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ABSTRACT

We use the recently proposed scale-free mass estimators to determine the masses of the Milky
Way (MW) and Andromeda (M31) galaxy in a dark matter only Constrained Local Universe
Simulation. While these mass estimators work rather well for isolated spherical host systems,
we examine here their applicability to a simulated binary system with a unique satellite
population similar to the observed satellites of MW and M31. We confirm that the scale-free
estimators work also very well in our simulated Local Group galaxies with the right number
of satellites which follow the observed radial distribution. In the isotropic case and under the
assumption that the satellites are tracking the total gravitating mass, the power-law index of
the radial satellite distribution N(< r) o r*~7 is directly related to the host’s mass profile M(<
r) o« r'™* as @ = y — 2. The use of this relation for any given y leads to highly accurate
mass estimations which is a crucial point for observer, since they do not know a priori the
mass profile of the MW and M31 haloes. We discuss possible bias in the mass estimators and
conclude that the scale-free mass estimators can be satisfactorily applied to the real MW and
M31 system.

Key words: methods: numerical — galaxies: evolution — galaxies: haloes — Local Group —

dark matter.

1 INTRODUCTION

Although measurements of gas rotation curves are often precise
enough to constrain the innermost mass of galaxies like the Milky
Way (MW) and Andromeda (M31) (within a few tens of kpc),
kinematics of a tracer populations are needed to compute the mass
within greater radii. These tracers can either be globular clusters
or planetary nebulae (e.g. Schuberth et al. 2010; Woodley et al.
2010), halo stars (Xue et al. 2008) or satellite galaxies (e.g. Watkins
et al. 2010, hereafter W10). Since the kinematics of these objects
are determined by the underlying host potential they allow for an
estimate of the enclosed mass within their respective distances from
the centre of the host.

Kinematic data of galaxies in clusters have already been used
to compute the mass profiles and galaxy orbits in nearby clusters
(Wojtak & Lokas 2010); moreover, the mass of four MW dwarf
spheroidals (dSphs) satellites were constrained with high precision
thanks to kinematic data sets (Lokas 2009). Line-of-sight kinematic
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observations enable accurate mass determinations at half-light ra-
dius for spherical galaxies such as the MW dSphs (Wolf et al.
2010): at both larger and smaller radii however, the mass estimation
remains uncertain because of the unknown velocity anisotropy.

Regarding our own Galaxy, having position and proper motion
data of the MW’s satellite galaxies would allow one to satisfactorily
apply the great majority of kinematic mass estimators to the calcu-
lus of the MW’s mass, including the recently proposed ‘scale-free
projected mass estimator’ (W10).

In the very near future the knowledge of the full six-dimensional
phase-space information for all objects, in the close Universe,
brighter than G =~ 20 mag, is going to be dramatically improved
thanks to space missions, like Gaia,! whose goal is to create the
largest and most precise three-dimensional chart of the MW by
providing precise astrometric data like positions, parallaxes, proper
motions and radial velocity measurements for about one billion stars
in our Galaxy and throughout the Local Group (LG).

An, Evans & Deason (2012) recently showed that new proper
motions data with the targeted Gaia accuracies will be able to

U http://www.gaia.esa.int
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outperform the presently existing line-of-sight-based mass estima-
tors. However, until the proper motions of these satellite galaxies
become available, one needs to rely on assumptions and simplifica-
tions.

One of the first estimators of the mass contained within the LG
is based on the ‘timing’ argument of Kahn & Woltjer (1959). More
accurate mass estimators for spherical systems are based either
on the virial theorem or on the moments of projected mass, as
first introduced by Bahcall & Tremaine (1981). They assumed that
only projected distances and line-of-sight velocity information were
available, and demonstrated the goodness of the projected mass esti-
mator. The main advantages of such a projected mass estimator over
the virial theorem, neglecting the uncertainties in the eccentricity
distribution, are that they are unbiased, their variance is known and
they converge to the real mass with an error proportional to N~'/2,
where N is the sample number. Moreover, the information from
every tracer particle is equally weighted, contrary to what happens
for the virial theorem case.

Previous studies successfully used these mass estimator methods
to ‘weigh’ M31; and more recently, W10 developed alternative
forms of estimators that can also be applied to the calculus of the
MW?’s mass: they rely on the assumption that both the host galaxy
and its distribution of tracer objects are spherically symmetric. What
is still unclear however, is the shape of the MW and M31 halo, with
various authors in the literature disagreeing over whether it is triaxial
(Law, Majewski & Johnston 2009) or spherical (Koposov, Rix &
Hogg 2010).

Deason et al. (2011) and Evans, An & Deason (2011) have
demonstrated the statistical validity of the W10 mass estimators us-
ing a set of 431 parent haloes and 4864 associated satellite galaxies,
taken from the Galaxy—Intergalactic Medium Interaction Calcula-
tion (GIMIC) simulations (Crain et al. 2009): under the assumption
of having a host profile of the type NFW (Navarro, Frenk & White
1996), they found that the fraction of estimated halo mass which
lies within a factor of 2 of the true mass is about 80 per cent.

In this work we aim to gauge the quality of the method introduced
in W10 by using the LG identified in the 5-year Wilkinson Mi-
crowave Anisotropy Probe (WMAPS) dark matter only constrained
cosmological simulation of the Constrained Local Universe Sim-
ulations (CLUES) project,? a numerical laboratory for testing the
applicability of such a method to the MW and M31.

Observational data of the nearby Universe are used to constrain
the initial conditions of the CLUES simulations. These constrained
simulations, in which the LG lies in the right cosmological envi-
ronment, provide a complementary approach, with respect to cos-
mological simulations, to make a comparison between numerical
results and observations. Thus, verifying the robustness of the W10
mass estimators in our unique simulated LG is an important test
in addition to the more statistical methods offered by cosmological
simulations (Deason et al. 2011).

The idea is to verify whether these estimators can accurately be
applied to a system such as the one found in our LG and composed
of the MW and the Andromeda galaxy. The arrangement and forma-
tion history of this galactic binary system, according to our present
state-of-the-art of numerical simulations, is rather unique and in-
volves preferential infall directions of their subhaloes (Libeskind
et al. 2011), a backsplash population (Knebe et al. 2011a) and even
renegade satellites (Knebe et al. 2011c), i.e. satellites that change
their affiliation from one of the two hosts to the other. Furthermore,

2 http://www.clues-project.org

the MW and M31 satellites do in fact remember the non-random
nature of their infall after several orbits (Libeskind et al. 2012). We
also need to mention that — when comparing constrained against
unconstrained simulations — only 1-3 per cent of the LG candidates
share similar formation properties (Forero-Romero et al. 2011).

Moreover, the observed MW satellites are found to be highly
anisotropical, lying within a thin disc which is inclined with respect
to the MW’s one, with a minor-to-major axis ratio c¢/a = 0.3: this flat-
tened distribution is not compatible with the satellites to have been
randomly selected from an isotropic subset (Kroupa, Theis & Boily
2005; Metz, Kroupa & Jerjen 2007; Metz, Kroupa & Libeskind
2008). Previous cosmological simulations showed anisotropy in the
subhaloes population, with the brightest satellites distributed along
disc-like structures, consistently with the observed MW satellites
(cf. Knebe et al. 2004; Libeskind et al. 2005; Zentner et al. 2005).
This anisotropy, which is also observed in our simulated subhaloes,
may in principle cause a bias in the application of the mass estimator,
since the hypothesis of spherical symmetry is broken.

