

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Formal Aspects of Computing 26.6 (2014): 1115-1152

DOI: http://dx.doi.org/10.1007/s00165-014-0307-x

Copyright: BCS © 2014

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/s00165-014-0307-x

Under consideration for publication in Formal Aspects of Computing

A Formalisation of Deep Metamodelling

Alessandro Rossini1, Juan de Lara2, Esther Guerra2, Adrian Rutle3 and Uwe Wolter4

1Department of Networked Systems and Services, SINTEF, Oslo, Norway
2Escuela Politécnica Superior, Universidad Autónoma de Madrid, Spain
3Faculty of Engineering and Natural Sciences, Aalesund University College, Norway
4Department of Informatics, University of Bergen, Norway

Abstract. Metamodelling is one of the pillars of model-driven engineering, used for language engineering and domain
modelling. Even though metamodelling is traditionally based on a two-metalevel approach, several researchers have
pointed out limitations of this solution and proposed an alternative deep (also called multi-level) approach to obtain
simpler system specifications. However, this approach currently lacks a formalisation that can be used to explain
fundamental concepts such as deep characterisation, double linguistic/ontological typing and linguistic extension. This
paper provides such a formalisation based on the Diagram Predicate Framework, and discusses its practical realisation
in the METADEPTH tool.

Keywords: model-driven engineering, multi-level metamodelling, deep metamodelling, deep characterisation, po-
tency, double linguistic/ontological typing, linguistic extension, category theory, graph transformation, Diagram Pre-
dicate Framework, METADEPTH.

1. Introduction

Model-driven engineering (MDE) promotes the use of models as the primary assets in software development, where
they are used to specify, simulate, generate and maintain software systems. Models can be specified using general-
purpose languages like the Unified Modeling Language (UML) [Obj10b]. However, to fully unfold the potential of
MDE, models are frequently specified using domain-specific languages (DSLs) which are tailored to a specific domain
of concern. One way to define DSLs in MDE is by specifying metamodels, which are models that describe the concepts
and define the (abstract) syntax of a DSL.

The Object Management Group (OMG) [Obj] has proposed the Meta-Object Facility (MOF) [Obj06] as the stand-
ard language to specify metamodels, and some popular implementations exist, most notably the Eclipse Modeling
Framework (EMF) [SBPM08]. In this approach, a system is specified using models at two metalevels: a metamodel
defining allowed types and a model instantiating these types. However, this approach may have limitations [AK02b,
AK08, GPHS06], in particular when the metamodel includes the type-object pattern [AK02b, AK08, GPHS06], which
requires an explicit modelling of types and their instances at the same metalevel. In this case, deep metamodelling (also
called multi-level metamodelling) using more than two metalevels yields simpler models [AK08].

Correspondence and offprint requests to: alessandro.rossini@sintef.no, {Juan.deLara,Esther.Guerra}@uam.es,
adru@hials.no, wolter@ii.uib.no

2 A. Rossini et al.

Deep metamodelling was proposed in the seminal works of Atkinson and Kühne [AK02b], and several researchers
and tools have subsequently adopted this approach [ADP09, AM09, dG10, dGCML13]. However, there is still a lack
of formalisation of the main concepts of deep metamodelling such as deep characterisation through potency, double
linguistic/ontological typing and linguistic extension [dG10]. Such formalisation is needed in order to explain the main
aspects of the approach, study the different semantic variation points and their consequences, as well as to classify the
different semantics found in the tools implementing them [KS07, ADP09, AM09, AGK09, dG10, AGK12].

In this paper, we present a formal approach to deep metamodelling based on the Diagram Predicate Framework
(DPF) [RRLW09a, RRLW09b, RRLW10a, RRLW10b, Rut10, RRM+11, Ros11, RRLW12], a diagrammatic spe-
cification framework founded on category theory and graph transformation. DPF has been adopted up to now to
formalise several concepts in MDE, such as (MOF-based) metamodelling, model transformation and model version-
ing. The proposed formalisation helps in reasoning about the different semantic variation points in the realisation of
deep metamodelling, in classifying the existing tools according to these options, in expressing correctness constraints
regarding deep instantiation, as well as in understanding the equivalences and relations between systems with and
without deep characterisation.

This paper further develops the formalisation of deep metamodelling published in [RdG+12]. Compared to the
previous work, we extend it with a presentation of linguistic extensions. Moreover, we provide a declarative semantics
of deep metamodelling (i.e., deep characterisation through potency, double linguistic/ontological typing and linguistic
extension). Finally, we discuss an implementation of the proposed formalisation within the METADEPTH [dG10] tool.

The remainder of the paper is structured as follows. Section 2 illustrates the limitations of traditional metamodel-
ling through an example in the domain of component-based web applications. Section 3 introduces deep metamodel-
ling. Section 4 outlines DPF. Section 5 explains different concepts of deep metamodelling through its formalisation in
DPF. Section 6 shows how deep metamodelling relates to traditional metamodelling by means of flattening construc-
tions. Section 7 shows a practical implementation of deep metamodelling, discussing how the findings of the proposed
formalisation affect this tool. In Section 8, the current research in deep metamodelling is summarised. In Section 9,
some concluding remarks and ideas for future work are presented.

2. Metamodelling

Metamodels are frequently used to define the (abstract) syntax of a modelling language, i.e., the set of modelling
concepts, their attributes and their relationships, as well as the rules for combining these concepts to specify valid
models [Obj10b]. Metamodels are specified using structural metamodelling languages such as the MOF. MOF-like
metamodelling languages allow for the specification of simple constraints such as multiplicity and uniqueness con-
straints, hereafter called structural constraints. However, these structural constraints may not be sufficient to specify
complex system requirements. Hence, metamodels are often complemented with textual constraint languages such
as the Object Constraint Language (OCL) [Obj10a] to specify more complex constraints, hereafter called attached
constraints.

A model is said to be typed by a metamodel if each element in the model is typed by an element in the metamodel,
while a model is said to conform to a metamodel if it is typed by the metamodel and, in addition, satisfies all (structural
and attached) constraints of the metamodel.

In a traditional metamodelling stack (or hierarchy), models at each metalevel conform to the corresponding meta-
model of the modelling language at the adjacent metalevel above (see Figure 1(a)). This pattern is often referred to as
linear metamodelling in the literature [AK02a]. Moreover, in strict metamodelling, a model element at each metalevel
has exactly one type at the adjacent metalevel above. The top-most model of a traditional metamodelling stack may
not conform to any model or may be a reflexive model, i.e., a model which conforms to itself. The length (or depth)
of a traditional metamodelling stack is fixed (i.e., it cannot change depending on the requirements) and the metalevels
are conventionally numbered from 1 onwards starting from the bottom-most.

For instance, in the 4-layer hierarchy [BG01] developed by the OMG, models conform to the metamodel of UML
(see Figure 1(b)). The metamodel of UML, in turn, conforms to the metamodel of MOF [Obj06], and the latter is
reflexive. Please note that meta- is a relative term, so that the UML metamodel is a model as well, while the MOF
metamodel is a meta-metamodel with respect to the models.

The OMG’s 4-layer hierarchy is the one most widely adopted in practice, but the designer is restricted to working
with models at two metalevels only: a metamodel at metalevel M2 corresponding to the modelling language (e.g.,
UML or a DSL), and a model at metalevel M1 conforming to this metamodel. The following example illustrates that,
on some occasions, the restriction to two metalevels leads to the introduction of accidental complexity, which could
be avoided if the models were organised using more than two metalevels.

A Formalisation of Deep Metamodelling 3

1

...

i

i+1

...

l

Metalevel

Model

conforms to

...

conforms to

Model

conforms to

Model

conforms to

...

conforms to

Model

Linear stack

Modelling
language

Modelling
language

Modelling
language

metamodel of

metamodel of

metamodel of

(a) Pattern in a linear metamodelling stack

O

M1

M2

M3

Metalevel

Original

represented by

Model

conforms to

Metamodel

conforms to

Meta-
metamodel

conforms to

4-layer hiearachy

metamodel of

metamodel of

UML/DSL

MOF

(b) OMG’s 4-layer hierarchy

Figure 1. Linear metamodelling stack

Example 1 (A DSL for component-based web applications). One of the aims of the “Go Lite” project is the model-
driven engineering of web applications. In the following, we describe a small excerpt of one of the modelling problems
encountered in this project. Note that we use sans-serif fonts to denote model elements.

In “Go Lite”, a DSL is adopted to define the mash-up of components (like Google Maps and Google Fusion
Tables) to provide the functionality of a web application. A simplified version of this language can be defined using
the metalevels M2 and M1 of the OMG’s 4-layer hierarchy (see Figure 2).

The metamodel at metalevel M2 corresponds to the DSL for component-based web applications. In this meta-
model, the metaclass Component defines component types having a type identifier, whereas the metaclass CInstance
defines component instances having a variable name and a flag indicating whether the instance should be visually
rendered. Moreover, the metaassociation datalink defines the data link types between component types, whereas the
metaassociation dlinstance defines the data link instances between component instances. Finally, the metaassociation
type defines the typing of each component instance.

The model at metalevelM1 represents a component-based web application which shows the position of professors’
offices on a map. In this model, the classes Map and Table are instances of the metaclass Component and represent
component types, whereas the classes UAMCamp and UAMProfs are instances of the metaclass CInstance and
represent component instances of Map and Table, respectively. The association geopos is an instance of the metaas-
sociation datalink and represents the allowed data link between the component types Map and Table, whereas the
association offices is an instance of the metaassociation dlinstance and represents the actual data link between the
component instances UAMCamp and UAMProfs. Finally, the associations camptype and profstype are instances of
the metaassociation type and represent the typing of the component instances UAMCamp and UAMProfs, respect-
ively.

The type-object relation between component types and instances is represented explicitly in the metamodel by
the metaassociation type between the metaclasses Component and CInstance. However, the type-object relation
between data link types and instances is implicit since there is no explicit relation between the metaassociations
datalink and dlinstance, and this may lead to several problems. Firstly, it is not possible to define that the data
link instance offices is typed by the data link type geopos, which could be particularly ambiguous if the model
contained multiple data link types between the component types Map and Table. Moreover, it could be possible to
specify a reflexive data link instance from the component instance UAMProfs to itself, which should not be allowed
since the component type Table does not have any reflexive data link type. Although these errors could be detected
by complementing the metamodel with attached OCL constraints, these constraints would not be enough to guide

4 A. Rossini et al.

Model

Metamodel

name="UAMCampus"
visualise=true

UAMCamp
camptype

id="GoogleMaps"

Map

trg

offices

src

trg

geopos

src name="UAMProfs"
visualise=false

UAMProfs
profstype

id="FusionTable"

Table

name: String
visualise: Boolean

CInstance src
*

dlinstance

*trg

*type1
id: String

Component

trg*

datalink

src
*

Figure 2. A two-metalevel DSL for component-based web applications

the correct instantiation of each data link, in the same way as a built-in type system would do if the data link types
and instances belonged to two different metalevels. This is because while violation of the attached OCL constraints
would be detected in a reactive manner, the built-in type system would hamper the violation of typing constraints in a
proactive manner.

In the complete definition of the DSL, the component types can define features which need to be correctly instan-
tiated in the component instances. This leads to even more cluttered models (see Figure 3). In the model, the class
Scroll is associated to the class Map and represents the zooming capabilities of the map component. The definition
of the class UAMScroll and its association to both the classes UAMCamp as well as Scroll has to be done manually.
Moreover, the conformance check that the value “true” assigned to the attribute value is actually a boolean has to
be done manually as well. Hence, either one builds manually the needed machinery to emulate the existence of two
metalevels within the same one, or this two-metalevel solution eventually becomes convoluted and hardly usable.

In the following, we show that organising the models in three metalevels results in a simpler and more usable DSL.

3. Deep metamodelling

This section introduces the main concepts of deep metamodelling, illustrating how they overcome the problems of the
two-metalevel approach when defining DSLs which incorporate the type-object pattern.

3.1. Deep characterisation

The first ingredient of deep metamodelling is deep characterisation: the ability to describe structure and express
constraints for metalevels below the adjacent one. In this work, we adopt the deep characterisation approach described
in [AK02b]. In this approach, each element has a potency. In the original proposal of [AK02b], the potency is a natural
number which is attached to a model element to describe at how many subsequent metalevels this element can be
instantiated. Moreover, the potency decreases in one unit at each instantiation at a deeper metalevel. When it reaches
zero, a pure instance that cannot be instantiated further is obtained. In Section 5, we provide a more precise definition
for potency.

A
F

o
rm

alisatio
n

o
f

D
eep

M
etam

o
d
ellin

g
5

Model

Metamodel

value="true"

UAMScroll
scrolltype

name="scroll"
type="Boolean"

Scroll

slotfeat

name="UAMCampus"
visualise=true

UAMCamp
camptype

id="GoogleMaps"

Map

trg

offices

src

trg

geopos

src name="UAMProfs"
visualise=false

UAMProfs
profstype

id="FusionTable"

Table

value: String

Slot

*slot1
name: String
visualise: Boolean

CInstance src
*

dlinstance

*trg

*type1
id: String

Component

trg*

datalink

src
*

1feat*
name: String
type: String

Feature

slottype

F
ig

u
re

3
.
E

x
ten

sio
n

o
f

th
e

tw
o

-m
etalev

el
D

S
L

ad
d

in
g

co
m

p
o

n
en

t
featu

res

6 A. Rossini et al.

Model M3

Model M2

Model M1

name="UAMProfs"
visualise=false

UAMProfs

srctrg
officesname="UAMCampus"

visualise=true

UAMCamp

id="FusionTable"

Table

srctrg
0..1geopos*

id="GoogleMaps"

Map

@2
@2

@1id: String
name: String
visualise: Boolean

@2Component
src
*

@2datalink

*trg

Figure 4. A three-metalevel DSL for component-based web applications corresponding to the DSL in Figure 2

In deep metamodelling, the elements at the top metalevel are pure types, the elements at the bottom metalevel are
pure instances, and the elements at intermediate metalevels retain both a type and an instance facet. Because of that,
they are all called clabjects, which is the merge of the words class and object [AK08]. Since in deep metamodelling the
number of metalevels may change depending on the requirements, we find it more convenient to number the metalevels
from 1 onwards starting from the top-most, in contrast to the traditional metamodelling stack (see Figure 1(a)).

