

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Expert Systems with Applications: An International Journal 39.3 (2012): 3061-

3070

DOI: http://dx.doi.org/10.1016/j.eswa.2011.08.168

Copyright: © 2012 Elsevier B.V. All rights reserved

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1016/j.eswa.2011.08.168

Adapting Searchy to Extract Data using Evolved Wrappers

David F. Barreroa, Marı́a D. R-Morenoa, David Camachob

aUniversidad de Alcalá. Computer Engineering Department.
Escuela Politécnica. Ctra. Madrid-Barcelona km 31,600

28871 Alcal de Henares, Madrid, Spain
Phone: (+34) 91-885-69-20, fax: (+34) 885-66-41

bUniversidad Autónma de Madrid. Escuela Politécnica Superior.
C/ Francisco Tomás y Valiente 11.

Ciudad Universitaria de Cantoblanco. 28049 Madrid, Spain
Phone: (+34) 91-497-22-88, fax: (+34) 91-497-22-35

Abstract

Organisations need diverse information systems to deal with the increasing requirements in information storage and processing,
yielding the creation of information islands and thereforean intrinsic difficulty to obtain a global view. Being able to provide
such an unified view of the -likely heterogeneous- information available in an organisation is a goal that provides added-value
to the information systems and has been subject of intense research. In this paper we present an extension of a solution named
Searchy, an agent-based mediator system specialized in data extraction and integration. Through the use of a set of wrappers, it
integrates information from arbitrary sources and semantically translates them according to a mediated scheme. Searchy is actually
a domain-independent wrapper container that ease wrapper development, providing, for example, semantic mapping. Theextension
of Searchy proposed in this paper introduces an evolutionary wrapper that is able to evolve wrappers using regular expressions. To
achieve this, a Genetic Algorithm (GA) is used to learn a regex able to extract a set of positive samples while rejects a setof negative
samples.

Keywords: Wrappers, Genetic Algorithms, Information Extraction

1. Introduction

Organisations have to deal with increasing needs of process
automation, yielding a grown of the number and size of soft-
ware applications. As a result there is a fragmentation of the in-
formation: it is placed in different databases, documents of dif-
ferent formats or applications that hide valuable data. Thus, it
originates the creation of information islands within the organi-
sation. Then, it has a negative impact when users need a global
view of the information, increasing the complexity and devel-
opment costs of applications. Usually ad-hoc applicationsare
developed despite its lack of generality and maintenance costs.
Information Integration [1] is a research area that addresses the
several problems that emerge when dealing with such scenario.

When a bunch of organizations are involved in an integra-
tion process, the problems associated in the integration are in-
creased. Some traditional integration problems, such as infor-
mation heterogeneity, are amplified and new problems such as
the lack of centralized control over the information systems
arises. One of the most interesting problems in such context
is how to ensure administrative autonomy, i.e., limit as much as
possible the constrains that the integration might impose to data

Email addresses:david@aut.uah.es (David F. Barrero),
mdolores@aut.uah.es (Marı́a D. R-Moreno),david.camacho@uam.es
(David Camacho)

sources. We have developed a data integration solution called
Searchy with the intention of addressing those constrains.

Searchy [2] is a distributed mediator system that provides
a virtual unified view of heterogeneous sources. It receivesa
query and maps it into one or more local queries, then trans-
lates the responses from the local schema to a mediated one
defined by an ontology and integrates them. It separates the in-
tegration issues from the data extraction mechanism, and thus
it can be seen as a wrapper container that eases wrapper de-
velopment. It is based on Web Standards like RDF (Resource
Description Framework) or OWL (Web Ontology Language).
Then, Searchy can be easily integrated in other platforms and
systems based on the Semantic Web or SOA (Service Oriented
Architecture).

Experience using Searchy in production environments has
shown issues to be enhanced. One of the most successful wrap-
pers in Searchy was the regex wrapper, a wrapper that extracts
data from unstructured documents using a regular expression
(or simply regex). Regex is a powerful tool able to extract
strings that match a given pattern. Two problems were found
related to wrapper-based regex utilization: the need of an engi-
neer (or a specialized user, which we usually denoted as wrap-
per engineer) with specific skills in regex programming, and
the lack of automatic way to handle errors in the extraction pro-
cess. These problems lead us to adapt the Searchy architecture
to support evolved wrappers. That is, wrappers based on regex

Preprint submitted to Expert Systems with Applications September 12, 2011

that have been previously generated using Genetic Algorithms
(GAs). This wrapper uses supervised learning to generate a
regex able to extract records automatically from a set of posi-
tive and negative samples.

Wrappers in Searchy may implement arbitrary complex ex-
traction algorithms. The wrapper may, for instance, rely ina
Multiagent System (MAS) to generate a composed regular ex-
pression able to extract records that match with a training set,
as it is described in detail in [3].This paper describes a wrapper
able to evolve a simple regex thought a VLGA with an alpha-
bet automatically generated and extract records matching the
regex. It also provides an empirical evaluation of these evolved
wrappers.

A second contribution of this paper is the description of
a complex wrapper able to extract data by means of evolu-
tionary regular expressions. That is, regular expressions (or
simply regex) that have been generated using Genetic Algo-
rithms (GA). This wrapper uses supervised learning to generate
a regex able to extract records automatically, without human
supervision, from a set of positive and negative samples.

This article is structured as follows. Section 2 provides a
general overview the system architecture. The informationre-
trieval and information integration mechanism used in Searchy
is briefly described in section 3. The evolved regex wrapper is
presented in section 4 followed by a description of the alpha-
bet construction algorithm. Some experiments carried out by
the regex wrapper are shown in section 6. Section 7 describes
related work. Finally, some future steps are outlined and con-
clusions are summarized.

