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Abstract

We present the new notion of enforced generative pattern, a structure that declares
positive or negative conditions that must be satisfied by a model. Patterns are ap-
plied to transformation rules resulting in new rules that modify models according to
the pattern specification. In the case of a negative pattern, an application condition
is added to the rule. In the case of a positive one, the rule is modified to consider
additional context in its left-hand side and to increase its effects. We have defined
these patterns in an abstract setting, which enables their instantiation for different
structures, like graphs, triple graphs and graph transformation rules.

We apply the previous concepts to the specification of the syntax and semantics
of visual languages. In particular, we show instantiations for: (i) graphs, with ap-
plications at the syntactical level; (ii) triple-graphs, for the coordination of syntax
and static semantics; and (iii) rules, for the incremental construction of execution
rules. We present some examples that illustrate the usefulness of the combination
of these three instantiations. In particular, we show the specification of environ-
ments for visual languages with token-holder semantics, discrete-event semantics
and communication semantics.
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1 Introduction

The design of Domain Specific Visual Languages (DSVLs) implies the defini-
tion of their syntax, usually derived from the notations in use in the domain
community, as well as of their static and dynamic semantics [11]. The former
includes the interpretation of the syntactic concepts in terms of the relevant se-
mantic elements (e.g. the fact that a circle at the syntactic level is interpreted
as a holder for tokens). Dynamic semantics can be given in an operational
way, by specifying how the different semantic elements evolve with respect to
time. Different approaches can be used, with varying levels of integration and
incrementality between construction of syntactic sentences and interpretation
in terms of abstract syntax or static semantics.

Meta-models are gaining popularity as a way to define the characteristics of
both syntax and semantics, so that designing a new language involves the spe-
cialization of meta-classes and their relations [6]. Using meta-models, elements
of concrete and abstract syntaxes are defined as instances of abstract concepts
and constraints on their possible relations are given. The same mechanisms
are used to define the semantic roles that elements can play [10]. Designers
of new languages can thus map different concrete syntaxes to a common ab-
stract one, given as a meta-model, and reuse significant parts of a language
definition, in particular through inheritance [6,9,17]. However, the specifica-
tion of the language semantic aspects — referring to the processes defined and
simulated via the visual language — and of their connection to the syntactic
ones is in many cases carried out by hand and from scratch, if no predefined
relation is established between syntactic objects and semantic roles.

In previous works, we introduced the notion of semantic variety, expressed
through a meta-model identifying the dynamic roles played by syntactic el-
ements [5], and proposed triple patterns as a mechanism to generate triple
graph operational rules (see [8,22,32]) coupling syntactic and semantic roles
simply starting from the definition of syntactic rules [10]. Moreover, we pro-
posed action patterns as a mechanism to generate rewriting rules expressing
the execution semantics [4]. The application of these patterns allows the in-
cremental generation of both the static and the execution semantics, in terms
of transformations occurring with respect to designated elements of the visual
sentence under construction. In particular, basic patterns have been defined
for the token-holder transition semantic variety, in which discrete transforma-
tions occur by removing and adding tokens from and to holders representing
some condition. Typical examples of languages presenting (discrete) semantics
of this form are Finite State Automata, the different types of Petri nets, or
workflow languages, but also languages based on positioning of elements in a
grid, such as Agentsheets [28], or those describing chessboard games.



In this paper, we generalize these previous results by introducing a general
notion of enforced generative pattern (EG-pattern) as a way to specify con-
straints in a declarative way. In particular, we set our study in the context of
adhesive High-Level Replacement categories [12], and define a pattern as an
object in such a category. When a pattern is applied to a rule based on mor-
phisms in the same category, the rule is modified to ensure the production of
an object conformant to the pattern. We present a general algorithm for pat-
tern application entirely expressed in categorical terms. The algorithm can act
on the different components of a rule, extending its effects and/or enriching its
context, to make its effect conform to the pattern. Then, we show that both
triple patterns and action patterns are special cases of EG-patterns. In partic-
ular, triple patterns are an instantiation for the category of triple graphs [17],
while action patterns are an instantiation for the category of Double Pushout
rules [12]. Thus, the application of these two different kinds of patterns to
rules is based on a specialization of the algorithms given for EG-patterns.

We illustrate the potential of this approach by presenting its application to a
number of DSVLs for specifying discrete systems and communication struc-
tures. Moreover, we introduce some extensions to EG-patterns, providing a
rich catalog of tools to simplify the task of designing new visual languages or
syntax-directed integrated environments.

Paper Organization. Section 2 introduces related research. Section 3 presents
basic background on graph transformation and meta-modelling for defining
syntax and semantic roles. In Section 4, we motivate the approach by pre-
senting some situations which could benefit from the pattern concept. Sec-
tion 5 introduces additional background, concerning triple graph grammars
and meta-rules. Section 6 presents the algorithms for the application of posi-
tive enforced generative patterns. Section 7 shows an instantiation of patterns
for triple graphs and its application to the coordination of the syntax and
the static semantics of DSVLs. Section 8 instantiates patterns for rules (i.e.
action patterns) and uses them for the specification of execution semantics
of DSVLs. Section 9 gives some examples for languages with token-holder,
discrete-event, and communication semantics. Section 10 introduces advanced
pattern concepts, while Section 11 ends with conclusions and prospects for
future work.

2 Related Work

The proposal of EG-pattern relates to different approaches to the expression
of constraints on the effect of rules, as well as to specific mechanisms for their
instantiation for triple graph grammars or execution rules. As a consequence,
we touch on work concerning all these aspects.



Patterns expressing graph constraints were proposed in [19], and an algo-
rithm was given to translate them into rule post-conditions, and then to pre-
conditions. The algorithm does not affect the rule actions (i.e., the elements
that the rule adds or deletes), but complements a rule with pre-conditions
ensuring that, if the rule is applied, the resulting graph is consistent with the
original graph constraint. Differently from [19], we are interested in modify-
ing the rule actions, so that the produced graph conforms to the pattern. In
a sense, the work in [19] can be seen as a particular case of the algorithms
we provide. This is so as we give a whole spectrum of possibilities for ap-
plying the patterns, balancing how much the rule pre-conditions are modified
with respect to the changes in the rule actions (the less the pre-conditions are
changed, the more changes have to be done to the actions and vice-versa). The
situation where the rule context is maximally extended and the rule actions
are not changed corresponds to the ideas in [19]. Moreover, our patterns are
expressed in categorical terms, so that they can be instantiated by different
categories, like graphs, triple graphs or graph transformation rules.

The approach presented here also relates to the notion of manipulation of rules
by means of rules, as proposed for graph transformation [25] and subsequently
extended to High-Level Replacement Systems [26,29]. This is based on the
definition of rule refinement through rule [29] and subrule [25] morphisms.
Applications are found in termination analysis [7], as well as in management
of security policies [21]. In [29], an algebra of rules is defined based on rule
morphisms, including operators for rule composition. Multiple matches for a
rule into another one give rise to different versions of the transformed rule.
In this paper, we explore situations in which either several rules or a single
one can be derived from a specific rule through pattern application, but also
discuss the possibility of iterating the process to arrive at progressively refined
rules. Our approach deals with local, as opposed to global, transformations [26];
in particular, it can also be used to generate rules by specialization, analogy
or inheritance, but in a different way from [26].

The specialization of enforced generative patterns to the synchronization of
syntactic and semantic rules relies on the notion of Triple Graph Grammars
(TGGs, see [32]) and provides an efficient way to obtain TGG operational
rules, whenever a grammar for one of the graphs already exists. In this sce-
nario, patterns need not specify which elements should be created and which
should already exist in one of the graphs — as is needed for the traditional
specification of declarative TGG rules [32] — as this is expressed in the normal
rule to which the pattern is applied. Thus, patterns may be used in several
ways, providing a more flexible and declarative usage.

Abstract patterns [4,10] (in their different instantiations) exploit meta-models
to express in a compact form a number of concrete patterns where an instance
of a class is replaced by an instance of some given concrete subclass. In general,



the notion of abstract pattern can be employed in any situation where a meta-
model is available to characterize objects in the considered category. Note
that this is unrelated to the use of the term “abstract pattern” by Pagel and
Winter [24], who propose a meta-pattern to describe object-oriented design
patterns, dealing with pattern instantiation but not pattern enforcement.

In the field of TGGs, approaches based on meta-models already consider in-
heritance (see [8,22]). We add the possibility of applying abstract patterns
to rules that can themselves be abstract, and to generate operational TGG
rules which discriminate types by using negative application conditions. A for-
malization of TGGs with inheritance can be found in [17]. The instantiation
of EG-patterns to triple graphs can generate operational TGG rules for the
scenarios in [22]. We use triple graphs exploiting morphisms from the corre-
spondence graph to the other two graphs, whereas in Fujaba a correspondence
node can be related to several nodes in either graph, to express many-to-many
relationships [20]. Baar uses TGGs to connect concrete and abstract syntaxes
of DSVLs, allowing the static verification of their conformity [1]. However, his
proposal is related to the structure of the visual sentence, and not to its oper-
ational interpretation. Moreover, it does not exploit inheritance, and requires
the presence of display managers relating abstract and concrete syntaxes.

In [16], Gottler proposes meta-rules to modify syntactic or semantic standard
rules, describing a programming language as a triple formed by a syntax, a
semantics, and a function ¢ to build the semantic model from the syntactic one.
In our case, meta-rules are associated with and triggered by syntactic editing
rules. Moreover, they are automatically generated from action patterns.

In Ermel and Bardohl’s approach to animation, execution semantics is given
in terms of transformations of configurations of the graph defining the process
state, and analogous rules transform an associated visualization [13]. Rule
morphisms then synchronize rule application in the process and visualization
domains. Our approach could be applied to visualization by considering the
relation between static semantics and syntactic sentences (see [10]).

In [3], static semantics is incrementally built via meta-rules defining the cor-
respondence between the elements of the diagram notation and those of the
semantic domain, represented by High-Level Timed Petri Nets. Notation fam-
ilies are also introduced, to model commonalities in notations with slight dif-
ferences in their interpretation. Our action patterns are able to support the
definition of different interpretations on the same notation and the same static
semantics. Moreover, our notion of semantic variety also encompasses different
notations, sharing a similar structure for their interpretation.

In [33], amalgamation is exploited to generate execution rules for graphs de-
scribing static semantics. A specialized global execution rule is generated by



considering all possible simultaneous matches for a set of rules, once the com-
plete host graph has been produced. Thus, the generation of parallel rules
is not incremental, but needs to consider the whole graph and requires the
identification of the effects on the interfaces between rules. For action pat-
terns, instead, different matches independently contribute to the generation
of a meta-rule. Hence, by generating specific execution rules for each transi-
tion, we overcome some limitations of [33], in which, for example, checking
in a Petri net whether all pre-conditions for firing a transition are satisfied
is solved by specific Double Pushout idioms, such as rewriting the transition
itself. This exploits the dangling edge condition (not present in other rewriting
approaches) if some place does not have enough tokens (hence, not produc-
ing a match for the sub-rule). Our framework is not tied in principle to any
specific rewriting approach and provides more concise specifications.