We therefore raise (and answer) the question about the applica-
bility of scale-free mass estimators to such a special system as the
LG.

2 THE SIMULATION

Here we briefly describe the simulation and the way (sub)haloes
have been identified within it.

2.1 Constrained simulations of the Local Group

The dark matter only simulation used here forms part of the CLUES
project and is designed to reproduce the LG of galaxies within a
WMAPS cosmology (Komatsu et al. 2009), i.e. Q,, = 0.279, Q, =
0.046, 2, = 0.721. We use a normalization of og = 0.817 and
a slope of the power spectrum of n = 0.96. We used the TreePM
N-body code Gapcet2 (Springel 2005) to simulate the evolution of
a cosmological box with side length of L,.x = 64 ! Mpc. Within
this box we identified (in a lower resolution run utilizing 10243
particles) the position of a model LG that closely resembles the real
LG (cf. Libeskind et al. 2010). This LG has then been resampled
with 64 times higher mass resolution in a region of 2/~! Mpc
about its centre giving a nominal resolution equivalent to 4096
particles giving a mass resolution of mpy = 2.95 x 10° ™' M.
Within this environment we identified two main haloes, formally
corresponding to the MW and the Andromeda galaxy, whose main
properties are listed in Table 1, together with their corresponding
actual observational properties. The virial mass of each halo is in
units of 10'2 M@, while the virial radius and the distance between
the two hosts, listed as D, are in Mpc. Both these quantities are based
upon the definition M (< R.;)/(47t/3 Rsir) = Ayirpv, Where py, is the
cosmological background density and A;, = 354 for the considered
cosmology and redshift z = 0. The concentration is ¢, = Ryi/r2,
where r, denotes the ‘scale radius’ where the product p(r)r? reaches
its maximum value. The two axis ratios b/a and c/a are derived from
the eigenvalues @ > b > ¢ of the moment of inertia tensor, and the
vertical-to-planar axis ratio is reported for M31. The o parameter is
the exponent corresponding to a scale-free host mass profile M(r)
r! =@, see Section 3.1 for more details. The observationally derived
masses are based on the work of W10, and represent the estimates
of each galaxy mass assuming a virial radius of 300 kpc, using the
observed anisotropy parameter 8 and including satellites’ proper
motions.

© 2012 The Authors, MNRAS 423, 1883-1895
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Table 1. Main properties of the two haloes (representing the MW and M31
galaxy, respectively) considered in this work, and of their respective sub-
haloes population. The virial mass of each halo is in units of IOIZMQ,
while the virial radius and the distance between the two hosts, D, are
in Mpc. We listed the observational inferred quantities of MW and M31
that refer to the work of @W10, ®Law et al. (2009), <C')Banerjee & Jog
(2008), Y McConnachie et al. (2005), ’Mateo (1998), P Ibata et al. (2007),
(®Martin, de Jong & Rix (2008) and (WKarachentsev et al. (2004).

Property Simulation Observed

MW M31 MW M31
Myir 1.674 2.226 2.7 £0.5@ 1.5+ 0.4@
Ryir 0.310 0.340 0.300@ 0.300@
I 11.7 10.7 - -
bla 0.937 0.978 0.83® 0.4©
cla 0.883 0.872 0.67®
o —0.034 —0.052 - -
D 0.782 0.785 + 0.025@
Naat 1205 1405 24 21
Fout 0.309 0.340 0.250 + 0.003© 0.270%
Fmin 0.018 0.014 0.023 £ 0.002® 0.005M

2.2 The (sub)halo finding

In order to identify haloes and subhaloes in our simulation we
have run the MPI+OpenMP hybrid halo finder anrF® described in
detail in Knollmann & Knebe (2009). aHF is an improvement of the
MHF halo finder (Gill, Knebe & Gibson 2004), which locates local
overdensities in an adaptively smoothed density field as prospective
halo centres. We would like to stress that our halo finding algorithm
automatically identifies haloes, subhaloes, sub-subhaloes, etc. and
it can reliably recover substructures containing at least 30 particles
(Knebe et al. 2011b). For more details on the mode of operation
and actual functionality we though refer the reader to the code
description paper by Knollmann & Knebe (2009), while an in-depth
comparison to other halo finding techniques can be found in Knebe
et al. (2011b) and Onions et al. (2012). A complete summary of the
characteristic of the subhaloes population of the two main haloes,
MW and M31, is shown in Table 1, together with a comparison of
the properties of their observed satellite galaxies. The r,y and 7y,
are the radius of the outermost and innermost tracer, respectively,
in Mpc (in the case of M31 we listed the projected distances).
The quantity N, represents the number of simulated subhaloes (or
observed satellite galaxies) within 0.3 Mpc from each host centre.

3 SCALE-FREE MASS ESTIMATORS

Even though the mass estimators are derived under the assumption
that the respective distributions are scale free, they have never-
theless been successfully applied to the observed MW and M31
(W10) where the hierarchical structure formation model supports
the notion that the density profile of dark matter haloes follows the
functional form originally proposed by Navarro et al. (1996), i.e.
the so-called NFW profile.

Xue et al. (2008) constrained the mass distribution of the MW’s
dark matter halo by analysing the kinematic of thousands of blue
horizontal branch halo stars, finding a profile that is consistent with
a combination of a fixed disc and bulge model with a NFW dark
matter halo. Seigar, Barth & Bullock (2008) have derived new mass

3 amiGA halo finder, to be downloaded freely from http:/www.popia.
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models for M31, and found that while a NFW and an adiabatically
contracted NFW profiles can both produce reasonable fits to the
observed rotation curve of M31, the pure NFW model requires a halo
concentration too high with respect to the range predicted by the A
cold dark matter (ACDM) cosmology, and is therefore disfavoured.
Thus, it is still debatable whether the MW and Andromeda galaxy
haloes actually follow a NFW profile.

In this section we briefly introduce the scale-free mass estimators,
which are directly taken from W10: we refer the reader to their work
for a derivation of the respective formulae.

3.1 Theory of mass estimators

Here we present the four relevant formulae and the three parameters
each formula depends on: we see that the mass estimator takes
different forms according to the available information from the
tracer populations.

3.1.1 Full information estimator

In the optimum case that the full six-dimensional phase-space in-
formation is accessible, the mass estimator can be written as

M(<rou) C]NZZ (1
<Fout) = 5 v;r,
YT GN e
with
Ot-H/—zﬂ 1—
Czi Ot, 2
3_2p o @3]

where v and r are the velocity and distance of each individual
tracer particle, ro, represents the radius of the outermost tracer
and G is the gravitational constant. The dimensional constant C
is constructed out of three additional parameters determined by
the host potential (o), the tracer’s radial distribution (y) and the
tracer’s velocity anisotropy (), more details in Section 3.1.5 where
these parameters are algebraically defined. Note that we can only
estimate the halo mass contained within the outer radius 7,y set by
the distance to the farthest tracer. The mass is then constructed as an
average of v>r* over the total number of tracer objects, Niracer. We
will refer to equation (1) as the full information estimator (FIE).