2. Searchy Architecture

Many properties of Searchy are consequences of two design
decisions: the MAS approach [4, 5] and the Web standards
compliance. Using MAS gives Searchy a distributed and de-
centralized nature well suited for the integration scenario de-
scribed in the introduction. Web Services are used by Searchy
agents as an interface to access their functionalities meanwhile
the Semantic Web standards are used to provide an informa-
tion model for semantic and structural integration [6]. From an
architectural point of view agents were designed to maximize
modularity decoupling integration from extraction issues, eas-
ing the implementation of extraction algorithms.

In our architecture each agent is composed by four compo-
nents, as can be seen in Figure 1. Some of the key properties of
Searchy are directly derived from this architecture. Theseele-
ments are the communication layer, the core, the wrappers and
the information source. The next lines describe these compo-
nents related to the FIPA Agent Management Reference Model.

Communication layer It provides features related to the com-
munications such as SOAP message processing, access
control and message transport. The Communication layer
is equivalent to the Message Transport System (MTS) in
the FIPA model.

Core It contains the basic skills used by all the agents, includ-
ing configuration management, mapping facilities or agent

Figure 1: Searchy platform architecture.

identification. Any feature shared by all the agents is con-
tained in the core. It presents some of the features defined
by FIPA for the Agent Management System (AMS), how-
ever they are not equivalents. AMS are supposed to con-
trol the access of the agents to the Agent Platform (AP)
and their life cycle. Meanwhile the agent core supports
the operation of the wrappers.

Wrapper A wrapper is the interface between the core agent
and a data source, extracting information from the me-
diated data source. Wrappers are a key point in order
to achieve generality and extensibility. Agents in the
FIPA model have some similarities with Searchy wrappers
from an architectural point of view. An AP in the FIPA
model may contain several agents meanwhile each agent
in Searchy may contain several wrappers. Both of them
are containers for some software asset, agents in case of
FIPA or wrappers in case of Searchy.

Data source It is where information that is the object of the
integration process is stored. Almost any digital informa-
tion source might be used as data source. Due to the nature
of Searchy, data sources are usually some kind of informa-
tion system such as a web server or an index. However any
source of digital information is a potential Searchy data
source. There is no equivalent in the FIPA model to data
sources.

Figure 1 shows the architecture of a Searchy agent with its
four components. Agents interfaces are published thought the
HTTP server, one of the subsystems of the communication
layer. It receives the HTTP request that has been sent by the
Searchy client and extracts the SOAP message. In order to pro-
vide a first layer of security, the HTTP subsystem filters the

2

request using the Access Control Module. This module is an IP
based filter that enables basic access control. The HTTP server
has responsibilities with the SOAP messages transport, butthe
processing of these messages is done by its own module, the
SOAP Processing Module. It processes the SOAP messages
and then it transfers the operation to the Control Module or re-
turns an error message. Once the message has been successfully
processed, the Control Module begins to operate.

The Control Module sets the flow of operations that the dif-
ferent elements involved in the integration must perform, in-
cluding the wrappers, the Mapping Module, and the Integra-
tion Module. The Mapping Module is composed of three sub-
systems, with different responsibilities in the mapping process.
The Query Mapping subsystem performs the query rewriting
translating the query from the mediated schema into the local
schema, for example, SQL. Meanwhile, the Response Map-
ping subsystem translates the response from a local schema like
SQL, into RDF following a mediated schema defined by an on-
tology. Both, Query and Response Mapping subsystems use the
Mapping subsystem, that provides common services related to
mappings and rules management to Query and Response Map-
ping subsystems. The way in which the integration and map-
ping processes operate is described in the section 3. Respon-
sibility for Information extraction as well as communication
among the agents falls in the wrappers.

In our architecture the coordination among agents is based on
an organizational structuring model with two different discov-
ery mechanisms. In the first mechanism each agent has a static
knowledge about which agents it must query, where it can find
them and how access. The result is a static hierarchical struc-
ture. It is useful in order to adapt a Searchy deployment to the
hierarchy of a organisation, however it cannot take full benefice
of a MAS such as parallelism, the reliability of the whole sys-
tem is reduced and it is difficult to integrate in dynamic envi-
ronments.

To overcome some of these disadvantages a second coordina-
tion mechanism has been implemented. Using our previous or-
ganizational structuring model, relationships among the agents
are not stored within the agents, but externally in a WSDL doc-
ument that can be fetched by any agent from a HTTP or FTP
server. This agent discovery mechanism is simpler than using
an UDDI (Universal Description, Discovery, and Integration)
directory or a Directory Facilitator (DF) in a FIPA platform.
Agents are accessed as another data source, and thus it is done
by a set of wrappers responsible of the discovery and communi-
cation between Searchy agents: the Searchy and WSDL wrap-
pers. These wrappers implement the coordination mechanism
in Searchy, however wrappers’ main purpose is to extract data
from data sources.

At present Searchy includes four ordinary wrappers: SQL,
LDAP, Harvest and regex. By means of SQL and LDAP wrap-
pers, structured data in databases and LDAP directories maybe
accessed. Using the Harvest wrapper Searchy can integrate re-
sources available in an intranet like HTML, LATEX, Word, PDF
documents and other formats. The support of new data sources
is done by the development of new wrappers. In section 4 we
explain the regex wrapper. There is no restriction on the al-

gorithm and data source that the wrapper might implement, it
may be a direct access to a database, a data mining algorithm or
data obtained from a sensor. Mapping and integration issuesare
managed by the agent’s core, and thus the wrapper has not to
be concerned by these issues. Next section describes how these
tasks are performed.