The following example illustrates the usage of deep characterisation.

Example 2 (A DSL for component-based web applications in three metalevels). Compared to Example 1, the DSL
for component-based web applications can be defined in a simpler way using deep metamodelling (see Figure 4).

The model M1 contains the definition of the DSL. In this model, the clabject Component has potency 2, which
denotes that it can be instantiated at the two subsequent metalevels. Its attribute id has potency 1, which denotes that
it can be assigned a value when Component is instantiated at the adjacent metalevel below. Its other two attributes
name and visualise have potency 2, which denotes that they can be assigned a value only two metalevels below. The
association datalink also has potency 2, which denotes that it can be instantiated at the two subsequent metalevels.
Please note that, at the intermediate metalevel, association geopos retains a type facet and hence its ends can be
decorated with cardinalities to control the multiplicities of its instances. Altogether, the DSL in Figure 4 is simpler
than the one in Figure 2, as it contains less model elements to define the same DSL.

In this example, the deep characterisation enabled us to specify the attributes name and visualise in M1, which
should be assigned values in indirect instances of Component, i.e., UAMCamp and UAMProfs. Moreover, we did
not need to include the clabject CInstance or the association dlinstance in the model M1 in order to emulate the
instantiation of instances of Component and Datalink since this could be taken care of by the built-in type system.

3.2. Double typing and linguistic extension

The dashed grey arrows in Fig. 4 denote the ontological typing, which represents an instantiation within a domain; e.g.,
the clabjects Map and Table are ontologically typed by the clabject Component. In addition, deep metamodelling
frameworks usually support an orthogonal linguistic typing [AK08, dG10], which represents an instantiation within a
linguistic modelling language used to specify the models at all metalevels of the ontological stack.

A Formalisation of Deep Metamodelling 7

l

...

i+1

i

...

1

Metalevel

Model

conforms to (onto.)

...

conforms to (onto.)

Model

conforms to (onto.)

Model

conforms to (onto.)

...

conforms to (onto.)

Model

Ontological stack

(ling.)
conforms to

(ling.)
conforms to

(ling.)
conforms to

(ling.)
conforms to

Association

*1

*1
Clabject*Attribute

potency: Int
name: String

DeepElement

Linguistic metamodel

(a) Metamodelling stack with double linguistic/ontological typing

l

...

i+1

i

...

1

Metalevel

Model

conforms to (onto.)

...

conforms to (onto.)

Ling. extension

Onto.
instance

conforms to (onto.)

Ling. extension

Onto.
instance

conforms to (onto.)

...

conforms to (onto.)

Model

Ontological stack

(ling.)
conforms to

(ling.)
conforms to

(ling.)
conforms to

(ling.)
conforms to

L
in

g
u
is

t
ic

 m
e
t
a
m

o
d
e
l

(b) Metamodelling stack with double linguist-
ic/ontological typing and linguistic extension

Figure 5. Double linguistic/ontological typing and linguistic extension

Figure 5(a) shows the scheme of this double linguistic/ontological typing. Moreover, it shows a simplified lin-
guistic metamodel, which contains some of the metaclasses needed to specify models, e.g., clabjects, attributes and
associations.

In Figure 4, the clabjects Component, Map and UAMCamp are linguistically typed by the metaclass Clabject,
whereas the attributes id, name and visualise are linguistically typed by the metaclass Attribute. The availability of a
double linguistic/ontological typing has the advantage that one can uniformly treat all clabjects independently of their
ontological type and metalevel. This enables the specification of generic model manipulations typed by the linguistic
metamodel, which then become applicable to models at any metalevel.

The double linguistic/ontological typing also enables so-called linguistic extensions [dG10]. These extensions are a
useful mechanism to extend existing metamodelling stacks by adding at intermediate metalevels new clabjects and/or
attributes (to existing clabjects) which are only linguistically typed. This solution improves the scalability of deep
metamodelling since it facilitates addressing new requirements at intermediate metalevels which could not be foreseen
or addressed at the top-most metalevel. Figure 5(b) shows the scheme of linguistic extensions. All models in the
ontological stack conform linguistically to the linguistic metamodel, but only portions of them conform ontologically
to the model at the adjacent metalevel above.

The following example illustrates the usage of linguistic extensions.

Example 3 (Extended DSL for component-based web applications in three metalevels). As discussed in Exam-
ple 1, the component types can define features which need to be correctly instantiated in the component instances.
These new features can be naturally expressed as linguistic extensions in the model M2 (see Figure 6). In particular,
the clabject Map is extended with an attribute scroll of type Boolean. This linguistic extension reflects the fact that
the clabject Map retains both a type and an instance facet. The attribute scroll has potency 1, which denotes that it can
be assigned a value in the model M3.

Figure 6 also shows that potency can be attached to constraints as well. The attached OCL constraint in the model
M1 forbids to reflexively connect indirect instances of Component (see Figure 6). This constraint has potency 2,
which denotes that it has to be evaluated in the model M3 only.

8 A. Rossini et al.

Model M3

Model M2

Model M1

name="UAMProfs"
visualise=false

UAMProfs

srctrg
officesname="UAMCampus"

visualise=true

UAMCamp

id="FusionTable"

Table

srctrg
0..1geopos*

id="GoogleMaps"

Map

@2
@2

@1id: String
name: String
visualise: Boolean

@2Component
src
*

@2datalink

*trg@2
context Component

inv:

 self.trg->

 excludes(self)

scroll: Boolean

scroll=true

Figure 6. Linguistic extension of the three-metalevel DSL adding component features

Regarding the handling of features of component types, the solution presented in Example 3 has two main advan-
tages with respect to the solution in Example 1. Firstly, linguistic extensions enable the use of a built-in type system to
check the conformance of feature types and instances; e.g., the conformance check that the value true assigned to the
attribute scroll is actually a boolean. Secondly, the built-in type system is used to guide the instantiation of clabjects;
e.g., when the clabject Map is instantiated, all its attributes are instantiated as well. In Example 1, the correct instanti-
ation was done either manually or by additional machinery needed to emulate the existence of two metalevels within
the same one.

In the following, we discuss some open questions in deep metamodelling.

3.3. Some open questions in deep metamodelling

Deep metamodelling allows a more flexible approach to metamodelling by introducing richer modelling mechanisms.
However, their semantics have to be precisely defined in order to obtain sound, robust models. Even if the literature
(and this section) permits grasping an intuition of how these modelling mechanisms work, there are still open questions
which require clarification.

Some works in the literature give different semantics to the potency of associations. In Example 3, the associations
are instantiated like clabjects. In this case, the association datalink with potency 2 in the modelM1 is first instantiated
as the association geopos with potency 1 in the model M2, and then instantiated as the association offices with
potency 0 in the model M3 (see Figure 6); i.e., the instantiation of offices is mediated by geopos. This means that
one cannot create an indirect instance of datalink with potency 0 in the model M3 if there is not an instance with
potency 1 in the model M2. In contrast, the attributes name and visualise with potency 2 in the model M1 are
assigned a value directly in the modelM3 (see Figure 6); i.e., the instantiation of name and visualise is not mediated.
Some frameworks such as EMF [Ecl, SBPM08] represent associations as Java references, so the associations could
also be instantiated like attributes. In this case, the association datalink would not need to be instantiated in the model
M2 in order to be able to instantiate it in the model M3. This would have the effect that one could add an association
between any two component instances in the model M3, not necessarily between instances of Table and instances of
Map. Hence, the question is whether the instantiation of associations should be mediated or not.

A Formalisation of Deep Metamodelling 9

Another ambiguity concerns constraints, since some works in the literature support potency on constraints [dG10]
but others do not [AGK09]. In Example 3, the attached OCL constraint in the model M1 is evaluated in the model
M3 only; i.e., it is not evaluated in the model M2. In other cases, it might be useful to have a potency which denotes
that a constraint has to be evaluated at every metalevel. In Example 3, none of the multiplicity constraints has potency
and they are all evaluated at the adjacent metalevel below. In other cases, it might be useful to attach a potency to
multiplicity constraints. For instance, a potency 2 on the multiplicity constraints of the association datalink in the
model M1 would have the effect that one could control the number of data link instances in the model M3.

Finally, another research question concerns the relation between metamodelling stacks with and without deep
characterisation. One could define constructions to flatten deep characterisation; e.g., given the three-metalevel stack
of Example 3, one could obtain another three-metalevel stack without potencies but with some elements replicated
along metalevels, making explicit the semantics of potency. This would allow the migration of deeply characterised
systems into tools that do not support deep characterisation. One could also define further constructions to flatten
multiple metalevels into two or to eliminate the double typing.

Altogether, we observe a lack of consensus and precise semantics for some of the aspects of deep metamodel-
ling. The contribution of this work is the use of DPF to provide a neat semantics for the different aspects of deep
metamodelling: double linguistic/ontological typing (see Section 5.1), linguistic extension (see Section 5.2) and deep
characterisation through potency (see Section 5.3). As a distinguishing note, we propose two possible semantics of
potency for each model element, i.e., clabjects, attributes, associations and constraints. This proposal recognises the
different instantiation semantics described in the literature (“clabject-like” and “attribute-like”, see Section 5.3), gen-
eralising them to enable their application to every model element. To the best of our knowledge, this is the first time
that the two semantics have been recognised and formalised.

4. Diagram Predicate Framework

DPF is a generalisation and adaptation of the categorical sketch formalism [BW95], where the constraining constructs
of modelling languages are represented by user-defined predicates in a more intuitive and adequate way. In particular,
DPF is an extension of the Generalized Sketches Framework originally developed by Diskin et al. in [Dis97, Dis96,
DKPJ00, Dis02, DK03, Dis03, DK05, Dis05]. This section presents the basic concepts of DPF that are used in the
formalisation of deep metamodelling. The interested reader can consult [DW08, RRLW10a, Rut10, Ros11, RRLW12]
for a more detailed presentation of the framework.

4.1. Graph and graph homomorphism

In a first approximation, diagrammatic models can be represented by graphs of different kinds, e.g., simple graphs,
bipartite graphs, directed graphs, directed multi-graphs, attributed graphs, hypergraphs, etc. Graphs are a well-known
and well-understood means to represent structural and behavioural properties of software systems [EEPT06]. In this
paper, we adopt directed multi-graphs.

A directed multi-graph consists of a set of nodes together with a set of edges, where multiple edges between the
same source and target nodes are permitted. Graphs are related by graph homomorphisms. A graph homomorphism
consists of a pair of maps from the nodes and edges of a graph to those of another graph, where the maps preserve the
source and target of each edge.

Definition 1 (Graph). A graph G = (GN , GA, src
G, trgG) consists of a set GN of nodes (or vertices), a set GA of

edges (or arrows) and two maps srcG, trgG : GA → GN assigning the source and target to each edge, respectively.
f : X → Y denotes that src(f) = X and trg(f) = Y .

Definition 2 (Subgraph). A graphG = (GN , GA, src
G, trgG) is subgraph of a graphH = (HN , HA, src

H , trgH),
written G ⊑ H, if and only if GN ⊆ HN , GA ⊆ HA and srcG(f) = srcH(f), trgG(f) = trgH(f), for all f ∈ GA.

Definition 3 (Graph homomorphism). A graph homomorphism φ : G → H consists of a pair of maps φN : GN →
HN , φA : GA → HA which preserve the sources and targets, i.e., for each edge f : X → Y in G we have
φA(f) : φN (X) → φN (Y) in H.

Remark 1 (Inclusion graph homomorphism). G ⊑ H if and only if the inclusion maps incN : GN →֒ HN and
incA : GA →֒ HA define a graph homomorphism inc : G →֒ H.

10 A. Rossini et al.

Having defined graphs and graph homomorphisms, it is natural to consider all graphs and graph homomorphisms
as objects and morphisms, respectively, of a category [BW95, Fia04]. The category of graphs is defined as follows:

Definition 4 (Category of graphs). The category Graph has all graphs G as objects and all graph homomorphisms
φ : G → H as morphisms between graphs G and H.

The compositionφ;ψ : G → K of two graph homomorphismsφ : G → H and ψ : H → K is defined component-
wise φ;ψ = (φN , φA); (ψN , ψA) := (φN ;ψN , φA;ψA). The identity graph homomorphisms idG : G → G are
also defined component-wise idG = (idGN , idGA). This ensures that the composition of graph homomorphisms is
associative and that identity graph homomorphisms are left and right neutral with respect to composition.

The semantics of nodes and edges of a graph has to be chosen in a way which is appropriate for the corresponding
modelling environment [RRLW12]. In object-oriented structural modelling, each object may be related to a set of other

objects. Hence, it is appropriate to interpret nodes as sets and edges X
f
−→ Y as multi-valued functions f : X → ℘(Y).

The powerset ℘(Y) of Y is the set of all subsets of Y , i.e., ℘(Y) = {A | A ⊆ Y }. Moreover, the composition of two
multi-valued functions f : X → ℘(Y), g : Y → ℘(Z) is defined by (f ; g)(x) :=

⋃
{g(y) | y ∈ f(x)}.

The semantics of a graph can be formally defined in either an indexed or a fibred way [Dis05, DW08]. In the
indexed version, the semantics of a graph is given by all graph homomorphisms sem : G → U from the graph G
into a category U, e.g., Set (sets as objects and functions as morphisms) or Mult (sets as objects and multi-valued
functions as morphisms as described above). In the fibred version, the semantics of a graph is given by the set of its
instances. An instance (I, ι) of a graph G consists of a graph I together with a graph homomorphism ι : I → G.

Although the usage of graphs for the representation of diagrammatic models is a success story, an enhancement
of the formal basis is needed to specify diagrammatic constraints and define a conformance relation between models
which takes into account these constraints.

4.2. Signature and specification

In DPF, a model is represented by a specification S. A specification S = (S,CS : Σ) consists of an underlying

graph S together with a set of atomic constraints CS which are specified by means of a signature Σ. A signature
Σ = (ΠΣ , αΣ) consists of a set of predicates π ∈ ΠΣ , each having an arity (or shape graph) αΣ(π). An atomic
constraint (π, δ) consists of a predicate π ∈ ΠΣ together with a graph homomorphism δ : αΣ(π) → S from the arity
of the predicate to the underlying graph of the specification.

