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Abstract

Shape-from-focus (SFF) is a passive technique widely used in image processing for obtaining depth-maps. This technique is

attractive since it only requires a single monocular camera with focus control, thus avoiding correspondence problems typically

found in stereo, as well as more expensive capturing devices. However, one of its main drawbacks is its poor performance when

the change in the focus level is difficult to detect. Most research in SFF has focused on improving the accuracy of the depth

estimation. Less attention has been paid to the problem of providing quality measures in order to predict the performance of SFF

without prior knowledge of the recovered scene. This paper proposes a reliability measure aimed at assessing the quality of the

depth-map obtained using SFF. The proposed reliability measure (the R-measure) analyses the shape of the focus measure function

and estimates the likelihood of obtaining an accurate depth estimation without any previous knowledge of the recovered scene. The

proposed R-measure is then applied for determining the image regions where SFF will not perform correctly in order to discard

them. Experiments with both synthetic and real scenes are presented.
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1. Introduction

A great effort has been devoted in the field of image pro-

cessing in order to develop and improve both active and passive

techniques for depth recovery and 3D shape reconstruction. In

particular, shape-from-focus (SFF) is a passive technique for

depth recovery that requires a sequence of images from a scene

captured by changing the focus configuration of the imaging

device. This image sequence is usually referred to as focus se-

quence or focus sweep. The main interest of SFF is that, as

a passive method, there is no physical interaction between the

capturing device and the scene. In addition, since a single cam-

era is used, correspondence problems typical of stereo or ver-

gence are avoided. Moreover, the hardware complexity is low,

with no special equipment being required, as in the case of ac-

tive techniques such as optical triangulation, LIDAR imaging

and laser scanning.

An important step in the application of SFF is the compu-

tation of the focus level for every scene point in every image

frame of the focusing sequence. Many focus measure (FM) op-

erators have been proposed and tested in the literature. All of

them require that the change in the focus level of the imaged

points be detectable. This is an important limitation if SFF is to

be applied to complex scenes captured with large depth-of-field

(DOF) systems where the optical configuration of the capturing
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device and the image content may lead to erroneous detections

of the change in focus. In this work, the term “large DOF sys-

tems” refers to conventional macroscopic cameras in which the

DOF is large with respect to the working distance. In contrast,

in microscopy imaging, the large focal lengths lead to very short

DOFs; and the captured images are usually rich in texture due

to the high magnification. In addition, the focus sweep is ob-

tained by moving the captured object while the camera’s optics

remains fixed, yielding an acquisition with constant DOF. For

this reason, SFF has typically been used in microscopy and in

well-controlled scenarios, where favorable imaging conditions

are guaranteed prior to the application of that technique. For in-

stance, SFF has been applied in microscopy for PCB inspection

and manufacturing [1].

Due to the aforementioned reasons, the application of pure

SFF in conventional cameras has been limited. For instance, in

[2] and [3], a depth-from-defocus prototype that projects a light

pattern in order to compensate for the lack of texture was devel-

oped. In [4], a hybrid system that combines SFF and stereo has

been proposed. In [5, 6], the result of SFF is improved using

the information of relative defocus.

The problem of applying SFF to complex scenes using con-

ventional cameras is tackled in this work. With the proposed

methodology, we show that even in complex scenarios, useful

information about the scene depth can be obtained by means of

SFF as long as a way for measuring the reliability of the depth

estimation is available. For instance, Fig. 1(a) shows a synthetic

scene that consists of a conical surface with a texture mapped

on it. Fig. 1(b) shows the corresponding depth-map obtained

Preprint submitted to Elsevier June 13, 2013
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Fig. 1: Shape-from-focus in complex scenarios. (a) Synthetic scene. (b) Depth-map obtained through SFF. (c) Smoothing with median filter [7, 8]. (d) Smoothing

with bilateral filter [9]. (e) Smoothing with non-local means [10, 11]. (f) Carved depth-map with low-reliability pixels having been removed.

through SFF. It is clear that some regions of the obtained recon-

struction are inaccurate and highly corrupted by noise. In this

case, traditional smoothing techniques such as median filtering

[7, 8], bilateral filtering [9] or non-local means [10, 11] are of

limited application since large areas of the recovered scene are

unreliable. In contrast, Fig. 1(f) shows the depth-map of Fig.

1(b) after having been filtered by carving those pixels whose

reliability is below a given threshold. The reliability measure

allows identifying and removing less accurate pixels while pre-

serving the useful information of the depth-map. In contrast to

previous approaches, the reliability of each pixel is estimated

before the computation of the depth-map based on the behav-

ior of the focus measure over each pixel of the imaged scene.

Experimental results on real and synthetic data are provided.