3. Mapping and Integration in Searchy

Integrating information means dealing with heterogeneityin
several dimensions [6]. Technical heterogeneity can be over-
came by selecting the proper implementation technology. In
our work it has been done using Web Services (WS) as an in-
terface to access to the service. Addressing information hetero-
geneity requires the definition of a global information model,
the mediated schema, among all the entities involved in the in-
tegration process, as well as a mapping mechanism to perform
a mapping between the different local information models and
the global information model. Defining this model is a critical
subject in an information integration system.

Searchy uses semantic technologies standardized by the
WWW -RDF, RDFS and OWL- to represent the integrated in-
formation. RDF is basically an abstract data model that can be
represented using several syntaxes. Searchy uses RDF serial-
ized with XML to represent the information. This combination
of RDF and XML grants interoperability in a structural level.
Semantic integration requires an agreement about the meaning
of the information to deal with semantic heterogeneity. This
agreement is performed by using shared ontologies expressed
in RDFS or OWL. Then, there must be an explicit agreement
among all the actors involved in a Searchy deployment to es-
tablish at least one global ontology. A set of mapping rules are
needed in order to map entities according to a local schema into
the global schema. Rules are used to map queries to a local
schema and responses to the mediated schema.

Query format is a tuple<attribute, query> of strings, the
Query Mapping subsystem rewrites the query to obtain a query
valid for the local data source. The first element in the tuple
is an URI that represents the concept to which the query is re-
ferred, meanwhile the query is a string with the content of the
concept that is being queried. The query model is simple but
enough to fulfill the requirements of the application. The trans-
lation of the query to the local schema is performed using the
Mapping Module (see Figure 1). Mappings are done by means
of a string substitution mechanism very similar to the traditional
printf() function in C. This mechanism is enough to satisfy the
needs in almost all cases. Once a query has been translated
the response of the local information source must be extracted,
mapped to a shared ontology and integrated, respectively, by
the Response Mapping and Integration subsystems.

Response mappings are done in two stages:

1. The response is mapped semantically conforming to a
shared ontology. It is done using the same mechanism
than the Query Mapping subsystem. A critical aspect is to
provide a URI identifier for each resource, just like RDF
requires to identify any resource. There is no unified way

3

to do this task: each type of wrapper and user policy define
a way to name resources.

2. Each response of each wrapper is integrated in the Inte-
gration Module. Integration is based on the URI of the
resource returned by the wrappers. When two wrappers
return two resources identified by the same URI, the agent
interprets that they are referred to the same object and thus
they are merged.

Figure 2 shows a simple example of an integration pro-
cess within Searchy. There are two data sources: a relational
database and a LDAP directory service. In a first stage the
wrappers retrieve the information from the local data source
and this is mapped into a RDF model. The mapping is done
by using the terms defined by an ontology and according to
some rules given by the system administrator. The ontologies
used within the integration process must be shared among all
the agents. In general, a one to one correspondence between a
data field and an ontology term will be defined. Several local
fields or fixed texts may compose one value in RDF, this feature
aids the administrator to define more accurate mappings. The
mapping rules defined in the example shown in Figure 2 for the
database wrapper are depicted in Example 1.

Example 1 Query mapping rules example
rdf:about IS "http://www.example.org/" + name

dc:title IS name + " " + surname

foaf:family_name IS surname

The first rule defines that the RDF attributerdf:aboutis built
with the concatenation of the string ”http://www.example.org/”
and the attribute Person as it is defined in the local schema. The
rest of rules are defined in a similar way. Meanwhile the map-
ping rules for the directory wrapper can be seen in Example 2.

Example 2 Response mapping rules example
rdf:about IS "http://www.example.org/" + uid

rdf:type IS foaf:Person

foaf:mbox IS email

foaf:homepage IS web

The wrappers in the example use two vocabularies: Dublin
Core and FOAF. Each object retrieved from the data source
must be identified by an URI, that in this case is built using
local data with a fixed text. The second stage integrates the enti-
ties returned by the wrappers. The agent core identifies the two
objects as the same object by comparing their URI and merges
the attributes, providing a RDF object with attributes retrieved
from two different sources.

Mapping and Integration Modules decouple data integration
and mapping from the extraction, and thus it is possible to de-
velop wrappers in Searchy without any concern about these
issues. Next section shows an example of how a complex
wrapper may be developed using the infrastructure providedby
Searchy.

The original architecture of Searchy [3] provided an easy to
use extraction and integration platform. However, it required
human supervision in some parts of the process. One of the
most useful wrappers supported by Searchy is the regex wrap-
per, which is able to extract data from unstructured documents.
One problem associated with this wrapper is the need of a wrap-
per engineer skilled in regex programming. Another problemis
the error detection, that is, detect when the wrapper is not ex-
tracting data correctly and correct it.

It lead us to extend the original Searchy regex wrapper able
to extract data using a regex created by the wrapper engineer
with an evolved regex agent able to generate a regex from a set
of positive and negative examples using a GA. Figure 3 depicts
the extended architecture, where the original architecture is ex-
tended with control and evolutive agents. The MAS contains
three kind of agents: control, extractor and evolutive agents.
The three types of agents share the same agent architecture de-
picted in Figure 1, they differ from an architectural point of
view in the wrappers they use. Figure 3 uses solid lines to rep-
resent the iteration among the agents and resources with the
exception of iterations that involve regex, which is represented
with dotted lines.