Definition 5 (Signature). A signature Σ = (ΠΣ , αΣ) consists of a set of predicate symbols ΠΣ and a map αΣ which
assigns a graph to each predicate symbol π ∈ ΠΣ . αΣ(π) is called the arity of the predicate symbol π.

Definition 6 (Atomic constraint). Given a signatureΣ = (ΠΣ , αΣ), an atomic constraint (π, δ) on a graphS consists
of a predicate symbol π ∈ ΠΣ and a graph homomorphism δ : αΣ(π) → S.

Definition 7 (Specification). Given a signature Σ = (ΠΣ , αΣ), a specification S = (S,CS : Σ) consists of a graph

S and a set CS of atomic constraints (π, δ) on S with π ∈ ΠΣ .

The following example illustrates the usage of signatures and specifications to represent object-oriented structural
models.

Example 4 (Signature and specification). Let us consider the system introduced in Examples 1 and 2. For the sake
of illustration, assume that this system should satisfy the following requirements:

1. A component must have exactly one identifier.

2. A component may be connected to other components.

3. A component can not be connected to itself.

Figure 7 shows a specification T = (T,CT : Σ) which is compliant with the requirements above. Moreover,
Figure 7 shows a signature Σ = (ΠΣ , αΣ). The first column of the table shows the predicate symbols. The second and
the third columns show the arities of predicates and a proposed visualisation of the corresponding atomic constraints,
respectively. Finally, the fourth column presents the semantic interpretation of each predicate.

A Formalisation of Deep Metamodelling 11

S'S

Σ

T

Plotsource
“Google

Maps”

idMap
Map

String
[1..1]id

Componentdatalink

[irr]

π ∈ ΠΣ
α

Σ(π) Proposed vis. Semantic interpretation

[irreflexive] 1

a

X

f[irr]

∀x ∈ X : x /∈ f(x)

[mult(m, n)] 1
a

2 X
f

[m..n]
Y ∀x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n and n ≥ 1

Figure 7. A signature Σ and specifications T, S and S
′, where only S conforms to T

Table 1. The atomic constraints (π, δ) ∈ CT and their graph homomorphisms

(π, δ) αΣ(π) δ(αΣ(π))

([mult(1, 1)], δ1) 1
a

2 Component
id

String

([irreflexive], δ2) 1

a

Component

datalink

InT, the system requirements are enforced by the atomic constraints ([mult(1, 1)], δ1) and ([irreflexive],
δ2). The graph homomorphisms δ1 and δ2 are defined as follows (see Table 1):

δ1(1) = Component, δ1(2) = String, δ1(a) = id
δ2(1) = Component, δ2(a) = datalink

Remark 2 (Predicate symbols). Some of the predicate symbols in Σ (see Figure 7) refer to single predicates, e.g.,
[irreflexive], while some others refer to a family of predicates, e.g., [mult(m,n)]. In the case of
[mult(m,n)], the predicate is parametrised by the (non-negative) integers m and n, which represent the lower and
upper bounds, respectively, of the cardinality of the function which is constrained by this predicate.

The semantics of predicates of the signature Σ (see Figure 7) is described using the mathematical language of set
theory. In an implementation, the semantics of a predicate is typically given by code for a so-called validator where
both the mathematical and the validator semantics should coincide; i.e., the validator accepts a given instance of a
predicate if and only if the instance is accepted according to the mathematical semantics. However, it is not necessary
to choose between the above mentioned possibilities; it is sufficient to know that any of these possibilities defines valid
instances of predicates.

Definition 8 (Semantics of predicates). Given a signature Σ = (ΠΣ , αΣ), a semantic interpretation [[..]]Σ of Σ con-
sists of a mapping that assigns to each predicate symbol π ∈ ΠΣ a set [[π]]Σ of graph homomorphisms ι : O → αΣ(π),
called valid instances of π, where O may vary over all graphs. [[π]]Σ is assumed to be closed under isomorphisms.

The semantics of a specification is defined in the fibred way [Dis05, DW08]; i.e., the semantics of a specification
S = (S,CS:Σ) is given by the set of its instances (I, ι). An instance (I, ι) of a specification S consists of a graph I

together with a graph homomorphism ι : I → S which satisfies the set of atomic constraints CS .
To check that an atomic constraint is satisfied in a given instance of a specification S, it is enough to inspect only

the part of S which is affected by the atomic constraint. This kind of restriction to a subpart is obtained by the pullback
construction [BW95, Fia04], which can be regarded as a generalisation of the inverse image construction.

Definition 9 (Instance of a specification). Given a specification S = (S,CS:Σ), an instance (I, ι) of S consists of

a graph I and a graph homomorphism ι : I → S such that for each atomic constraint (π, δ) ∈ CS we have ι∗ ∈ [[π]]Σ,
where the graph homomorphism ι∗ : O∗ → αΣ(π) is given by the following pullback:

12 A. Rossini et al.

αΣ(π)
δ

S

O∗

P.B.

δ∗

ι∗

I

ι

Given a specification S, the category of instances of S is defined as follows:

Definition 10 (Category of instances). Given a specificationS = (S,CS:Σ), the category Inst(S) has all instances
(I, ι) of S as objects and all graph homomorphisms φ : I → I ′ as morphisms between instances (I, ι) and (I ′, ι′),
such that ι = φ; ι′.

S

=

I

ι

φ
I ′

ι′

Inst(S) is a full subcategory of Inst(S) where Inst(S) = (Graph ↓ S) is the comma category of all graphs typed

by S [BW95]; i.e., we have an inclusion functor incS : Inst(S) →֒ Inst(S).

4.3. Typing and conformance

In DPF, a specification S is said to be typed by a graph T if there exists a graph homomorphism ι : S → T, called the
typing morphism, between the underlying graph of the specification S and the graph T. A specification S is said to
conform to a specification T if there exists a typing morphism ι : S → T between the underlying graphs of S and T

such that (S, ι) is a valid instance of T; i.e., such that ι satisfies the atomic constraints CT .

Definition 11 (Typed specification). Given a signature Σ = (ΠΣ , αΣ) and a graph T, a specification S = (S,CS :
Σ) typed by T is a specification S together with a graph homomorphism ι : S → T, called the typing morphism.

Definition 12 (Conformant specification). Given two signatures Θ = (ΠΘ , αΘ), Σ = (ΠΣ , αΣ) and a specification

T = (T,CT : Θ), a specification S = (S,CS : Σ) which conforms to T is a specification S together with a typing
morphism ι : S → T such that (S, ι) ∈ Inst(T).

Example 5 (Typing and conformance). Figure 7 shows two specifications S and S′, both typed by T. However,
only S conforms to T, since S′ violates the atomic constraintsCT : the multiplicity constraint ([mult(1, 1)], δ1) is
violated since there is no attribute in S′ which is an instance of id, while the irreflexivity constraint ([irreflexive],
δ2) is violated since there is a reflexive reference source which is an instance of datalink.

4.4. Specification morphism

In DPF, the relation between specifications is represented by specification morphisms. Specification morphisms are
graph homomorphisms between the underlying graphs of specifications. These graph homomorphisms induce a trans-
lation of instances of graphs.

Proposition 1 (Translation of instances of graphs). Each graph homomorphism φ : S → S′ induces a functor φ• :
Inst(S) → Inst(S′) with φ•(I, ι) = (I, ι;φ) for all (I, ι) ∈ Inst(S).

S
φ

S′

I

ι
ι;φ

Inst(S)
φ•

Inst(S′)

A Formalisation of Deep Metamodelling 13

Moreover, each graph homomorphism φ : S → S′ induces a functor φ• : Inst(S′) → Inst(S) with φ•(I ′, ι′)

given by the pullback (I∗, φ∗ : I∗ → I ′, ι∗ : I∗ → S) of the span S
φ
S′ I ′

ι′

[DW08].

S
φ

S′

I∗

ι∗ P.B.

φ∗
I ′

ι′

Inst(S) Inst(S′)
φ•

In addition, these graph homomorphisms should preserve atomic constraints.

Definition 13 (Specification morphism). Given two specifications S = (S,CS : Σ) and S′ = (S′, CS
′

: Σ), a

specification morphism φ : S → S′ is a graph homomorphism φ : S → S′ such that (π, δ) ∈ CS implies

(π, δ;φ) ∈ CS
′

.

αΣ(π)
δ

δ;φ

=

S
φ

S′

Remark 3 (Subspecification). A specification S = (S,CS : Σ) is a subspecification of a specification S′ =

(S′, CS
′

: Σ) , written S ⊑ S′, if and only if S is a subgraph of S′ and the inclusion graph homomorphism
inc : S →֒ S′ defines a specification morphism inc : S →֒ S

′.

Remark 4 (Graph homomorphism and atomic constraints). Any graph homomorphism φ : S → S′ induces a
translation of atomic constraints; i.e., for any specification S = (S,CS : Σ) we obtain a specification φ(S) =
(S′, Cφ(S):Σ) with Cφ(S) = φ(CS) = {(π, δ;φ) | (π, δ) ∈ CS}.

Based on this remark, the condition for specification morphisms can be reformulated as follows: a specification

morphism φ : S → S′ is a graph homomorphism φ : S → S′ such that φ(S) ⊑ S′, i.e., Cφ(S) = φ(CS) ⊆ CS
′

.
Given a signature Σ, the category of specifications is defined as follows:

Definition 14 (Category of specifications). Given a signature Σ = (ΠΣ , αΣ), the category Spec(Σ) has all specific-

ations S = (S,CS:Σ) as objects and all specification morphisms φ : S → S′ as morphisms between specifications
S and S′.

The associativity of composition of graph homomorphisms ensures that the composition of two specification
morphisms is a specification morphism as well and that the composition of specification morphisms is associative.
Moreover, the identity graph homomorphisms idS : S → S define identity specification morphisms idS : S → S

and ensure that identity specification morphisms are left and right neutral with respect to composition.

Proposition 2 (Specification morphisms and category of instances). For any specification morphism φ : S → S
′,

we have φ•(Inst(S′)) ⊆ Inst(S); i.e., the functor φ• : Inst(S′) → Inst(S) restricts to a functor φ• : Inst(S′) →
Inst(S).

S

φ

Inst(S) Inst(S) S

φ

S′ Inst(S′)

φ• =

Inst(S′)

φ•

S
′

14 A. Rossini et al.

Proof. The proof is given by the result that the composition of two pullbacks is again a pullback [BW95] and by the
assumption that [[π]]Σ is closed under isomorphisms (see Definition 8), as shown in [DW08].

αΣ(π)
δ

δ;φ

S
φ

S′ αΣ(π)
δ;φ

S′

O
δ∗

ι∗ P.B.

δ∗;φ∗

I
φ∗

ι P.B.

I ′

ι′

O•

ι• P.B.

(δ;φ)∗
I ′

ι′

5. Formalisation of deep metamodelling

This section presents a formalisation of deep metamodelling based on DPF. This formalisation is presented stepwise
by defining and illustrating double linguistic/ontological conformance, linguistic extension and deep characterisation.

5.1. Double metamodelling stack

A double metamodelling stack is a metamodelling stack which supports double linguistic/ontological conformance.
Recall that in a double metamodelling stack, models at each metalevel conform linguistically to the corresponding
metamodel of a fixed linguistic modelling language, and conform ontologically to the model at the adjacent metalevel
above (see Section 3).

The metamodel of the linguistic modelling language of a deep metamodelling stack can be represented in DPF by
a specification LM = (LM,CLM : Σ) which consists of an underlying graph LM and a set of atomic constraints

CLM specified by means of a predicate signature Σ.
A model at metalevel i of a double metamodelling stack can be represented in DPF by a specification Si =

(Si, Ci : Ω) which consists of an underlying graph Si and a set of atomic constraints Ci specified by means of a
predicate signature Ω. Moreover,Si conforms linguistically to the specification LM; i.e., there exists a total linguistic
typing morphism λi : Si → LM such that (Si, λi) is a valid instance of LM. Furthermore,Si conforms ontologically
to the specification Si−1; i.e., there exists a total two-level ontological typing morphism ωi : Si → Si−1 such that the
ontological typing is compatible with the linguistic typing and (Si, ωi) is a valid instance of Si−1.

First, in order to enable reuse later in the paper, the linguistic portion of the double metamodelling stack is defined
as follows:

Definition 15 (Linguistic metamodelling stack). Given:

• signatures Σ = (ΠΣ , αΣ), Ω = (ΠΩ , αΩ)

• a specification LM = (LM,CLM:Σ)

A linguistic metamodelling stack with length l consists of:

• specifications Si = (Si, Ci:Ω), for all 1 ≤ i ≤ l

• total linguistic typing morphisms λi : Si → LM , for all 1 ≤ i ≤ l, such that:

– (Si, λi) ∈ Inst(LM)

A Formalisation of Deep Metamodelling 15

Σ
CLM

LM S1
λ1

Ω

Cl

Ci

Ci−1

C1

...

Si−1

λi−1

Si

λi

...

Sl

λl

Note that a linguistic metamodelling stack is similar to a traditional linear metamodelling stack with two meta-
levels, where each specification Si conforms to the specification LM. Based on this, the double metamodelling stack
is constructed by adding ontological typing morphisms ωi : Si → Si−1 to the linguistic metamodelling stack, as
follows:

Definition 16 (Double metamodelling stack). A double metamodelling stack with length l is a linguistic metamod-
elling stack with length l together with:

• total two-level ontological typing morphisms ωi : Si → Si−1, for all 2 ≤ i ≤ l, such that:

– ωi;λi−1 = λi
– (Si, ωi) ∈ Inst(Si−1)

Σ
CLM

LM S1
λ1

Ω

Cl

Ci

Ci−1

C1

...

ω2

Si−1

ωi−1

λi−1

Si

ωi

=

λi

...

ωi+1

Sl

ωl

λl

The following example illustrates the usage of a double metamodelling stack.