3.1.2 Radial information estimator

In the case that only the radial velocity, with respect to the centre of
the host galaxy, and the individual distances of the tracer population
are known, v, and r respectively, a different definition of the constant
C must be used:

M(<ro) = S+ NZ vy 3)
G N i=1 m

with

C=(a+y—2Bry" )

‘We shall call this the radial information estimator (RIE): this case
applies to our own MW. Since we do not have the proper motion of
all of its satellites, but just of nine of them (see for instance Metz
et al. 2008), it is safer to assume the RIE. It must be noticed that in
absence of proper motion v, may be calculated from v}, by using
the statistical correction:

()=

/71— Bsin¢’
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where ¢ is the angle between the vector from the galactic centre to
the satellite and the vector from the Sun to the satellite. As we can
see, this correction further depends from the anisotropy parameter
B. We will come back to the proper placement of the observer and
the relevance of this correction, respectively, later on.

3.1.3 Line-of-sight information estimator

When using only projected line-of-sight velocities vs and actual
distances r for the tracer population, the mass estimator referred to
as the line-of-sight information estimator (LIE), and may be written
as

Nuacer
M<ro) = S~ Z Vo i1 (6)
G N P 08,171
with
3oty =28 .,
C = 7r;ut N (7)

3-28
This estimator must be used, for example, when calculating the
mass of the Andromeda galaxy.

3.1.4 Projected information estimator

In the worst case scenario in which the only data available are both
projected distances R and line-of-sight velocities vy, for the tracer
population, the corresponding estimator is

Niracer

C1
M(<ro)=—— > vp RE, 8)
G N P
with
-2
c= 272 1 ©
Iy p
where
T (% +1
Lg= #[a+3—ﬂ(a+2)] (10)

4r (5 +3)
and I"(x) is the gamma function. We will refer to this last equation
as the projected information estimator (PIE).

3.1.5 The parameters «, B and y

The ever present constant C is composed of three parameters, de-
scribing the host potential as well as particulars of the tracer pop-
ulation, under the assumption that they both can be sufficiently
described by scale-free models. We further assume spherical sym-
metry for our tracer population.

The o parameter corresponds to a scale-free gravity field, which
is equivalent to a host mass profile of the form

M(r) ocr'™ (11)

or, equivalently, to a mass density that scales as p oc r~©@ 2,
The B parameter is the Binney velocity anisotropy parameter
(Binney & Tremaine 1987), defined as
2

p=1-" (12)
B 207

in which 02 and o2 are the tangential and the radial velocity disper-

sions of the tracer objects. 8 provides information about the orbital

distribution of our tracer population.

Lastly, the y parameter represents the exponent of the power law
describing the radial number density distribution n(r) of the tracer
population:

n(r)yocr7. (13)

These three parameters are fundamental in describing the geom-
etry of the system and, together with the kinematical information of
the tracers, allow us to compute an accurate estimator of the mass
of a host halo. It is thus absolutely essential that they are deter-
mined with the highest possible accuracy. In reality, however, this
is not always possible: we are often forced to make assumptions
regarding the form of the underlying host potential. Moreover, the
number of the known satellites of both MW and Andromeda is only
~25, making the determination of the y parameter relatively inac-
curate. In addition, in the MW’s case, only seven of these objects
have accurately measured proper motions: with such a small sam-
ple the velocity anisotropy g is widely unconstrained by data. In
Section 3.2 we will present the dependence of the mass estimator
on each of these parameters, computing — for a specific case — the
error introduced by uncertainty in o, 8 and y, respectively.

3.2 Dependence of the mass estimators on the parameters

Given the inherent inaccuracy in determining the three model pa-
rameters, we would like to gauge the sensitivity of the mass estima-
tors to their uncertainties, considering an adequate set of subhaloes
covering a radial range out to 7qy,.

3.2.1 y dependence

We aim to study the dependence of the mass estimator on the pa-
rameter y, which represents the exponent describing the radial dis-
tribution of the satellites population. We therefore calculated the
relative variation of the estimated mass per variation in y:
AM 1
MAy — a4y —28
We note that equation (14) is valid for the four cases of FIE, RIE,
LIE and PIE, being independent from the radial distribution of
satellites; it provides a tool for calculating the expected uncertainty
in the mass determination given the expected errors in y .
Assuming an isotropic distribution of orbits, i.e. 8 = 0, we focus
on the real case scenario in which the y parameteris y = 2 (as found
in W10 for the observed satellites of MW and M31): allowing for an
uncertainty of Ay/y ~ 25 per cent, and recalling the typical value
for « that is around 0.55 for a NFW host (e.g. W10), we see that
the error in the estimated mass is as high as AM/M ~ 20 per cent.
This error will be even larger when considering smaller value of y
and «, as well as for g > 0.

(14)

3.2.2 B dependence

Regarding the changes in the mass estimation due to the anisotropy
parameter, we recall that this parameter is directly obtained from
the velocities of the tracer population, computing the tangential and
the radial velocity dispersion of each subhalo (as opposed to the
o and y parameter, which are derived by assuming a power-law
distribution). The B average value has been found to be 8 ~ —0.3
and ~—0.02 in our CLUES simulation for the full set of subhaloes
of the MW and M31, respectively. While these values of 8 indicate
that we are close to the isotropic regime, i.e. B = 0, the MW
anisotropy parameter slightly favours tangential orbits, in agreement

© 2012 The Authors, MNRAS 423, 1883-1895
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Figure 1. Relative variation per unit parameter change of the mass estimated as a function of the g parameter in the case of FIE/LIE (left-hand panel) and
RIE (right-hand panel) estimators. The fractional error in the mass estimation is larger for the RIE estimator, used for MW, than for the FIE/LIE estimators,

applicable to M31. See full text for more details.

with the measured proper motions of the known MW satellites. It
is thus essential to understand how the variation in the B parameter
affects the determination of the host mass. For the RIE estimator
the corresponding equation reads

(ﬂ) -2 (15)
MAB ) e a+vy—28

whereas for the FIE and LIE cases it is

MAB ) ppe 3—28 a+y—28

finally, for the PIE scenario

<ﬂ> _ a+2 B 2 . (17
MAB)pp a+3—Bla+2) a+y-—-28

In Fig. 1 we present the absolute value of the fractional mass varia-
tion as a function of the 8 value for the FIE and LIE cases (left-hand
panel) and for the RIE estimator (right-hand panel). We do not plot
the mass changes in the PIE case, as it is practically identical to
the FIE and LIE ones. As in the previous section, considering the
general case of having a NFW halo, with values of g close to zero
and y = 2, which is the usual case for the hosts considered here
and elsewhere (e.g. W10), we find that the error due to variations
of A = %1 for the FIE, LIE and PIE estimators is actually quite
low and is below 10 per cent for « = 0.55. Moreover, Evans et al.
(2011) found that for much of the radial regime covered by the
tracer population, any variation of the anisotropy parameter within
its physical range leads to the same estimator in the case of the PIE
scenario. Thus, in the case of an external galaxy whose dark matter
halo follows a NFW profile with @ = 0.55 and 2 < y < 3, we can
assume to have a minor error due to 8: the major uncertainty in the
mass estimation comes from the assumption made on the @ and y
parameters. This last statement is valid for the FIE, LIE and the PIE
estimator: it does not matter if we have real satellites distances or
projected ones, the biggest error on the mass does not come from
the anisotropy parameter.