The problem of estimating the reliability of the focus mea-

sure is analogous to confidence estimation in stereo and optical

flow [12, 13]. In that scope, the aim is to rank depth estimates

in stereo vision or flow fields in optical flow according to the

likelihood for being correct. To the best of our knowledge, the

problem of determining the confidence of the focus measure

estimation is tackled in this paper for the first time.

This paper is organized as follows: section 2 reviews the

main concepts behind SFF and the relevant related previous

work. Section 3 describes the proposed approach. Section 4

presents the experiments carried out on real and synthetic data,

and discusses the obtained results. Finally, conclusions and fu-

ture work are given in section 6.

2. Background

In SFF, depth information is retrieved from image sequences

of the same scene captured with different degrees of focus. The

local focus variation is used as a depth cue [7]. According to the

thin lens camera model, a camera focuses by changing the dis-

tance, v, between the lens and the sensing device (e.g., a CCD

sensor). Depending on the lens focal length, f , only the points

at a certain distance u will be in focus for a given focus setting.

The relationship between these three variables is given by the

well known thin lens equation: 1/ f = 1/u + 1/v. Since there

is a one-to-one correspondence between the object distance u

and the focal plane location v, the maximum focus will only be

achieved at a specific object distance.

The SFF problem can be divided into two main subprob-

lems, namely focus measure and scene reconstruction. Once

a focus sequence has been captured by changing focus and an

image stack Ik(x, y) is generated, a focus measure is computed

for each pixel at every image frame. The values of the fo-

cus measure for a pixel at coordinates (i, j) over all the image

frames are referred to as focus function (or focus measure vec-

tor): fi, j = (F1(i, j), ...Fk(i, j), ...FK(i, j)), where Fk(i, j) is the

focus measure of that pixel at the k-th frame and K is the total

number of frames.

The next step for shape reconstruction is to apply a scene re-

construction scheme that exploits the focus information of im-

ages in order to estimate the distance of every point of the scene,

namely the depth-map, Z(x, y). The reconstruction stage usu-

ally requires the interpolation of the focus function by means

of a particular model [8, 14, 15]. The final reconstruction can
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be further improved by applying optimization techniques that

post-process the focus measure and the reconstructed surface

[14, 16, 17] or exploit the defocus information [5].

The influence of the image content on the performance of

SFF has been analyzed in the literature. In [18], the presence

of texture content in the focus sequence was found to be crit-

ical, since the focus measure operators fail to detect changes

in focus for low-textured scenes, thus making the estimation of

depth unreliable. To our knowledge, few attempts have been

made in order to address the problem of detecting regions with

low accuracy in SFF. In [19], Shoji et. al. used color segmen-

tation and bilateral filtering to improve both the accuracy of the

focus measurement and the final estimation of depth. The main

drawback of this approach is that the region merging stage is

performed by taking into account color and not texture, which

is the key factor for the focus measure. This may lead to er-

roneous results for different objects and surfaces with the same

color. Both [18] and [19] do not provide information about the

distribution of reliable points in the depth-map.

In [20], a depth-map is initially obtained using traditional

SFF. Then, parts of the scene with high depth variations are dis-

carded by assuming that they are due to an inaccurate computa-

tion of the focus measure. The discarded regions are then recov-

ered by interpolation. The disadvantage of the latter approach

is that it is only applicable to scenes where non-reliable regions

are small and can be interpolated from highly-textured ones.

In [21], Gaganov and Ignatenko apply Markov random fields

in order to smooth the obtained depth-map in low-reliability

areas. This approach also assumes that the depth information

of highly-textured areas can be used to infer and constrain the

depth-map where SFF fails, but it does not provide information

about the location of low- and high-reliability areas. More re-

cently, Muhammad and Choi [22] have proposed to carve the

depth-map by applying a Canny edge detector to the all-in-

focus image of the scene.

The main contribution of the present work is a technique that

aims at measuring the reliability of SFF according to the behav-

ior of the focus measure. In contrast to previous approaches, the

proposed methodology computes the reliability measure with-

out the need for either computing the all-in-focus image or

post-processing the generated depth-map. In this sense, the re-

liability measure aims at assessing the confidence on the per-

formance of SFF. The proposed approach efficiently integrates

with the SFF framework. The experimental tests presented in

this paper show that this method is able to accurately detect

non-reliable regions in terms of SFF.

3. Methodology

This section describes an algorithm to determine the reliabil-

ity of SFF. In order to illustrate its applicability, the proposed

reliability measure is utilized for determining the image regions

where the depth estimation using SFF is unreliable in order to

remove them from the depth-map. This task is performed in

two main stages that take place after the application of a fo-

cus measure to the image stack: in the first stage, the reliability

measure (R measure) is assigned to the depth estimation of ev-

ery pixel. This reliability is based on the behavior of the focus

function. In the second stage, the R measure is used to carve the

obtained depth-map by applying a threshold obtained as a result

of a training process. The R measure and the carving stages are

described in further detail below.