Patterns of execution have been studied in the modelling of workflow processes
and a semantics for them has been given by Coloured Petri Nets [34]. As
these may be expressed in terms of action patterns, the definition of a pattern
language for workflows could benefit from the approach presented here.

3 Formal Background I

3.1 Introduction to Graph Transformation

Graph transformation [12,30] is a visual, formal, and declarative means to
express graph manipulations, by defining a set of rules and an initial graph.
Rules have left and right hand sides (LHS and RHS), each containing graphs.
When applying a rule to a host graph G, a match morphism must be found
between LHS and G. Then, the elements not preserved by the rule (roughly
LHS — (LHS N RHS)) are deleted in G, and the new elements (roughly
RHS — (LHS N RHS)) are added. This step is called direct derivation. The
defined language is the set of all possible graphs obtained by iterating direct
derivations starting from the initial graph.

The left of Fig. 1 shows the “move” rule and a direct derivation, using an
abstract syntax representation similar to UML object diagrams. The rule is
concerned with the simulation of an automaton-like visual language. It moves
a current pointer between two states as effect of the execution of a transition.
It is applied to a graph G, using a match m and yielding graph H. The picture
shows the mapping for nodes, through equality of identifiers; a similar mapping
for edges is also part of the match. The right of Fig. 1 shows the same rule in a
compact notation that will be used throughout the paper. The elements added
by the rule are enclosed in coloured regions, marked as “{new}”. Similarly,



the deleted elements are enclosed in regions marked as
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Fig. 1. Direct Derivation Example (left). Compact Notation for Rules (right).

One of the most popular formalizations of graph transformation is based on
category theory and is called Double Pushout (DPO) [12]. In this approach,
a direct derivation is modelled in two steps. First, elements are removed from
the host graph according to the rule specification, and then the new elements
are added. For this purpose, a rule is made of three component graphs: the left
and right hand sides (L and R), and the interface graph K, which contains the
elements preserved by the rule application. Two injective morphisms (: K — L
and r: K — R model the embedding of K in L and R. The left of Fig. 2 shows
a DPO direct derivation diagram. Square (1) is a pushout (i.e. G is the union
of L and D through their common elements in K) that performs the deletion,
while pushout (2) adds the new elements.

L<=1—K——R Y <Yij— X;<ti— [[<1— K ——>R

1 JC 2 ‘* 2 n‘*
tofod  Ndojofas

Fig. 2. DPO Direct Derivation Diagram (left). Derivation for Rule with NAC (right).

Fig. 3 shows a DPO direct derivation example using the same rule and host
graph as Fig. 1. The left square deletes the curr edge from the current node
to state s1, while the right square adds an edge from the current node to
s2. The figure also shows the fact that rules may have parameters, modelled
by graph M and injective morphism m;: M — L. Parameters are used to
initialize the match to which the rule is applied. In the example, the parameter
initialization enforces the application of the rule to transition t1, should there
be more than one option. Thus, the rule can only be applied at a match m
if m o m; = my,. Throughout the paper, we prefer the compact notation for
showing example rules. However, we will use the DPO notation of Fig. 3 for
the theoretical presentation of the algorithms and corresponding examples.

Sometimes, rules are equipped with application conditions, expressing addi-
tional conditions that the match should satisfy to make the rule applicable [12].
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Fig. 3. DPO Direct Derivation Example.

Particularly useful are negative application conditions (NAC), given by addi-
tional graphs N; related to L by morphisms n;: L — N;. The rule is ap-
plicable if, for each ¢, there is no morphism ¢;: N; — G commuting with
m (i.e. such that ¢; o n; = m). We also use more general conditions of the
form {z;: L — X;,{yij: Xi — Yi;};es, bier, which are satisfied by a match
m: L — G if, for each n;: X; — G such that n; o x; = m, there exists some
0;j: Y;; — G such that o;; 0y;; = n; (see the right of Fig. 2). Note that a NAC
is an application condition where J; = ().

The previous examples use typed graphs as the underlying data structure. For-
mally, a type graph is a construct TG = (Np, Er, sT,t1) with Ny and Er sets
of node and edge types, respectively. s”: Er — Ny and t7: Ep — Ny define
the source and target node types for each edge type. A typed graph on TG
is a graph G = (N, E, s,t) equipped with a graph morphism type: G — TG,
composed of two functions typeny: N — Nr and typep: E — Er preserving
the sT and t* functions. In this paper, we use type graphs with node type
inheritance, defined by a pair TGI = (TG, I), where I = (N, E;, s, t!) and
N; = Nr. Hence, I has the same nodes as T'G, but its edges are the inheri-
tance relations. The inheritance clan of a node n is the set of all its children
nodes (including n itself): clan(n) = {n’ € N;|3 path n’ =* nin I} C Nj.

For different applications, other structures may be more appropriate, like at-
tributed (typed) graphs, triple graphs or P/T nets. These considerations have
led to generalizing the graph transformation theory to higher-level structures:
(weak) adhesive High-Level Replacement categories, short (w)aHLR [12], so
that DPO rewriting can be used with objects in any (w)aHLR category.

3.2 Meta-Models in the Definition of Syntaz and Static Semantics

We adopt a meta-modelling approach for the definition of syntax and static
semantics for diagrammatic languages, based on the classes of Fig. 4, which
shows two meta-models related through a correspondence meta-model. This



structure is called meta-model triple [17] and we use it to describe two related
languages in a modular way (in this case, one for expressing concrete syn-
tax, the other for static semantics). The correspondence meta-model is used
to relate concepts in both languages, therefore its nodes have morphisms to
nodes or edges in the other two meta-models. In the meta-model for concrete
syntax shown in the lower part of Fig. 4, semantic relations are expressed
via spatial relations between identifiable elements. Different specialisations of
IdentifiableElement and SpatialRelation define different families of vi-
sual languages [6], such as the connection- and containment-based ones. Iden-
tified elements are put in correspondence with semantic roles, as defined by
the semantic variety to which the visual language belongs.

« pre—conditions

decorates .
| Token |- Lroder | Transitonelement | SMANHCS

* post—conditions *

Y

Correspondence

. SpatialRelation

<
<<final>>
Hybrid

DotTouches
‘ Container ‘ ‘ Connection]

Iy Syntax

Complex
GraphicElement
v

GraphicElement

1.
AttachZone

1

1.4

Fig. 4. Meta-model Triple for Syntax and Semantics of Visual Languages.

The upper part of Fig. 4 presents the fundamental classes for the transition
semantic variety. In general, this relies on some notion of configuration of a
system, which is significantly changed by the firing of the transition. Hence, the
transition variety collects uses of visual languages to describe transformation
processes in which a diagram depicts an instantaneous configuration, evolving
under some well-defined law. The possible evolutions at each step can be
statically derived from the form of the diagram (e.g. transitions in Petri nets),
or described externally (e.g. by grammar rules). Internal descriptions of the
admissible transformations rely on the presence of identifiable elements which
directly represent Transitions, with which Holder elements are associated
as either pre- or post-conditions. Examples of such direct representations
are arrows and nodes in finite state machines, or boxes and circles in Petri
nets. Associations between holders and transitions allow the specification of
the static semantics associated with a diagram, while its execution semantics
is defined by some external interpreter, and results into deleting or creating
associations between Token and Holder elements. In particular, this can be
given through rules of type before-after, based on the differences in the way
Tokens decorate Holders. For example, in grid-based languages, holders are
grid cells and tokens are symbolic representations of the domain elements. An
execution semantics in terms of before-after rules can also be imparted on
transition-based languages by specifying, for each transition, the movement of



tokens from pre-condition to post-condition holders.

The concrete and semantic roles in a visual language are defined by refining
the previous meta-model triple. For example, the left of Fig. 5 shows elements
in the concrete syntax and semantic roles for Petri nets. The significant spatial
relations are refined (via a creation graph grammar, which specifies how the
different elements are connected) to be the Touches relation between instances
of ArcPT (ArcTP) and a source Place (Transition) or a target Transition
(Place), and the Contains relation between Places and Tokens. A Place can
play both the role of an Entity, with respect to the arcs referring to it, and
of a Container, with respect to the Tokens it holds. The right of Fig. 5 shows
a triple graph example conformant to the meta-model triple to its left.

decorates

» pre—conditions %

+ post—conditions

TransitionElement
/\

foksem]  [Pcesen]
I} ) :pre-conditions
| ‘ @ i :PlaceSem y P :TransSem
,,,,::::i PIZéem ‘ ‘Tr‘ZS;m ‘ :decorates \‘\\ ,/:post-condit\ons
¥ ; v :TokSem :Place8£|
‘Token‘ ‘Place ‘ArcTP‘ ‘ArcPT‘ ‘Transition‘
1x I'é?:ﬂ;'zle ‘Container‘ ‘Connection ‘ Entity ;’{ :Tok2Sem Tr2Sem :PI2Seﬂ
' L
‘ :Place H :Touches H :Touches H:Transition ‘
REETE T — s
n - i :ArcTP
*| SpatialRelation L,

Fig. 5. Meta-Model Triple for the Definition of Petri Nets (left). Triple Graph with
Concrete and Semantic Roles for a Petri Net Model (right).

According to the adopted syntax, the representation of the system dynamics
can be directly supported by some canonical animation, in which instances of
the Token abstract class (in the semantics model) may appear or disappear, or
move from one instance of a Holder to another. It is to be noted that the meta-
model definition of the static and execution semantics allows the adoption of
different syntactic representations for the same semantics, provided that some
equivalence can be established between the two. For example, a Petri net can
be represented by replacing transition boxes with hyperedges.

4 From Syntax to Execution through Static Semantics

This section presents a motivating example, introduces the mechanisms ex-
ploited in the paper and explains their benefits. Suppose you are planning the
development of an integrated environment for designing and executing Petri

10



nets, providing a syntax-directed editor in which a designer can directly ma-
nipulate places and transitions. The environment maps concrete elements onto
an abstract syntax, acting as a repository for the constructed net, in corre-
spondence with a static semantics, seeing the net as a collection of transitions
with pre- and post-conditions. Advanced editing commands allow one to create
transitions with associated pre- and post-condition places, introduce conflicts
between two existing transitions, or add cascading transitions to existing ones.

The abstract syntax exploits elements of type Place, Transition, ArcPT, and
ArcTP, while the static semantics assigns to PlaceSem elements, representa-
tive of places, the roles of pre- or post-conditions with respect to TransSem
elements, denoting transitions (see the meta-model triple in Fig. 5).

Fig. 6 shows the concrete and abstract syntax rules for creating a transition,
with associated source and target places, and updating the static semantics.

Concrete Syntax | (Abstract Syntax Static Semantics
o
. 2. . . :pre-conditions
‘ :Place }-gH :Touches H :ArcPT H :Touches ‘ ’%"
< target —————
- sourceg
|
{new} ‘ﬂﬂ}:%H :Touches H :ArcTP H :Touches ‘ ‘ :PlaceSem }—‘: TS

Fig. 6. Rules to Update the Concrete Syntax, the Abstract Syntax and the Static
Semantics when Creating a Transition.