16 A. Rossini et al.

S3(d)

S2(c)

S1(b)

LM(a)

UAMProfs

offices

UAMCamp

“Fusion

Table”

idTable
Table

geopos

“Google

Maps”

idMap
Map

String

[1..1]id
Component

[irr]

datalink

[0..1]

DataType

A
tt

ri
b
u
te

Clabject
R

e
fe

re
n
c
e

Inheritance

[irr]

Figure 8. Double metamodelling stack for the example, showing the specifications LM, S1, S2 and S3 together with
the ontological typing morphisms ω2 and ω3

Table 2. The signature Σ

π ∈ ΠΣ αΣ(π) Proposed vis. Semantic interpretation

[irreflexive] 1

a

X

f
[irr]

∀x ∈ X : x /∈ f(x)

Example 6 (Double metamodelling stack). Building upon Example 2, Figure 8(a) shows the specification LM and
Figures 8(b), (c) and (d) show the specifications S1, S2 and S3, respectively, of a double metamodelling stack.
Moreover, Figure 8 shows the ontological typing morphisms ω2 and ω3 as dashed grey arrows. Tables 2 and 3 show
the signatures Σ and Ω, respectively.

The specification LM corresponds to a metamodelling language for object-oriented structural modelling similar
to the one in Figure 5(a). The interested reader may consult [Rut10] for details about the semantics of inheritance in
DPF.

Table 3. The signature Ω

π ∈ ΠΩ αΩ(π) Proposed vis. Semantic interpretation

[mult(m,n)] 1
a

2 X
f

[m..n]
Y ∀x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n and n ≥ 1

[irreflexive] 1

a

X

f
[irr]

∀x ∈ X : x /∈ f(x)

A Formalisation of Deep Metamodelling 17

The specifications S1, S2 and S3 conform linguistically to LM; i.e., there exist linguistic typing morphisms
λ1 : S1 → LM , λ2 : S2 → LM and λ3 : S3 → LM such that (S1, λ1), (S2, λ2) and (S3, λ3) are valid instances of
LM. The linguistic typing morphisms λ1, λ2 and λ3 are defined as follows:

λ1(Component) = Clabject
λ1(datalink) = Reference
λ1(id) = Attribute
λ1(String) = DataType
λ2(Map) = λ2(Table) = Clabject
λ2(geopos) = Reference
λ2(idMap) = λ2(idTable) = Attribute
λ2(“GoogleMaps”) = λ2(“FusionTable”) = DataType
λ3(UAMCamp) = λ3(UAMProfs) = Clabject
λ3(offices) = Reference

Moreover,S2 and S3 conform ontologically to S1 and S2, respectively; i.e., there exist total two-level ontological
typing morphisms ω2 : S2 → S1 and ω3 : S3 → S2 such that (S2, ω2) and (S3, ω3) are valid instances of S1 and
S2, respectively, and commute with the linguistic typing morphisms. The ontological typing morphisms ω2 and ω3

are defined as follows:
ω2(Map) = ω2(Table) = Component
ω2(geopos) = datalink
ω2(idMap) = ω2(idTable) = id
ω2(“GoogleMaps”) = ω2(“FusionTable”) = String
ω3(UAMCamp) = Map
ω3(UAMProfs) = Table
ω3(offices) = geopos

The proposed double metamodelling stack conveniently represents linguistic and ontological typing, but lacks
support for linguistic extension and deep characterisation.

Firstly, in Example 3, the attribute scroll constitutes a linguistic extension of the model at metalevel 2 as this
element is only typed linguistically. In Example 6, in contrast, S2 can not include an attribute scroll which is not on-
tologically typed by an element in S1. This is because the proposed double metamodelling stack has total ontological
typing morphisms rather than partial ones.

Moreover, in Example 3, the deep characterisation of the elements Component and datalink at metalevel 1 forbids
that these elements are instantiated at metalevel 4 or below. In Example 6, in contrast, one could add a specification
S4 including elements that are ontologically typed by elements in S3.

Furthermore, in Example 3, the deep characterisation of the attribute name at metalevel 1 allows that this element
is instantiated (i.e., it is assigned a value) at metalevel 3. In Example 6, in contrast, S3 can not include elements which
are ontologically typed by a possible attribute name in S1 since S3 is ontologically typed by S2 but not by S1.

Finally, in Example 3, the deep characterisation of the OCL constraint ensures that this constraint is evaluated
at metalevel 3. In Example 6, in contrast, the atomic constraint ([irreflexive], δ2) corresponding to the OCL
constraint above is evaluated in S2 but not in S3. This is because S2 conforms ontologically to S1, while S3

conforms ontologically to S2 but not to S1.
In the following, we revise the definition of the double metamodelling stack to support linguistic extension as well

as different mechanisms of deep characterisation.

5.2. Partial double metamodelling stack

A partial double metamodelling stack is a metamodelling stack which supports double linguistic/ontological conform-
ance and linguistic extension. Recall that in a partial double metamodelling stack, models at each metalevel conform
linguistically to the metamodel of a fixed linguistic modelling language, but only a portion of the same models con-
form ontologically to the model at the adjacent metalevel above (see Section 3); i.e., there can be elements in a model
which are only linguistically typed.

In analogy to the double metamodelling stack, a model at metalevel i of a partial double metamodelling stack
can be represented in DPF by a specification Si = (Si, Ci : Ω) which conforms linguistically to the specification
LM. In contrast to the double metamodelling stack, however, only a subgraph of Si conforms ontologically to the

specification Si−1; i.e., there exists a partial two-level ontological typing morphism ωi : Si ◦ Si−1 which is given

18 A. Rossini et al.

by a subgraph Ii ⊑ Si representing the domain of definition of ωi (see Definition 24) and a total two-level ontological
typing morphisms ωi : Ii → Si−1, such that the ontological typing is compatible with the linguistic typing and (Ii, ωi)
is a valid instance of Si−1.

The partial double metamodelling stack is defined as follows:

Definition 17 (Partial double metamodelling stack). A partial double metamodelling stack with length l is a lin-
guistic metamodelling stack with length l together with:

• partial two-level ontological typing morphisms ωi : Si ◦ Si−1 , for all 2 ≤ i ≤ l, which are given by:

– domain of definition subgraphs Ii ⊑ Si

– total two-level ontological typing morphisms ωi : Ii → Si−1

such that:

– ωi;λi−1 ⊑ λi
– (Ii, ωi) ∈ Inst(Si−1)

Σ
CLM

LM S1
λ1

Ω

Cl

Ci

Ci−1

C1

...

◦ω2

Si−1

◦ωi−1

λi−1

Si

◦ωi

⊒

λi

...

◦ωi+1

Sl

◦ωl

λl

LM Si−1

λi−1

Si

=
λi

Ii

ωi

Remark 5 (Composition of partial two-level ontological typing morphisms). Note that partial two-level ontological

typing morphisms ωk : Sk ◦ Sk−1 can be composed to obtain a partial multi-level ontological typing morphism

ωi
k : Sk ◦ Si , for all 1 ≤ i < k ≤ l, which is given by a subgraph Iik ⊑ Sk representing the domain of

definition of ωi
k and a total multi-level ontological typing morphism ωi

k : Iik → Si, where ωi
k = ωk; . . . ;ωi−1,

Iik = (ωi
k)

−1(Si) ⊑ Ik and Iik ⊑ . . . ⊑ Ik−1
k = Ik (see Definition 24).

Example 7 (Partial double metamodelling stack). Figure 9(a) shows the specificationLM and Figures 9(b), (c) and
(d) show the specifications S1, S2 and S3, respectively, of a partial double metamodelling stack. Moreover, Figure 9
shows the ontological typing morphisms ω2 and ω3 as dashed grey arrows.

Compared to Example 6, the specification S2 is extended with an attribute scroll with data type Boolean, while
the specification S3 is extended with a corresponding data value true. The linguistic typing morphisms λ1, λ2 and λ3
are extended with the following mappings:

λ2(scroll) = Attribute
λ2(Boolean) = DataType
λ3(scrollUAM) = Attribute
λ3(true) = DataType

A Formalisation of Deep Metamodelling 19

S3(d)

S2(c)

S1(b)

LM(a)

UAMProfs

offices

UAMCamp
scrollUAM

true

“Fusion

Table”

idTable
Table

geopos

“Google

Maps”

idMap
Map

scroll
Boolean

String

[1..1]id
Component

[irr]

datalink

[0..1]

DataType

A
tt
ri
b
u
te

Clabject
R
e
fe
re
n
c
e

Inheritance

[irr]

Figure 9. Partial double metamodelling stack for the example, showing the specifications LM, S1, S2 andS3 together
with the ontological typing morphisms ω2 and ω3

Moreover, the subgraphs I2 and I3 of the specifications S2 and S3, respectively, conform ontologically to S1 and
S2, respectively; i.e., there exist partial two-level ontological typing morphisms ω2 : S2 → S1 and ω3 : S3 → S2

such that (I2, ω2) and (I3, ω3) are valid instances of S1 and S2, respectively. Note that in this case, the subgraph I3
is equal to the underlying graph S3, meaning that the ontological typing morphism ω3 is actually total. Compared to
Example 6, the ontological typing morphism ω3 is extended with the following mappings:

ω3(scrollUAM) = scroll
ω3(true) = Boolean

The proposed partial double metamodelling stack adds support for linguistic extension, but still lacks support for
deep characterisation.

In the following, we further revise the definition of the partial double metamodelling stack to support different
mechanisms of deep characterisation.

5.3. Deep metamodelling stack

A deep metamodelling stack is a metamodelling stack which supports double linguistic/ontological conformance,
linguistic extension and deep characterisation. Recall that in a deep metamodelling stack, models at each metalevel
conform linguistically to the corresponding metamodel of a fixed linguistic modelling language, and a portion of the
same models conform ontologically to the models at the metalevels above according to the deep characterisation of
elements in these models (see Section 3).

A mechanism for deep characterisation is potency, for which different interpretations are possible. In particular,
analysing the existing approaches [dG10, KS07, AK02b] it becomes clear that, implicitly, potency has been given
different semantics depending on whether it is attached to clabjects or to attributes. Hence, in this work two kinds of
potency are distinguished, namely multi-potency (“clabject-like”) and single-potency (“attribute-like”), denoted by the
symbols Np and △p, respectively. In the following, we define these notions, enabling the attachment of any kind of
potency to the different model elements.

20 A. Rossini et al.

Metalevel Clabject Reference

...
...

...
...

...

i A
Np

A
aNp

N

i+ 1 B
Np-1

B
bNp-1

O

...
...

... ...

...

i+ p− 1 L
N1

L
lN1

Y

i+ p M
N0

M
mN0

Z

...
...

...
...

...

Figure 10. Intuition on the semantics of multi-potency

A multi-potency Np on a clabject/reference at metalevel i denotes that this clabject/reference can be instantiated
at all metalevels from i + 1 to i + p (see Figure 10), where the instantiation of this clabject/reference has to be
mediated and the multi-potency has to be decreased at each metalevel; e.g., a clabject with multi-potency 0 at metalevel
i + 2 which is an instance of a clabject with multi-potency 2 at metalevel i must also be an instance of a clabject
with multi-potency 1 at metalevel i + 1 which in turn is an instance of the considered clabject with multi-potency
2 at metalevel i (see Figures 11 and 12). Most deep metamodelling approaches assume multi-potency semantics for
clabjects [ADP09, AM09, AGK09, dG10, KS07]. A multi-potency Np on an atomic constraint at metalevel i denotes
that this constraint is evaluated at all metalevels from i + 1 to i + p. Finally, attributes only retain either a type or an
instance facet but not both; therefore, the multi-potency on attributes can not be considered.

A Formalisation of Deep Metamodelling 21

Metalevel Clabject Reference

...
...

...
...

...

i A
N2

A
aN2

N

i+ 1 B O

i+ 2 B
N0

C
bN0

P

...
...

...
...

...

Figure 11. Invalid instantiation: an element with multi-potency 0 at metalevel i + 2 can not be a direct instance of an
element with multi-potency 2 at metalevel i

Metalevel Clabject Reference

...
...

...
...

...

i A
N2

A
aN2

N

i+ 1 B
N1

B
bN1

O

i+ 2 C
N1

C
cN1

P

...
...

...
...

...

Figure 12. Invalid instantiation: an element with multi-potency 1 at metalevel i+2 can not be an instance of an element
with the same multi-potency at metalevel i+ 1

22 A. Rossini et al.

Metalevel Clabject Reference Attribute

...
...

...
...

...
...

...
...

i A
△p

A
a△p

N A
a△p

DT

...
...

... ...

...
... ...

...

i+ p B
△0

M
b△0

Z M
b△0

DV

...
...

...
...

...
...

...
...

Figure 13. Intuition on the semantics of single-potency

Table 4. Contradictory combinations of multi-potencies on interdependent elements

ANq aNp

N

A
aNp

NNq

p > q: possible to instantiate the refer-
ence a only at metalevels i+1, . . . , i+q

A
aNq

π
Np

N p > q: possible to evaluate the atomic
constraint π only at metalevels i +
1, . . . , i+ q

A single-potency △p on a clabject/reference at metalevel i, in contrast, denotes that this clabject/reference can be
instantiated at metalevel i + p only (see Figure 13). A single-potency △p on an attribute at metalevel i denotes that
this attribute can be instantiated (i.e., can be assigned a value) at metalevel i + p only. A single-potency △p on an
atomic constraint at metalevel i denotes that this atomic constraint is evaluated at metalevel i+ p only.

Each element in a model has either a multi-potency or a single-potency. However, some combinations of potencies
on interdependent elements may lead to contradictions. Tables 4, 5 and 6 show the contradictory combinations of
multi- and single-potencies.

