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Abstract. In this paper, a temperature-to-frequency transducer suitable for 

thermal monitoring on FPGAs is presented. The dependence between delay and 

temperature is used to produce a frequency drift on a ring-oscillator. Different 

sensors have been constructed and characterized using XC4000 and XC3000 

chips, obtaining typical sensibilities of 50 kHz per °C. In addition, the utility of 

the Xilinx OSC4 cell as thermal transducer has been demonstrated. Although a 

complete temperature verification system requires a control unit with a 

frequency counter, the use of ring-oscillators presents several advantages: 

minimum FPGA elements are required; no analog parts exists; the additional 

hardware needed (multiplexers, prescaler, etc.) can be constructed using the 

resources of an FPGA, the thermal-related signals can be routed employing the 

standard interconnection network of the board, and finally, the sensors can be 

dynamically inserted or eliminated. 
 

 
 
 

1 Introduction 
 

Lower operating temperature on CMOS devices reduces the intrinsic delay and 

interconnection resistance. It also produces important reliability improvements, 

considering that electromigration and other failure effects rise exponentially with the 

temperature [1]. In the area of FPGAs, the gate density and speed of recent devices 

have appended thermal considerations to the traditional design trade-offs. 

Applications that make intensive use of chip resources at high speed can dissipate 

beyond current packaging limits. Miniature heat sinks and fans originally developed 

for the high-end microprocessor market are becoming familiar in the area of fast-

prototyping. 

The thermal considerations presented above results enlarged on FPGA-based 

systems like custom computers (FCCMs) and logic emulators. Their exhaustive 

utilization of dynamic reconfiguration increases the risk of configuration errors and 

signal contention. These situations may cause a significant increment of temperature 

and can produce a permanent chip damage. Moreover, like occurs on a single FPGA, 

the consumption associated to a given machine configuration is a priori unknown; 

thus, the particular features of an implementation (fine-grain pipelined  datapaths, 

heavily loaded buses, etc.) can produce an unforeseen power overhead. Consequently, 
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the implementation of a thermal monitoring unit allows several failures in FCCMs to 

be detected. For example, this strategy has been adopted in the XMOD board [2]: an 

8-bit CPU examine the both the temperature and current at each FPGA. 

Considering that the processing tasks on a multiple-FPGA board are performed in 

several chips, the detection of hot-spots requires to sense the temperature in each 

FPGA that composes the system. However, if the number of chips is relatively high, it 

is difficult to use discrete thermal transducers, as is common on current PC boards. 

Thermocouples or integrated sensors require both extra wiring and hardware that must 

be immune to the influence of the high-frequency signals usually present on the board. 

Moreover, the designer must also pay attention to topics beyond the scope of the fast- 

prototyping area, like sensor positioning, thermal coupling, or analog instrumentation. 

The implementation of on-chip thermal transducers allows the designer to avoid 

the inconveniences described above. Main techniques to construct temperature sensors 

on CMOS technology make use of analog effects like the temperature dependence of 

the junction forward voltage, or the Seebeck effect [3]. Although these ideas can be 

useful to FPGA architects, they appear inadequate to the end-users of commercial 

chips. In this paper, this limitation is overcome by using ring oscillators as 

temperature transducers. This type of circuits can be easily implemented using few 

FPGA elements. The advantages of this approach are multiple: 

 
a. Like other on-chip sensors, the junction temperature instead of the package one is 

measured. 

b. All signals are digital; thus, they can be routed using the general interconnection 

network of the board. 

c. The sensor itself is small: practical circuits make use of one or two logic blocks, 

and a minimum-size sensor can be fitted in just an I/O block. 

d. The hardware needed to centralize the thermal status of the machine (basically a 

multiplexer and a prescaler counter to reduce the frequency) can be mapped in the 

FPGA, meanwhile the remaining low-speed tasks can be performed by the host or 

using a low-cost microcontroller. 

e. A sensor or even an array of them can be placed in virtually in any position of the 

chip, making possible to construct a thermal map of the die. 

f. The sensor can be dynamically inserted or eliminated. 

 
Several researchers have proposed the use of on-chip thermal transducers. In [4], ring 

oscillators are used to measure both the temperature and power supply fluctuations. 

The oscillator is activated during a fixed period, and a counter with an scan path is 

used to read back the resulting frequency. In [5], an approach based on a “thermal- 

feedback oscillator” have been developed, whose main advantage is the small 

dependence between frequency and power supply fluctuations. At PCB level, a 

thermal monitoring method based on the measurement of a copper trace resistance has 

been proposed in [6]. In a different context, the use of thermal testing to detect gate 

oxide short failures have been proposed in [7]. 