The execution mechanism we propose associates each transition with a spe-
cialized rewriting rule that checks that all pre-condition PlaceSem elements for
the corresponding TransSem element are decorated with Token elements, re-
moves them, and decorates all its post-conditions with new tokens. Thus, each
rewriting rule can only be executed at a particular transition. We rely on a
mechanism that initializes the match of the execution rule with the particular
transition node, restricting its application. Whenever such match initialization
is important, we express it through parameters, as shown in Fig. 3.

A different approach could define a set of graph transformation rules, detecting
when a Petri net transition is enabled and firing it. This has several disadvan-
tages: (i) several rule executions are needed to simulate the actual firing of a
Petri net transition, so that execution is less efficient and analysis harder, (ii)
auxiliary elements would be needed to detect that the transition pre-places
have enough tokens, or to add tokens in post-places. As a result, fewer rules
could be needed, but at the price of modifying the Petri net meta-model. More-
over, generating customized rules allows their static analysis, independently
of the host graph. This in fact is a standard procedure when representing Petri
nets with graph transformation rules [23]. Finally, the mechanism we propose
in this paper saves the designer from building such execution rules, while the
fact that a rule is generated for each transition is transparent to the end user,
and can lead to faster pattern matching.

11



Fig. 7 presents a meta-rule (i.e. a rule transforming a rule) that initializes the
execution rule associated with the transition created by the rules in Fig. 6.
Note how the meta-rule updates rules that refer to specific elements created by
the static semantics rule, against which they should only be instantiated. This
means that the execution rule can be applied only to the TransSem element
created by the static semantics rule of Fig. 6. This is ensured by parameter
passing: the meta-rule initializes the execution rule with one parameter, which
is used to pass the TransSem node created by the static semantics rule.

Execution Semantics

r() r (t:TransSem)

SEsrie :PlaceSem
{del}

]

@ t:TransSem
decorates [

[ Toensem }W(]P'ace%m sostconitons

:pre-conditions

:TokenSem

Fig. 7. Rule to Initialize the Execution Semantics upon Generation of a Transition.

Fig. 8 shows the concrete and abstract syntax rules for inserting a conflict, as
well as the update of the static semantics with the insertion of a PlaceSem
related by the pre-conditions association with each of the two TransSem.

Concrete Syntax Abstract Syntax Static Semantics
— ol
‘ :Transition Hg’ﬁ :Touches H :ArcPT H :Touches ‘ ‘ :TransSem < LR
{new} = :source (new}
® tnow [ Piscesen |
- source
|
‘ :Transition %H :Touches H :ArcPT H :Touches ‘ ‘m eyt

Fig. 8. Rules to Update the Concrete Syntax, Abstract Syntax and Static Semantics
for Insertion of a Conflict.

Fig. 9 describes the updating of the execution rules associated with the two
transitions. The TransSem nodes “t1” and “t2” have to be the same as those
in Fig. 8 (in the upper and lower part of the rule for static semantics) so they
will be passed as parameters. As the same PlaceSem element appears as a
precondition in both rules, the rules are in conflict, which will be managed by
the execution mechanism, for example along the lines of [18].

Execution Semantics t1 Execution Semantics t2

r(tl:TransSem) (tl:TransSem) r(t2:TransSem) r(t2:TransSem)

TokenSem
{del) :decorates

PIaceSem

TokenSem
{de[} :decorates
PIaceSem

-pre-conditions :pre-conditions
‘ t1:TransSem ‘ ‘ t1:TransSem ‘ t2:TransSem t2:TransSem

Fig. 9. Rules to Update the Execution Semantics for the First (left) and Second
(right) Transitions in Conflict.

Fig. 10 describes the concrete, abstract syntax and the static semantics for
the construction of a chain of cascading transitions, while Fig. 11 refers to
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the updating of the execution semantics. In this case, it is important to note
that while the upper transition is already present, so that the corresponding
rule has to be updated, the lower one initializes the rule associated with the
transition created by the syntactic rule.

Concrete Syntax | (Abstract Syntax Static Semantics

o] :post-conditions|
‘ :Transition %H ‘Touches H :ArcTP H :Touches ‘ ‘ :TransSem }<

b2l

‘target (e
e

-t :source|
Q|
[-Transiton [ Touches H{ ArcPT |{ Touches |f| ||[ ranssem jeest oo o

Fig. 10. Rules to Update the Concrete Syntax, Abstract Syntax and Static Semantics
when Constructing a Transition Chain.

{new}|

Execution Semantics t1 Execution Semantics t2
r(tl:TransSem) r(tl:TransSem) r() r(t2:TransSem)
{del} :decorates
[ iscesen] 05 3y | macesen]
:post-conditions| :pre-conditions

Fig. 11. Rule to Update the Execution Semantics for the Upper (left) and Lower
(right) Transition in the Chain.

It is easy to observe the existence of a common pattern both in the construc-
tion of the static semantics given the concrete syntax (or equivalently the
abstract one) and in the definition of the execution semantics. In particular,
in the static semantics, a pre (post)-conditions relation is constructed for
each combination of ArcPT and source and target associations in the ab-
stract syntax. In the execution semantics, a Token is removed from each pre
PlaceSem and added to each post PlaceSem.

Hence, the syntactic rule should suffice to determine the updating of both
static and execution semantics, according to the conventions illustrated above,
without forcing the designer of the editing system to provide the execution
and abstract syntax rules, which could be automatically generated. A designer
can thus create arbitrarily complex syntactic rules, relying on automatic gen-
eration of the abstract syntax and execution rules, avoiding their tedious and
error-prone manual generation. In the rest of the paper, we show how EG-
patterns can support both the definition of the execution semantics (by their
instantiation into action patterns) and the coordination of syntax and static
semantics models for DSVLs (by their instantiation into triple patterns). First,
we introduce additional background concepts regarding TGGs and meta-rules.
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5 Formal Background II
5.1 Triple Graph Grammars

Graph transformation is a natural way to specify in-place transformations, like
model animation and refactoring. However, in model-to-model transformation
a source model conforming to a meta-model is transformed into a target model
conforming to a different one. Thus, for this kind of transformations, it is
preferable to have a means to cleanly separate source and target models (as
well as their meta-models), so as to establish mappings between them.

Triple Graph Grammars (TGGs) [32] were invented by Andy Schiirr as a
means to translate and synchronize two different graphs (called source and
target graphs) related by a correspondence graph. The nodes in the correspon-
dence graph have morphisms to nodes in the source and target graphs. This
structure, an example of which was given on the right of Fig. 5, is called triple
graph and is represented as G = (G, & G. < G). We allow triple graphs
to be typed over a meta-model triple (see the left of Fig. 5). In previous re-
search [17], we showed that attributed typed triple graphs form an aHLR
category and can thus be manipulated through DPO rules where the L, K
and R components are triple graphs.

TGG rules are useful for model-to-model transformation, allowing incremen-
tality and a certain degree of bi-directionality. Starting from high-level, declar-
ative TGG rules (like a creation grammar for a triple graph language), one
derives operational rules with different purposes: source-to-target or target-to-
source translation, incremental updates or model synchronization [22].

‘addTwoOutPIaces ‘

post-conditions

SCEEIEES ‘ I post-conditions
‘ : TokSem : PlaceSem ‘ ‘: PlaceSem | : TransSem
R R R

Corr. | Semantics ‘

‘ : Tt;kZSem ‘ :ﬂﬂ : PIéSem ‘ ‘ : PIéSem ‘ {new} : Tr2Sem

| =" target : source

! ‘ : Place }—{ : Touches H 1 ArcTP H : Touches }7
‘ : target
‘ : Token H : ComainsH : Place }—{ : Touches H 1 ArcTP H : Touches‘ HISOlice;

: Transition

il il

‘ Syntax

Fig. 12. TGG Rule Example.

Fig. 12 shows an example TGG rule that models the addition of two output
places (one of which containing a token) to a transition, both in the concrete
syntax and in the semantics model. From this synchronous rule, the algo-
rithms in [32] generate lower level rules, in this case to update the semantic
model according to the modification in the syntax. However, this solution is
not optimal if we are designing syntax-editing rules for a modelling environ-
ment, as in Section 4. In this case, one would like to design rules taking into
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consideration the concrete syntax only; and then have some mechanisms to
propagate such changes. Sometimes, a synchronous modification of the seman-
tic model is preferred. Moreover, a synchronous mechanism becomes essential
when performing an execution at the semantic level, and we want to observe
the animation at the concrete syntax level. Again, instead of building TGG
rules by hand, a designer can automatically obtain them starting from the
execution rules and mechanisms relating syntax and semantics. In Section 7,
we give an instantiation of enforced generative patterns to triple graphs per-
forming exactly this task [10] and minimizing the effort needed for specifying
consistency mechanisms between syntax and semantics.

5.2  Meta-Rules

In order to specify the execution semantics of a visual language, we rely on
the identification of active elements, such as transitions in Petri nets or state
automata, for which execution rules are created. Each execution rule is asso-
ciated with one particular active element and models its dynamic semantics.
Editing rules create and connect elements of the language and are used to build
the model. Fig. 13 shows the syntactic rule addPlaces, and the corresponding
semantic one, to add an incoming and an outgoing place to a transition.

addPlaces addPlaces direct derivation
Concrete Syntax Static Semantics H -
PlaceSem

addPIaces
{new} AransSem :post-co ndltlons :post-conditions~post-conditions|
{new} PIaceSem pre-conditions ’ :PlaceSem H :PlaceSem ‘

Fig. 13. An Editing Rule Example in Concrete Syntax (left). Derived Rule for the
Static Semantics Model (center). A Direct Derivation (right).

In our approach, editing rules are paired with one or more meta-rules to update
the associated execution rule for each transition element considered by the
editing rule. A meta-rule is invoked each time the corresponding syntactic
rule is applied. The meta-rule modifies the execution rule for the involved
transition elements, in order to obtain a customized rule reflecting the exact
context (exact number and identities of pre- and post-conditions) in which
the transition can perform a transformation step. Hence, meta-rules are DPO
rules modifying rules (i.e. each of the L, K and R components of a meta-rule
is in turn a DPO rule). This is possible, as DPO rules can be shown to form
an aHLR category. Briefly, if C is an aHLR category, then so is the functor
category DPO(C) = [- «+— - — -, C]. This category has as objects all possible
functors from the scheme category - < - — - to C (where one such functor
represents a DPO rule) and as arrows all natural transformations. Similarly,
DPO rules with parameters also form an aHLR category, due to the fact that
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P-DPO(C) = [- — - « - — -, C] is an aHLR category.