The situation is, however, completely different for the MW
galaxy, for which the RIE formula holds, i.e. we have radial in-
formation on the satellite velocities. In this case, a variation of
A = %1 could cause an error in the mass estimation of around 80
per cent if we have y = 2 and o = 0.55. Therefore, the 8 parameter
is unfortunately the greatest concern in the calculus of the mass of

© 2012 The Authors, MNRAS 423, 1883-1895
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our own Galaxy. Please note that if we knew the three-dimensional
velocities of the MW satellites as opposed to only the radial ones,
we would be dealing with equation (16), thus being in the regime
in which the correct evaluation of the B parameter will only have a
subordinate influence.

We close by remarking that this discussion perfectly agrees with
the previous study of the influence of the 8 parameter on the mass
estimation as presented in W10.

3.2.3 « dependence

Finally, we computed the amount or error introduced by uncertain-
ties in the o parameter, which is directly connected to the potential
of the host halo. The fractional variation of the estimated mass, for
the FIE estimator, is

am ! 3, i In)
= - ln(rout) + ) P (18)
MAa e a+y—28 >

it

where the summation, as usual, is performed over the total number
of tracers Nyacer and roy s the radius of the outermost subhalo.
Equation (18) is formally identical for the RIE and LIE case as
well, after substituting the full velocity v with the radial velocity v,
or the line-of-sight vjs one, respectively.

When dealing with the PIE scenario, instead, the error can be
calculated through the following equation:

AM 1 >, vi R¥In(R;)
= ——— (o) + =55
MAo Jpp a+y—28 > v RY

los,i
o
vi+y w5+
2 2
=
a+3—-Ba+2)’ (19)

+

where W(x) is the digamma function, defined as the derivative of
the logarithm of the I'(x) function.

Unlike the other cases, we cannot give a generalized estimation
of the error introduced by the o parameter, it being dependent on the
radial distribution of the satellites population: this uncertainty varies
for every specific scenario and needs to be calculated individually.
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4 APPLICATION TO THE CLUES SIMULATION

‘We now move to the application of the scale-free mass estimators to
a situation as close as possible to our LG. To this extent we use the
CLUES simulation introduced in Section 2. While we are certain
that the scale-free approximation leads to credible results as shown
by W10, Evans et al. (2011) and Deason et al. (2011), it remains
to be seen whether the uniqueness of the LG with its binary host
system and particular formation history involving preferential infall
(Libeskind et al. 2011), renegade satellites (Knebe et al. 2011c) and
anisotropically distributed subhaloes (not explicitly shown here)
will affect the mass estimate. Moreover, we would like to gauge the
accuracy of these mass estimators when fewer tracers are used, as
in the real LG.

From now on we will refer to the case of an observer that is
placed at the centre of our Galaxy and looking towards the MW'’s
satellites or to the nearby M31’s ones. The choice to put the observer
in the galactic centre instead that at the solar radius may affect
the determination of v, from v, given the fact that the radial
velocity should be computed with respect to the Sun. However,
this is practically identical to the radial velocity with respect to the
galactic centre for distant tracers, for which sin¢ ~ 0, which is
the case for our subhaloes. Moreover, the anisotropy parameter 3,
which appears in the correction factor of equation (5), has always
been found to be very close to zero in our simulations (as reported
in Section 3.2.2). Nevertheless, when applying the different mass
estimators we also used the correction factor given by equation (5),
placing the observer on a sphere of radius 8 kpc from the galactic
centre, and we verified that the affect of this correction is at the <0.5
per cent level. We will thus refer, through the paper, to the case of
an observer placed in the galactic centre.

4.1 Obtaining the parameters «, 8 and y

In order to apply the mass estimator method to our simulated galax-
ies, we need to calculate the three unknowns «, 8 and y that appear
in equations (1), (3), (6) and (8).

4.1.1 The satellite parameters: y and f8

The y parameter is simply obtained by fitting the radial number
distribution N(< r) of each host’s subhaloes to the functional form

N(<r) x r¥7, (20)

assuming that the number density n(r) follows equation (13).

The velocity anisotropy parameter 8, as defined in equation (12),
is obtained by first calculating the radial velocity dispersion of the
subhaloes, projecting their velocities along the radial axis, then by
computing the tangential component of o through the relation
ol =0} —or=(}+ af +07)— o 21)
While 8 and y can be directly computed in the FIE and RIE cases,
in order to calculate them in the LIE scenario we first need to derive
the line-of-sight component of the velocity vectors of the subhaloes.
The line-of-sight velocity depends on the viewing angle of the host
which is unknown in our simulations. We thus randomly rotate
each host and its subhaloes N, = 5 times, taking the mean of all
these resulting line-of-sight velocity to compute 8. We perform a
small number of rotations of the whole system since otherwise, by
averaging over a higher number of rotations, we converge to the
FIE case. The same methodology has been applied to the PIE case
where we additionally had to project the distances of the tracers
objects into the observers plane in order to obtain the y parameter.

Table 2. Value of the o parameter and its fractional error Ao/ obtained by
fitting the numerical mass profiles of the MW and M31 over different radial
ranges.

MW M3l

Radial range o % (per cent) o % (per cent)

[0, 1]Ryir —0.034 70 —0.052 60
[0.4, 1]Ryir 0.302 8 0.266 9
[0.8, 1]Ryir 0.398 3 0.402 7

4.1.2 The host halo parameter: o

To get the value of o, we must recall that since our haloes are not
scale free but rather follow a NFW profile (Navarro et al. 1996), the
applicability of a power law is limited. While for a pure scale-free
model it is irrelevant whether we fit the gravitational potential, the
density or the mass profile of the host halo (see W10), it will most
certainly lead to differences when the scale invariance is broken.
Recall that for a scale-free model:

pr)ocr ™ & pr)ocr T & M) ocr e (22)

For a NFW object, however, we must identify which quantity is
the most suitable to be fitted, and we decided to use the cumulative
mass profile M(r) since this is the least noisy from a numerical point
of view.

Furthermore, since our halo does not follow a scale-free profile
(either in mass or in potential), the actual value of o depends on the
radial range used to fit it, i.e. a(r) # const.

We thus provide, in Table 2, the numerically fitted values of «,
obtained by fitting the total mass halo profile in different radial
ranges, specifically in the total range, in the outermost one, and in
the intermediate range, together with their fractional relative errors,
where we indicate with A« the 1o error on « as found from the
fitting routine.

As in the previous case of the y parameter, we used a Poissonian
weight (1/Ngp) to associate errors to the data during the fit: as
expected, the smallest relative error is obtained in the outermost
radial range, confirming that in this regime the host density profile
is best approximated as being of scale-free nature.

We obtained for the MW and M31 in the total radial range a
value of « = —0.034 and —0.052, respectively, as listed already
in Table 1, while we can observe how the « value increases when
we move to the outer part of the halo, as expected if the halo is
following a NFW profile, since it gets steeper towards the outer part
of the distribution.

While using the numerical mass profile given by the simulation
data is actually a self-consistent way to obtain «, we note that an
observer would require a mass model to actually determine the o
parameter to be used with the mass estimators. Since an observer
does not have any a priori knowledge of the radial mass distribution
(or potential) of the host halo, an analytical profile must be assumed.
Note that W10 showed that for an object following a NFW profile
the typical value of « is 0.55, based upon fitting a NFW potential
in the range [10, 300] kpc to a power law ¢ o r~ and assuming
to have hosts with concentration between ¢ = 18 and 8. Given the
uncertainty on the actual density profile of the real hosts, we decided
to allow for the estimates of « in two different ways:

(i) using the values derived by fitting our numerical profile at
different radial ranges, or
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Figure 2. Distribution of 1000 realizations of the estimated mass over the real one for 30 subhaloes of the simulated MW. The average value of the parameters
B and y obtained in each realization is shown. The best-fitting Gaussian is also plotted, and its mean p and standard deviation o are indicated. The left-hand

panel corresponds to the FIE estimator, the right-hand panel to the RIE one.