A Formalisation of Deep Metamodelling 23

Table 5. Contradictory combinations of single-potencies on interdependent elements

A△q a△p

N

A
a△p

N△q

p 6= q: impossible to instantiate the ref-
erence a

A△q a△p

DT p 6= q: impossible to instantiate the at-
tribute a

A
a△q

π
△p

N p 6= q: impossible to evaluate the
atomic constraint π

Table 6. Contradictory combinations of multi- and single-potencies on interdependent elements

A△q aNp

N

A
aNp

N△q

p 6= q: impossible to instantiate the ref-
erence a
p = q: possible to instantiate the refer-
ence a only if p = q = 1

ANq a△p

N

A
a△p

NNq

p > q: impossible to instantiate the ref-
erence a

ANq a△p

DT p > q: impossible to instantiate the at-
tribute a

A
a△q

π
Np

N p 6= q: impossible to evaluate the
atomic constraint π
p = q: possible to evaluate the atomic
constraint π only if p = q = 1

A
aNq

π
△p

N p > q: impossible to evaluate the
atomic constraint π

24 A. Rossini et al.

I 3

1
I 3

2

T 3

5
T 3

4

S3

(a) A Venn diagram illustrating the par-
titioning of the underlying graph S3 of a
specification S3 into possible type-facet
and instance-facet subgraphs

S3

S2

S1

S3

I 3

1

I 3

2

C▴0

S2

T 2

3

I 2

1

B▴1

S1

T 1

3

T 1

2

A▴2

()-1ω 3

1
ω 3

1()-1ω 3

2
ω 3

2

ω 2

1()-1
ω 2

1

(b) A scheme of a deep metamodelling
stack with three metalevels

Figure 14. Illustration of type-facet and instance-facet subgraphs

Next, we provide a structural formalisation of a metamodelling stack with deep characterisation through single-
and multi-potency. In analogy to the partial double metamodelling stack, a model at metalevel i of a deep metamod-
elling stack can be represented in DPF by a specification Si = (Si, Ci : Ω) which conforms linguistically to the
specification LM. In contrast to the partial double metamodelling stack, however, the specification Si supports deep
characterisation; i.e., it is compliant with the following requirements, for all 1 ≤ i < j < k ≤ l, with o = j − i and
p = k − i:

1. Elements in specifications from Si+1 to Sk can be ontologically typed by elements with multi-potency p in a
specification Si.

2. Elements in a specification Sk can be ontologically typed by elements with single-potency p in a specification Si.

3. Elements in specifications from Si+1 to Sk satisfy the atomic constraints with multi-potency p in a specification
Si.

4. Elements in a specification Sk satisfy the atomic constraints with single-potency p in a specification Si.

The multi- and single-potency of each clabject, reference and attribute in a specification Si can be represented by
considering type-facet subgraphs T k

i ⊑ Si (see Figure 14). Elements with multi-potency p in a specification Si are

included in the type-facet subgraphs from T i+1
i to T k

i only. Similarly, elements with single-potency p in a specification

Si are included in the type-facet subgraph T k
i only.

Similarly, the multi- and single-potency of each atomic constraint in a specification Si can be represented by
considering subsets of atomic constraints Ck

i ⊑ Ci. Atomic constraints with multi-potency p in a specification Si are

included in the subsets from Ci+1
i to Ck

i only. Similarly, atomic constraints with single-potency p in a specification

Si are included in the subset Ck
i only.

The instantiation in a specification Sk of elements with multi- and single-potency p in a specification Si can be

represented by considering partial multi-level ontological typing morphisms ωi
k : Sk ◦ Si , which are given by

instance-facet subgraphs Iik ⊑ Sk together with total multi-level ontological typing morphisms ωi
k : Iik → Si (see

Figures 14(a) and (b)).

A Formalisation of Deep Metamodelling 25

Spec. Multi-potency Single-potency

Si A
Np

N
No

A
△p

N
△o

Si+1 B
Np-1

ωi
i+1

O
No-1

ωi
i+1

...

Sj E
Np-j+i

ωi
j

ω
i−1

j

Q
N0

ωi
j

ω
i−1

j

O
△0

ωi
j

...

Sk M
N0

ωi
k

ω
i+1

k

ω
j

k

B
△0

ωi
k

Figure 15. Partial multi-level ontological typing morphisms

The partitioning of a specification into possibly overlapping type-facet subgraphs and instance-facet subgraphs fol-
lows the rationale behind the term clabject, namely that elements in a specification of a deep metamodelling stack can
retain both a type (class) and instance (object) facet. Figure 14(b) shows a deep metamodelling stack which illustrates
this observation. The specification S1 contains a single element A with multi-potency 2. The proposed formalisation
represents the semantics of the multi-potency 2 on the element A by considering two type-facet subgraphs T 2

1 and T 3
1

and including the element A into them. This reflects the fact that the element A serves as a type for elements in the
specifications S2 and S3. The specification S2 contains a single element B with multi-potency 1 which retains both a
type and an instance facet. According to the proposed formalisation, the element B is included into the subgraphs T 3

2
and I12 . This reflects the fact that the element B serves as a type for elements in the specification S3 and, at the same
time, it is an instance of the element A in the specification S1. Finally, the specification S3 contains a single element
C with multi-potency 0 which retains an instance facet only. According to the proposed formalisation, the element C is
included into the subgraphs I23 and I13 (and no type subgraph T 4

3 is considered). This reflects the fact that the element
C is an instance of the element B in the specification S2 and, at the same time, an indirect instance of the element A
in the specification S1. Figure 15 shows another scheme in which the different typings of elements with multi- and
single-potency can be observed.

Note that since the instantiation of elements with single-potency can jump over several metalevels, the multi-level
ontological typing morphisms ωi

k and their domains of definition Iik can not be obtained by composing the two-level
ontological typing morphisms as was the case for partial double metamodelling stacks (see Remark 5); they have to

be defined explicitly. Moreover, these jumps mean that the instantiation is no longer monotonic, i.e., Iik ⊑ . . . ⊑ Ik−1
k

does not hold.
The requirements 1 and 2 that all the elements in a specification Sk that are ontologically typed by elements in a

specification Si actually have to be ontologically typed by elements in the type-facet subgraph T k
i can be represented

by the condition (ωi
k)

−1(T k
i) = Iik.

The requirements 3 and 4 that all the elements in a specification Sk that are ontologically typed by elements in the
type-facet subgraph T k

i also have to satisfy the atomic constraints in the subset Ck
i can be represented by the condition

that (Iik, ω
i
k) is a valid instance of the type-facet subspecification Tk

i = (T k
i , C

k
i :Ω) ⊑ Si.

26 A. Rossini et al.

T 3

4

SP 3

4
MP 3

4

Figure 16. A Venn diagram illustrating the partitioning of the type-facet subgraph T 4
3 of a specification S3 into the

multi-potency subgraphMP 4
3 and the single-potency subpart SP 4

3, respectively

The partitioning of a specification into type-facet subspecifications ensures that only valid combinations of poten-
cies are allowed. This is because the contradictory combinations of potencies presented in Table 4, 5 and 6 would lead
to dangling edges or dangling atomic constraints and hence to invalid type-facet subspecifications.

The requirements above, however, are not sufficient to represent all the aspects of the semantics of deep char-
acterisation. A specification Si of a deep metamodelling stack has to be compliant with the following additional
requirements:

5. Elements in specifications from Sk+1 to Sl can not be ontologically typed by elements with multi-potency p in a
specification Si; i.e., the instantiation of elements with multi-potencies stops when the multi-potency is zero.

6. Elements in specifications from Si+1 to Sk−1 and from Sk+1 to Sl can not be ontologically typed by elements
with single-potency p in a specification Si.

The multi- and single-potency of each clabject, reference and attribute in a specification Si can be distinguished by

considering additional multi-potency subgraphsMP k
i ⊑ T k

i and single-potency subparts SP k
i = (T k

i \MP k
i) ⊑ T k

i

(see Figure 16). These subparts are needed in order to provide a semantics for requirements 5 and 6.

The requirements 5 can be represented by the condition (ωi
k)

−1(MP k
i \ MP k+1

i) ⊑ Sk \ (
⋃

k′>k

T k′

k) where

Sk \ (
⋃

k′>k

T k′

k) includes all the elements in Sk which do not retain a type-facet; i.e., which are not instantiated at any

metalevel.
The requirement 6 can be represented by the conditions (ωi

j)
−1(SP k

i) = ∅ and (ωi
k)

−1(SP k
i) ⊑ Sk \ (

⋃

k′>k

T k′

k).

Furthermore, a specification Si of a deep metamodelling stack has to be compliant with the following additional
requirements:

7. Elements in a specification Sk which are ontologically typed by elements with multi-potency p in a specification
Si must also be ontologically typed by elements with multi-potency o < p in a specification Sj which in turn are
ontologically typed by the considered elements with multi-potency p in the specification Si; i.e., the instantiation
of elements with multi-potency is mediated.

8. Elements with multi-potency q in a specificationSk can not be ontologically typed by elements with multi-potency
p ≤ q in a specification Si; i.e., the multi-potency of elements is decreased at each instantiation.

The requirement 7 can be represented by the conditions MP k
i ⊑ . . . ⊑MP i+1

i , ω
j
k;ω

i
j ⊑ ωi

k (i.e., (ωj
k)

−1(Iij) ⊑

Iik) and (ωi
k)

−1(MP k
i) ⊑ I

j
k .

The requirement 8 can be represented by the condition (ωi
j)

−1(MP k
i \MP k+1

i) ⊑ (MP k
j \MP k+1

j).
Finally, a specification Si of a deep metamodelling stack has to be compliant with the following additional re-

quirements:

9. Elements in a specification have either a multi-potency or a single-potency, but not both.

10. The ontological typing is compatible with the linguistic typing.

The requirement 9 can be represented by the condition SP
j
i ∩ T

k
i = ∅.

The requirement 10 can be represented as usual by the condition ωi
k;λi ⊑ λk.

Taking into account all these conditions, the deep metamodelling stack is defined as follows:

A Formalisation of Deep Metamodelling 27

Definition 18 (Deep metamodelling stack). A deep metamodelling stack with length l is a linguistic metamodelling
stack with length l together with:

• type-facet subspecifications Tk
i = (T k

i , C
k
i :Ω) ⊑ Si, for all 1 ≤ i < k ≤ l

• multi-potency subgraphsMP k
i ⊑ T k

i , for all 1 ≤ i < k ≤ l, such that:

– MP k
i ⊑ . . . ⊑MP i+1

i (requirement 7)

• single-potency subparts SP k
i = (T k

i \MP k
i) ⊑ T k

i , for all 1 ≤ i < k ≤ l, such that:

– SP
j
i ∩ T

k
i = ∅, for all j 6= k (requirement 9)

• partial multi-level ontological typing morphisms ωi
k : Sk ◦ Si , for all 1 ≤ i < k ≤ l, which are given by:

– instance-facet subgraphs Iik ⊑ Sk

– total multi-level ontological typing morphisms ωi
k : Iik → Si

such that for all 1 ≤ i < k ≤ l and all i < j < k:

– (ωi
k)

−1(T k
i) = Iik (requirements 1 and 2)

– (Iik, ω
i
k) ∈ Inst(Tk

i) (requirements 3 and 4)

– (ωi
k)

−1(MP k
i \MP k+1

i) ⊑ Sk \ (
⋃

k′>k

T k′

k) (requirement 5)

– (ωi
j)

−1(SP k
i) = ∅ (requirement 6)

– (ωi
k)

−1(SP k
i) ⊑ Sk \ (

⋃

k′>k

T k′

k) (requirement 6)

– ω
j
k;ω

i
j ⊑ ωi

k (i.e., (ωj
k)

−1(Iij) ⊑ Iik)) (requirement 7)

– (ωi
k)

−1(MP k
i) ⊑ I

j
k (requirement 7)

– (ωi
j)

−1(MP k
i \MP k+1

i) ⊑ (MP k
j \MP k+1

j) (requirement 8)

– ωi
k;λi ⊑ λk (requirement 10)

Σ
CLM

LM S1
λ1

Ω

Cl

Ci

Ci−1

C1

...

◦ω2

Si−1

◦ωi−1

λi−1

Si

◦ωi

⊒

λi

...

◦ωi+1

Sl

◦ωl

λl

28 A. Rossini et al.

LM Si
λi

T
j
i T k

i

Sj

...
...

λj

Iij

ωi
j

T k
j

Sk

...
...

λk

I
j
k

...

ω
j

k

Iik

ωi
k

Example 8 (Deep metamodelling stack). Building upon Example 7, Figure 17(a) shows the specification LM and
Figures 17(b), (c) and (d) show the specifications S1, S2 and S3. Moreover, Figure 17 shows the ontological typing
morphisms ω1

2 and ω2
3 as dashed grey arrows. Figure 18 shows the same specifications and the ontological typing

morphism ω1
3 .

In analogy to Example 7, S1, S2 and S3 conform linguistically to LM.
In contrast to Example 7, however, the multi-potency N2 on the clabject Component and the reference datalink

denotes that these elements are in both type-facet subgraphs T 2
1 and T 3

1 (as well as the multi-potency subgraphs

MP 2
1 and MP 2

1). Moreover, the single-potency △1 on the attribute id denotes that this element is in the type-facet

subgraph T 2
1 only (as well as the single-potency subpart SP 2

1), while the single-potency △1 on the atomic con-
straint ([mult(1, 1)], δ3) on the same attribute denotes that this element is in the subset of atomic constraints C2

1
only. Furthermore, the single-potency △2 on the attribute name denotes that this element is in the type-facet sub-

graph T 3
1 only (as well as the single-potency subpart SP 3

1), while the single-potency △2 on the atomic constraint
([mult(1, 1)], δ4) on the same attribute denotes that this element is in the subset of atomic constraints C3

1 only.
The specification S2 conforms ontologically to S1; i.e., there exists a partial multi-level ontological typing mor-

phism ω1
2 : S2 ◦ S1 such that (I12 , ω

1
2) is a valid instance of the type-facet subspecification T2

1 = (T 2
1 , C

2
1:Ω). The

ontological typing morphism ω1
2 is defined as follows (see Figure 17):

ω1
2(Map) = ω1

2(Table) = Component
ω1
2(geopos) = datalink
ω1
2(idMap) = ω1

2(idTable) = id
ω1
2(“GoogleMaps”) = ω1

2(“FusionTable”) = String
The specification S3 conforms ontologically to both S2 and S1; i.e., there exists partial multi-level ontological

typing morphisms ω2
3 : S3 ◦ S2 and ω1

3 : S3 ◦ S1 such that (I23 , ω
2
3) and (I13 , ω

1
3) are valid instances of the

type-facet subspecifications T3
2 = (T 3

2 , C
3
2:Ω) and T3

1 = (T 3
1 , C

3
1:Ω), respectively. The ontological typing morphisms

ω2
3 and ω1

3 are defined as follows (see Figures 17 and 18):

ω2
3(UAMCamp) = Map
ω2
3(UAMProfs) = Table
ω2
3(offices) = geopos
ω2
3(scrollUAM) = scroll
ω2
3(true) = Boolean

ω1
3(UAMCamp) = ω1

3(UAMProfs) = Component
ω1
3(offices) = datalink
ω1
3(nameMapUAM) = ω1

3(nameTableUAM) = name
ω1
3(“UAMCampus”) = ω1

3(“UAMProfs”) = String
It is straightforward to show that this sample deep metamodelling stack satisfies all the conditions in Definition 18.