Suppose that the editing rule of Fig. 13 is applied to graph G to its right. After
the application, the execution rule for transition ¢ has to be updated so that
it manages the deletion of a token from the newly created pre-condition place,
and insertion of tokens in the resulting two post-condition places. Fig. 14
shows the process by which rule Fire_t, associated with the transition ¢, is
transformed into Fire_t” to reflect the addition of the two new places to the
transformed graph H. This is performed by the meta-rule shown in the upper
part of Fig. 14, to be associated with the editing rule addPlaces of Fig. 13. In
this case, the meta-rule does not modify the parameter of the execution rule
(it is shown as a graph M in the meta-rule and textually in rule Fire_t). This
parameter will be used to ensure that the execution rule can only be applied
to the transition to which addPlaces was applied (see the remark in Section 4).

meta-rule iR g
: ::L K [ommsen] R [
1 ' p_ i ipost= ipre= b ipre- s Lpr "
- —=>i| conditiong conditions:; condition: conditions;; condition conditions,

o:PlaceSem H i:PlaceSem H o:PlaceSem H i:PlaceSem Mo P\acesemHiP\aoeSem ‘};

L VK YR

;‘ t:TransSem ‘3 H ‘ t:TransSem ‘ 3 H ‘ t:TransSem ‘ 3

K "
Lpre= |} t:TransSem pre= 1}
conditions ! B SE—
112 post:

" i | 1 5 ' N D
I post- 2 post= ! post- | |} Lpost= 1 post= 1 2 post= e [0 i:PlaceSem |1; conditions i:PlaceSem |} condifions
1conditiohs 11 conditiohs i1 conditiohs 1|~ |: conditiops i conditiops 1! conditiohs o | [ o |
| 0':PlaceSem w oPlacesem|}}| 0P i iowp ‘lf o'P ‘w o':PlaceSem|; Tpost=| |t TokSem i post= H — m— St |
1 " H i " " | || conditiong i condifions i

5

' . 3
31 3 3 o:PlaceSem 31 o:PlaceSem

Fig. 14. Meta-Rule Derivation Example.

Thus, in order to deal with an incremental specification of a visual language
execution semantics, we propose, in Section 8, another instantiation of EG-
patterns for DPO rules (called action patterns). Given a set of action patterns,
we create a meta-rule that updates the execution rule associated with each
active element in the model modified by the editing rule, to accommodate the
produced changes. The next section presents the notion of EG-pattern using
category theory, to be instantiated later in a number of ways.

6 Positive Enforced Generative Patterns

This section presents the general notion of enforced generative pattern (short
EG-pattern) and its application to DPO rules to yield modified rules pro-
ducing objects conforming to a pattern. We give here the simple version of
EG-pattern. More sophisticated ones, such as patterns with negative condi-
tions and composite “if-then” patterns are left for Section 10.
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A simple positive EG-pattern (short SP-pattern) is an object P in a (w)aHLR
category. An object H satisfies P, written H |= P, if 3m: P — H injective
morphism. Intuitively, this means that at least one occurrence of P is found
in H. For the moment, we take an ezistential view of pattern satisfaction. We
sometimes use the term “H is conformant to (or consistent with) P”.

The application of an SP-pattern P to a DPO rule p : L L K-SR yields
a modified version of p that, when applied to an object G, produces an object
H consistent with P. We consider non-deleting DPO rules, i.e. with L = K,
hence p : L —— R. Constructions are similar for deleting (and non-creating)
rules in which K = R and roles of L and R are reversed. In order to produce a
rule conforming to the pattern, we have two extreme solutions: extending only
the RHS (i.e., the rule effects), or both the LHS and the RHS, but without
creating any new element that the original rule did not create. There are also
intermediate situations, where additional context is considered in the LHS and
the rule effects are expanded. The three cases can be described with a single
algorithm. However, for better understanding, we start with the two extreme
situations and finish with the general algorithm.

Extending the rule effects. In order to make p : L —— R enforce P, the
first option is to extend p’s effects. To this end, we build the diagram to the left

of Fig. 15, where square (1) is a pushout. The new rule is then p : L R In
the diagram, intuitively, P’ is an object that models a maximal intersection of
R and P, and in general is not unique. The conditions that must be satisfied
by a maximal intersection object P’ are:

e P’ should not be empty, i.e. it should not be an initial object in the given
category. An empty intersection means that no partial, non-empty occur-
rence of the pattern P is found in R and thus the pattern does not have to
be enforced by the rule.

e On the other extreme, P’ should not be isomorphic to P, as otherwise the
pattern is already enforced by the rule as it is.

e There is no span (P”,p': P” — P,pr’: P" — R) and injective morphism
p": P’ — P” such that pr’ o p” = pr and p’ o p” = p, with P” 22 P’. This
is needed in order to ensure that P’ is maximal. A diagram showing this
condition is depicted at the center of Fig. 15.

The previous procedure generates a rule that, when applied to an object G,
produces an object H conformant to P. That is, it ensures that an occurrence
of P exist in H. Sometimes, our aim is to complete all possible non-empty
partial matches of the pattern in the rule’s RHS, thus ensuring a universal
satisfaction of the pattern (local to the rule’s co-match). For this purpose,

the procedure can be iterated for the new rule p : L R selecting P”
as a maximal intersection of R’ and P, different from P’. A typical use of
the algorithm is to select in each iteration a maximal intersection object P¥
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Fig. 15. Extending the Effects of a Rule According to SP-pattern P (left). Condition
for Maximal Intersection Object P’ (center). Iteration (right).

having a non-empty intersection with the R component of the original rule
(and differing from the previous intersections). This ensures that the original
rule is completed in all possible ways, and also guarantees termination of the
iteration: as P” has to be maximal and cannot grow more than P, there is
only a finite number of possible matches onto the original R. The scheme of
the iteration is shown on the right-hand side of Fig. 15.

Example. The left of Fig. 16 shows an example of the previous construc-
tion in the category of typed graphs. Node identities are used to indicate the
morphisms. In the example, pattern P is applied to a rule that checks the ex-
istence of a node of type A and creates another node with type B connected
to it. The pattern demands the existence of a structure made of a node of
type A connected to two nodes of type B. A maximal intersection graph P’ is
calculated, and the pushout graph R’ is obtained, so as to include in the rule’s
RHS the pattern elements which are not created by the rule. Thus, the pattern
application ensures that the generated rule yields an object H satisfying the
pattern P. The figure also shows that a smaller graph P” (with just one node
a) cannot be taken as maximal intersection object.

pr’

P’ ‘///p, s
() et o

S el PO. p P
b o]

Fig. 16. Example of Extending the Effects of a Rule (left). Iteration Example (right).

r=aor
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The right of Fig. 16 shows an iteration until no valid maximal intersection
object is found. Given one node of type A, the rule creates another one of the
same type, both connected to a new node of type B. However, the pattern
specifies that two Bs are necessary for each A. Thus, in a first step, the RHS
is modified to connect the already existing A to a new node B. In a second
step, this newly created B is reused and connected to the other A.

Note that the use of the procedure proposed in [21], calculating all the max-
imal intersection objects a-priori, would result in a bigger RHS, which is not
desirable. In the example, the rule would create three Bs in total, instead of
just two. With the iteration, we are reusing parts of the different RHSs, which
results in the creation of the smallest object satisfying the pattern.

Extending the rule context. The second option is to maximally extend the
rule’s LHS to incorporate all the necessary context, so that the resulting rule
does not have to create anything new to satisfy the pattern. That is, the rule
effects are not modified. However, as we will see, this is not always possible.

To extend the rule, a maximal intersection object P’ is chosen and the pushout
object R’ is obtained. Then, L is maximally completed to yield L. The main
idea is to partition P into P and Pg, where P, is what will be added to L
to yield L'. As we want to maximally extend L without modifying the rule
effects, we take Pgr as small as possible, thus we take it to be P’. As P;, has
to be glued with L, we calculate the gluing object @ as the pullback! object
of r: L — R and pr: P’ — R. In this way, @) is the intersection of pattern
P, with L. If Pj, exists, it has to be the pushout complement of ¢p: () — Pg
and q: PR — P (as P = Pg, we have ¢ = p). If such P exists, then we
calculate L’ as the pushout of ¢,: @ — L and ¢p,: Q — P, to obtain L'
Note that 7': L' — R’ uniquely exists due to the pushout universal property,
asaoroqr =bocogqp,.If nosuch Py exists, then we cannot extend L, but
we obtain a rule where only R is extended to R’, and set ' = aor.

L/ 5 \IP
Q qr L T R pr P,
qPL\L P.O il’ a P‘O.P\L
d r/ b p=q /
P, ">R<—P<—Ppr=P
c CT P.O. qu ¢ Po. a
P, a Q
P~ [sa}-Ae-{[ea] |

Fig. 17. Maximally Extending the Rule Context (left). Example (right).

As previously, the procedure can be iterated for each valid maximal intersec-

1 Roughly, a pullback object is an intersection of two objects sharing a common
context.
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Fig. 18. Example: Maximally Extending the Context of a Rule, First Iteration (left).
Second Iteration. Non-Existence of P, (right).

tion object having a non-empty intersection with the original rule’s RHS.

Example. The right of Fig. 17 shows a maximal extension of the LHS of
a rule, according to pattern P (previously shown in Fig. 16). A maximal
intersection P’ is found, and then R’ is calculated, extending R with one
additional B connected to the A node. The pullback graph of pr and r is
calculated, which contains only one node A. This graph is used to calculate the
pushout complement (Pp) of p and gp. As Py, exists in this case, we can extend
L by considering the extra B connected to the existing A. Overall, the rule
has been extended with additional context, but its effect is not enlarged. Note
that the condition for the pushout complement for graphs to exist basically
states that for any node n € P’ — qp(Q), all incident edges to its image p(n)
should have a preimage in Pg. This is similar to the dangling-edge condition
for direct derivations. In the example, P, would not exist if P had in addition
an edge between the two B’s. The existence of pushout complements for the
case of (w)aHLR categories is discussed in Theorem 6.4 of [12].

The example shown in Fig. 18 presents an iteration, but in the second iterative
step the pushout complement P; does not exist, which means that we cannot
extend the LHS twice?. Thus, the resulting rule is p': L' — R"

Intermediate situations. Now we consider situations where some part of
the pattern is added to the context, and the rule effects are also expanded.
We split pattern P into Pr, and Pgr, where, intuitively, Py, is added to the LHS,
and when glued together (through some common subgraph Sp), P +s, Pr
yields P. Thus, the effects of the rule are enlarged according to P, and the
LHS according to Pp. The situation is similar to the previous construction;
however, P, is now not required to be a maximal extension of L. The left of
Fig. 19 shows the diagram for this construction. Again, morphism 7’ uniquely

2 This can be regarded as a conflict between the pattern and the rule.
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exists due to the pushout universal property, as bocogp, = aoroqr. Py, is glued
with L through the pullback object @ of L and P’. We require an injective
morphism ¢g: @) — Sp as, intuitively, @) should be included in Sp (taking a
bigger Sp allows a smaller P, which may cause less problems regarding the
extension of the LHS). As in previous cases, the algorithm can be iterated.

Q Q
qar PRB. qp . aA
Q qaLr L T R pr P R PB -
wi| po.d| d ros MHM}
PLi>L/ T‘,,>R/<LP PR e I a "OP
\—/’
C CT PO. TSR aA Hg pr aA
PL SL SP cB CB cB
b .
Q [z HHH =8

Fig. 19. Extending both Context and Effect of a Rule (left). Example (right).