(ii) using the relation « = y — 2, which holds true if the sub-
haloes are tracking the total gravitating mass of the hosts.

4.2 Results for the simulated MW and M31

The application of the scale-free mass estimator to the (observa-
tionally) unrealistic scenario in which we have N ~ 1000 tracers,
as found in our simulated haloes, gives excellent results for all the
estimators FIE, RIE, LIE and PIE. Using the error formulae listed in
Section 3.2, and allowing a maximum error on the calculation of the
parameters o, 8 and y of about ~20 per cent, we obtained the MW
mass at the Ryi; = 309 kpc within a 5 per cent of uncertainty and
the M31 mass at the Ry;; = 340kpc within a 3 per cent of error, re-
spectively (FIE estimator). However, we decided not to show these
results and rather focus on more interesting and practical situations
where the number of tracer objects is limited and agrees better with
the actual observed LG. We must note, however, that part of our
initial questions has been already answered by this exercise: the
scale-free mass estimators are even applicable to a system of host
haloes such as the (observed) LG for which they were originally
designed.

4.2.1 Matching the number of the observed satellites

As shown in Table 1, the total number of subhaloes found within
300 kpc in our simulations substantially differs from the number
of observed satellites galaxies of the MW and Andromeda within
the same radius (the well known missing satellites problem, first
addressed in Klypin et al. 1999; Moore et al. 1999). Thus, we
would like to calculate the accuracy of the mass estimators when
the number of tracers is comparable to the real one, i.e. N ~ 30 (we
explicitly chose this number to be able to have a direct comparison
with the W10 results, see e.g. their fig. 1). Further, the real case
scenario is the one for which we have the radial velocities of the
MW satellites and the line-of-sight velocities of the M31 tracers: in
the forthcoming analysis we will thus only use the RIE estimator
for the MW and the LIE one for the Andromeda galaxy.

From the total set of subhaloes we randomly selected N = 30
objects that covered the total range within r,, < 300 kpc and com-
puted their velocity anisotropy and their radial distribution, thus
obtaining the 8 and y coefficients. For this particular exercise, the
o parameter was numerically evaluated using the three different
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radial ranges of the host mass profile listed in Table 2 (ignoring the
option to evaluate it as &« = y — 2 for the moment). For each of these
values of o we performed 1000 random realization, we applied the
scale-free mass estimator and we calculated the distribution of the
ratio of the estimated over the actual mass, i.e. Mcy/Me; those
distributions have then been fitted by a Gaussian curve eventually
leading to the best-fitting parameter x and its standard deviation o.

The results of these tests (for the o value evaluated from the total
radial range, i.e. first line of Table 2) are summarized in Fig. 2 for
the MW and in Fig. 3 for M31 where we plot in the left-hand panels
the distributions of M.y /M . for the FIE mass estimators and in the
right-hand panels the RIE (MW) and LIE (M31), respectively. The
legends of each panel further list the three parameters «, y and B
relevant for the respective mass estimator (where 8 and y represent
the average value over the total 1000 realizations) alongside the
peak and standard deviation of the best-fitting Gaussian. Note that
the standard deviation is compatible with 1/4/Ngy, Where Ngy
is the number of used tracers, and it increases when only radial
velocities (or line-of-sight ones) are used. Remarkably, the mean
of the distribution stays always very close to u = 1.0: the mass
estimators are thus unbiased with respect to the number of used
objects. We repeated the above mentioned analysis for the other
values of « listed in Table 2, and found practically indistinguishable
results: the best-fitting  and o values are given in Table 3.

In summary, we found that for both host systems the mass is
always recovered within a few per cent of error when restricting the
analysis to 30 randomly selected subhaloes each.

4.2.2 Matching the radial number distribution
of the observed satellites

While using 30 randomly chosen subhaloes leads to exceedingly
well recovered host masses, we acknowledge that our model sub-
haloes (for the MW) do not follow the same radial distribution as
the observed ones (this case is substance for yet another paper and
shall not be addressed here): we list in Table 4 the distances to all
presently known MW satellites (taken from Wadepuhl & Springel
2011) alongside their masses and use this data to obtain the observed
y £ Ay =2.80 %+ 0.08 by fitting the radial distribution to a power
law in Fig. 4. Please note that we only focus on the MW'’s subhaloes
here, as in the case of M31 the y = 2.013 coefficient is very similar
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Figure 3. Distribution of 1000 realizations of the estimated mass over the real one for 30 subhaloes of the simulated Andromeda galaxy. The average value of
the parameters  and y obtained in each realization is shown. The best-fitting Gaussian is also plotted, and its mean p and standard deviation o are indicated.
The left-hand panel corresponds to the FIE estimator, the right-hand panel to the LIE one.

Table 3. Mean value and standard deviation of the Gaus-
sian distribution of the estimated mass over the true mass
for the MW and M31 hosts, using the RIE and the LIE,
respectively, for the three considered values of « (cf. Ta-
ble 2). The number of subhaloes has been limited to 30
random ones, and they have been used to compute  and
y for each realization. The average values of these pa-
rameters over the total N = 1000 realizations are y =
1.63 £ 0.12 and 8 = —0.307 £ 0.061 for the MW, and
y =2.013 £0.013 and g = —0.006 £ 0.001 for M31.

MW M31
o ”w o o n o
—-0.034 1.057 0.204 —-0.052 1.060 0.257
0.302 0.992 0.177 0.266 0.958  0.167
0.398 0975 0.169 0.402 0.931  0.159

Table 4. List of the MW satellites used in this work, cor-
responding to those lying within 300kpc from the galac-
tic centre and with measured line-of-sight velocities. The
Galactocentric distances D are in kpc. The values are from
@Martin et al. (2008), ®Mateo (1998), )Belokurov et al.
(2008), @van den Bergh (1994), YBelokurov et al. (2009),
Simon & Geha (2007), ©Bekki (2008) and "van den

Bergh (2000).

Name D (kpc) Mass (105 M)
Bool@ 66+ 3 -

Booll@ 4248 -

Carina® 101 £5 13

Com'® 44 4+ 4 1.2 £040
CVnl@ 218 + 10 27 + 40
CVnll@ 16072 24 +1.10
Draco® 76+ 5 22
Fornax® 138+ 8 68

Her@ 1324+ 12 7.1 £2.60
Leol® 250 + 30 22

Leoll® 205 + 12 9.7
LeolV(® 160713 14+ 150
LeoV© 180 -

LMC®D 49 10.000®

Table 4 — continued

Name D (kpc) Mass (10° Mgp)
Sag® 24 +2 150
Sculptor® 79+4 6.4

Segl@ 2342 -

Segll® 35 0.5575%
Sextans® 86 + 4 19

SMCD 58 400
UMal@ 96.8 +4 15 + 40
UMall®@ 30£5 4.9 4220
UMi® 66+ 3 23

Wil 1@ 38+7 -

Cumulative number of satellites of the Milky Way
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Figure4. Radial distribution of the observed MW satellites and correspond-
ing best fit in the range r < 300 kpc.

to the one obtained from the observed satellites distribution (see
W10).