3.1. Focus measure

In order to obtain a depth-map with SFF, it is first necessary

to compute the focus measure (FM) for every pixel of the im-

age stack. Several algorithms and operators have been proposed

for this purpose. The most popular operators are the Modi-

fied Laplacian [8], the Tenengrad Algorithm [23] and the Gray-

Level Variance [20], among others [24]. In the present work,

the Modified Laplacian is used as the focus measure:

Fk = ∆mI ∗ hr, (1)

where hr is a mean filter mask with radius r and ∗ denotes con-

volution. The size of r, also referred to as the evaluation win-

dow in the SFF literature, is application dependent and usually

implies a tradeoff between robustness to noise and accuracy. A

radius of r = 9 has experimentally been set in this work. ∆mI is

the modified Laplacian of I, computed as:

∆mI = |I ∗ Lx| + |I ∗ Ly| (2)

The convolution masks used to compute the Laplacian are

Lx = [−1, 2,−1] and Ly = LT
x .

The methodology presented in the next section can be readily

adapted to deal with any of the focus measures operators found

in the literature. A detailed study of focus measure operators in

shape-from-focus can be found in [25].

3.2. Reliability measure

The shape of the focus function and, hence, the quality of

the depth-maps obtained from SFF, depends on two main fac-

tors: the optical configuration of the capturing device and the

image content. Due to the dependence on both factors and their

interaction, the focus measure operator will respond differently

when applied to the focus stack. This will determine whether

the reconstruction technique will yield a successful depth-map

estimation or not.

A defocused image is often considered in the literature as a

filtered version of a focused one. Thus, the image of a defo-

cused point Id can be described as the convolution of the fo-

cused image I with a blurring function h:

Id = I ∗ h. (3)

Function h is referred to as a Point Spread Function (PSF),

since it is the response of the camera to a unit point source [26].

In diffraction limited optics with incoherent illumination, the

PSF can be simplified as a Gaussian [26, 27, 28] with variance

σh, which is assumed to be proportional to the degree of defo-

cus of the image. In turn, σh depends on physical variables of

the acquisition device, such as the lens focal length, aperture

and pixel size.

3
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Fig. 2: Behavior of focus measures for different textures. (a) Selected points.

(b) Corresponding focus functions

In addition to the optical configuration of the acquisition de-

vice, the image content directly affects the response of the FM

operators. Most FM operators rely on their ability to detect high

frequencies or spatial variations of the image in order to com-

pute the degree of focus. This makes FM operators sensitive

to image characteristics such as gray-level intensities, contrast

and noise level. For illustration, Fig. 2 shows the focus measure

functions corresponding to different textured patterns.

As can be appreciated in Fig. 2, the image content mostly

determines the strength of the response of the focus measure

operator. A reliability measure must be able to account for the

variations of the focus function due to the configuration of the

capturing device and the imaging conditions, as well as to de-

tect when the focus operators fail to detect the change in focus.

Bearing this in mind, the following methodology for computing

the reliability measure is proposed.

Let the focus function for a pixel at coordinates (i, j) be a

signal that varies according to both the degree of focus of this

pixel and an additive error signal:

fi, j = Gi, j + Ei, j, (4)

where fi, j is the computed focus function for that pixel, Gi, j

an associated ideal focus function and Ei, j an error signal that

represents the departure of the focus function from the ideal

behavior. Ei, j accounts for the image noise, lack of texture,

limitations of the focus measure operator or departure of the

focus function from its ideal behavior.

Based on the empirical behavior of the focus function, some

researchers have proposed to model Gi, j as a Gaussian func-

tion. In this way, the idealized focus function corresponds to a

smooth bell-shaped peak whose maximum corresponds to the

position of the best focus. The real shape of the focus func-

tion in conventional cameras is still an open problem for both

SFF and autofocus applications. In addition to the Gaussian

model, quadratic and polynomial fits have also been used in

order to approximate the focus function [14]. More recently,

Tsai and Chen [29] and Mannan and Choi [22, 15] proposed a

Lorentzian-Cauchy fit for the focus function in microscopy.

A discussion about the most accurate model for the focus

measure function or a comparison of different models is beyond

the scope of this work. However, despite the model chosen for

the focus function, the performance of SFF depends on how ac-

curately the focus function model in (4), Gi, j, approximates the

measured focus function fi, j. In the sequel, a reliability mea-

sure, R1, is first derived for the Gaussian model and, then, a

general reliability measure, R2, compatible with any model for

the focus function is presented.