Example. The right of Fig. 19 shows an example where both the rule’s context
and its effects are enlarged. In this case, no maximal context was sought, as
P, omits the edge between a and c. In this particular case, Sp is isomorphic
to Pp, and Pg to P. Altogether, the resulting rule has an additional node ¢ in
its context, and then increases its effects by adding an edge between a and c.

For appropriate categories (like typed graphs or typed triple graphs), we also
introduce abstract patterns, containing elements of some abstract type from a
type graph with inheritance TGI. An abstract pattern ap is equivalent to a
set conc(ap) of concrete patterns, resulting from all valid substitutions of the
abstract types by concrete types in the corresponding inheritance clan.

Sometimes, more than one pattern have to be enforced by one rule. The policy
for applying a set of patterns is intentionally left open, and depends on the
category instantiating the EG-patterns. Working with non-deleting rules, and
taking the restriction that each maximal intersection object should have a non-
empty intersection with the RHS of the original rule, makes the application
order of patterns irrelevant. Conflict detection mechanisms for other policies
are left for future work.

The next section introduces triple patterns as an instantiation of EG-patterns
for the category of triple graphs, while Section 8 gives an instantiation for
DPO rules (called action patterns).
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7 Patterns for the Specification of Static Semantics

This section presents triple patterns, an instantiation of EG-patterns for triple
graphs, together with a specialization of the previous constructions. We are in-
terested in triple patterns declaring the admissible relations between elements
in concrete syntax and semantics models. We present an algorithm that, given
an editing rule acting on the concrete syntax only and a set of triple patterns,
generates an operational TGG rule that synchronously creates the necessary
elements in the target and correspondence graphs. The algorithm is based on
the constructions given in the previous section (instantiated for attributed
typed triple graphs [17]), thus generalizing the one given in [10]. Symmetri-
cally, the input rule could act on the target graph, and the generated TGG
rule would complete the source graph. This could be useful to extend the ex-
ecution rules acting on the semantic model only (like the ones we generate in
next section) to synchronous TGG rules modifying in addition the concrete
syntax. As in [32], we can also generate other TGG operational rules: batch
rules (i.e. assume that the source elements exist, and then create the target
graph elements), rules for creating the correspondence graph given a source
and a target graphs, and for checking the validity of the correspondence graph.

Example. We first start by giving an intuition of the algorithm through an
example. We use triple patterns in order to specify in a visual, high-level,
acausal notation the kind of configurations we want to find in our semantic
(syntax) models when certain syntactic (semantic) configurations are met.
In this example, triple patterns are triple graphs conforming to the meta-
model of Fig. 5. The triple pattern in Fig. 20 depicts the needed structure in
the syntactic model for a holder to have a token in the semantic model. In
this case, a Place in the syntactic model has an associated PlaceSem role (a
subclass of Holder) in the semantic model. Similarly, a Token in the syntactic
model has a TokSem role in the semantic model (a subclass of class Token
in the semantic meta-model). In the semantic model, a token decorates a
holder, while at the syntactic level the place contains the token.

Pattern for Tokens

| : decorates c
. PlaceSem : TokSem
_— LaddToken’ (Generated Operational Rule) ‘

: decorates
: PI2Sem : Tok2Sem
A

‘ :PI;ce H : Contains }—{ :Token‘

}addToken (syntactic Rule) ‘

‘ : Place %{ : Contains }—{ :Token‘

L 1
AEeW

: PlaceSem

1 PI2Sem : Tok2Sem
] y
‘ : Place @ : Contains H : Token ‘

‘Syntax Corr. |Semantics

Eyntax Corr. Semantics‘

Syntax

Fig. 20. Applying a Pattern to a Rule.
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Fig. 20 also shows a syntactic editing rule (“addToken”) creating a token inside
a place in the syntactic model. The objective of the algorithm is to obtain the
triple rule shown on the right of the figure, incorporating information about the
actions to be done at the semantic level, together with the mapping between
syntactic and semantic models. We use the algorithm for applying SP-patterns
in the previous section, extending both the rule context and its effects.

A triple pattern P : P, P 2, P, is a triple graph conformant
to (typed by) a meta-model triple. Formally, given a triple pattern P and a
triple graph G, we say that G satisfies P (written G = P) if an injective
triple graph morphism m : P — G exists. The following algorithm describes
the application of a set of patterns to a non-deleting standard rule, resulting
in one triple rule. The algorithm can be easily modified for its application to
deleting (and non-creating) rules by reversing the roles of L and R.

Apply (STP: SetOfTriplePattern, rl: Rule): TripleRule
Let STP = {P'};c1 be a set of triple patterns P’ : P &Lopi Popiand

sre corr tar
rl a non-deleting standard rule [ : L <L K-S Rwith L =K , and which
can therefore be written as 7l : L — R. The application of STP to rule 7l

results in a triple rule rl’ as follows:

(1) Initialize the triple rule rI’ by copying rl in the source part of rl’. The

resulting triple rule is written as rl’ : L, -, R,;, where 1’ is a triple
graph morphism (see Fig. 21).

T or=0
Ltar - @ - Rtar - @
It=0 rt=0
TICOTT‘ZQ
rl’ = Lcorr == @—>Rcorr == @
ils:fb lrs:@
Tore=T
Lsrc =L Rsrc =R

Fig. 21. Initialization of Triple Rule rl’.

(2) V SP-pattern PP : Pi_ &5 pi P pi ¢ P oapply P to the triple
rule rl’, extending the rule effects and also the context, according to the
procedure given in Section 6, see also Fig. 19. The maximal intersection
object P’ should be chosen as the biggest triple graph P’ < R such
that P! . = p. ., that is, the whole source part of the pattern should

be found in R. The triple graph P;, should be chosen as the restriction

i | Psle Ple 1 : ; :
Prle & Piople = Pyelr,,. of triple pattern P' to elements in Ly,
where P} |. contains those elements in P}, related to elements in L. or

not related to any element in the source graph.

Fig. 22 shows an example of the execution of the procedure to the rule and
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pattern shown to the left of Fig. 20. Thus, R’ is a triple graph that connects
the source elements with the target ones according to P. Moreover, L’ is built

by connecting the elements in the source part of L according to Pp.

TGG rule

‘ p: PIaCeH c: ConlalnsH o Token‘ ]‘ p:Place H c:Contains H t:Token ‘1

ts: TokSem‘

} } Is:TokSem‘ l 1‘ ps:PIaceSem}—{ ts? TukSem‘ ‘ ps: PIaceSemH
A A

Lo P P
3‘p25 p|239m‘ %‘ p2s: p|2sem‘ %“ p2s: P\ZSem‘ ‘[23 Tok2Sem ‘ @‘pzs PIZSem‘ ‘(25 Tok2Sem ‘/e‘ t2s:Tok2Sem ||

m ‘ p:Place [H Con(amsH t Tuken‘ 1

Fig. 22. Applying the Pattern for Tokens.

Fig. 23 shows additional patterns for the Petri nets example. According to
the left pattern, output places of a transition in the syntactic graph are post-
condition PlaceSem objects for the TransSem object associated with the tran-
sition. The pattern to the right models the correspondence for input places. By
applying these patterns to the editing rule to the left of Fig. 24 (twice the pat-
tern for post-conditions, and once that for tokens), we obtain the operational

TGG rule shown to its right.

Pattern for Post—Condition Holders Pattern for Pre—Condition Holders
£||: PlaceSem - — ‘:TransSem ‘ ‘:PIaceSem ‘ - — : TransSem
gll—=—F : post—conditions | T T J : pre—conditions e ——
5|l :Pl2sem ‘ : Tr2Sem ‘ : PI2Sem ‘ Tr2Sem
[8) T T

<I

Syntax | Corr. Sem.‘

[ [
8 ‘ : Place }—{ : Touches ‘ ‘ : Touches }—{ :Transition‘
z — N !arge! . source

€ :target. : source

[2)

[
‘ : Place }—{ : Touches ‘ ‘ : Touches }—{ : Transition
— . source N !arge!

Fig. 23. Additional Patterns for the Example.

addTwoOutPlaces
addTwoOutPlaces T e

£ decorates [ - »

% ‘ : TokSem ’—‘: PlaceSem ‘ ‘ : P } [: TransSem

a T T T

S ‘:Tokzsam ‘ { PI2Sem ‘ ‘: PI2Sem ‘ {new}
targ source :

X ‘ Place };{ TouchesH ArcTPH Touches}ii‘ v

< o : Transition

@ ‘ TokenH Con!amsH Place}—{ TouchesH ArcTPH Touches‘ Sotice] \—y—‘

Fig. 24. Syntactic Rule (left). Derived TGG Rule (right).

24



The advantage of these patterns is that they are specified once, and can then
be applied to complex syntactic rules. The DSVL designer does not have to
modify each syntactic rule by hand in order to add the semantic information,
but only to specify the patterns once. Moreover, the patterns do not have to
take into account which elements are created and which are already existing,
as this is specified in the standard rules to which they are applied. Thus,
the pattern may be used in several ways (i.e. in parts of the rule which are
newly created or in existing ones). In our example, the same patterns are
used to build the semantic model from the concrete syntax (by applying them
to editing rules), and to extend the execution rules acting on the semantic
model only (see next section) to TGG rules synchronously modifying both
the semantic model and the concrete syntax.

7.1 Abstract Triple Patterns

Triple patterns containing “abstract objects” (i.e. instances of abstract types)
may be applied to rules also containing “abstract objects” (i.e. abstract rules).
When looking for a match from an abstract pattern to a rule, abstract objects
in the pattern can be matched with objects of more concrete types in the rules.
We shortly indicate by conc(r) the set of concrete rules obtained by replacing
abstract objects in 7 with all possible objects in the corresponding clans [9].
Following the ideas in [10], the previous algorithm is thus modified:

AbstractApply(STP: SetOfTriplePattern, r: Rule): SetOfTripleRules

Let STP = {P'};c; be a set of (abstract) triple patterns, with P’ : P! | &
P 2, Pi_ and r: L —— R a non-deleting rule. The application of ST P
to 7 results in a set of triple rules RG' = {r}, as follows:

(1) Set RG' = 0.

(2) Let RG = conc(r) U {r} be the set of concrete rules equivalent to r and
r itself.

(3) Let ST P¢ be the set of concrete patterns equivalent to the patterns in
STP.

(4) Vri € RG, RG' = RG'"U Apply(ST P¢, r). That is, we apply the concrete
patterns to each concrete rule.

(5) V' € RG": if Ir" € RG' s.t. 1’ is more concrete than " (7" < r”) then
RG' = RG'\ {r'}. That is, we eliminate rules “subsumed” by others
(same structure, equal or more concrete types).

(6) Vr' € RG": if Ir" € RG' s.t. v . <l then add a NAC to ' with all the

src — src

nodes in 7’ that are refinements of nodes of 7', where 7/, is the standard

rule resulting by taking the source graphs of triple rule 7’.