There must be one control agent that receives queries from
the user and forwards it to the extractors, which are agents with
a regex wrapper. Regex wrappers in the original Searchy ar-
chitecture obtained the regex from the wrapper engineer, who
generated manually the regex. When the wrapper detected a
fail in the data extraction, i.e., when it was unable to extract
data from a source, the wrapper notified it to the wrapper en-
gineer who had to identify the problem and in case the regex
was incorrectly constructed, he generates a new one. When the
wrapper detected a fail in the data extraction, i.e., it is unable to
extract data from a source, the wrapper notifies the wrapper en-
gineer and he had to identify the problem and in case the regex
was incorrectly constructed he had to generate a new one.

The new architecture aims to automate this approach, using
an evolutive agent that fulfills some roles of the wrapper en-
gineer. Extraction agents obtain the regex from the evolutive
agents on start-up time, but also when they identify an extrac-
tion error. In this case, instead of requesting a new regex to
the wrapper engineer, it would request it to the evolutive agent.
When an evolutive agent is required to generate a new regex, it
executes a GA that is described in the next section.

4. Wrapper based on evolved regular expressions

The implementation of the evolved regex was done as a
Searchy wrapper using the Searchy wrapper API. When an
agent with the evolved regex wrapper is run, the wrapper gener-
ates a valid regex executing the described VLGA with a given
training set. Once a suitable regex is generated, the wrapper can
begin to extract records from any text file accessible thought
HTTP or FTP. It does not have to manage any issue related to
mapping since the Mapping Module performs this task.

4

Figure 2: Example of the integration process in Searchy, with two data sources, one relational database and a directory.

Figure 3: Searchy evolutive agents.

4.1. Codification

Any GA has to set a way to codify the solution into a chro-
mosome. The VLGA implemented in the wrapper uses a bi-
nary genome divided in several genes of fixed length. Each
gene codes a symbolσ from an alphabetΣ composed by a set
of valid regular expressions constructions, as described in sec-
tion 5.

Some words should be dedicated to how genes codes regex.
The alphabet is not composed by single characters, but by any
valid regex, in this way the search space is restricted leading
to a easier search. These simple regular expressions are the
building blocks of all the evolved regex and cannot be divided,
thus, we will call them atomic regex. The position (orlocus)
of a gene determines the position of the atomic regex. Gen in
positioni is mapped in the chromosome to regex transformation

as an atomic regex in the positioni. Figure 4 represents a simple
example of how the regexca[tr] could be coded in the GA.

Figure 4: Example of chromosome encoding.

5

4.2. Evolution strategy

Genetic operators used in the evolution of regular expres-
sions are the mutation and crossover. Since the codifications
rely in a binary representation, the mutation operator is the
common inverse operation meanwhile the recombination is per-
formed with a cut and splice crossover. Given two chromo-
somes, this operator selects a random point in each chromo-
some and use it to divide it in two parts, then the parts are in-
terchanged. Obviously, the resulting chromosomes will likely
be of different lengths. Selective pressure is introduced by a
tournament selection wheren individuals are randomly taken
from the population and the one that scores a higher fitness is
selected for reproduction. An elitist strategy has also be used,
where some of the best individuals in the population are trans-
ferred without any modification to the new generation. In this
way it is assured that the best genetic information is not lost.

4.3. Fitness

How goodness of any solution is measured is a key subject in
the construction of a GA. In our case, for each positive exam-
ple, the proportion of extracted characters is calculated.Then
the fitness is calculated subtracting the average proportion of
false positives in the negative example set to the average of
characters correctly extracted. In this way, the maximum fit-
ness that a chromosome can achieve is one. This happens when
the evolved regex has correctly extracted all the elements of
positive examples while any element of the negative examples
has been matched. An individual with a fitness value of one is
calledideal individual.

From a formal point of view, the fitness function that has
been adopted in the wrapper uses a training set composed by
a positive and a negative subset of examples. LetP be the set
of positive samples andQ the set of negative samples, such as
P = {p1, p2, ..., pM} andQ = {q1, q2, ..., qN}. Both,P andQ
are subsets of the set of all stringsG and they have no common
elements, soP ∩ Q = ⊘.

Chromosomes are evaluated as follows. Given a chromo-
some it is transformed into the corresponding regexr ∈ R,
then tries to match against the elements ofP andQ. The set
of strings thatr extracts from a stringp is given by the function
ϕ(p, r) : (S×R) −→ R while the number of characters retrieved
is represented by|ϕ(p, r)|. The percentage of extracted charac-
ters ofpi such asi = 0, ...,M is averaged and finally the fitness
is calculated subtracting the average proportion of false posi-
tives in the negative example set to the average of characters
correctly extracted, as is expressed by equation (1).

F(r) =
1
|P|

∑

pi∈P

|ϕ(pi , r)|
|pi |

−
1
|Q|

∑

qi∈Q

Mr (qi) (1)

where|pi | is the number of characters ofpi , |P| the number
of elements ofP, |Q| the number of elements ofQ andMr (qi)
is defined as

Mr (qi) =

{

1 i f |ϕ(qi , r)| > 0
0 i f |ϕ(qi , r)| = 0

(2)

5. Zipf’s law based alphabet construction

5.1. Preliminary considerations

Section 4.1 has shown how a classical binary codification is
used to select one symbolσ from a predefined setΣ of symbols
or atomic regex. The construction ofΣ is a critical task since it
determines the search space, its size and its capacity to express
a correct solution. Of course, the simplest approach is to man-
ually select the alphabet, however this approach may devaluate
the added value of evolved regex: the automatic generation of
regex.

We can state that construction ofΣ must satisfy three con-
strains.

1. Σ must besufficient, i.e., it must exist at least an element
r ∈ Σ∗ such asr is an ideal individual. In other words,
it must be possible to construct at least one valid solution
using the elements ofΣ.