In this section, we presented a formalisation of deep metamodelling based on DPF from a structural point of view.
In the following, we switch to an operational point of view and show how to flatten deep characterisation by

transforming a deep metamodelling stack into a partial double metamodelling stack.

A Formalisation of Deep Metamodelling 29

S3(d)

S2(c)

S1(b)

LM(a)

“UAM

Profs”

nameTableUAM▵0
UAMProfs

▴0

offices▴0

“UAM

Campus”

nameMapUAM▵0
UAMCamp

▴0scrollUAM▵0
true

“Fusion

Table”

idTable▵0
Table

▴1

geopos▴1

“Google

Maps”

idMap▵0
Map

▴1scroll▵1
Boolean

String

[1..1]▵2name▵2

[1..1]▵1id▵1

Component
▴2

[irr]▴2

datalink▴2

[0..1]▵2

DataType

A
tt
ri
b
u
te

Clabject
R
e
fe
re
n
c
e

Inheritance

[irr]

Figure 17. The specifications LM, S1, S2 and S3 together with the ontological typing morphisms ω1
2 and ω2

3

S3(d)

S2(c)

S1(b)

LM(a)

“UAM

Profs”

nameTableUAM▵0
UAMProfs

▴0

offices▴0

“UAM

Campus”

nameMapUAM▵0
UAMCamp

▴0scrollUAM▵0
true

“Fusion

Table”

idTable▵0
Table

▴1

geopos▴1

“Google

Maps”

idMap▵0
Map

▴1scroll▵1
Boolean

String

[1..1]▵2name▵2

[1..1]▵1id▵1

Component
▴2

[irr]▴2

datalink▴2

[0..1]▵2

DataType

A
tt
ri
b
u
te

Clabject

R
e
fe
re
n
c
e

Inheritance

[irr]

Figure 18. The specifications LM, S1, S2 and S3 together with the ontological typing morphism ω1
3

30 A. Rossini et al.

6. Flattening of a deep metamodelling stack

Recall that in a deep metamodelling stack, an element with single-potency 0 at metalevel k may be ontologically typed
by an element with single-potency p = k − i at metalevel i; i.e., there may be p metalevels between an instance and
its type. In a double metamodelling stack, in contrast, an element at metalevel k can only be ontologically typed by
an element at metalevel k − 1. In order to better illustrate the semantics of deep characterisation, we show how to
flatten deep characterisation by transforming a deep metamodelling stack into a partial double metamodelling stack.
This flattening is defined by multiple replication rules and an extraction rule.

The replication rules rc0, rr1, ra1 and rac2 follow a general pattern which, for each element with single-potency
p ≥ 2 at metalevel i, adds to metalevel k − 1 a replica of the considered element with single-potency decreased to
1. Similar to the layering of transformation rules in specification transformation [EEPT06], the subscripts from 0 to 2
denote the layer to which a rule belongs, so that rules of layer 0 are applied before rules of layer 1, etc.

The replication rule rc0 adds to metalevel k − 1 a replica with single-potency 1 of a clabject with single-potency
p at metalevel i, as follows1:

Definition 19 (Replication rule rc0 for clabjects). Given a deep metamodelling stack with length l, for all 1 ≤ i <
k ≤ l and k ≥ i+ 2:

• for each A ∈ SP k
i

– T ′k
k−1 = T k

k−1 ∪ A’

– I ′
i
k−1 = Iik−1 ∪ A’ and ωi

k−1(A’) = A

• for each B ∈ Iik such that ωi
k(B) = A

– I ′
k−1
k = Ik−1

k ∪ B and ωk−1
k (B) = A’

Spec. Input Output

Si A
△p

A
△p

...

Sk−1 A’
△1

ωi
k−1

Sk B
△0

ωi
k

B
△0

ωi
k

ω
k−1

k

The replication rule rr1 adds to metalevel k− 1 a replica with single-potency 1 of a reference with single-potency
p at metalevel i, as follows:

1 T ′k

k−1 and I′ik−1 denote the state of the type- and instance-facet subgraphs T k

k−1
and Ii

k−1
, respectively, after the application of the rule.

A Formalisation of Deep Metamodelling 31

Definition 20 (Replication rule rr1 for references). Given a deep metamodelling stack with length l, for all 1 ≤ i <
k ≤ l and k ≥ i+ 2:

• for each (A
a
−→ N) ∈ SP k

i

– for each L,Y ∈ Iik−1 such that ωi
k−1(L) = A and ωi

k−1(Y) = N

· T ′k
k−1 = T k

k−1 ∪ (L
a’
−→ Y)

· I ′ik−1 = Iik−1 ∪ (L
a’
−→ Y) and ωi

k−1(L
a’
−→ Y) = (A

a
−→ N)

• for each (M
b
−→ Z) ∈ Iik such that ωi

k(M
b
−→ Z) = (A

a
−→ N), ωk−1

k (M) = L and ωk−1
k (Z) = Y

– I ′
k−1
k = Ik−1

k ∪ (M
b
−→ Z) and ωk−1

k (M
b
−→ Z) = (L

a’
−→ Y)

Spec. Input Output

Si A
a△p

N A
a△p

N

...

Sk−1 L

ωi
k−1

Y

ωi
k−1

L

ωi
k−1

a’△1

ωi
k−1

Y

ωi
k−1

Sk M

ωi
k

ω
k−1

k

b△0

ωi
k

Z

ωi
k

ω
k−1

k

M

ωi
k

ω
k−1

k

b△0

ωi
k

ω
k−1

k

Z

ωi
k

ω
k−1

k

Remark 6 (Identity of data types). Recall that, similar to E-graphs [EPT04, EEPT06], attributes of nodes can be
represented in DPF by edges from these nodes to nodes representing data types. Nodes representing data types can be
regarded as having a “global identity” in a deep metamodelling stack. Therefore, we assume that all nodes representing
data types are implicitly available in each specification Si of the deep metamodelling stack.

The replication rule ra1 adds to metalevel k− 1 a replica with single-potency 1 of an attribute with single-potency
p at metalevel i, as follows:

Definition 21 (Replication rule ra1 for attributes). Given a deep metamodelling stack with length l, for all 1 ≤ i <
k ≤ l and k ≥ i+ 2:

• for each (A
a
−→ DT) ∈ SP k

i

– for each L,DT ∈ Iik−1 such that ωi
k−1(L) = A

· T ′k
k−1 = T k

k−1 ∪ (L
a’
−→ DT)

· I ′ik−1 = Iik−1 ∪ (L
a’
−→ DT) and ωi

k−1(L
a’
−→ DT) = (A

a
−→ DT)

• for each (M
b
−→ DV) ∈ Iik such that ωi

k(M
b
−→ DV) = (A

a
−→ DT), ωk−1

k (M) = L and ωk−1
k (DV) = DT

– I ′
k−1
k = Ik−1

k ∪ (M
b
−→ DV) and ωk−1

k (M
b
−→ DV) = (L

a’
−→ DT)

32 A. Rossini et al.

Spec. Input Output

Si A
a△p

DT A
a△p

DT

...

Sk−1 L

ωi
k−1

DT L

ωi
k−1

a’△1

ωi
k−1

DT

Sk M

ωi
k

ω
k−1

k

b△0

ωi
k

DV

ωi
k

ω
k−1

k

M

ωi
k

ω
k−1

k

b△0

ωi
k

ω
k−1

k

DV

ωi
k

ω
k−1

k

The replication rule rac2 adds to metalevel k − 1 a replica with single-potency 1 of an atomic constraint with
single-potency p at metalevel i, as follows:

Definition 22 (Replication rule rac2 for atomic constraints). Given a deep metamodelling stack with length l, for
all 1 ≤ i < k ≤ l and k ≥ i+ 2:

• for each (A
a
−→ N) ∈ T k

i and (π, δ) ∈ Ck
i where δ(αΩ(π)) = (A

a
−→ N)

– for each (L
b
−→ Y) ∈ (T k

k−1) such that ωi
k−1(L

b
−→ Y) = (A

a
−→ N)

· C′k
k−1 = Ck

k−1 ∪ (π, δ′) where δ′(αΩ(π)) = (L
b
−→ Y)

Spec. Input Output

Si A
π△p

a
N A

π△p

a
N

...

Sk−1 L

ωi
k−1

b

ωi
k−1

Y

ωi
k−1

L

ωi
k−1

π△1

b

ωi
k−1

Y

ωi
k−1

Sk M

ωi
k

ωk−1

k

c

ωi
k

ω
k−1

k

Z

ωi
k

ωk−1

k

M

ωi
k

ωk−1

k

c

ωi
k

ω
k−1

k

Z

ωi
k

ωk−1

k

Note that the rule rac2 for the replication of atomic constraints is proposed as a proof-of-concept only. This is be-

cause this rule is designed to work with the predicates having arities 1

a

and 1
a

2 , e.g., [irreflexive]
and [mult(m,n)] from the signature Ω (see Table 3). However, predicates may have arbitrary arities and semantics
which may not enable replication of atomic constraints at all. The conditions under which a predicate enables replica-
tion of atomic constraints is outside the scope of this work and will be investigated in future work (see Section 9).

A Formalisation of Deep Metamodelling 33

S3(d)

S2(c)

S1(b)

LM(a)

“UAM

Profs”

nameTableUAM▵0
UAMProfs

▴0

offices▴0

“UAM

Campus”

nameMapUAM▵0
UAMCamp

▴0

“Fusion

Table”

idTable▵0

Table
▴1

geopos▴1

“Google

Maps”

idMap▵0

Map
▴1

nameTable▵1

[1
..
1
]▵

1

[0..1]▵1

nameMap▵1[1..1]▵1
String

String

[1..1]▵2name▵2

[1..1]▵1id▵1

Component
▴2

[irr]▴2

datalink▴2

[0..1]▵2

DataType

A
tt

ri
b
u
te

Clabject
R
e
fe

re
n
c
e

Inheritance

[irr]

Figure 19. The specifications LM, S1, S2 and S3 together with the ontological typing morphisms ω1
2 and ω2

3 , after
the application of the replication rules

According to this layering, the application of the rules adds a replica of a reference only after it adds a replica of
a clabject. This ensures that the rule which adds a replica of a reference matches both clabjects with multi-potency
and their instances as well as clabjects with single-potency and their replicas. Moreover, this ensures that the replica
of the reference has as source and target an instance of the considered clabject with multi-potency or a replica of the
considered clabject with single-potency. The layering of rules for attributes and atomic constraints follow the same
rationale.

The extraction rule e3 projects out the types at each metalevel i and the corresponding instances at metalevel i+1
as the elements in each specification of the target partial double metamodelling stack, as follows:

Definition 23 (Extraction rule e3). Given a deep metamodelling stack with length l, a double metamodelling stack
with length l is extracted as follows:

• S1 = (T 2
1 , C

2
1 , λ1)

• for all 2 ≤ i ≤ l − 1, Si = (T i+1
i ∪ Ii−1

i , Ci+1
i , λi, ω

i−1
i)

• Sl = (I l−1
l , λl, ω

l−1
l)

Example 9 (Flattening of a deep metamodelling stack). Building upon Example 8, Figures 19(b), (c) and (d) show
the specifications S1, S2 and S3 of the deep metamodelling stack, after the application of the replication rules.
Moreover, Figure 19(c) shows the replicated elements in green colour. Note that the attribute scroll, the data type
Boolean and the corresponding instances are omitted from Figure 19 due to space constraints.

Firstly, the application of ra1 adds to T3
2 the attributes nameMap and nameTable with single-potency △1.

Moreover, it adds the following mappings to the ontological typing morphism ω2
3 :

ω2
3(nameMapUAM) = nameMap
ω2
3(nameTableUAM) = nameTable
ω2
3(“UAMCampus”) = ω2

3(“UAMProfs”) = String

Secondly, the application of rac2 adds to T3
2 the atomic constraints

([mult(0, 1)], δ1), ([mult(1, 1)], δ2) and ([mult(1, 1)], δ3) with single-potency △1 on the reference geo-
pos and the attributes nameMap and nameTable, respectively.

Figures 21(b), (c) and (d) show the specifications S1, S2 and S3 of the partial double metamodelling stack
resulting from the application of the extraction rule. Moreover, Figure 20(b) shows the discarded elements in red
colour.

34 A. Rossini et al.

S3(d)

S2(c)

S1(b)

LM(a)

“UAM

Profs”

nameTableUAM▵0
UAMProfs

▴0

offices▴0

“UAM

Campus”

nameMapUAM▵0
UAMCamp

▴0

“Fusion

Table”

idTable▵0

Table
▴1

geopos▴1

“Google

Maps”

idMap▵0

Map
▴1

nameTable▵1

[1
..
1
]▵

1

[0..1]▵1

nameMap▵1[1..1]▵1
String

String

[1..1]▵2name▵2

[1..1]▵1id▵1

Component
▴2

[irr]▴2

datalink▴2

[0..1]▵2

DataType

A
tt

ri
b
u
te

Clabject
R
e
fe

re
n
c
e

Inheritance

[irr]

Figure 20. The specifications LM, S1, S2 and S3 together with the ontological typing morphisms ω1
2 and ω2

3 , before
the application of the extraction rule

S3(d)

S2(c)

S1(b)

LM(a)

“UAM

Profs”

nameTableUAM
UAMProfs

offices

“UAM

Campus”

nameMapUAM
UAMCamp

“Fusion

Table”

idTable
Table

geopos

“Google

Maps”

idMap
Map

nameTable[1
..
1
]

[0..1]

nameMap[1..1]
String

String

[1..1]id
Component

[irr]

datalink

DataType

A
tt
ri
b
u
te

Clabject

R
e
fe
re
n
c
e

Inheritance

[irr]

Figure 21. The specifications LM, S1, S2 and S3 together with the ontological typing morphisms ω2 and ω3, after
the application of the extraction rule

A Formalisation of Deep Metamodelling 35

The application of e3 discards from S1 the atomic constraints ([mult(0, 1)], δ1) and ([mult(1, 1)], δ4) on
datalink and name, respectively. In this way, these atomic constraints are not evaluated at metalevel 2. Moreover, it
discards from S1 the attribute name. In this way, it is not possible to instantiate name at metalevel 2.