Let the ideal Gaussian focus function corresponding to the

pixel at coordinates (i, j) be defined as:

Gi, j(z) = A exp

(

−(z − µ)2

2σ2

)

, (5)

where A is the maximum value of the Gaussian function, µ its

mean value and σ its standard deviation. Following [7], A, µ

andσ are found by interpolation as a function of the depth value

z.

In SFF, the estimated depth using the Gaussian model corre-

sponds to the location of the maximum of Gi, j (i. e., z = µ).

As claimed above, the estimated depth is likely to be reliable

as long as there is a good fit between the measured focus func-

tion and the model. Inspired by the two-sample Kolmogorov-

Smirnov test, the reliability measure for a pixel at coordinates

(i, j) using the Gaussian model is obtained as:

R1(i, j) = 1 −max{|F(x|G) − F(x| f )|}, (6)

where max{·} denotes the supremum operator and F(x|G) and

F(x| f ) are the cumulative density functions (CDF) correspond-

ing to Gi, j and fi, j, respectively. In (6), Gi, j and fi, j are nor-

malized so that
∑

k G(k)i, j = 1 and
∑

k f (k)i, j = 1. In this

way, the measured focus function and the fitted Gaussian model

are interpreted as probability density functions. In (6), the

term max{|F(x|G) − F(x| f )|} is referred to as the Kolmogorov-

Smirnov statistic. It measures the goodness of fit between two

normal distributions. The CDFs in (6) are defined as:

F(x| f ) =

x
∑

k=1

fi, j(k) (7)

F(x|G) =
1

2
+

1

2
erf

(

x − µ
√

2σ

)

, (8)

where erf(·) is the so-called error function defined as:

erf(x) =
2
√
π

∫ x

0

e−t2

dt (9)

In (7), F(x| f ) is referred to as the empirical cumulative den-

sity function. Equation (6) determines how well the measured

focus function conforms to the desired behavior (a noiseless

Gaussian-like peak) in the range [0,1]. The highest value 1

is achieved when the real data and the model match perfectly.

Whenever the focus function departs from the idealized model

due to the presence of noise, the image conditions or limitations

in the focus measure operator, this reliability measure responds

accordingly.

The advantages of R1 are the following: on the one hand, it

exploits the information of the focus measure function. On the

other hand, the Kolmogorov-Smirnov statistic is a well known

and widely used tool for comparing probability distributions.

4
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Fig. 3: R-measure and shape-from-focus pipeline. The R-measure efficiently

integrates into SFF by exploiting the focus measure information.

Notwithstanding, the R-measure of (6) is limited to the Gaus-

sian model. Alternatively, a more general reliability measure is

defined as:

R2(i, j)−1 =
1

fmaxK

K
∑

k=1

| fi, j(k) −Gi, j(k)| (10)

R2(i, j)−1 =
1

fmaxK

K
∑

k=1

|Ei, j(k)|, (11)

where fmax = max{ fi, j} is a normalization factor.

For convenience, let:

ei, j =
1

K

K
∑

k=1

|Ei, j(k)|, (12)

denote the absolute average of the error signal. In this way,

(11) is equivalent to (10), replacing the Kolmogorov-Smirnov

statistic by ei, j, which also accounts for the goodness of fit be-

tween the measured and the modeled focus function. The nor-

malization factor fmax is necessary in order to guarantee that

R2(i, j) ≥ 0. The reliability measure in decibels is expressed

as:

R2(i, j) = 20 log

(

fmax

ei, j

)

, (13)

The aim of the logarithm in (13) is expressing R2 analo-

gously to the peak signal-to-noise ratio (PSNR) between the

computed focus function and the fitted model. This R-measure

is compatible with any model of focus function. In addition,

it efficiently integrates into the SFF pipeline by exploiting the

focus information of the images (see Fig. 3), which leads to a

reduced computational cost.

In the next section, a methodology for detecting and discard-

ing the pixels where the depth estimation is unreliable based on

the reliability measure introduced above is presented. In sec-

tion 4, the suitability of the proposed measures for assessing

the reliability of SFF is analyzed experimentally.

3.3. Depth-map carving

Either R1 or R2 can be applied to the input image sequence in

order to assign a reliability value to each pixel (i, j). In particu-

lar, the values of the R-measure for all pixels can be interpreted

as a gray-scale image in which each gray level is associated

with the reliability of the depth estimation for the correspond-

ing pixel: the depth of those pixels with a high R-measure are

more likely to be estimated correctly. As a result, the depth-map

can be carved by removing the pixels whose depth estimation is

more likely to be inaccurate. In particular, all pixels whose reli-

ability is below a predefined threshold, α, should be discarded.

The reliability threshold must be found experimentally as a

result of a training process. For a given training set, the depth-

map carving can be thought of as a two-class classification task

where the classes correspond to those pixels that should be dis-

carded from the depth-map and those that should be kept. Thus,

the threshold value α is selected so that the highest classifica-

tion rate in the training set is obtained in order to maximize the

classification accuracy. As in typical classification tasks, accu-

racy corresponds to the percentage of correctly classified pixels

with respect to the total number of pixels in each image.

