that
are directly connected to neuron i), n represents a particu-
lar period of the mean activity V �t� of the whole network,
ai�t� is the mean activity of cluster i, and C is a normal-
ization constant to get the value of Ai�n� in the range 0–1.
In Fig. 4 we show the results for three different clusters
chosen at random in a network within the SW connectivity
regime. It can be observed that the activities of the dif-
ferent clusters are out of phase and reach their maximum

FIG. 3. Phase diagram which shows the regions of oscillatory
(clear, high s) and nonoscillatory (dark, low s) activity of the
network in the �k, p� plane. The island that appears on the right
side indicates that the SW (for some range of values of k) is the
only regime capable to produce fast coherent oscillations in the
average activity after the presentation of the stimulus.
2760
values at different periods of the global average activity.
The ability to represent the coding observed in the AL [3]
can be seen only in regular and SW networks. However,
we remind the reader that regular networks have very slow
activation times.

In conclusion, regular networks produce coherent oscil-
lations in a slow time scale, whereas random networks give
rise to fast response but without coherent oscillations. We
have observed that SW networks show both coherent os-
cillations with the ability of temporal coding and fast reac-
tion times. The dynamical system introduced in the nodes
of the network is the Hodgkin-Huxley model that presents
a saddle-node bifurcation to the limit cycle. Another re-
search direction could analyze a different dynamical sys-
tem with a different type of bifurcation in the node, such as
the Hopf. It remains to be seen if the results presented in
this paper can be extrapolated to other dynamical systems
with different kinds of bifurcations.

Although we have not performed a detailed analysis of
the mechanism that generates coherence, the simulations
show that (i) it takes longer to synchronize in regular
networks because the localized input needs to propagate
through the ring, (ii) the SW topology overcomes this
problem because of the existence of a few long range
connections, and (iii) in the random case the clustering
coefficient is too low, which implies that a specific neuron
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FIG. 4. (a)– (c) Average activity of three different clusters of
neurons averaged over periods of the global mean activity. The
simulation corresponds with that of Fig. 2b, which lies within
the SW region. (d) Average activity of the whole network show-
ing the coherent oscillations over which the activities of clusters
are averaged.
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receives signals from many neurons that do not communi-
cate among themselves. However, in the random network,
coherent oscillations are possible provided its clustering
coefficient is sufficiently high. That is, if we increase the
average number of connections per neuron k in the random
network we find a transition from nonoscillatory (low k)
to oscillatory (high k). The sparse random connection case
has been carefully studied by [16] using integrate-and-fire
models. Our simulations are coherent with their results.
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