 

Table 1. Ring-oscillators constructive characteristics 
 

 
Test Circuit Chain of inverters Wiring 

 

s1 and s5 Three inverters. Mapped in two CLBs. General interconnection. 

Long delays. 

s2 and s6 Three inverters. Mapped in two CLBs. General interconnection. 

Short delays. 

s3 Three inverters. Mapped in two CLBs. Three long-lines plus 

one direct-line. 
 

s4 and s7 One inverter. Mapped in a IOB output 

buffer. 

 

General interconnection. 

Short delays. 

OSC4 Internal cell. General interconnection. 
 

 
 

Table 2. Ring-oscillators features 
 

 
Test Circuit Experiment goals 

 

s1 and s5 Medium-size, low-frequency sensor. 
 

s2 and s6 Compact-size, medium-frequency sensor. 
 

s3 Long-line based sensor. Suitable for clocking a synchronous counters 

without using the dedicated clock lines. 
 

s4 and s7 Minimum-size. Worst-case sensor (maximum allowable frequency). 

OSC4 XC4000 internal 5-frequency clock-signal generator cell 

 

 
 

Table 3. Ring-oscillators timing characteristics 
 

Test Net delays Combinatorial delays Chip sample 

  Circuit (Xdelay tool) (Xdelay tool)   

s1 

s2 

50.7 ns 
 

14.4 ns 

22 ns (four LUTs) 

22 ns (four LUTs) 

XC3030PC84-125 

XC3030PC84-125 

s3 17.9 ns 22 ns (four LUTs) XC3030PC84-125 

s4 12 ns 8 ns (one obuf + one ibuf) XC3030PC84-125 

s5 47.8 ns 24 ns (four LUTs) XC4005PC84-6 

s6 20.1 ns 24 ns (four LUTs) XC4005PC84-6 

s7 10.8 ns 9 ns (one obuf + one ibuf) XC4005PC84-6 



 

 
 
 
 

2 Ring-oscillators on FPGAs 
 

A ring-oscillator basically consists on a feedback loop that includes an odd number of 

inverters (Fig.1). Thus, the necessary phase shifting to start the oscillation is 

produced. The oscillation period is twice the sum of the delays of all elements that 

compose the loop. 
 

 
 

Fig. 1.  A ring-oscillator scheme  
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Ring-oscillators can be mapped on FPGAs using the look-up tables or the 

programmable inverters included on the I/O blocks. Considering that different 

interconnection elements can be inserted in the loop, the number of possible 

implementations are extremely large. In order to restrict the experiments, in this work 

just four different circuits, called s1, s2, s3 and s4, were characterized in the XC3000 

family, and three circuits versions (s5, s6 and s7) where selected for the XC4000 

family. In addition, the thermal response of the 8-MHz output of the built-in clock 

signal generator OSC4 [8] was measured. Main circuit features are summarized in 

Tables 1, 2 and 3. 

An external control signal was ANDed with the loop in all CLB-based test circuits 

s1, s2, s3, s5 and s6, in order to allow the oscillators to be stopped. As a consequence, 

although these circuits have three inverters, their loops include four LUT delays. In 

the IOB-based oscillators s4 and s7, the loop was opened by using the 3-state control 

of the output buffer. These IOB versions were constructed to analyze the performance 

of the minimum allowable sensor size. All circuits were placed in the chip border in 

order to minimize the wiring capacitance between the oscillators and the 

corresponding output pads. As example, the layouts of the XC4000 oscillators s5, s6, 

s7 and osc4 are depicted in Fig.7 
 

 
3 Experimental Results 

 
The frequency-to-temperature response of each sensor was obtained by 

introducing each FPGA in a temperature-controlled oven. An Iron-Copper/Nickel 

(Iron-Constantan) thermocouple probe was placed in the center of the package, and 
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was fixed to it with a heat conductive silver epoxy. An study about mechanical details 

of thermal sensors can be found in [9]. 
 

 
Fig. 2. Output frecuency vs. Temperature. 

XC3090-125 CLB-based oscillators s1, s2 and s3 
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Fig. 3. Output frecuency vs. Temperature. XC4005-6 

CLB-based oscillators s5, s6 and OSC4 cell 
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Fig. 4. Output frecuency vs. Temperature.  XC4005-6 and 

XC3090-125  IOB-based oscillators s4 and s7 
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A long ribbon cables (near 0.8 meters) were utilized to carry both output and control 

signals outside the oven. In order to prevent an excessive sensor power consumption 

due to these high off-chip loads, a driver 74HC125 was inserted to isolate the FPGA 

from the cables. 