The presented flattening of the deep characterisation enables the transformation of a deep metamodelling stack
into a partial double metamodelling stack. Obviously, part of the deep characterisation information is lost in the
transformation. For instance, in Example 8, the multi-potency N2 on the elements Component and datalink in S1

forbids that these elements are ontologically typed by elements in a possible specification S4 or below. In Example 9,
in contrast, a possible specification S4 may include elements which are ontologically typed by elements in S3.

In addition to the flattening of the deep characterisation, it is possible to define the flattening of the double linguis-
tic/ontological conformance which enables the transformation of a partial double metamodelling stack into a traditional
metamodelling stack. This could be done by adding the specification LM on top of the ontological stack, and adding
a replica of all elements in LM in all the specifications Si, for all i ≤ l − 2.

7. From theory to practice

METADEPTH [dG10] is a multi-level metamodelling tool that supports deep characterisation through potency, and a
textual syntax for modelling. The tool integrates languages for model manipulation and code generation, which makes
it suitable for MDE. Listing 1 shows the encoding of the example of Figure 6 using METADEPTH’s textual syntax.

1 Model ComponentView@2 {

2 Node Component {

3 ident@1 : String;

4 name : String {id};

5 visualise : boolean;

6 src : Component[*];

7 trg : Component[*];

8

9 irreflexive : $self.trg.excludes(self)$

10 }

11 Edge Datalink (Component.src, Component.trg){}

12 }

13

14 ComponentView RepositoryComponents {

15 Component Map {

16 ident = "GoogleMaps";

17 srcTable : Table[0..1]{src};

18 scroll : boolean = false;

19 }

20 Component Table {

21 ident = "FusionTable";

22 trgMap : Map[*]{trg};

23 }

24 Datalink Geopos(Map.srcTable, Table.trgMap){}

25 }

26

27 RepositoryComponents myApplication {

28 Map UAMCamp {

29 name = "UAMCampus";

30 visualise = true;

31 scroll = true;

32 }

33 Table UAMProfs {

34 name = "UAMProfs";

35 visualise = false;

36 }

37 Geopos offices(UAMCamp, UAMProfs){}

38 }

Listing 1: Definition of the language for components using METADEPTH.

36 A. Rossini et al.

Line 1 defines a model named ComponentView having potency 2 (specified after the @ symbol). All elements
(clabjects, edges) inside the model receive this potency if it is not explicitly overriden. This can be considered a
short-cut to avoid specifying this potency in every element. Clabjects are declared with the keyword Node, as shown
in line 2. Note that, being ComponentView a top-level model, it is not ontologically typed. All attributes inside
Component have potency 2, except ident, which has potency 1.

Attributes have a name and a type, and optionally a potency (to override the one received from their container
clabjects), a multiplicity (one is assumed if none is specified), an initial value and a modifier. The latter are predefined
constraints, like id (makes the attribute value unique among all objects of same type in the model), ordered (makes
the collection a sequence) and unique (forbids repeated elements in a collection).

Constraints can be specified using an OCL dialect permitting side effects called Epsilon Object Language (EOL)
[KPP06]. Line 9 shows a constraint, which receives potency 2 from its container. Constraints can be attached to nodes,
edges and models. Attaching a constraint to an element can be done in two ways: by its definition in the context of the
element (as shown in the listing), or by declaring it in an outer context and explicitly attaching it to a node or edge.
The latter enables the definition of libraries of constraints, following similar ideas to the presented DPF formalisation.
As a difference with the formalisation, we cannot explicitly define the arity of the constraint, which is always fixed
(node or edge), but we permit arbitrary navigation from the element the constraint is attached to.

Edges are declared as shown in line 11. They model bidirectional associations by making two already declared
references one the opposite of the other. In the listing, references src and trg are made opposites. Just like nodes,
edges can declare attributes as well.

Lines 14-25 show the instantiation of the ComponentView model. The instantiated model has potency 1, is
named RepositoryComponents and includes two instances of Component. The first one (Map) includes a
linguistic extension in line 18, a scroll attribute with type boolean and initial value true. Moreover, references
have multi-potency semantics, and hence we explicitly instantiate references src and trg of Component as shown
in lines 17 and 22. The reference srcTable is an instance of src (shown inside the brackets), declares Table as
the type of the reference end, and a multiplicity of [0..1].

Finally, the ComponentView model can be instantiated as shown in lines 27-38. All elements in that model
have potency 0. In this case, the edge offices does not need to detail the names of the references it connects, as it
has only instance facet and this information was given in its type.

While the default semantics of potency for nodes, edges and references is multi-potency, the one for constraints
and primitive attributes is single-potency. Following the presented DPF formalisation, METADEPTH was enhanced to
support both multi- and single-potency for both nodes and edges. Single-potency is depicted by placing the potency
value between parenthesis. For example, we can modify the models as shown in Listing 2 to incorporate single potency
to the edge and the src and trg references. This has the effect that these elements can only be instantiated two
metalevels below, hence Datalink instances can connect any (indirect) instance of Component with potency 0.

1 Model ComponentView@2 {

2 Node Component {

3 ...

4 src@(2) : Component[*];

5 trg@(2) : Component[*];

6 }

7 Edge Datalink@(2) (Component.src, Component.trg){}

8 }

Listing 2: Adding single-potency to some model elements.

Hence, altogether, the presented DPF formalisation helped in realising the two possible semantics for potency,
as well as the provision of rules to detect their contradictory combination (see Tables 4, 5 and 6). The latter were
implemented as well formedness constraints. As a difference with the formalisation, the tool does not support potencies
on multiplicities yet, but assumes a potency of 1 for them.

8. Related work

In this section we compare our work with other deep metamodelling frameworks, as well as with other formal ap-
proaches to metamodelling.

A Formalisation of Deep Metamodelling 37

8.1. Deep metamodelling frameworks

Deep metamodelling is a relatively new technique, and some of its aspects are still debated in the literature. A first
strand of research focuses on multi-level metamodelling.

Early forms of multi-level metamodelling can be traced back to knowledge-based systems like Telos [MBJK90]
and deductive object base managers like ConceptBase [JGJS95].

More recent forms include the works in [GOS07, AM09, CSW08]. In [GOS07], MOF is extended with multiple
metalevels to enable XML-based code generation. Nivel [AM09] is a double metamodelling framework based on the
weighted constraint rule language (WCRL). XMF [CSW08] is a language-driven development framework allowing an
arbitrary number of metalevels. The cross-layer modeller (XLM) [DLHE11] allows multilevel modelling of arbitrary
numbers of metalevels, by using an embedding in UML and modelling instantiation semantics as OCL constraints. In
particular, the designer needs to specify templatised OCL constraints to control the instantiation of associations.

Another form of multi-level metamodelling can be achieved through powertypes [Ode94, GPHS06], since in-
stances of powertypes are also subtypes of another type and hence retain both a type and an instance facet. Multi-level
metamodelling can also be emulated through stereotypes [Obj10b], although this is not a general modelling technique
since it relies on UML to emulate the extension of its metamodel. The interested reader can consult [AK08] for a
thorough comparison of potencies, powertypes and stereotypes.

In contrast to our approach, none of the above mentioned works support deep characterisation; i.e., the ability to
describe structure and express constraints for metalevels below the adjacent one. Moreover, none of them enable the
definition of linguistic extensions, which are useful in the definition of complex deep languages.

A second strand of research focuses on deep characterisation. Deep characterisation through potency is included
in the works [KS07, GKA08, ADP09, AGK09, dG10, AGK12]. DeepJava [KS07] is a superset of Java which extends
the object-oriented programming paradigm to feature an unbounded number of metalevels. The work in [GKA08]
describes the problems arising from the way in which connectors (e.g., associations, links, generalisations, etc.) are
supported in mainstream modelling languages such as UML and why they are not suitable for deep metamodelling. The
work in [AGK09] presents a prototype implementation of a modelling infrastructure which provides built-in support
for multiple ontological as well as linguistic metalevels. This work was continued within the Melanie tool [AGK12],
which includes support for suggesting emendations for models at lower metalevels when models at upper metalevels of
a metamodelling stack change (e.g., by changing the value of a potency). In Melanie, fields can be decorated with so-
called traits, like value mutability, which defines over how many metalevels the value may be changed from the default.
In addition, model elements should also be decorated with a level, which specifies the metalevel at which the owning
model resides. In our formalisation, this is not necessary as the metalevel is implicit in each specification, so that all its
elements have the same metalevel. The work in [ADP09] proposes a deep metamodelling framework which extends
the basic notion of clabject for handling connector inheritance and instantiation. METADEPTH [dG10, dGCML13] is a
deep metamodelling framework which supports potency, double linguistic/ontological typing and linguistic extension.

While these works agree on that clabjects are instantiated using the multi-potency semantics, they differ in other
design decisions. Firstly, some works are ambiguous about the instantiation semantics for associations. In [KS07],
the associations can be represented as Java references; hence we interpret that they are instantiated using the single-
potency semantics. In [GKA08], the connectors are explicitly represented as clabjects but their instantiation semantics
is not discussed; hence we interpret that they are instantiated using the multi-potency semantics. Secondly, not all
works adhere to strict ontological metamodelling. In [ADP09], the ontological type of an association does not need
to be in the adjacent metalevel above, but several metalevels above. Note that our single-potency semantics makes it
possible to retain strict metamodelling for associations through a flattening construction that replicates these associ-
ations. Finally, some works differ in how they tackle potency on constraints and methods. Potency on constraints is
not explicitly shown in [AGK09] and not considered in [ADP09], whereas potency on methods is only supported by
DeepJava and METADEPTH.

Table 7 shows a summary of the particular semantics for deep characterisation implemented by the above men-
tioned works and compares it with the semantics supported by our formalisation. It is worth noting that no tool
recognises the fact that multiplicity constraints are constraints as well and hence can have a potency.

8.2. Formal approaches to metamodelling

The formalisation of diagrammatic modelling has been extensively discussed in the literature.
The work in [EPT04, EEPT06] uses E-graphs to represent models and metamodels. An E-graph is a generalisation

of an attributed graph [EEKR99] and consists of two sets of graph and data nodes, respectively, and three sets of graph

38 A. Rossini et al.

Table 7. Comparison of different deep characterisation semantics

Clabjects Associations Strictness Constraints Mult. constraints

DeepJava [KS07] N △ yes △ N.A.

Atkinson et al. [AGK09, AGK12] N N yes N N1

Aschauer et al. [ADP09] N N no N.A. N1

METADEPTH [dG10, dGCML13] △, N △, N yes △ N1

DPF formalisation △, N △, N yes △, N △, N

edges, node attribute edges and edge attribute edges, respectively. The assignment of attributes to nodes is done by
adding node attribute edges from the graph nodes to the data nodes. The assignment of attributes to edges is done
by adding edge attribute edges from the graph edges to the data nodes. Attributes of nodes and edges are used to
describe properties of nodes and edges, which is similar to how attributes of classes in the UML metamodel are used
to describe properties of model elements. Attributes of nodes can be represented in DPF by edges from these nodes
to nodes representing data types. The adoption of E-graphs rather than directed multi-graphs may represent a natural
next step in the development of DPF.

The work in [BM09] proposes an algebraic semantics for MOF to formalise the concepts of models, metamodels
and conformance between them. Models are represented by terms while metamodels are represented by specifications
in membership equational logic (MEL). This formal semantics is made executable by using Maude [CDE+07], which
directly supports MEL specifications.

The work in [Poe06] exploits the higher-order nature of constructive type theory to uniformly treat the syntax
of models, metamodels, as well as MOF itself. Models are represented by terms (token models) and can also be
represented by types (type models) by means of a reflection mechanism. This formal semantics ensures that correct
typing corresponds to provably correct models and metamodels.

9. Conclusion and future work

In this paper, we presented a formal approach to deep metamodelling based on DPF. Firstly, we illustrated the limita-
tions of traditional metamodelling through an example in the domain of component-based web applications. Secondly,
we introduced deep metamodelling through the same example. Thirdly, we defined double linguistic/ontological typ-
ing and linguistic extension in view of DPF. Fourthly, we formalised deep characterisation and defined two different
semantics for potency, namely multi- and single-potency. Fifthly, we showed how to flatten deep characterisation by
transforming a deep metamodelling stack into a double metamodelling stack. Finally, we discussed how the findings
of the proposed formalisation are ported back to the METADEPTH deep metamodelling tool.

This paper further develops the formalisation of deep metamodelling published in [RdG+12]. Compared to the
previous work, we extended the introduction with a presentation of linguistic extension. Moreover, we provided a
declarative semantics of deep metamodelling (i.e., deep characterisation through potency, double linguistic/ontological
typing and linguistic extension). Finally, we discussed an implementation of the proposed formalisation within the
METADEPTH [dG10] tool.

To the best of our knowledge, this work is the first attempt to clarify and formalise some aspects of the semantics of
deep metamodelling. In particular, this work explains different semantic variation points available for deep metamod-
elling, points out new possible semantics, currently unexplored in practice, as well as classifies the existing tools
according to these options.

In future work, we will investigate the effects of overriding the potency of a clabject using inheritance, as this may
lead to additional contradictory combinations of potencies. On the practical side, we will define further constructions
to flatten multiple metalevels into two and to eliminate the double typing. The implementation of such flattenings
in METADEPTH will allow the migration of deep metamodelling stacks into two-metalevel frameworks like EMF.

A Formalisation of Deep Metamodelling 39

Acknowledgements

This work was partially funded by the Spanish Ministry of Economy and Competitiveness (project “Go Lite” TIN2011-
24139).