4. Experiments

The experiments presented in this work have been conducted

in three stages. In the first stage, the working principle of the

proposed reliability measures is illustrated. In the second stage,

the proposed R-measures have been applied in order to predict

the quality of the obtained depth-maps. The objective of this

stage is to demonstrate that the proposed reliability measures

can be used for accurately detecting low-reliability regions in

a depth-map in order to discard them. In the third stage, the

proposed reliability measure is compared with different alterna-

tives for carving the depth-map and removing inaccurate pixels.

Both synthetic and real sequences have been used. All simu-

lated scenes consist of 25 images of 640 × 640 pixels. Defocus

has been simulated for a 3.3 mm focal length camera focusing

between 50 mm and 200 mm. Different surface shapes located

between 100 mm and 150 mm away were mapped with differ-

ent textures for each scene. Different textures, shapes and noise

levels have been selected so that a variety of features and imag-

ing conditions were considered.

The real focus sequences have been captured with a Sony

SNC-RZ50P camera. Every sequence consists of 50 images of

640 × 480 pixels acquired at different focus ranges within 2m

and 14m away from the camera, and with different targets. A

total of 12 synthetic and 12 real sequences have been used in

the experiments1.

4.1. Reliability measure

According to section 3, R1 and R2 predict the reliability of

the estimated pixel depth. A third reliability measure, R3, is

defined by using the model for the focus function proposed

in [15]. The different R-measures are summarized in table 1.

In order to illustrate the working principle of the proposed R-

measures and assess their effectiveness, the following experi-

ment is conducted.

1Images and further details can be found at http://www.sayonics.com/

research/reliability_measure.html.
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Table 1: Reliability measures

Definition (Ri, j) Model (Gi, j)

R1 1 −max (|F(x|G) − F(x| f )|) A exp
(

(x − µ)2/(2σ2)
)

R2 20 log
(

fmax/ei, j

)

A exp
(

(x − µ)2/(2σ2)
)

R3 20 log
(

fmax/ei, j

)

A/(B + (C − k)2)[15]

ROI1 ROI2

0.0

0.5

F
o
cu

s 
m

ea
su

re

Frame number
0.0

0.1

F
o
cu

s 
m

ea
su

re

Frame number

(a) (b) (c)

Fig. 4: Effect of texture on the focus function. (a) Synthetic scene. The red and

blue squares correspond to the first and second selected region, respectively. (b)

Focus functions of the first region. (c) Focus functions of the second region.

Fig. 4(a) shows the all-in-focus image of a synthetic se-

quence. The labeled squares correspond to two manually se-

lected regions of interest of 16 × 16 pixels, namely ROI1 and

ROI2. Fig. 4(b) and 4(c) show the plots of all the focus func-

tions corresponding to ROI1 and ROI2, respectively. Notice

that each region of interest contains 256 focus functions: one

for each pixel. It is evident that the focus functions correspond-

ing to pixels from the low-textured region (ROI2) yield pro-

files that are unlikely to be modeled accurately. Therefore, the

depth estimation using SFF is unreliable. In contrast, pixels

from high-textured regions (ROI1) yield focus functions that

can readily be modeled more accurately.

This behavior is illustrated in more detail in Fig. 5. This

figure plots the measured focus functions and the corresponding

focus models for the textures of Fig. 2(a). In this figure, it is

clear that for the focus function corresponding to the pixels of a

high-textured region, the theoretical model (red curves) adjusts

well to the empirical data (black curves). In contrast, for the

plots corresponding to pixels from the low-textured region, the

reliability measures yield lower values since the real data depart

from the fitted model.

The previous examples correspond to a rather simple case

with clearly distinguishable regions that illustrate the work-

ing principle of the R-measures. In the next sections, the R-

measures are extensively tested and compared with different al-

ternatives.

4.2. Depth-map filtering

In this section, the reliability measure is applied in order to

determine the regions where SFF is unlikely to perform cor-

rectly. For each reconstructed sequence, the aim is to generate a

binary segmentation mask that removes the pixels whose depth

error is above a predefined tolerance, say eT .

In synthetic sequences, the ground truth is accurately known.

Therefore, the error in the depth-maps can be readily computed.

In this case, a reference segmentation mask, Mre f (x, y), is gen-

erated for each scene as:

Mre f (x, y) =















1 if |Z(x, y) −GT (x, y)| > eT

0 otherwise
(14)

where Z(x, y) is the depth-map, GT (x, y) the corresponding

ground-truth and eT is the maximum error allowed for depth

estimation (any pixel with a depth error higher than eT is con-

sidered to be erroneous and discarded). For illustration, Fig.