From the total set of subhaloes in our numerical MW, we con-
structed a subset of 30 tracers by selecting those objects that follow
the radial distribution N(< r) o« r> ~>8. Further care was taken to
verify that the randomly selected subhaloes always cover the (ob-
servational) radial range up to ~300 kpc. While the y = 2.8 is fixed
by construction the 8 has always been derived from this subset; for
the o we first used, again, the three values listed in Table 2, and
we found a notable bias in the Gaussian distribution of M .q/M .,
as high as the 80 per cent: this choice of o does not provide the
expected host mass. Thus, we secondly decided to verify if the
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Figure 5. Distribution of the estimated RIE mass over the real one for 30 subhaloes of the MW and 1000 realizations. The subhaloes have been selected
following the power law with y = 2.8 (left-hand panel) as well as additionally also constraining them to lie within the observed mass range (right-hand panel).

Note that in both cases o has been determined as o« = y — 2.

assumption that the tracers are tracking the total gravitating mass of
the host can provide a better constrain on the value of «, i.e. using
the relation « = y — 2. In this case, without making any fits to
the numerical shape of the host profile, we actually found results in
excellent agreement with the true mass, as shown in the left-hand
panel of Fig. 5. In the right-hand panel of the same figure we show
the distribution obtained when yet another additional constraint was
added, i.e. we selected only those subhaloes whose mass lies in the
range 5 x 10° < M/M@ < 1 x 108, in order to resemble the average
mass of the observed MW satellites (see Table 4). Also in this case
we can observe that the Gaussian is peaked very close to 1.0, at u =
1.016.

We finally decided to also test and use the suggested value of o« =
0.55 (W10), but we actually obtained a Gaussian mean value for p
that is biased by approximately 30 per cent towards large estimated
masses.

In summary, even when restricting the subhaloes to follow the
same power law as the observed satellites within the same mass
range, the scale-free mass estimators are capable of recovering the
true mass of our constrained MW and M31 if one chooses to use
o =y — 2 (being close to the isotropic regime, i.e. § = 0 and as
far out as g = —0.5).

T T T T T
| RIE a=y-2 J
1.5 b
1.0F - X1 - 1= %%%*
0.5 b
S S S SN Y S S S S S S S |
1.5 2.0 2.5 3.0
Y

4.2.3 Do we require a host mass profile or simplyax =y — 2?

The analysis in the previous subsection has shown that simply using
o =y — 2 actually leads to excellent results for the scale-free mass
estimators when applied to our constrained LG and a subhalo pop-
ulation restricted to follow the observed one as closely as possible.
But can this finding be generalized, at least with respects to our
simulation?

To verify that the assumption & = y — 2 holds true in general,
we select the subhaloes of both MW and M31 in order to follow
different radial distributions, according to N(< r) =Y, where
we allowed the y to vary between 1.5 and 3.0. The « coefficient
was then calculated consequently, while the 8, as usual, came from
the selected satellites velocity dispersions. In this way we selected
N = 30 subhaloes again for 1000 times and we obtained Gaussian
distributions of the M.y/M . quantity. We show the best-fitting .,
with the standard deviation o as error bars, as a function of y in
Fig. 6 for the MW (left-hand panel, RIE only) and M31 (right-hand
panel, LIE only). The anisotropy parameter was always found to
be close to 8 ~ 0, with a maximum variation in the range —0.3 <
B < 0.1, indicating that we are in the isotropic regime. We would
like to highlight that despite other choices of @ may in principle be

T T — T T
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P RS S B S
1.5 2.0 2.5 3.0
Y

Figure 6. Mean value p of the best-fitting Gaussian distribution for different values of y and correspondingly & = y — 2. The anisotropy parameter lies in the
range —0.3 < B < 0.1. The distribution is based upon 1000 realization. MW, using the RIE, left-hand panel, M31, using the LIE, right-hand panel.
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possible, as demonstrated in Section 4.2.1, the simple assumption
o = y — 2 provides always the best estimation for the host mass,
whose associated Gaussian distribution has mean value p closer to
1 and smaller standard deviation o.

We see that the simple assumption, that the satellites track the total
mass of the host halo, is sufficient to give an excellent estimation
of the parameter « to be used. The suggested value of o = 0.55,
indicative of a NFW halo potential, is thus recommendable when
the satellite distribution follows a power law with exponent y ~ 2.5:
these values have been already successfully used in Deason et al.
(2011) and Evans et al. (2011). This is of fundamental importance
for observations: without having any a priori knowledge about the
host halo density profile, we can simply use the value « = y —
2 once we have calculated y from the satellite distribution. This
condition has been verified in our constrained simulations only, in
which the anisotropy parameter is always B ~ 0: care should be
taken when dealing with satellite populations whose B is highly
anisotropic.

In summary, we have shown that our two model hosts within the
simulated constrained LG allow the application of scale-free mass
estimators to them. And, for as long as we are in the isotropic regime
in which g = 0, the simplifying assumption of « = y — 2 can be
used. This alleviates the need to derive this parameter from a model
of the host potential or mass profile.

4.3 Exploring the influence of the MW and M31 on each other

4.3.1 Subhaloes (not) facing the opposite host

The fact that the MW and M31 hosts are close to each other, forming
a binary galactic system, poses the question if the mass estimators
work even in the situation in which we only consider satellites in
between the two haloes. To shed light on this issue we begin by
separating the MW halo into two hemispheres, defined as ‘facing’
and ‘non-facing’ M31 (we perform the same test for the M31 halo,
too). Subhaloes are then grouped by the hemisphere they sit in. We
remark that this is a purely spatial cut to investigate if the proximity
of the companion host causes some bias on the mass estimator.

The facing/non-facing subhaloes of the MW are selected accord-
ing to a radial number distribution N(< r) o< > =7 with y = 1.63,
and consequently « = y — 2 = —0.37, while the M31 subhaloes
are selected in order to follow the distribution with y = 2.013 and
o = 0.013. We chose these values to match the parameters found
in Section 4.2.1, but verified that our results are not affected by the
choice of the specific power law, as already expected (cf. Fig. 6).
Finally, we randomly selected N = 30 subhaloes from each of the
two facing/non-facing subsets, repeating the analysis 1000 times
and computing each time the parameter 8 and the estimated mass.
The anisotropy parameter, for both MW and M31 and in every sub-
set of objects considered, has been found to be very close to 0 again,
lying in the range —0.35 < B < 0.05. We are hence in a situation
to explore the influence of the two hosts on each other: with the
close to 0 and the subhaloes selected to follow a fixed power law
(thus without errors associated with the three main parameters) we
can affirm that any deviation in the mass estimation should now be
attributed to the subhaloes facing or not the other host.

In Table 5 we show the results of the mean value and standard
deviation of the Gaussian distribution of the estimated mass over the
true one for the MW (by applying the RIE) and for M31 (using
the LIE). We show the u obtained by using the facing subhaloes,
the non-facing subhaloes and also the total set. We did this exercise
for two different values for ry, thus computing the host mass up

Table 5. MW and Andromeda galaxy mass estimation (RIE
for MW, LIE for M31) using the subset of subhaloes fac-
ing and non-facing the companion host. The mean value p
and standard deviation o of the Gaussian distribution of the
estimated mass over the true one are shown, obtained by
selecting N = 30 subhaloes from the facing or not facing
subsets, repeating 1000 realizations and evaluating the mass
at two different rgy,.