2. |Σ| must contain the minimum number of elements able to
satisfy the sufficiency constrain. Of course, being able to
satisfy this condition is a challenging task with deep the-
oretical implications. From a practical point of view, this
constrain can be reformuled to keep|Σ| as low as possible.

3. Symbol selection must be automatic, with minimal human
interaction and number of parameters.

5.2. Alphabet construction algorithm

To reduce the number of elements ofΣ, and keep the search
space as small as possible, we aim to identify patterns in the
positive samples and use them as building blocks. In order to
satisfy the previous constrains we propose the following algo-
rithm. Σ is built as the union ofF , D andT , whereF , is the
set of fixed symbols,D the set of delimiters andT the set of
tokens.

Σ = {σi}\σi ∈ F ∪D ∪ T (3)

F contains hand-created reusable symbols that are meant to
be common cross-domain regex, and thus, once they have been
defined they can be used to evolve different regex. It should be
noticed thatF may contain any valid regex, nevertheless it is
supposed to contain generic use regex such as\d+ or [1-9]+.
SinceF is supposed to include common used complex regex,
it contributes to reduce the search space and increase individual
fitness by introducing high fitness building blocks.

The setsD andT are constructed using a more complex
mechanism based on Zipf’s Law [7]. It states that occurrences
of words in a text are not uniformally distributed, rather only
a very limited number of words concentrates a high number of
occurrences. This fact can be used to identify patterns inP and
use them to construct a part ofΣ.

Since the tokens do not contain delimiters, the sufficiency
constrain cannot be satisfied, so, each delimiter that appear in
the examples is included in the setD. The overall process is
described in Algorithm 1. Of course,|Σ| must be equal to the
number of elements of the union ofF ,D andT , as is expressed
in equation (4).

6

Algorithm 1 Selection of alphabet tokens.

1 .- P := Set of positive examples
2 .- S := Set of candidate delimiters
3 .- D := T := { }
4 .-
5 .- for each p in P
6 .- for each s in S
7 .- tokens := split p using s
8 .- numberTokens := number of tokens
9 .-
10.- for each token in tokens
11.- occurrence(token) := occurrence(token)+ 1
12.- endfor
13.-
14.- if (numberTokens> 0) add s to D
15.- endfor
16.- endfor
17.-
18.- sort occurrence
19.- add n first elements of occurrence to T

|Σ| = |F ∪ D ∪ T | (4)

given that

|F ∩ D ∩ T | = |F ∩ D| = |F ∩ T | = |D ∩ T | = ⊘ (5)

5.3. Complexity analysis

A better understanding of the algorithm can be achieved by
a time complexity analysis. As can be seen in Algorithm 1,
there are two main loops (see Algorithm 1, lines 5 and 6) that
depends on the number of examples|P| and the number of po-
tential delimiters|S|. The complexity of the algorithm is given
by these loops and the operations that are performed inside.

Splitting a stringpi ∈ P (line 7) is proportional to the length
of the string|pi |, so the mean time required to perform this op-
eration is proportional to the mean string length|p|. Lines 19 to
21 include a loop that is repeated as many times as the tokens
are in the string. A hash table is accessed inside the loop (line
20), so it makes sense to suppose that its complexity is given
by the calculus of the key, a string, therefore its time complex-
ity is n|p|, wheren is the number of tokens. Finally sorting
occurrencecan be performed inntot log(ntot) wherentot is the
number of tokens stored inoccurence. The rest of the opera-
tions in the algorithm can be performed in a negligible time.
We can express these considerations in equation (6).

t ∝ |P| · |S| · [|p| + n|p|] + ntot log(ntot) (6)

Bothn andntot are unknown and we have to estimate it for the
average case. A stringp ∈ P of length|p| can contain approx-
imately a maximum of|p|2 tokens. We have supposed there is
one delimiter for each token. The maximum number of tokens
that can be stored inoccurrencesare |P|·|S|·|p|2 . Then

n =
|p|
2

(7)

ntot =
|P| · |S| · |p|

2
(8)

and 6 can be expressed as

t ∝ |P| · |S| · |p|[1 +
|p|
2

] +
|P| · |S| · |p|

2
log(
|P| · |S| · |p|

2
) (9)

Some terms can be removed

t ∝
|P||S||p|

2
log(
|P| · |S| · |p|

2
) (10)

Using Big Oh notation it yields that the time complexity is
given by

O(k log(k)) (11)

wherek = |P||S||p| and therefore we can conclude that the
time complexity is linearithmic.

6. Evaluation

Two phases have been used in the evaluation, a first phase
where the basic behaviour of the GA is analyzed, and a second
phase that uses the knowledge acquired along the first phase
to measure extraction capabilities of the evolved regex wrap-
per. Measures that have been used are the well known preci-
sion, recall and F-measure. The sets of experiments described
in this section are focused in the extraction of three types of
data: URLs, phone numbers and email addresses.

6.1. Parameter tuning

Some initial experiments were carried out to acquire knowl-
edge about the behaviour of the regex evolution and select the
GA parameters to use within the wrapper. Experiments showed
that despite the differences between phone, URL and emails
all the case studies have similar behaviors. In this way it is
possible to extrapolate the experimental results and thus to use
the same GA parameters. Setup experiments showed that best
performance is achieved with a mutation probability of 0.003
and a tournament size of 2 individuals. A population composed
by 50 individuals is a good trade-off between computational
resources and convergence speed. Initial population has been
randomly generated with chromosome lengths that range from
4 to 40 bits and elitism of size one has been applied. Table 1
summarizes the parameter values used in the experiments.