6 shows the generation of the reference mask for the scene of

Fig. 4. In this figure, pixels with erroneous depth estimate (er-

ror greater than eT with respect to the ground truth) are marked

with 1 (white) in the binary reference mask.

For complex real scenes, it is difficult to determine the

ground truth accurately. In order to overcome this problem,

the reference mask is manually generated by pre-computing the

depth-map and marking those pixels whose estimated depth is

incorrect. For a fair analysis of the results, a single reference

mask was created for each scene and used in all the experi-

ments.

Once the reference mask is generated for every scene, a seg-

mentation mask, M(x, y), is obtained by applying a threshold

to the reliability measure. In the ideal case, the segmentation

masks should be equal to the reference mask so that all pix-

els whose depth estimation is incorrect are removed from the

depth-map.

In order to generate the segmentation, 3-fold cross-validation

has been applied in section 3.3. The filtering quality is assessed

by means of the accuracy, Acc:

Acc = 100
∑

(x,y)

α(x, y)

N
, (15)

where the numerator corresponds to the coincident pixels be-

tween the actual segmentation mask and the reference one, and

N is the total number of image pixels:

α(x, y) =















1 if Mre f (x, y) = M(x, y)

0 otherwise
(16)

In addition to (15), the precision (P) and recall (R) have been

used for comparison:

P =
tp

tp + f p
(17)

R =
tp

tp + f n
, (18)

where tp and f p are the number of true positives and false pos-

itives, respectively and f n is the number of false negatives of

M with respect to Mre f , with an error threshold of eT = 5% in

(14).

Table 2 shows the performance of the different reliability

measures on synthetic scenes in terms accuracy, Acc, precision,

P, recall, R, and the average area under the ROC curve, A (see

Fig. 7). For all R-measures, the classification accuracy is above

85%. For illustration purposes, Fig. 8 shows the segmentation

masks obtained by using the different reliability measures for

the same scene of figures 4 and 6. In this figure, the red regions

correspond to pixels that have incorrectly been classified.
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Fig. 5: Computation of reliability measures. (a) Focus functions corresponding to Fig. 2. (b) Fit using the Kolmogorov-Smirnov statistic. (c) Fit using the Gaussian

model for the focus profile. (d) Fit using the Lorentzian-Cauchy model for the focus profile. For display purposes, the focus functions have been normalized between

0 and 1 in (b)-(c).

���� ����

Fig. 6: Binary reference mask. From left to right: ground truth, depth-map and binary reference mask.

Table 2: Mean performance of different reliability measures. Gaussian focus

profile (R1 and R2) and Lorentzian-Cauchy focus profile (R3).

R-measure Acc (%) P(%) R(%) A

R1 86.2 65.3 91.4 0.9541

R2 89.5 70.0 91.8 0.9709

R3 85.3 60.2 85.2 0.8642

0 1
0
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True positive rate
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eg
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ra
te

R1

R2

R3

Fig. 7: Average ROC curves for 3-fold cross validation.

Fig. 8: Segmentation masks obtained from different reliability measures. From

left to right: masks corresponding to R1, R2 and R3.

4.3. Performance comparison

The concept of reliability proposed in this work is aimed at

providing a confidence value for each pixel of a given scene that

measures the likelihood of obtaining an accurate depth estimate

using SFF. In particular, the R2-measure has the advantage of

being directly derived from the SFF algorithm by splitting the

focus function into two components: an error signal and an

ideal focus function model. As a result, the proposed reliability

measure can be efficiently integrated into the traditional SFF al-

gorithm and can readily be adapted to different focus function

models. In order to assess the advantages and limitations of the

proposed approach, this section compares the performance of

depth-map filtering using the proposed reliability measure with

three alternative filtering approaches. For the sake of brevity,

only R2 has been used in the experiments. Based on the re-

sults presented in the previous section, R2 has been preferred

over R1 and R3 due to its generality, simplicity and good per-

formance.

Given the fact that texture is an important variable in the

computation of depth maps using SFF, it is straightforward to

exploit the texture information of the scene as a cue for comput-

ing an alternative reliability measure for SFF. However, in order

to apply a texture segmentation approach, an all-in-focus image

of the focus sequence is required. This implies that this alterna-

tive can only be applied as a post-processing by assuming that

an accurate all-in-focus image of the scene can be obtained. The

generation of all-in-focus images from a sequence of defocused

images is an intensive research field. A discussion about focus

fusion algorithms is out of the scope of this work. Different

methodologies have been proposed based on image pyramids

[30, 31], inverse filtering [14, 32, 33] and wavelet decomposi-

tion [34, 35]. For comparison purposes, the all-in-focus image

7
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of each scene was computed using the Helicon Focus software

[36] and has been fed into three alternative two-class texture

classifiers.