Host roy¢ Al subs Facing subs  Not facing subs
Tout, MW uto nwto nto

309 kpe 097 +0.12 1.05£0.16 0.95+0.24
197 kpc 098 +0.12 1.01£0.12 1.03+0.26
Fout,M31 nwto nto uwEo

340kpc 1.024+0.19 1.084+0.19 092+0.15
221kpe 1.05£0.19 1.11+0.22 098 £0.16

to this outer radius: in this way we should be able to observe if
the proximity or, on the contrary, the distance of the subhaloes
population to the opposite host has some influence as well. For the
MW host we can observe that the estimator performs equally well
when using the facing or non-facing objects, for each of the two 7oy
values used. In the case of M31, instead, the non-facing population
of subhaloes seems to give better results in the estimation of the
host mass, while the facing objects lead to a Gaussian distribution
whose mean value is slightly biased (« = 1.11) when we considered
the roy = 221kpe. Given the high uncertainties associated with
this biased result, however, we can conclude that each of the main
galaxies does not influence the subhalo population of the other one.

4.3.2 Renegade subhaloes

As already discussed, we call renegade subhaloes those objects, in
our simulations, that change their affiliation from one of the two
prominent hosts in the LG to the other (Knebe et al. 2011c). We
were able to identify 129 renegade objects, 57 of which belonging
to M31 at z = 0, and the remaining 72 belonging to the MW.

We thus examine the effect that this population of renegade sub-
haloes may have on the mass estimators: while in the previous
studies we used the full set of subhaloes, automatically including
also the renegade ones, we now want to restrict the analysis to the
renegade subhaloes only in order to estimate the mass of MW and
M31.

For each host we computed the anisotropy parameter and radial
distribution of their respective renegade satellites, and found By3; =
0.86, Bmw = 0.72 and y 3 = 2.15 £ 0.21, ymw = 2.01 £ 0.20.
The choice of the host parameter « is made considering its value in
the total [0, 1]R,; range, or using the relation « = y — 2 that we
provided in the previous sections. The resulting estimated masses
are shown in Table 6, in which we have used the FIE estimator
in order to compare the effects of these renegade subhaloes in the
same way for both hosts. This time, because of the small number of
objects considered, we do not perform multiple realizations of the
mass estimation, but only one: the errors associated with the mass
are thus computed through the error propagation formula based on
equations (14)—(19), in which we further assume that 8 is fixed,
Ayly ~ 10 per cent as obtained by the fitting routine and Aa/o
is listed in Table 2. We see that in the case of using the value
of o from the total radial range, the mass estimator is biased for
both hosts, with a large associated error. When using the relation
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Table 6. Estimation of the MW and M31
mass based upon renegade subhaloes
only, FIE case. The parameter used are
B =0.72 and y = 2.01 for the MW, B =
0.86 and y = 2.15 for M31. We remind
that the value of « from the total radial
range is @ = —0.034 for the MW and
a = —0.052 for M31, as in Table 2.

MW M3l
o (Meal + AMeal)/Mtrue
[0, 1]Ryiy  0.92£0.33  0.75+0.40
y—2 1.00 £0.21 097 £0.16

o = y — 2, instead, the mass of both MW and Andromeda is
recovered within a much smaller uncertainty. It is interesting to note
how the relation between the host parameter o and the subhaloes
distribution parameter y seems to hold true also in this case, in which
the anisotropy parameter § is substantially far from being isotropic.
However the lack of statistic in this case, having at our disposal
just one realization of a small number of renegade objects, prevents
us from generalizing the finding of Section 4.2.3 to this highly
anisotropic case. The fact that 8 ~ 1 for the renegade subhaloes
means that these objects are mainly moving on radial orbits with
respect to their hosts. We conclude that the computation of the host
mass based upon a family of renegade subhaloes gives results in
agreement with the expected ones and hence these mass estimators
will not be biased in the case that renegade objects also exist in
reality.

4.3.3 Unbound subhaloes

For all previous results we did not test whether or not a subhalo is
gravitationally bound to its host; we simply used a spatial criterion
to determine its affiliation as this is how satellites are often defined in
the observations. Now instead, we impose an additional constraint
on our subhalo population: its velocity has to be lower than the
local escape velocity ves of the halo at that distance. Following this
criterion, we find that about the 3 per cent of the subhaloes inside
the virial radius of each host are unbound. As expected, most of
them lie near by the virial radius, where the v is lower and the
effects of the proximity of the other host are more important. We
thus quantify the effects that unbound subhaloes have on the mass
estimators. This is an interesting test, as it corresponds to the real
case scenario in which the affiliation of a tracer object is not clear
and could be erroneously included into the calculation of the mass
of a host.

We repeat our previous methodology by evaluating the MW
and M31 mass 1000 times with a subset of N = 30 subhaloes,
this time including one, two or three unbound subhaloes. In or-
der to ensure an unbound subhalo is included, we explicitly sub-
stitute in each realization, one, two or three of the 30 subhaloes
with an unbound one. We then computed the 8 and y coef-
ficients for each realization, and used the formula ¢« = y —
2. We verify that the inclusion of a single unbound subhalo
leads to mass estimators which are slightly biased towards larger
masses: we obtained, for both M31 and MW, a Gaussian peaked at
u = 1.04 with 0 = 0.14. When including two unbound subhaloes,
we found a higher deviation, with 4 = 1.12 and o = 0.13. Finally,
forcing three unbound subhaloes to be included in each 30 subhalo
subsample, we obtain a Gaussian peaked at © = 1.17 and 0 = 0.14.
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We performed the calculation using the FIE estimator but verify
that our results are the same in the RIE and LIE case, giving similar
values for the mean of the distribution u, and increasing standard
deviations o with respect to the FIE case.

We note that the results presented in the previous sections are
not significantly affected by the presence of unbound subhaloes, as
in that case the probability that in a given realization of N = 30
randomly picked subhaloes one was unbound is P & 37 per cent,*
due to the fact that unbound subhaloes make up just 3 per cent of
the full subhalo population. In this last test, instead, the probability
that one object is unbound, over the N = 30 subhaloes used in each
realization, is P = 100 per cent, because we deliberately replaced
one random subhalo with an unbound one. Thus, we expect that
the error on the mean value of the Gaussian distributions in the
previous analysis, caused by the possible inclusion of one unbound
object, is 100/37 & 2.7 times lower than the error made here, when
one subhalo is forced to be unbound. Looking at the u© = 1.04
obtained in this section, for the FIE case when we used a single
unbound subhalo, we see that the 4 per cent of deviation from the
expected value will be reduced of a factor 2.7, giving negligible
errors. We are further reassured by having performed the analysis
of Section 4.2 also by explicitly neglecting the unbound objects, and
we have observed no significant differences in the results already
presented.

To conclude, in this section we demonstrate that, being sure
of having included unbound subhaloes, this inclusion causes an
overestimate of the host mass, in agreement with the results of
Deason et al. (2011). The more unbound objects we include into the
mass estimator, the more biased the final mass is. Care should thus
be taken when considering objects at the ‘edge’ of a galaxy halo, as
they may be not bound to it.