6.2. Regex evolution

Once the main GA parameters have been set, the wrapper
can evolve the regex. Experiments have used three datasets to
evolve regex able to extract records in the three case studies un-
der study. Figure 5 depicts the mean best fitness (MBF) and
mean average fitness (MAF) of 100 runs. The fitness evolution
of the case studies follows a similar path. The best MBF and

7

Table 1: GA parameters summary.

Parameter Value

Population 50
Mutation probability 0.003
Crossover probability 1
Tournament size 2
Elitism 1
Initial chromosome length 4 - 40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

F
itn

es
s

Generations

Email
Phone

URL

Figure 5: Best and average fitness of phone, URL and email regex.

MAF are achieved by the email regex, while the poorest perfor-
mance is given by the URL regex, with lower fitness values.

The dynamics of the chromosome length can be observed in
the Figure 6. It is clear that there is a convergence of the chro-
mosome length and thus chromosome bloating does not appear.
It can be explained by the lack of non-coding and overlapping
regions in the chromosome, i.e, if the chromosome has achieved
a maximum it hardly can increase its size without a penalty in
its fitness. The longer is the chromosome, the more restrictive
is the phenotype and it is closely related to the associated fit-
ness. URL regex has a stronger tendency to local maximum,
this fact is reflected in Figure 6, where a lower MBF and MAF
are achieved. This fact also explains why URL chromosome
length depicted in Figure 6 is shorter than phone regex: the lo-
cal maximum of URL regex tends to generate populations with
an insufficient chromosome length. Those results are not sur-
prising since URLs follow a far more complex pattern than
phone numbers or emails. The same can be affirmed about
emails in comparison to phone numbers.

Figure 6 shows another interesting behaviour. As the GA
begins to run, the average chromosome length is reduced un-
til a point where it begins to increase, then the chromosome
length converges into a fixed value. In early generations indi-
viduals have not suffered evolution and thus its genetic code
has a strong random nature. Individuals with longer genotype
have longer phenotypes and thus more restrictive regex thatwill
likely have smaller fitness values. So long chromosomes are
discarded in early stages of the evolutive process until thepop-
ulation is composed by individuals representing basic pheno-
types, then recombination leads to increase complexity of in-

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 10 20 30 40 50 60 70

A
vg

. c
hr

om
os

om
e

le
ng

th

Generations

URL
Email

Phone

Figure 6: Evolution of regular expressions.

dividuals until they reach a length associated with a local or
global maximum.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70

S
uc

ce
ss

 r
at

e
(%

)

Generations

Email
Phone

URL

Figure 7: Probability of finding an ideal regex able to acceptall the positive
examples while rejecting the negative ones.

Some of the facts found previously are confirmed by Fig-
ure 7, where the success rate (SR) [8] is depicted versus the
generation. SR is defined as the probability of finding an ideal
individual in a given generation. It should be noted that Figure 7
depicts the average success rate of 100 runs of the experiment.
It can be seen that email achieves a SR of 91%, phone numbers
54% and URLs 63% in generation 70. These results are consis-
tent with those in Figure 6 and show that the hardest study cases
are URLs, phone numbers, and emails, in that order. Here the
term ”hard” should not be understood in a strict absolute way
since the hardness of the search space is influenced from sev-
eral factors, such as the training set, the selection of negative
samples or the alphabet chosen.

6.3. Data extraction

Three regex with an ideal fitness of one have been selected
by the wrapper and its extraction capabilities have been evalu-
ated by means of the precision, recall and F-measure. The ex-
periments used a dataset composed by eight sets of documents
from different origins containing URLs, emails and/or phone

8

Table 2: Extraction capacity of the evolved regex. The tableshows the F-measure (F), precision (P) and recall (R) achieved in the three datasets (phone, URL and
email addresses).

Phone regex URL regex Email regex
Phone URL Email F P R F P R F P R

Set 1 99 0 0 1 1 1 - - - - - -
Set 2 0 51 0 - - - 0.24 0.14 0.84 - - -
Set 3 0 0 862 - - - - - - 0.79 0.51 0.62
Set 4 20 77 0 1 1 1 0.27 0.16 1 - - -
Set 5 37 686 0 1 1 1 0.20 0.11 0.97 - - -
Set 6 24 241 0 1 1 1 0.02 0.01 0.37 - - -
Set 7 83 0 88 0.92 1 0.96 - - - 0.92 1 0.96
Set 8 0 51 0 - - - 0.63 0.47 0.96 - - -
Avg. - - - 0.98 1 0.99 0.27 0.18 0.83 0.85 0.79 0.79

numbers. Table 2 shows basic information about the datasets
and their average records and Table 3 contains some evolved
regex with their fitness value. Sets one, two and three are com-
posed by examples extracted from the training set. The rest
of the sets are web pages retrieved from the Web classified by
their contents. An extracted string has been evaluated as cor-
rectly extracted if and only if it matches exactly the records,
otherwise it has been computed as a false positive.

The results, as can be seen in Table 2, are quite satisfactory
for phone numbers and testing sets, but measures get worse for
real raw documents, specially the ones containing URL records.
Phone regex has a perfect extraction with a F-measure value
close to 1. The training set used to evolve regex contains phone
numbers in a simple format (000)000− 0000, the same that can
be found in the testing set, the reduction of recall in set 7 isdue
to the presence of phone extensions that are not extracted.

On the contrary, measures achieved for URL extraction from
raw documents are much lower. It can be explained looking at
the regex used in the extraction,http://\w+\.\w+\.com. Docu-
ments used in the test contain many URLs with paths, so the
regex is able to partially extract them, increasing the count of
false positives. The result is a poor precision. An explanation
of the poor recall measures in URLs extraction is found in the
fact that the evolved regex only is able to extract URL whose
first level domain is.com, so its recall in documents with a high
presence of first level domains in other forms is worse.