It is important to remark that the generation of the all-in-

focus image is not strictly necessary since the peak response of

focus measure operators can be interpreted as a measure of the

amount of texture. Notwithstanding, as remarked in [37], the

neeed for generating an all-in-focus image is justified by the

presence of false maxima in the focus functions corresponding

to regions with low SNR. As a result, texture-based classifiers

improve their performance if a high quality all-in-focus image

is available.

A first texture classifier is simply obtained by applying the

24 Gabor filters described in [38] to the AIF image and then

averaging the responses of all the filters for every pixel. Those

filters are widely used for texture classification and segmenta-

tion. The average response of the filter bank is expected to yield

high values in image regions with rich texture content and low

values elsewhere. Thus, the average response is used to separate

the image into two classes by simple applying a threshold. The

threshold is selected by finding the value that yields the best

classification rate in a training set. The second texture classifier

is obtained by combining the responses of each individual Ga-

bor filter using Adaboost [39, 40]. In this case, a weak classifier

is generated by simply applying a threshold to the response of

each filter. The threshold that yields the best classification rate

is selected. Adaboost is then used to combine each weak classi-

fier in order to obtain the best classification rate in the training

set.2

In the experiments, a total of five filtering algorithms have

been used in the comparisons: the Canny edge detector-based

algorithm proposed in [22] (CAN), the mean response of the

Gabor filters (GAB), the combination of Gabor filters using Ad-

aboost (G+AD), the depth-map filtering-based algorithm pro-

posed in [20] (DFIL) and the proposed reliability-based method

(R2). In order to compare the effect of only the filtering stage of

these approaches, all the depth-maps have been computed with

the same SFF algorithm [7].

The different filtering algorithms require tuning their own pa-

rameters by means of a training process. For each filtering al-

gorithm, the training process was carried out similarly as in the

previous section for the synthetic sequences. In particular, for

the real sequences, k-fold cross-validation has been applied in

the training stage. The parameters of each filtering algorithm

were adjusted in order to obtain the best classification rate in

terms of accuracy. In particular, in the cross-validation process

for R2, the segmentation threshold α varied between 12.3 and

15.3 dB in the real sequences.

Table 3 compares the mean performance of the different fil-

tering methods. Fig. 9 and 10 show a frame of the focus se-

quence and the filtered depth-maps using the evaluated algo-

rithms for three sequences from the synthetic test set and three

sequences from the real test set, respectively.

2The Adaboost implementation used in this work can be found on line at

http://www.mathworks.com/matlabcentral/fileexchange/27813.

Table 3: Mean performance of different filtering methods using 12 real se-

quences and 8 simulated sequences with 4-fold cross-validation. Rank of the

algorithm in parenthesis.

(a) Real sequences

Method Acc(%) P(%) R(%)

CAN 61.0 (5) 41.6 (4) 99.7 (1)

GAB 78.1 (3) 56.8 (3) 83.6 (4)

G+AD 86.7 (2) 67.4 (2) 88.4 (3)

DFIL 63.8 (4) 38.3 (5) 27.1 (5)

R2 88.4 (1) 68.1 (1) 93.4 (2)

(b) Simulated sequences

Method Acc(%) P(%) R(%)

CAN 66.6 (4) 36.5 (4) 97.3 (1)

GAB 75.0 (3) 48.5 (3) 73.6 (4)

G+AD 87.1 (2) 72.6 (1) 75.1 (3)

DFIL 65.6 (5) 30.2 (5) 51.0 (5)

R2 89.5 (1) 70.0 (2) 91.8 (2)

DFIL R2 CAN GAB G+AD
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Fig. 11: Computational cost of different filtering methods.

The Matlab implementation of the SFF routine runs in ap-

proximately 4.05s for a sequence of 25 images of 640 × 640

pixels on an Intel 2 Quad processor at 2.5GHz and 4GB of

RAM. Fig. 11 summarizes the time increment (as a percent-

age of the duration of the original SFF routine) for different al-

ternatives. The computation time of the all-in-focus image for

texture-based methods (CAN, GAB and G+AD) has not been

included in Fig. 11 since a third-party software has been used

for its computation.

5. Discussion

The reliability measure, R1, presented in section 3.2 is aimed

at predicting the confidence of SFF for estimating the depth of

each pixel of an imaged scene. This R-measure is based on the

Kolmogorov-Smirnov statistic and exploits the Gaussian model

of the focus function. A more general R-measure, compati-

ble with any model of the focus function, is proposed in (13).

The experiments conducted in section 4.1 illustrate the work-

ing principle behind the concept of the R-measure. The results

obtained in this section show that the R-measure effectively as-

signs high reliability values in those regions where SFF is likely

to have a good performance without having neither the final

depth-map nor the all-in-focus image.
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Fig. 9: Performance comparison with synthetic sequences. From left to right: All-in-focus image, and depth-maps filtered with CAN, GAB, G+AD, DFIL and REL,

respectively.