Thus, the idea is to first generate the set of concrete rules equivalent to the
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abstract rules (step 2), as well as the set of concrete patterns equivalent to the
abstract ones (step 3). After applying the patterns, we eliminate redundant
rules (step 5) and finally, NACs are added to the generated rules (for the
source graph), so that they cannot be applied to more concrete types if a
refined rule was also generated. For efficiency reasons, an implementation of
this algorithm would not generate all concretizations of rules and patterns
at steps (2) and (3), but work at an abstract level, for example using clan
morphisms [9], which take into account the inheritance relations in the meta-
models. For further details on the algorithm, the reader is referred to [10].

8 Patterns for the Specification of Execution Semantics

This section describes an instantiation of EG-patterns for the category of DPO
rules (called action patterns) and how the constructions in Section 6 have to
be specialized. We use action patterns for the construction of execution rules
by means of meta-rules. Each meta-rule, associated with an editing rule, is
used to incrementally construct an execution rule describing the semantics of
a particular active element of the model (e.g. a transition). However, to avoid
writing each meta-rule by hand, we propose to exploit a set of action patterns
to describe semantics. We present a procedure to generate a meta-rule, starting
from a set of patterns and an editing rule.

A type system for patterns over a type graph with inheritance TGI = (TG, I)
is a construct TSP = (TGI, tr, o), where tr € Np is a designated node
type whose semantics is described by the action patterns (e.g. a transition in
the case of a Petri net). In addition, 0 C T'GI is a subgraph of types (with
inheritance) relative to the execution mechanism, with ¢tr € op,. (the set of
nodes in o). Elements in o are needed in order to express the operational
semantics of the language (e.g. places and arcs). An action pattern over T'SP
is a DPO rule ap : L* £ Kgae 5 Re such that Unexa type(n) N oy, # 0,
for X = {L, K, R}, where Xy is the set of nodes of graph X. Thus, an action
pattern is a DPO rule where some elements have types in 0. As in Section 7,
we admit abstract action patterns containing elements with abstract typing.

Fig. 25 shows two abstract action patterns for a general transition semantics.
Pattern get deletes a token from a pre-condition holder, i.e. it removes both
the token and its association with the holder. In a similar way, pattern put
adds a token and an association with a post-condition holder.

The get and put patterns are abstract and therefore highly reusable, as they
are applicable to any language with transition-based semantics, for example
to place/transition Petri nets (see the meta-model triple to the left of Fig. 5).
The type system for the patterns is based on the semantic meta-model (the
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get put

: decorates : decorates

Fig. 25. Action Patterns for Transition Based Semantics.

:Transition
Element

:Transition :post—conditions

Element

:pre—conditions

upper one) in Fig. 4, and the subclasses added by each particular language.
In all cases, the designated type t¢r is TransitionElement. For the example
of Petri nets, o contains the classes in the semantic model of Fig. 5, except
class Token and the decorates association. For some classes of Petri nets,
where tokens with identities are used, one can introduce a move pattern that
does not remove or insert tokens, but only transfers the decorates association
connecting the token from one holder to another.

8.1 Generating the Meta-Rules

We present an algorithm that, given a set of action patterns and an edit-
ing rule, generates a meta-rule that updates the execution rule associated
with a transition element. The algorithm is based on the constructions for
EG-patterns in Section 6. To provide intuition, we illustrate how the action
patterns in Fig. 25 are applied to the editing rule on the left of Fig. 26 to
obtain the meta-rule on its right.

Execution Semantics

r(t:TransSem) r(t:TransSem

)
. :post-conditions :decorates [ :post-conditions
‘ :TokenSem }ﬁ{ :PlaceSem }—‘
new; I

:decorates
:prei-conditions :TokenSem :PlaceSem

del, :pre-conditions

Fig. 26. Editing Rule (left). Associated Meta-Rule (right).

As the editing rule adds a pre- and post-holder to an existing transition, the
associated meta-rule must update the execution rule by adding the semantics
of an additional pre-holder and post-holder. Hence, the meta-rule should iden-
tify the transition in the execution rule and modify it by enlarging the LHS
with the pre- and post-holders, together with a token in the pre-holder. Then,
the RHS is enlarged with the pre- and post-holders, the deletion of the token
in the pre-holder and the addition of the token in the post-holder.

In a situation as depicted on the left of Fig. 27, the editing rule (and therefore
the associated meta-rule) has been fired twice for the transition. This pro-
duces the execution rule shown to its right. As previously mentioned, the rule
application mechanism initializes the match of the execution rule (using its
parameter) with the transition of the editing rule. Thus, such execution rule
can only be applied at the transition in the semantic model to its left.
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semantic Model execution Rule r(t:TransSem)

:post—conditions :pre—conditions :post—conditions :pre—conditions

:post—conditions  :prer-conditions

t: TransSem

conditions  :pre—conditions

‘ : PlaceSem H : PIaceSemH : PlaceSem H : PIaceSem‘ : PlaceSem H PlaceSem H PlaceSem H PIaceSem‘
gecérates decota% gecéraxes : deforate
‘TokSem TokSem |||| :TokSem TokSe:W
{new} {del}

Fig. 27. Semantic Model and Resulting Rule.
Let TGI = ((Nr, Er,s”,tT),I) be a type graph with inheritance, TSP =

(T'GI,tr,o) atype system for patterns over TGI, AP = {ap; : L¢ S K¢ LN
R%};er a set of action patterns over TSP and e : L < K- Ran editing
rule typed over TGI. The application of AP to e produces a meta-rule for
each transition element in e, according to the following algorithm.

Apply(AP:SetofActionPattern, e:Editing Rule, tsp:TypeSystemPattern):
SetofMeta-rule

(1) Initialize the set of meta-rules, MRS = ().
(2) Set AP® = U,peap conc(ap), i.e. all concretizations of the action patterns.
(3) Vt € R|clan(tr)\oNT (R|Clan(”‘)|oNT is the RHS of e restricted to subtypes in

on, of the designated node type tr):

e Initialize the meta-rule mr, as follows: L* = K* = R® = K]|;, where
K|; is the kernel of the editing rule restricted to node t. L”* = K" =
R = sub(R,t)|,, where sub(R,t)|, is the smallest connected subgraph
of R containing node ¢ and no other element ¢ with type in clan(tr),

restricted to types in o. The meta-rule thus becomes: mr, = (L* «— A
K3 Z_d) Rs) (Lls id 2OKs i) R/S).

o Vap; : L* L Rge ™ Re ¢ AP¢, apply ap; to meta-rule mr, extending
the meta-rule effects, according to the first procedure given in Section 6.

e The parameter of the meta-rule’s LHS and RHS are K*|; and K"*|;.

e Add mr; to the set MRS.

(4) return MRS.

As in the algorithm of Section 7.1, an efficient implementation would not gen-
erate the concretizations of the patterns, but work at the abstract level. Fig. 28
shows the execution of the algorithm for patterns get and put and the editing
rule in Fig. 26. This rule contains a single transition, hence one meta-rule is
generated. The LHS of the meta-rule is initialized with the unique transition
element, the RHS with the smallest connected subgraph of the editing rule’s
RHS that contains the transition element and no other one. In addition, the
initialization is restricted to elements with types in o, which usually does not
contain dynamic elements (i.e. tokens). This is necessary as the fact that an
editing rule adds or deletes tokens is irrelevant for updating the execution
rule. The concretized get pattern is applied once. This pattern is like the one
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in Fig. 25, but with elements of type PlaceSem, TransSem and TokSem instead
of Holder, TransitionElement and Token. After applying get, pattern put
is applied, thus yielding the final RHS. The left and right hand side rules of
the resulting meta-rule have the TransSem node as parameter (not shown in
the figure for simplicity). Hence, the generated meta-rule takes an execution
rule with a TransSem in its LHS, RHS and parameter, and adds a pre- and a
post-condition, together with the appropriate handling of tokens.

meta-rule

L
tTransSem

post— :|pre— 3} : post—
condition: conditions |} conditions

| ‘ o:PIaceSerrH i:PlaceSem ‘ : 1‘

‘TransSem‘ 13‘t:TransSem‘ 1i‘t:TransSem‘ “

| ipre 1 ipre o -pre '
i conditions ;1 conditions 1, conditions "

P\aceSsﬂ ‘ i:PlaceSem ‘ ;3

ransSem| | !

I ipre: o
|1 conditions !
laceSem || 3

|pre= 13 b _pre
conditions 1;@; condifions

o:PIaceSerrH i:PlaceSem ‘ ‘ 3 ‘ o:PIaceSerrH i:PlaceSem ‘

:decorates "

“‘ u:PIaceSen{ ‘ i:PlaceSem “

ll‘lTransSem " ‘t:TransSem " ‘!;TransSem‘ 3}
x : ; ; :

11 : post: 111 post: 111 post=

11 conditions llcond\tons 1lcondmons

‘ o:PlaceSem

—_— | —_— —_— t:TransSem| ||| t:TransSem
|1 L post= Lpre=  |i:post= Lpre=  |i:ipost- Lpre- X "
1 conditions| conditions! | conditions| conditions;; conditions conditions; +post post onditions
conditions conditions

33‘o:P\aceSemHi:PlaceSem ‘33‘D:PIaceSemHi:P\aCeSem ‘33‘u:PIaceSemHi:PlaceSem ‘

" :decorates

Fig. 28. Applying Patterns get and put.

o:PlaceSem |t o:PlaceSem |!!

11 idecorates "

o:PlaceSem

:decorates

Once the execution rules are generated, we can apply the triple patterns pre-
sented in previous section to extend them to synchronous TGG rules modifying
both the static semantics and the concrete syntax.

9 Examples

We provide examples highlighting the use of patterns in the incremental con-
struction of the abstract syntax and execution semantics of visual languages.
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9.1 Token-Holder like Visual Languages

As Petri nets have been used throughout the paper, we just briefly present
some further examples of languages with token-holder semantics, to show both
the applicability of such semantics and our pattern concept.

State Automata. The left of Fig. 29 shows the meta-model triple for state
automata. At the syntactic level, states are both entities — as they can be
connected to transitions — and containers, as the current state contains a
decoration inside (class Current). At the semantic level, states are holders
(i.e. they can receive a token, becoming the current state), while transitions
are transition elements. For simplicity, we do not consider events in transitions.

decorates

+ pre—conditions %

* post-conditions %

TransitionElement
JAN JAN

‘ StateSem ‘ TransSem

connectStates

:StateSem ;|

:StateSem(

associated meta-rule
r() r(t:TransSem

‘ CurrSem ‘
1
! AN

—- \V/ Vi

Identifiable - -
Element ‘ Container ‘ ‘ Entity ‘

Tr2Sem

Transition

‘ Connection ‘

Fig. 29. Meta-Model for State Automata (left). Editing Rule (top right). Generated
Meta-Rule (bottom right).

The action patterns get and put shown in Fig. 25 are valid for automata, as
a transition element has exactly one pre- and one post-condition. Hence, get
removes the token from the current state (a pre-condition) and put inserts it
into the post-condition holder. The type system is given by the semantic meta-
model in Fig. 29, except class Token and its child, and association decorates.
The right of Fig. 29 shows an editing rule and the generated meta-rule. As
the transition element is created when connecting the two holders (i.e. states),
the meta-rule creates the transition element in its RHS.