Finally, email regex achieves an average F-measure of 0.85.
Some of the factors that limits the URL regex extraction capa-
bilities are also limiting email regex. However in this casethe
effects are not so severe for some reasons, for instance the lower
percentage of addresses with more than two levels.

7. Related Work

The use of ontologies [9] has attracted the attention of data
integration community in the last years. It has provided a
tool to define mediated schemas focused on knowledge sharing
and interoperability, in contrast with traditional database cen-
tric schemas, whose goal is to query single databases [10]. The
adoption of ontologies has lead to reuse results achieved bytwo
communities such as the database and the AI communities to

Table 3: Some examples of evolved regular expressions with their fitness val-
ues.

Evolved regex (Phone) Fitness

\w+ 0
\(\d+\) 0.33
\(\d+\)\d+ 0.58
\(\d+\)\d+-\d+ 1

Evolved regex (URL) Fitness

http://-http://http:// 0
/\w+\. 0.55
http://\w+\.\w+\ 0.8
http://\w+\.\w+\.com 1

Evolved regex (Email) Fitness

\w+\. 0.31
\w+\.\w+ 0.49
\w+@\w+\.\com 1

solve similar problems like schema mapping or entity resolu-
tion. A deep discussion about the role of the ontologies in the
data integration can be found in [11].

We can define a collection of semantic solutions based on on-
tology technologies prior to the development of the SW. A in-
troduction to this group of solutions can be found in [6]. We can
remark classical literature examples such as InfoSleuth [12] or
SIMS [13]. From these systems, we have to stress InfoSleuth,
a solution that uses a MAS.

Semantic integration tools in the last years have adopted WS
standards and technologies. One of the first ones can be found
in [14]. Vdovjak proposes a semantic mediator for querying
heterogeneous information sources, but limited to XML docu-
ments, furthermore, this solution relies on a wrapper layerthat
translates the local entities into XML and then the RDF is gen-
erated. A step forward is done by Michalowski with Build-
ing Finder [15], a domain specific mediator system aimed to
retrieve and integrate information about streets and buildings
from heterogeneous sources, presented to the user within satel-
lite images. [16] describes an information integration tool that
covers all the phases of integration, such as assisted mapping

9

definition and query rewrite.
Another newcomer into the IT toolbox is the Web Services

technology. WS provide a means to access services in a loose
coupling way. Despite WS and the SW face different problems
-one models and represents knowledge meanwhile the another
one is concerned with service provision-, they are related by
means of semantic descriptions of WS thought Semantic Web
Services. In this way WS are enhanced with semantic descrip-
tions, enabling dynamic service composition and data integra-
tion [17].

A semantic integration solution based on SOA is SODIA
(Service-Oriented Data Integration Architecture) [18]. It sup-
ports some integration approaches such as federated searches
and datawarehouse. By using a SOA approach SODIA has
many of the benefits of using an agent technology. However,
this is a process centric solution and has limited semantic sup-
port. The most aligned solution to the one described in this
paper is Knowledge Sifter [19]. It is an agent based approach
that uses OWL to describe ontologies and WS as interface to
the agents’ services. Despite the lack of semantic support,WS
integration or distributed nature, we have to mention the system
proposed by [20], a system able to automate the full integration
process by creating the mediated schema and schema mapping
on-the-fly. Another interesting integration suite relatedto bioin-
formatics domain that that could be mentioned is INDUS [21].

Table 4 compares some representative federated ontology-
driven search solutions. The scope of table 4 is limited, however
some relevant facts are show. It depict if the integration system
is supported by agents, it uses any WS or SW technology as
well as the degree of specialization of the tool.

8. Future work and conclusions

Some issues are still open. One of them is the limited num-
ber of information sources that Searchy is able to integrate.
WebMantic [22] is a wrapper web-centric information extrac-
tion tool that once integrated in Searchy will enhance its Web
information extraction and integration capabilities.

One method to extract data from unstructured documents is
the use of evolved regex. Genetic Algorithms provide a stochas-
tic search method well suited for the complex search space con-
formed by regular expressions. Despite the fact that VLGAs are
much simpler than the fixed-length approach described in [3],
it still presents some important drawbacks, such as the intrinsic
difficulty to evaluate parts of the evolved regex or the linear na-
ture of the codification. In order to avoid this type of problems
it is expected to use Genetic Programming and Grammatical
Evaluation to generate regex. In particular, Genetic Program-
ming has shown well performance in related areas [23] and is a
promising approach.

From the point of view of the Searchy platform, The creation
of a wide network of agents implies the management of huge
amount of information. Then, the physical scalability of the
system should be done in parallel with the intelligence system
improvement. Some techniques such as ranking or information
filtering with a case based reasoning or collaborative filtering

are considered to provide some intelligence to the system that
will produce better user satisfaction.

Along this paper we have briefly presented the problem of
information extraction and integration and we have proposed
an extension of a partial solution called Searchy. This exten-
sion aims to automatice some of the tasks asigned originallyto
the wrapper engineer thought some agents able to use Machine
Learning to generate regex. When an extractor agent requires
a regex (it can be in initialization time or because it cannotex-
tract data with a given regex) it request one to a evolutive agent
that using a set of positive and negative examples and a Genetic
Algorithm is able to generate the regex.

9. Acknowledgements

The authors gratefully acknowledge Martı́n Knoblauch for
his useful suggestions and valuable comments. This work has
been partially supported by the Spanish Ministry of Science
and Innovation under the projects ABANT (TIN 2010-19872),
COMPUBIODIVE (TIN2007-65989) and by Castilla-La Man-
cha project PEII09-0266-6640.