��� ��� ��� ��� ���
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Fig. 10: Performance comparison with real sequences. From left to right: All-in-focus image, and depth-maps filtered with CAN, GAB, G+AD, DFIL and REL,

respectively.
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A straightforward application of the R-measure consists of

using it for detecting pixels whose reliability is below a given

threshold in order to discard them while preserving the useful

information of the depth-map of complex scenes. The results

presented in sections 4.2 and 4.3 show the advantages of the

R-measure with respect to different alternatives. In table 3, the

cascade classifier based on Adaboost showed the best perfor-

mance for the synthetic scenes in terms of precision. Notwith-

standing, the R-measure outperforms all the other methods in

terms of accuracy in synthetic sequences and accuracy and pre-

cision in the real sequences. In addition, it ranks between the

first and second place in all the quality measures for both the

synthetic and real sequences. Some methods, such as CAN,

provide a high recall at the cost of low accuracy and precision.

This behavior is best illustrated in Fig. 9 and Fig. 10, in which

some methods over-carve the depth-map, thus yielding a high

recall at the cost of removing relevant information. Alterna-

tively, some methods allow too much noise in the carved depth-

map. In general, the proposed R-measure yields a good tradeoff

between the different quality measures by removing erroneous

pixels while preserving the relevant information of the depth-

map.

Texture-based methods (e.g., CAN, GAB and G+AD) base

their response on the texture information of the all-in-focus im-

ages with an important drawback: the all-in-focus image does

not take into account the variations of the focus function along

the z-axis (as a function of the in-focus position), which is an

important factor in the performance of SFF. These variations are

mainly due to CCD noise or optical effects such as the curvature

field, image shift or artifacts. This could explain why they per-

form better only in the ideal case (in the synthetic sequences).

In contrast, the proposed R-measure performs satisfactorily in

both synthetic and real sequences.

Two of the main advantages of the proposed R-measure are

its simplicity and efficient integration into SFF, which lowers

the computational cost of SFF. Fig. 3 shows the R-measure

within the SFF pipeline. According to Fig. 11, the computation

of the R-measure yields an increase of approximately 10.6% in

the computation time of the basic SFF stage. In addition, in the

experiments with real scenes, the reliability threshold, α, had

a little variation (between 12.3 and 15.3 dB). This is desirable

since it suggests that the R-measure readily adapts to different

imaging conditions and scenes without significant changes on

its behavior.

Improving the robustness of SFF to different imaging fac-

tors and acquisition conditions is fundamental for enhancing

the quality of the obtained depth-maps. Complementarily, the

proposed R-measure is aimed at predicting the performance of

the depth estimation in order to take advantage of the state-of-

the-art SFF technique.

6. Conclusions

The concept of reliability for shape-from-focus has been in-

troduced in this work. A reliability measure, R-measure, aimed

at predicting the confidence of the depth-estimation using SFF

has been presented. The proposed R-measure efficiently ex-

ploits the information of the focus signals corresponding to

each pixel of the imaged scene in order to compute a reliability

value.

An application of the proposed R-measure for detecting and

removing low-accuracy regions of the reconstructed depth-

maps has been analyzed. The proposed approach is a step to-

ward the application of SFF to complex scenes without previous

knowledge or restrictions on the image content. In the litera-

ture, most results of applying SFF to real sequences have been

limited to microscopic scenes, where an accurate control of the

focus position and a shallow depth of field are more easily at-

tainable. Alternatively, the proposed methodology provides a

scheme for applying SFF to real macroscopic scenes by select-

ing the regions where SFF will yield accurate results. The pro-

posed technique has been validated with both synthetic and real

data and compared with different alternatives, showing a signif-

icantly higher performance.

Future work will focus on denoising and recovering low-

reliability regions of the filtered depth-maps. The problem of

recovering lost data in images [41, 42] and surfaces [43, 44] is

referred to as hole filling or surface filling. Intensive research is

being devoted to this topic in the computer vision community.

In this way, the aim is to integrate the R-measure with existing

filling and regularization techniques.

In this work, the R-measure has been applied successfully us-

ing the Gaussian model and the Lorentzian-Cauchy model for

the focus profile. Notwithstanding, it can be readily extended

to deal with different focus profiles. In this way, future research

will be aimed at proposing new focus profile models for con-

ventional cameras.
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>The performance of focus measure depends on the optics and imaging 

conditions. 

>The concept of reliability in focus measure is introduced. 

>A method for computing the reliability of shape-from-focus is presented. 

>The proposed reliability integrates efficiently to shape-from-focus. 

>The proposed method is experimentally effective. 
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