In this example, the DSVL designer writes the concrete syntax of the language,
puts it in correspondence with the semantic model (i.e. builds the meta-model
triple in Fig. 29, together with the triple patterns) and builds the editing
rules for the environment. By applying the action patterns, the execution rules
acting on the semantic model are generated. Then, one applies triple patterns
to editing rules (to obtain TGG rules updating the semantic model) as well
as to the execution rules (to obtain TGG rules to update the concrete syntax
model). Otherwise, these two sets of rules would have to be created by hand.
Given a semantic variety, it should also be possible to automatically derive a
set of triple patterns from a meta-model triple. We leave this for future work.
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WorkFlow. Fig. 30 shows an excerpt of the meta-model for a simple workflow
language, in the style of [34]. Two kinds of blocks — parallel and sequential
— exist, playing the roles of both transition elements and holders. Parallel
blocks are amenable to incremental semantics, as they require a token in each
incoming block for firing, and add a token in each outgoing block.

addChoice

ﬂ ‘Parallel %M\ {new} }

* pre—conditions

* post—conditionss

/N /\

TransitionElement
/N

WFBlock r(t:Parallel) r(t:Parallel)
JAN t: Parallel t: Parallel

Parallel

L L meta-rule for

‘Ser‘nCt‘rl ‘ ‘éoncZ‘Sem ‘ ‘S;qéSem‘ addChoice

:Choice

:Control | {new}

:Choice post ‘WFBlock

A Y Ve
‘ Current H ConcurrH Sequent Block ‘ pre
%7 :WFBlock :Control

\/ \/ {new}
Identifiable - - {del}
Element execution rule
for "Choice"

Fig. 30. Meta-Model for Workflow Language (left). Editing Rule (top right). Gen-
erated Meta-rule (middle right). Execution Rule for Choice (bottom right).

An example editing rule is shown in the upper-right corner of Fig. 30. This
rule adds a choice as a post-condition for the parallel block, while the latter
becomes a pre-condition for the choice. Below the editing rule the generated
meta-rule for addChoice is shown. Choice blocks have a sequential semantics:
they take one token from one of the incoming blocks (randomly chosen), and
put the token in one of the outgoing ones (also randomly chosen). No incre-
mental construction is needed for choice blocks, and the global execution rule
in the lower-right corner of Fig. 30 is enough. This rule is abstract (equivalent
to four normal rules), as we do not care about the explicit type of the incom-
ing or outgoing blocks. Thus, in this case, we need the type system T'SP to
include Choice in the determination of the context of the execution rules for
Parallel, but we avoid the generation of a meta-rule for the class Choice
which does not need incremental semantics. Therefore, T'SP includes in TG
all types in the upper part of the meta-model triple of Fig. 30, but excludes
Choice, Token and Control from oy,.

In this example the DSVL designer can reuse the action patterns for the token-
holder semantics. However, the DSVL semantics for this case is not entirely
covered by the patterns, but has to be refined by adding a non-incremental
rule (to avoid the parallel semantics of the choice blocks).
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9.2 Visual Languages for Discrete-Event Simulation

In Discrete-Event Simulation Systems (DESS) [14,31], a number of entities
generate events to be processed at a future time. These events are stored
(ordered by their execution time) in a so called future event queue. The simu-
lator proceeds by taking the first event in the queue and executing it. In the
event-scheduling approach, the execution of an event follows a specification
and gives rise to the scheduling of further events.

Event Graphs [31] are a classical example of event-

scheduling DESS. A simple model is shown in Fig. 31, 2

with four types of events and some causality relations. m
An event graph model does not have to worry about @

the event queue, as this is a mechanism for execution, ® @

which does not belong to the modelling phase. Other

discrete simulation languages, such as Time Transi- Fig. 31. An Event
tion Petri nets or Process-Interaction notations [14], Graph.

have similar execution semantics.

The meta-model triple on the left of Fig. 32 extracts the DESS semantics
and relates it to the concrete syntax of the particular DESS formalism. An
executable DESS model needs some event specification and an event queue for
its execution. The specification defines event types, and is made of a number
of event types related through Schedules objects, annotated with the time
after which an event of the given type will occur. Events in the event queue
contain the time at which they have to be executed, and are instances of
some event type, as depicted by the association instanceOf. Each event in
the queue points to the next one. A Scheduler entity takes care of ordering
new events in the queue. The type system for the action patterns contains
classes Schedules and EventSpec (which is the distinguished active element)
together with associations source and target. The concrete syntax part of the
meta-model triple assumes that event specifications can be produced using any
referable element, but the scheduling of new events is specified via directed
connections (i.e. we assume a graph-like language). The right of Fig. 32 shows
the specialization for Event Graphs.

The syntactic rule on the left of Fig. 33 creates new event specifications (i.e.
event types). The triple pattern in the middle shows the relation between
event specifications in the concrete syntax and the semantic model. The action
pattern on the right describes part of the execution semantics of the newly
created event type. Thus, if an event of this type is the first one in the queue,
the execution rule deletes it and moves the queue pointer to the following one.

Once the event specification has been created, a possible syntactic action is
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Fig. 32. Meta-Model Triple for DESS (left). Specialization for Event Graphs (right).

event_spec_creation Pattern for Events SChedUIe—neXt

:EventSpec :EventSpec

’—n—“ del sinstandeOf

:EvSem 'first{ } ‘ ‘next

; ‘:EventQueue}':'{ :Event }:% :Event ‘
]

:EGEvent ‘ ‘ ‘ Sfirst {new;

Fig. 33. Editing Rule for Creating Event Types (left). Triple Pattern for Event
Specifications (middle). Action Pattern (right).

the scheduling of other event specifications when an event of the given type is
executed. This is modelled by the syntactic rule shown on the left of Fig. 34.
The (attributed) triple pattern in the middle describes the relation between
connected events in the concrete syntax and in the semantics. The action pat-
tern on the right describes the execution semantics for event scheduling. Thus,
the modification to the meta-rule produced by this pattern allows changing
the execution rule associated with the source event specification, so that it
creates a new event of the type specified by the schedule object’s target. The
new event is created and linked to the scheduler object, the behaviour of which
is handled by the non-incremental rules shown in Fig. 35.

schedule_event

event_spec_scheduls Pattern for Schedulling Connections
source R :Schedules |:t: get :source ‘target
:EGEvent :EventSpec S e :EventSpec :EventSpec :Schedules :EventSpec.
{new}| A timeSpec =t A
‘ :EGSched ‘ :EvSem :CnSem :EvSem new} :
- evénis2order
‘:EGEvent‘ soureel e sched 2% [.EGEvent d Event

Fig. 34. Editing Rule for Scheduling new Events (left). Triple Pattern (middle) and
Action Pattern (right).

The set of non-incremental rules shown in Fig. 35 initialize the simulation
(init) and model the behaviour of the scheduler (rules insert and insert_first).
Rule wnit creates the scheduler and the event queue, initialized with the initial
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and final events. The former is an instance of the initial EventSpec, the latter
is used to ease the management of the queue.

init
first next CONDITION: inext
‘ :EventQueue }: :Event :Event <= t<=t2 ‘Event oy ‘Event
time =0 time = inf time = t1 time = 2
{new} o ‘next ~_{new} ;;th
:EventSpec X
:Scheduler e o | :events2order :Event
{new, nac} initial = true Scheduler ™0y time = t
i H X E :Event || :E Yi E E E
msert_flrst :Event :Even :Event :Event :Event :Event
time =t1 || time =tp || time = t time =t1 || time =tp || time =t
CONDITION: ’T\ CONDITION:
t<tf {del} :Event t<tp<t ’ :Scheduler eventsdorderl_1. 5 haduyler
‘ :EventQueue ‘ time = tf X Y,
st \_fnew}next 2| :Event || :Event || :Event || | :Event || :Event || :Event
X time =t || time =ts || time = {2 time =t || time =ts || time = {2
:Event
:events2order [———— CONDITION: K :eventsZorder\__
:Scheduler =gy time =t t<ts<t2 :Scheduler :Scheduler

Fig. 35. Non-Incremental Rules.

The other two rules in the figure insert new events in the queue. These events
are linked to the scheduler by means of an events2order relation. Rule in-
sert_first inserts a new event in the queue if this event is the first one (i.e. it
has lower time than the first scheduled one). Rule insert schedules an event
in the queue, ordered by time. The LHS selects two consecutive events in the
queue so that the event is added in between, and two application conditions
check that the time ordering is preserved. The first condition ensures that, if
there is an event with a time ¢p between the time of first event selected (¢1)
and the time of the event to be scheduled (), then such event is not in the
queue, but is being also scheduled. The second condition performs a similar
check with the second selected event by the LHS.

Note that the non-incremental rules of Fig. 35 are general for any DESS lan-
guage (i.e. not specific to Event Graphs), and therefore, together with the
DESS patterns, will be reusable for any DSVL with DESS semantics. As an

example, Fig. 36 shows the execution rule automatically generated for event
“Arrival” in the model of Fig. 31.

execute_arrival (Arrival:EventSpec)

source

‘target

:Schedules :EventSpec

timeSpec = 6

‘ Arrival:EventSpec w :Schedules

timeSpec =5

‘target
4{ :EventSpec

:instanceOf

:instanceOf

el

¢ :Event 5 {new}| instanceO
. — 7events2order
m time = tf — | :Event
time = 5+tf
sfirst {new}
‘ :Scheduler‘ :Event
time = 6+tf

Fig. 36. Generated Execution Rule for Event Type “Arrival”.

Thus, with our approach, creating a DSVL with DESS semantics implies:
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Fig. 37. Relating Meta-Models for Communication and Containment-Based Visual
Languages (left). Specialization to UML State Machines (right).

source

designing the concrete syntax and putting it in correspondence with the se-
mantic model (bulding the meta-model triple and the triple patterns), as well
as building the editing rules. In this case, the execution rules are generated
from the action patterns, but the DESS semantics also include the set of rules
in Fig. 35, which are also reused for the particular DSVL. As in the examples
of previous subsection, triple patterns are used to extend the editing rules and
the execution rules into TGG rules.

9.3 Visual Languages for Communication Structures

Visual languages for specifying communication processes typically allow an
explicit representation of a communication infrastructure, plus the definition
of a communication protocol. The elements in the infrastructure are responsi-
ble for receiving and sending messages according to the protocol. In general,
messages are exchanged only among elements enjoying some matching visual
property, such as 1) residing at different ends of a same connector; 2) occupying
adjacent cells in a grid; 3) sharing a same container; 4) being within distance
from a source element. Communication elements can have different roles in
different protocols. The meta-model triple on the left of Fig. 37 describes the
relations between communication roles and their visual counterparts depicting
a communication infrastructure in terms of the containment relation.

Identifiable Elements play the role of Receiver of a MessageToken, repre-
sented as a property of the receiving element. Containers act as Distributors
of the messages they receive towards their containees. Elements which are not
containers are message Consumers. The existence of a Contains relation in the
diagram indicates the existence of a Distribution relation at the semantic
level. Moreover, distributors can act as Selectors, transferring the message
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exactly to one containee, or Diffusors, transferring a copy of it to all of them.
Finally, a Deposit role is played by a container which maintains messages, for
receivers to retrieve them according to some other visual relation.