5 SUMMARY AND CONCLUSIONS

We verified the accuracy of the scale-free mass estimators recently
proposed by W10 when applied to the two dominant LG host haloes,
the MW and M31, by using Constrained Local Universe Simula-
tions (CLUES). These scale-free mass estimators assume that all
the relevant information about the enclosed mass of a halo are
contained in the properties of its satellites (or any other tracer pop-
ulation), such as distances and velocities, which can both be given
as either projected or full three-dimensional data. The importance
of such estimators resides in the fact that the full six-dimensional
phase-space information of all celestial bodies down to the very
faint magnitude G ~ 20 mag will soon be available thanks to the
upcoming Gaia mission. What makes the usage of these mass es-
timators so appealing? After 3 yr of operation the Sloan Digital
Sky Survey II (SDSS-II)’ discovered eight new dwarf galaxies,
seven of them orbiting our Galaxy. The SDSS, which covered more
than a quarter of the sky, essentially doubled the known number of
MW satellite galaxies, helping close the gap between the observed

4 This probability can be computed using the hypergeometric distribution,
which, in our case and for the M31 and MW, respectively, describes the
probability to get one unbound subhalo within & = 30 randomly drawn
objects from a total subhaloes population of size N = 1405(1205) in which
the unbound objects are n = 45(36), thus the ~3 per cent of the total:

- ()0 )

5 http://www.sdss.org/
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number of dwarf satellites and theoretical predictions. During its
projected 5-yr mission, Gaia will scan the entire 41253 deg® of
the sky, obtaining astrometric parameters (angular position, proper
motion and parallax) for roughly one billion stars. Recently, An
et al. (2012) further investigated the benefits that the use of all this
new proper motion data will introduce in the application of mass
estimators. It is thus imperative to develop and test against simu-
lations the mass estimator based entirely upon tracer objects, such
as satellite galaxies. This issue has already been partially addressed
in Deason et al. (2011) and Evans et al. (2011), using the GIMIC
suite of simulations, from which they selected a set of galaxies that
resemble the MW.

In this work we tested the scale-free mass estimators against con-
strained simulation of the LG, in which observational data of the
nearby Universe are used as constraints on the initial conditions.
These constrained simulations provide us with a unique LG seated
in the correct environment, as opposed to unconstrained cosmolog-
ical simulations, to make a direct comparison between numerical
results and observations: verifying the goodness of the W10 mass
estimators in our simulated LG should therefore be seen as comple-
mentary to the already published work on their credibility and as
an extension to a system resembling as closely as possible the real
LG.

Our motivation is driven by the fact that the LG likely is a rather
special (binary) system of galaxies featuring backsplash galaxies
(Knebe et al. 2011a), renegade satellites (Knebe et al. 2011c) and
preferential infall: Libeskind et al. (2011) have studied the simu-
lated MW and M31 galaxies in the CLUES framework and have
found a clear evidence for the anisotropic infall of subhaloes on
to their respective hosts. This result has been recently corroborated
by Keller, Mackey & Da Costa (2012), who examined the spatial
distribution of the MW young halo globular clusters finding that
they are anisotropically spatially distributed, sharing the same ac-
creted origin as that of the MW’s satellite galaxies. Our simulations
also show the typical anisotropy in the distribution of subhaloes
population, compatible with the observed classical MW satellites
(Kroupa et al. 2005; Metz et al. 2007, 2008), and as already found
in other cosmological simulations (cf. Knebe et al. 2004; Libeskind
et al. 2005; Zentner et al. 2005). Furthermore, when comparing
constrained against unconstrained simulations, only 1-3 per cent of
LG (candidates) share similar formation properties (Forero-Romero
et al. 2011). Thus, it is clear that our LG is a very special object in
the Universe.

We first studied the sensitivity of the mass estimators with respect
to their main parameters: o, which describes the host halo scale-
free gravity field, 8, which corresponds to the satellites’ velocity
anisotropy, and y, representing the exponent of the power law de-
scribing the number density of the tracer population. We found that
for an external galaxy, such as M31, for which only line-of-sight
information is available, the greatest error comes from the uncer-
tainty of o and y, whereas the mass variations stemming from the
anisotropy parameter 8 are almost negligible in the interesting phys-
ical range. On the other hand, the greatest concern in the estimation
of the mass of our Galaxy comes from the 8 parameter, as pointed
out by W10: without precise information about the satellites’ proper
motions, the error introduced by using their radial velocities is sen-
sibly high. Hopefully, future surveys (e.g. the Gaia mission) would
be able to measure such proper motions, significantly improving
the quality of these mass estimators.

We then applied the relevant mass estimators to the MW and
M31 LG system as found in our constrained simulation. We found
that all the estimators (FIE and RIE for the MW, FIE and LIE for

M31) provide an unbiased results, with the mean of the Mey/M e
distribution close to i = 1.0 and its standard deviation scaling with
1/+/Ngw, even when a small (N ~ 30) number of tracer objects
are used, resembling the real case scenario of the known satellites
galaxies. When selecting the subhaloes in order to follow a specific
radial number distribution N( < r) o > 77 with different y, we
found that, in the limit of the isotropic regime (i.e. 8 ~ 0 and as far
as B = —0.5 in our simulations), the assumption that the subhaloes
are tracking the total mass of the host (i.e. « = y — 2) is sufficient
to get a very good estimate of the host mass.

We thus also investigated how the mass estimators work when us-
ing subhaloes that are closer or further away from the neighbouring
host, by restricting the analysis to the facing and non-facing hemi-
spheres and calculating the mass at different values for roy: we
observe that the two dominant hosts of the LG do not appear to in-
fluence its subhalo populations — at least not when the applicability
of the scale-free mass estimators is concerned.

Finally, we explored the possibility that using renegade sub-
haloes, i.e. subhaloes that change their affiliation from one of the
two hosts to the other, in the estimation of the mass may cause a
bias: we do not find evidence for this, on the contrary, we observe
that the mass of both MW and M31 is recovered with a few per
cent of error when the assumption « = y — 2 is made, even if the
anisotropy parameter in this case is § ~ 0.7, indicating that these
objects are moving on radial orbits.

On the other hand, the inclusion of unbound objects, mainly found
near the virial radius of each host, is able to cause an overestimate
of the host mass, as high as the 20 per cent when three unbound
subhaloes are used out of a total of 30 objects (i.e. the 10 per
cent). In this regard, care should be taken when dealing with tracer
populations whose affiliation to each of the two hosts is not clear.
As long as boundness is verified, however, the unique subhaloes
population in our simulations, showing anisotropy in their spatial
distribution, preferential infall (Libeskind et al. 2011) and even
renegade objects (Knebe et al. 2011c¢), does not prevent us from
always recovering a good estimation of the host mass.

Hence, the most important finding of this work is that satellite
galaxies are well suited to ‘weigh’ the MW’s halo. Even with a
small sample of just two dozen objects and despite anisotropic ac-
cretion, an anisotropic spatial distribution, different masses, sizes
and histories, subhalo kinematics are dominated by the host poten-
tial, making satellite galaxies well suited for the problem at hand.
We therefore conclude that the application of the scale-free mass
estimators to either of the two dominant hosts of the LG provides
credible results, it therefore appears safe to use it for the LG as
already done by W10. To get a good estimation of a host mass,
in the case of having the anisotropy parameter 8 ~ 0, we recom-
mend the use of the parameter « = y — 2 where the y directly come
from the observation of a satellite population.

In the future, sensitive surveys and space-based telescopic mis-
sions will most likely improve both the census of satellite galaxies
as well as our understanding of their proper motions: these new data
will enhance the mass estimators making them more accurate than
they are today.
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