References

[1] L. Haas, Beauty and the beast: The theory and practice of information
integration, ICDT 2007 (2007) 28–43.

[2] D. F. Barrero, M. D. R-Moreno, D. R. López, Information integration in
searchy: an ontology and web services approach, International Journal of
Computer Science and Applications (IJCSA) 7 (2010) 14–29.

[3] D. F. Barrero, D. Camacho, M. D. R-Moreno, In Data Mining and Mul-
tiagent Integration. Chapter 9: Automatic Web Data Extraction Based on
Genetic Algorithms and Regular Expressions (2009), Springer, pp. 143–
154.

[4] F. Wan, M. P. Singh, Commitments and causality for multiagent design,
in: A. Pres (Ed.), 2nd International Joint Conference on Autonomous
Agents and multiagent Systems (AAMAS), Melbourne, Australia.

[5] R. Aler, J. M. Valls, D. Camacho, A. Lopez, Programming robosoccer
agents by modeling human behavior, Expert Systems with Applications
36 (2009) 1850–1859.

[6] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neu-
mann, S. Hübner, Ontology-based integration of information — a survey
of existing approaches, in: IJCAI–01 Workshop: Ontologiesand Infor-
mation Sharing, Seattle, Washington, USA, pp. 108–117.

[7] G. Zipf, The Psycho-Biology of Language, Houghton Mifflin, Boston,
MA, 1935.

[8] D. F. Barrero, D. Camacho, M. D. R-Moreno, Confidence intervals of
success rates in evolutionary computation, in: Proceedings of Genetic and
Evolutionary Computation Conference (GECCO-2010)., ACM,Portland,
Oregon,USA, 2010, pp. 975–976.

[9] T. Grubber, A translation approach to portable ontologyspecifications,
Knowledge Acquisition 5 (1993) 199–220.

[10] M. Uschold, M. Gruninger, Ontologies and semantics forseamless con-
nectivity, SIGMOD Rec. 33 (2004) 58–64.

[11] N. F. Noy, Semantic integration: a survey of ontology-based approaches,
SIGMOD Rec. 33 (2004) 65–70.

[12] M. H. Nodine, J. Fowler, T. Ksiezyk, T. Perry, M. Taylor,A. Unruh, Ac-
tive information gathering in infosleuth, International Journal of Cooper-
ative Information Systems 9 (2000) 3–28.

[13] C. A. Knoblock, J.-L. Ambite, Agents for information gathering, in:
J. M. Bradshaw (Ed.), Software Agents, AAAI Press/ The MIT Press,
1997, pp. 347–374.

[14] R. Vdovjak, G. Houben, Rdf based architecture for semantic integration
of heterogeneous information sources, in: E. Simon, A. Tanaka (Eds.),
Proceedings of the International Workshop on Information Integration on
the Web, Rio de Janeiro, Brazil, pp. 51–57.

10

Table 4: Semantic information integration tools comparison.

Platform Agent support Semantic
Web

Web Services Interdomain
support

InfoSleuth Yes No No Yes
SIMS Yes No No Yes
Building Finder No Yes No No
SODIA No Yes Yes Yes
Knowledge Sifter Yes Yes Yes Limited
Searchy Yes Yes Yes Yes

[15] M. Michalowski, J. Ambite, S. Thakkar, R. Tuchinda, C. Knoblock,
S. Minton, Retrieving and semantically integrating heterogeneous data
from the web, IEEE Intelligent Systems 19 (2004) 72–79.

[16] J. Yuan, A. Bahrami, C. Wang, M. Murray, A. Hunt, A semantic infor-
mation integration tool suite, in: VLDB ’06: Proceedings ofthe 32nd
international conference on Very large data bases, VLDB Endowment,
2006, pp. 1171–1174.

[17] P. Deepti, B. Majumdar, Semantic web services in action- enterprise in-
formation integration., in: B. J. Kramer, K.-J. Lin, P. Narasimhan (Eds.),
ICSOC, volume 4749 ofLecture Notes in Computer Science, Springer,
2007, pp. 485–496.

[18] F. Zhu, M. Turner, I. A. Kotsiopoulos, K. H. Bennett, M. Russell, D. Bud-
gen, P. Brereton, J. Keane, M. Rigby, J. Xu, Dynamic data integration
using web services., in: IEEE International Conference on Web Services
(ICWS’04), San Diego, California, USA, pp. 262–269.

[19] L. Kerschberg, M. Chowdhury, A. Damiano, H. Jeong, S. Mitchell, J. Si,
S. Smith, Knowledge sifter: Ontology-driven search over heterogeneous
databases., in: 16th International Conference on Scientific and Statistical
Database Management (SSDBM 2004), IEEE Computer Society, San-
torini Island, Greece, 2004, pp. 431–432.

[20] A. D. Sarma, X. Dong, A. Halevy, Bootstrapping pay-as-you-go data
integration systems, in: SIGMOD ’08: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, ACM, New
York, NY, USA, 2008, pp. 861–874.

[21] D. Caragea, J. Pathak, J. Bao, A. Silvescu, C. Andorf, D.Dobbs,
V. Honavar, Information integration and knowledge acquisition from se-
mantically heterogeneous biological data sources, in: Proceedings of the
16th International Workshop on Database and Expert SystemsApplica-
tions, Springer-Verlag, 2005, pp. 175–190.

[22] D. Camacho, M. D. R-Moreno, D. F. Barrero, R. Akerkar, Semantic
wrappers for semi-structured data extraction, Computing Letters (COLE)
4 (2008) 1–14.

[23] You-Heng, L. Ge, Learning ranking functions for geographic information
retrieval using genetic programming, Journal of Research and Practice in
Information Technology 41 (2009) 39–52.

11