Each FPGA was configured with all oscillators versions, but just one was enabled 

during the short period of time necessary to accomplish the frequency measurement. 

After that, the corresponding circuit was stopped again in order to maintain uniform 

the chip temperature. It allowed the error produced by self-heating to be minimized. 

An x-t curve tracer was utilized to verify the thermal equilibrium in the system after 

each temperature step. The error in the temperature measurement was maintained near 

1 °C. 

In Figs. 2, 3 and 4, the main experimental results are shown. All sensors exhibit a 

quite linear dependence with the temperature in the normal range of operation. The 

temperature sensitivity (in percentage per °C) also is very similar for all circuits. 

However, the IOB-based circuits, s4 and s7, present a high frequency oscillation, over 

40 MHz, and should be discarded for practical applications. 

The CLB-based sensors have relatively high speed (between 10 and 20 MHz), 

although their frequencies can be easily managed by a low-cost microcontroller if a 

prescaler is used. For example, a popular 68HC11 can be employed for counting if all 

these frequencies are previously divided by ten. 

The best results corresponded to the built-in OSC4 cell. This oscillator, not only 

runs at lower speed and do not make use of extra FPGA resources, but also exhibits a 

small sensitivity to power supply fluctuations. The use of this cell as thermal 

transducer have not be reported in the manufacturer data books. 
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The power supply dependence of all sensors resulted linear in the operation range. 

This is depicted in Fig.5 for the XC 4005-6 oscillators. Thus, errors caused by power 

supply fluctuations can be corrected if the voltage of the board also is monitored. 

However, the sensibility was smaller for the OSC4 cell, as is depicted in Table 4. In 

addition, was observed that sensors whose loop delay is mainly caused by wiring are 

slightly less susceptible to power supply fluctuations. 
 

 
Fig. 5. Output frecuency vs. power supply voltage. 

XC4005-6 oscillators s5, s6 and OSC4 cell. 
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An alternative method for the temperature calibration of a given sensor can be carried- 

out if the approximate CMOS delay coefficient given by the manufacturer is utilized. 

This value is situated between 0.3 % per °C [10], and 0.35 % per °C [11]. In this 

way, the designer must first to construct a particular oscillator, and then to measure its 

output frequency at a known room temperature. After that, the remaining pairs (T,f) 

can be calculated by applying the delay coefficient to the measured point. Two 

examples of this method are shown in Fig.6. 

 

Table 4: Output frequency reduction at Vcc=4.5 V 

 
Test circuit Frequency reduction at Vcc=4.5V 

in relation to normal operation 

osc4 -1.8 % 

s1 -7.3 % 

s5 -7.8 % 

s2 -7.9 % 

s3 -8.1 % 

  s6 -8.7 %   
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Fig. 6. Measured (square points) and predicted oscillation frequencies (lines) 

vs. temperature using the CMOS delay coefficient. Circuits s1 and OSC4. 

Output frequency at room temperature as reference point. 
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4   Conclusions 
 

A group of experiments to demonstrate the feasibility of on-chip temperature 

transducers based on ring-oscillators have been presented. The proposed circuits allow 

the junction temperature of an FPGA to be easily measured. All prototypes analyzed 

showed a linear response with the temperature. 

Although two methods for sensor calibration have been described, they can be 

simplified if the goal is just to detect a peak power value. In that case, the adjustment 

can be done in terms of power consumption, by measuring both chip input current and 

sensor output frequency during the normal operation of a given application. Thus, the 



 
 
 

 
correct  thermal  status  of  the  machine  can  be  described  by a  range  of  expected 

frequency values in each FPGA. 

Best results in frequency range, resource occupation, and power supply sensitivity 

corresponded to the built-in XC4000 oscillator. However, the main disadvantage of 

this circuit is their fixed position in a corner of the chip. On the contrary, CLB-based 

ring oscillators can be situated in virtually any position. 

The combination of temperature transducers and FPGAs could be also a powerful 

tool for researchers interested in thermal aspects of integrated circuits and packaging. 

Just the possibility of “moving” a sensor (or an array of them) from one point of the 

die to other, in a simple, fast and inexpensive way, is almost unthinkable in any other 

VLSI technology. 

Future work will include a comparative study of die thermal maps using ring- 

oscillator sensors and an IR microscope. 
 

 
Fig. 7. Layout of the s5 (top. left), s6 (bottom, left), s7 (bottom, right) and 

osc4 (top, right) oscillators (shaded areas represent used resources of the FPGA) 
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