A. Appendix

Definition 24 (Partial map). A partial map f : A ◦ B between two sets A and B is given by the domain of
definition dom(f) ⊆ A and a total map f : dom(f) → B. For any subset A0 ⊆ A, the image of the subset A0 under
f is defined as f(A0) = {f(a) | a ∈ A0 and a ∈ dom(f)} ⊆ f(A) ⊆ B. For any subset B0 ⊆ B, the inverse image
of the subset B0 under f is defined as f−1(B0) = {a ∈ dom(f) | f(a) ∈ B0} ⊆ f−1(B) ⊆ A. The composition

of two partial maps f : A ◦ B and g : B ◦ C is defined by dom(f ; g) = f−1(dom(g)) ⊆ dom(f) and
(f ; g)(a) = g(f(a)), for all a ∈ dom(f ; g).

It is straightforward to check that: the composition of partial maps is associative; for any subset C0 ⊆ C we have
(f ; g)−1(C0) = g−1(f−1(C0)); for any subset B0 ⊆ B we have f(f−1(B0)) ⊆ B0 and hence f(dom(f ; g)) ⊆
dom(g).

Definition 25 (Partial order over partial maps). A partial order ⊑ over the set of all partial maps from the set A to

the set B can be defined as: given two partial maps f, g : A ◦ B , f ⊑ g if and only if dom(f) ⊆ dom(g) and
f(a) = g(a), for all a ∈ dom(f).

References

[ADP09] Thomas Aschauer, Gerd Dauenhauer, and Wolfgang Pree. Multi-level Modeling for Industrial Automation Systems. In Proceedings

of EUROMICRO 2009: 35th EUROMICRO Conference on Software Engineering and Advanced Applications, pages 490–496. IEEE
Computer Society, 2009.

[AGK09] Colin Atkinson, Matthias Gutheil, and Bastian Kennel. A Flexible Infrastructure for Multilevel Language Engineering. IEEE
Transactions on Software Engineering, 35(6):742–755, 2009.

[AGK12] Colin Atkinson, Ralph Gerbig, and Bastian Kennel. On-the-Fly Emendation of Multi-level Models. In Antonio Vallecillo, Juha-Pekka
Tolvanen, Ekkart Kindler, Harald Störrle, and Dimitrios S. Kolovos, editors, Proceedings of ECMFA 2012: 8th European Conference
on Modelling Foundations and Applications, volume 7349 of Lecture Notes in Computer Science, pages 194–209. Springer, 2012.

[AK02a] Colin Atkinson and Thomas Kühne. Profiles in a strict metamodeling framework. Science of Computer Programming, 44(1):5–22,
2002.

[AK02b] Colin Atkinson and Thomas Kühne. Rearchitecting the UML infrastructure. ACM Transactions on Modeling and Computer Simula-
tion, 12(4):290–321, 2002.

[AK08] Colin Atkinson and Thomas Kühne. Reducing accidental complexity in domain models. Software and Systems Modeling, 7(3):345–
359, 2008.

[AM09] Timo Asikainen and Tomi Männistö. Nivel: a metamodelling language with a formal semantics. Software and Systems Modeling,
8(4):521–549, 2009.

[BG01] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the OMG/MDA Framework. In Proceedings of ASE 2001: 16th

IEEE International Conference on Automated Software Engineering, pages 273–280, 2001.
[BM09] Artur Boronat and José Meseguer. Algebraic Semantics of OCL-Constrained Metamodel Specifications. In Manuel Oriol, Bertrand

Meyer, Wil Aalst, John Mylopoulos, Michael Rosemann, Michael J. Shaw, and Clemens Szyperski, editors, Proceedings of TOOLS

2009: 47th International Conference on Objects, Components, Models and Patterns, volume 33 of Lecture Notes in Business In-
formation Processing, pages 96–115. Springer, 2009.

[BW95] Michael Barr and Charles Wells. Category Theory for Computing Science (2nd Edition). Prentice Hall, 1995.
[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, and Carolyn L. Talcott, editors.

All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic, volume
4350 of Lecture Notes in Computer Science. Springer, 2007.

[CSW08] Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling: A Foundation for Language Driven Development (2nd

Edition). Ceteva, 2008.
[dG10] Juan de Lara and Esther Guerra. Deep Meta-modelling with METADEPTH. In Jan Vitek, editor, Proceedings of TOOLS 2010: 48th

International Conference on Objects, Components, Models and Patterns, volume 6141 of Lecture Notes in Computer Science, pages
1–20. Springer, 2010.

[dGCML13] Juan de Lara, Esther Guerra, Ruth Cobos, and Jaime Moreno-Llorena. Extending Deep Meta-Modelling for Practical Model-Driven
Engineering. The Computer Journal, In press, 2013.

[Dis96] Zinovy Diskin. Databases as Diagram Algebras: Specifying Queries and Views Via the Graph-Based Logic of Sketches. Technical
Report 9602, Frame Inform Systems/LDBD, Riga, Latvia, 1996.

[Dis97] Zinovy Diskin. Towards algebraic graph-based model theory for computer science. In Logic Colloquium 1995: European Summer
Meeting of the Association for Symbolic Logic. Bulletin of Symbolic Logic, 3(1):144–145, 1997.

40 A. Rossini et al.

[Dis02] Zinovy Diskin. Visualization vs. Specification in Diagrammatic Notations: A Case Study with the UML. In Mary Hegarty, Bertrand
Meyer, and N. Hari Narayanan, editors, Proceedings of Diagrams 2002: 2nd International Conference on Diagrammatic Represent-

ation and Inference, volume 2317 of Lecture Notes in Computer Science, pages 112–115. Springer, 2002.
[Dis03] Zinovy Diskin. Practical foundations of business system specifications, chapter Mathematics of UML: Making the Odysseys of UML

less dramatic, pages 145–178. Springer, 2003.
[Dis05] Zinovy Diskin. Encyclopedia of Database Technologies and Applications, chapter Mathematics of Generic Specifications for Model

Management I and II, pages 351–366. Information Science Reference, 2005.
[DK03] Zinovy Diskin and Boris Kadish. Variable set semantics for keyed generalized sketches: formal semantics for object identity and

abstract syntax for conceptual modeling. Data & Knowledge Engineering, 47(1):1–59, 2003.
[DK05] Zinovy Diskin and Boris Kadish. Encyclopedia of Database Technologies and Applications, chapter Generic Model Management,

pages 258–265. Information Science Reference, 2005.
[DKPJ00] Zinovy Diskin, Boris Kadish, Frank Piessens, and Michael Johnson. Universal Arrow Foundations for Visual Modeling. In Michael

Anderson, Peter Cheng, and Volker Haarslev, editors, Proceedings of Diagrams 2000: 1st International Conference on Diagrammatic

Representation and Inference, volume 1889 of Lecture Notes in Computer Science, pages 345–360. Springer, 2000.
[DLHE11] Andreas Demuth, Roberto E. Lopez-Herrejon, and Alexander Egyed. Cross-layer modeler: a tool for flexible multilevel modeling

with consistency checking. In Tibor Gyimóthy and Andreas Zeller, editors, Proceedings of SIGSOFT/FSE 2011: 19th ACM SIGSOFT

Symposium on the Foundations of Software Engineering, pages 452–455. ACM, 2011.
[DW08] Zinovy Diskin and Uwe Wolter. A Diagrammatic Logic for Object-Oriented Visual Modeling. In Proceedings of ACCAT 2007:

2nd Workshop on Applied and Computational Category Theory, volume 203/6 of Electronic Notes in Theoretical Computer Science,
pages 19–41. Elsevier, 2008.

[Ecl] Eclipse Modeling Framework. Project Web Site. http://www.eclipse.org/emf/.
[EEKR99] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg. Handbook of Graph Grammars and Computing by

Graph Transformations, Volume 2: Applications, Languages, and Tools. World Scientific Publishing Company, 1999.
[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of Algebraic Graph Transformation. Springer,

March 2006.
[EPT04] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental Theory for Typed Attributed Graph Transformation. In Hartmut

Ehrig, Gregor Engels, Francesco Parisi-Presicce, and Grzegorz Rozenberg, editors, Proceedings of ICGT 2004: 2nd International

Conference on Graph Transformations, volume 3256 of Lecture Notes in Computer Science, pages 161–177. Springer, 2004.
[Fia04] José Luiz Fiadeiro. Categories for Software Engineering. Springer, May 2004.
[GKA08] Matthias Gutheil, Bastian Kennel, and Colin Atkinson. A Systematic Approach to Connectors in a Multi-level Modeling Environ-

ment. In Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus Völter, editors, Proceedings of MoDELS 2008:

11th International Conference on Model Driven Engineering Languages and Systems, volume 5301 of Lecture Notes in Computer
Science, pages 843–857. Springer, 2008.

[GOS07] Ralf Gitzel, Ingo Ott, and Martin Schader. Ontological Extension to the MOF Metamodel as a Basis for Code Generation. Computer

Journal, 50(1):93–115, 2007.
[GPHS06] Cesar Gonzalez-Perez and Brian Henderson-Sellers. A powertype-based metamodelling framework. Software and Systems Modeling,

5(1):72–90, 2006.
[JGJS95] Matthias Jarke, Rainer Gallersdörfer, Manfred A. Jeusfeld, and Martin Staudt. ConceptBase - A deductive object base for meta data

management. Journal of Intelligent Information Systems, 4(2):167–192, 1995.
[KPP06] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The Epsilon Object Language (EOL). In Arend Rensink and Jos Warmer,

editors, Proceedings of ECMDA-FA 2006: 2nd European Conference on Model-Driven Architecture Foundations and Applications,
volume 4066 of Lecture Notes in Computer Science, pages 128–142. Springer, 2006.

[KS07] Thomas Kühne and Daniel Schreiber. Can Programming be Liberated from the Two-Level Style? Multi-Level Programming with
DeepJava. In Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors, Proceedings of OOPSLA

2007: 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and Applications, pages
229–244. ACM, 2007.

[MBJK90] John Mylopoulos, Alexander Borgida, Matthias Jarke, and Manolis Koubarakis. Telos: Representing Knowledge About Information
Systems. ACM Transactions on Information Systems, 8(4):325–362, 1990.

[Obj] Object Management Group. Web site. http://www.omg.org.
[Obj06] Object Management Group. Meta-Object Facility Specification, January 2006. http://www.omg.org/spec/MOF/2.0/.
[Obj10a] Object Management Group. Object Constraint Language Specification, February 2010.

http://www.omg.org/spec/OCL/2.2/.
[Obj10b] Object Management Group. Unified Modeling Language Specification, May 2010. http://www.omg.org/spec/UML/2.3/.
[Ode94] James Odell. Power Types. Journal of Object-Oriented Programming, 7(2):8–12, 1994.
[Poe06] Iman Poernomo. A Type Theoretic Framework for Formal Metamodelling. In International Seminar on Architecting Systems with

Trustworthy Components, volume 3938 of Lecture Notes in Computer Science, pages 262–298. Springer, 2006.
[RdG+12] Alessandro Rossini, Juan de Lara, Esther Guerra, Adrian Rutle, and Yngve Lamo. A Graph Transformation-Based Semantics for

Deep Metamodelling. In Andy Schürr, Dániel Varró, and Gergely Varró, editors, Proceedings of AGTIVE 2011: 4th International

Symposium on Applications of Graph Transformations with Industrial Relevance, volume 7233 of Lecture Notes in Computer Sci-

ence, pages 19–34. Springer, 2012.
[Ros11] Alessandro Rossini. Diagram Predicate Framework meets Model Versioning and Deep Metamodelling. PhD thesis, Department of

Informatics, University of Bergen, Norway, December 2011.
[RRLW09a] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A Category-Theoretical Approach to the Formalisation of Version

Control in MDE. In Marsha Chechik and Martin Wirsing, editors, Proceedings of FASE 2009: 12th International Conference on
Fundamental Approaches to Software Engineering, volume 5503 of Lecture Notes in Computer Science, pages 64–78. Springer,
2009.

http://www.eclipse.org/emf/
http://www.omg.org
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/UML/2.3/

A Formalisation of Deep Metamodelling 41

[RRLW09b] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A Diagrammatic Formalisation of MOF-Based Modelling Lan-
guages. In Manuel Oriol, Bertrand Meyer, Wil Aalst, John Mylopoulos, Michael Rosemann, Michael J. Shaw, and Clemens Szyper-
ski, editors, Proceedings of TOOLS 2009: 47th International Conference on Objects, Components, Models and Patterns, volume 33
of Lecture Notes in Business Information Processing, pages 37–56. Springer, 2009.

[RRLW10a] Alessandro Rossini, Adrian Rutle, Yngve Lamo, and Uwe Wolter. A formalisation of the copy-modify-merge approach to version
control in MDE. Journal of Logic and Algebraic Programming, 79(7):636–658, 2010.

[RRLW10b] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A Formalisation of Constraint-Aware Model Transformations.
In David Rosenblum and Gabriele Taentzer, editors, Proceedings of FASE 2010: 13th International Conference on Fundamental

Approaches to Software Engineering, volume 6013 of Lecture Notes in Computer Science, pages 13–28. Springer, 2010.
[RRLW12] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A formal approach to the specification and transformation of

constraints in MDE. Journal of Logic and Algebraic Programming, 81(4):422–457, 2012.
[RRM+11] Alessandro Rossini, Adrian Rutle, Khalid A. Mughal, Yngve Lamo, and Uwe Wolter. A Formal Approach to Data Validation

Constraints in MDE. In Marcel Kyas, Sun Meng, and Volker Stolz, editors, Proceedings of TTSS 2011: 5th International Workshop

on Harnessing Theories for Tool Support in Software, pages 65–76, September 2011.
[Rut10] Adrian Rutle. Diagram Predicate Framework: A Formal Approach to MDE. PhD thesis, Department of Informatics, University of

Bergen, Norway, November 2010.
[SBPM08] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Modeling Framework 2.0 (2nd Edition).

Addison-Wesley Professional, 2008.

	Introduction
	Metamodelling
	Deep metamodelling
	Deep characterisation
	Double typing and linguistic extension
	Some open questions in deep metamodelling

	Diagram Predicate Framework
	Graph and graph homomorphism
	Signature and specification
	Typing and conformance
	Specification morphism

	Formalisation of deep metamodelling
	Double metamodelling stack
	Partial double metamodelling stack
	Deep metamodelling stack

	Flattening of a deep metamodelling stack
	From theory to practice
	Related work
	Deep metamodelling frameworks
	Formal approaches to metamodelling

	Conclusion and future work
	Appendix
	References