As an example, the right of Fig. 37 shows a simplified version of the model
for the graphical representation of UML State Machines. We only consider
the containment-based aspect of a machine and its semantics in terms of dis-
tribution of event-messages to internal states, seen as processes started by
the reception of a message (or event) at the containing State interface. A
SimpleState is a State for which the isSimple attribute has value true.
These can only be Consumers of a message, as indicated by the morphisms
from the TerminalRole class. They have a distinct representation from that
of Composite States, which in turn are distinguished in Orthogonal or not.
Composite states contain RegionCompartments, which may in turn contain
other composite or simple states. An orthogonal composite state contains at
least two regions, separated by a dashed line, while a non-orthogonal state
contains only one region. A region always acts as a Selector, delivering the
message only to the currently active one inside it. A composite state always
acts as a Diffusor of the message to all its internal region compartments. This
is represented by the different specializations of the CommunicationRole. We
omit initial and terminal states, as these do not play a role in the communica-
tion semantics, and do not consider any special representation for a message.

Based on the meta-model triple, one can incrementally construct a commu-
nication semantics, while designing a state machine through syntactic graph
transformation rules. With each Composite State creation, a corresponding
receiver structure is added to the semantics. Elements can be inserted only
inside containers (the presence of an outermost container being an axiom);
this generates a new instance of the Distribution relation and creates the
correspondence with the inserted element. We use here only the most specific
role that can be assigned to an element. Hence, when inserting a composite
state, one must specify whether it is orthogonal or not. An orthogonal state
is created with two empty regions, and new regions can then be added.

Fig. 38 describes a set of triple rules and a concrete syntax presentation: re-
gions are added to the bottom of a composite state and the size of the container
is expanded to accommodate the new region, as prescribed by rule r1. Rule
r2 shows how to add simple states to a region compartment. Triple rules are
obtained from syntactic ones by specializing the abstract triple pattern on the
left of Fig. 39, as well as the abstract action pattern on the right, to the most
concrete patterns for Selectors, Diffusors and Consumers roles.

Finally, a communication semantics can be defined exploiting a pattern anal-

ogous to that for token-based execution, where messages are used as tokens
to be associated with their possible receivers. To this end, the abstract ac-
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Fig. 38. Rules for Syntax Directed Editing and Incremental Semantics Definition
for Communication in State Machines.

: ActivityToken
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: MessageToken
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lefusor : Receiver

‘target

Fig. 39. Triple Pattern for Connecting Containment and Communication Semantics
(left). Basic Action Pattern for the Communication Process (right).

tion pattern on the right of Fig. 39 prescribes that a message received by a
Diffusor must be delivered to any active Receiver with which it maintains a
Distribution relation. The ActivityToken element in the abstract pattern
represents the condition of being active of a state according to the execution
semantics of UML state machines and is a specialization of Token from the
meta-model for the transition variety, complementing the communication one.
In particular, the presence of active tokens in the receivers is constrained by
the concurrent semantics of UML state machines.

10 Extensions of Enforced Generative Patterns

In this section we provide additional extensions of EG-patterns: simple nega-
tive patterns, composite patterns and patterns with application conditions.

10.1 Simple Negative Patterns

A simple negative EG-pattern (short SN-pattern) is an object N in a (w)aHLR
category. An object H satisfies N, written H = N, if #im: N — H injective
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morphism. Thus SN-patterns forbid the application of a rule if the result-
ing object after the direct derivation does not satisfy the pattern. There-
fore, SN-patterns are like negative post-conditions in the graph transformation
approach [12]. They can be transformed into pre-conditions, using the well-
known procedure to generate post-conditions from constraints and advance
post-conditions into pre-conditions [12,19].

The scheme of the construction is shown on the left of Fig. 40. We select a
maximal intersection object N/ and compute the pushout object S; (square
(2)). The object S; represents a possible result for rule application where pat-
tern N is found (and therefore not satisfied by S;). Thus, in order to forbid a
direct derivation yielding 5;, we construct a negative application condition /V;
by applying rule p backwards. This is done by calculating the pushout comple-
ment object NV; (i.e. (1) is a pushout). Thus, we obtain a NAC n;: L — N;. If
the pushout complement does not exist, then no NAC has to be added, since
S; cannot be produced. The construction is repeated for each maximal inter-
section object N/. This construction is similar to the one in [12,19]; however,
we take a maximal intersection object, instead of just all possible ones. This
avoids producing NACs that are subsumed by others.

. T L R N’
L T R pri NZ/ 1
n; (1) a; (2) Pil N, lm PO. S, la1 PO. N lp1
N- Si ) bl ‘A

K3 2

i e Y ey

Fig. 40. Translating a SN-pattern N into NACs (left). Example (right).

Example. The right of Fig. 40 shows the application of an SN-pattern to
a rule. There is no need for further iterations, as there is only one maximal
intersection object. Taking a smaller intersection object would have resulted
in a weaker NAC, subsumed by N;. For example, by taking Nj with just one
node of type A, we would obtain a S; with three Bs and a NAC with two Bs,
which is a weaker NAC than the one we have obtained.

There are two differences with the constructions given in [12]: first, as we
only deal with injective morphisms, the calculation of the post-conditions is
simpler. Second, we use maximal intersection objects N/ and not any gluing of
R and N. This produces fewer, stronger pre-conditions. As we are interested
in constraining the objects produced by R, in our case N/ cannot be empty.
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10.2 Composite Patterns

Composite positive patterns (CP-patterns) have the form X —— Y (with x
injective), meaning: “if X is found, then Y should be found as well”. In a
similar way, composite negative patterns (CN-patterns) of the form X -~ N
mean “if X is found, then N must not be found”.

An object G satisfies a CP-pattern pp : (X — Y), written G = pp iff the
diagram to the left of Fig. 41 commutes, or X -~ G. In this latter case
we also say that G trivially satisfies pp. Similarly, an object G satisfies a CN-
pattern np : (X —— N), written G = np iff in the diagram on the right of
Fig. 41 there is no N — @ such that t on = m, or 3X -2 G. In this latter
case we also say that G trivially satisfies np.

X - Y X & N
M;;/U M;/lt/

Fig. 41. Satisfaction of CP-pattern (left). Satisfaction of CN-pattern (right).

The application of composite patterns to rules is similar to that shown in
Section 6, but involves one more step, making an extra pushout.

CP-patterns. The left of Fig. 42 shows the application of a CP-pattern for
the case in which pattern X, hence its consequence Y, must be enforced. The
procedure is similar to that for SP-patterns (see Section 6), but after enforcing
X through the pushout object R’, we have to enforce Y by calculating the
pushout object R”. Note that X; and Xy play the same role as objects P,
and Pr in Fig. 19. Xy is the part of X that is enforced by simply creating
the missing elements, whereas X, is enforced by extending the rule’s left-hand
side. As the CP-pattern pp : (X —— Y) can also be trivially satisfied if no
X is found in the host graph, another rule resulting from the procedure for
SN-patterns (taking only X as SN-pattern) has to be generated.

CN-patterns. In order to apply a CN-pattern np : (X — N) to a rule,
we enforce the positive part X and then we forbid N. Enforcing the positive
part is done in the same way as for SP-patterns (using the constructions of
Section 6). After each iteration, we generate a NAC using the procedure for
SN-patterns. The right of Fig. 42 shows a diagram where X is enforced by
maximally extending the rule’s effects (pushout (1)). Then, the construction
of Fig. 40 is applied to generate a NAC n;: L — N; (pushouts (2) and (3)).
Note that we could have used any of the constructions in Section 6 to enforce
X. Moreover, enforcing X may require further iterations, after each of which
the procedure for SN-patterns has to be applied (possibly resulting in one or
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Fig. 42. Extending the Rule Context and Effect According to CP-patternx: X — Y
(left). Applying CN-pattern n: X — N (right).

zero NACs). Even if no iteration is needed to enforce X (i.e. X is included in
R), the SN-pattern procedure must be applied to generate the needed NAC.

10.8 Patterns with Application Conditions

Patterns (of any kind) can also be supplemented

with application conditions. These constrain the L—=>R<—F
applicability of the pattern to the rule. We ex- r’:a%ai’ (11)) pi

i - R <—P—"=N
plain the case for SP-patterns and NACs, as the ~ 5~

rest is similar. An SP-pattern with NAC is a tu-
ple (P,n: P — N), where n: P — N is a NAC. Fig. 43. Application of
When the pushout with R’ is built, the applica- SP-Pattern with NAC.
tion is valid only if there is no morphism z: N — R’ such that z on = b, as
Fig. 43 shows.

11 Conclusions

Patterns are a common way to describe some abstract characteristics of a
model, as well as to state some required “shape” for it. The typical way to
exploit patterns is therefore through the definition of some morphism from the
pattern to an existing model to check whether the latter conforms to the first,
i.e. if an instance of the pattern can be found in it. Little support is however
provided by this notion for the case in which such a match is not found, for
example to identify how conformance can be established.

We have proposed enforced generative patterns as a means to ensure that
rules used to produce a model act in such a way that the resulting model
conforms to the required shape. In particular, we have shown the relevance of
this notion to the development of DSVLs, by showing how the application of
suitable sets of patterns to rules of the concrete syntax is sufficient to generate
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triple rules, incrementally reconciling the syntax and the static semantics of
a visual sentence, and meta-rules, used to incrementally update its execution
semantics. Triple patterns can be applied to the execution rules to obtain triple
rules updating the concrete syntax. The approach has been demonstrated on
a number of known visual languages, showing its potential in the construction
of syntax-directed integrated environments for their management.

An important issue for the practical application of EG patterns is management
of attributes. We used attributes in triple patterns in Section 9.2 (see e.g.
Fig. 34). However, up to now, triple patterns are limited to copy attribute
values. The action pattern in Fig. 34 performs a simple attribute computation,
and we do not foresee any problem with attribute handling in action patterns.
For triple patterns however, we need to restrict to invertible dependencies
between attribute values, as the pattern might be applied to the source or the
target graphs. Investigating attribute conditions is also left for future work.

We now plan to systematically explore the application of enforced generative
patterns to several fields with established notion of patterns. In particular, we
see possibilities for the generation of UML-based development environments
enriched with support for design patterns in the sense of [15], where basic
editing rules could be transformed to generate instances of the patterns. In
this way, EG patterns could be used to produce pattern-oriented modelling
environments for DSVLs. In this context, activities like pattern discovery and
pattern-oriented model redesigns are interesting challenges.

Another interesting development is the introduction of universal quantifica-
tion into patterns. For example, the basic pattern for creating nodes only if
connected to an existing one could be quantified on the latter to ensure that
each new node gets connected to all the nodes already in the graph. This
could open the way to the definition of a pattern language. This line of re-
search would probably intersect the Local Shape Logic introduced in [27] and
the use of patterns as synthetic expression of rules presented in [2].
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