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ABSTRACT
We investigate the impact of statistical and systematic errors on measurements of linear
redshift-space distortions (RSD) in future cosmological surveys by analysing large catalogues
of dark matter haloes from the baryonic acoustic oscillation simulations at the Institute for
Computational Cosmology. These allow us to estimate the dependence of errors on typical
survey properties, as volume, galaxy density and mass (i.e. bias factor) of the adopted tracer.
We find that measures of the specific growth rate β = f /b using the Hamilton/Kaiser harmonic
expansion of the redshift-space correlation function ξ (rp, π ) on scales larger than 3 h−1 Mpc
are typically underestimated by up to 10 per cent for galaxy-sized haloes. This is significantly
larger than the corresponding statistical errors, which amount to a few per cent, indicating the
importance of non-linear improvements to the Kaiser model, to obtain accurate measurements
of the growth rate. The systematic error shows a diminishing trend with increasing bias value
(i.e. mass) of the haloes considered. We compare the amplitude and trends of statistical errors
as a function of survey parameters to predictions obtained with the Fisher information matrix
technique. This is what is usually adopted to produce RSD forecasts, based on the Feldman–
Kaiser–Peacock prescription for the errors on the power spectrum. We show that this produces
parameter errors fairly similar to the standard deviations from the halo catalogues, provided
it is applied to strictly linear scales in Fourier space (k < 0.2 h Mpc−1). Finally, we combine
our measurements to define and calibrate an accurate scaling formula for the relative error on
β as a function of the same parameters, which closely matches the simulation results in all
explored regimes. This provides a handy and plausibly more realistic alternative to the Fisher
matrix approach, to quickly and accurately predict statistical errors on RSD expected from
future surveys.

Key words: cosmological parameters – dark energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

Galaxy clustering as measured in redshift space contains the imprint
of the linear growth rate of structure f (z), in the form of a measur-
able large-scale anisotropy (Kaiser 1987). This is produced by the

�E-mail: davide.bianchi@brera.inaf.it

coherent peculiar velocity flows towards overdensities, which add
an angle-dependent contribution to the measured redshift. In linear
theory, these redshift-space distortions (RSD) in the clustering pat-
tern can be quantified in terms of the ratio β(z) = f (z)/b(z) (where
b is the linear bias of the sample of galaxies considered). A value
for β can be obtained by modelling the anisotropy of the redshift-
space two-point correlation function ξ (rp, π ) (where rp and π are
the separations perpendicular and parallel to the line of sight) or,
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equivalently, of the power spectrum (see Hamilton 1998, for a re-
view). Since b can be defined as the ratio of the rms galaxy cluster-
ing amplitude to that of the underlying matter, b ≈ σ

gal
8 /σ mass

8 , the
measured product β σ

gal
8 is equivalent to the predicted combination

f (z) σ mass
8 (z) (Song & Percival 2009). The latter is a prediction de-

pending on the gravity theory, once normalized to the amplitude of
matter fluctuations at the given epoch, e.g. using cosmic microwave
background (CMB) measurements.

Measurements of the growth rate f (z) are crucial to pinpoint the
origin of cosmic acceleration, distinguishing whether it requires the
addition of ‘dark energy’ in the cosmic budget or rather a modifica-
tion of general relativity. These two radically alternative scenarios
are degenerate when considering the expansion rate H(z) alone, as
yielded, e.g., by the Hubble diagram of Type Ia supernova (e.g.
Riess et al. 1998; Perlmutter et al. 1999) or baryonic acoustic oscil-
lations (BAO; e.g. Percival et al. 2010). Although the RSD effect is
well known since long, its important potential in the context of dark
energy studies has been fully appreciated only recently (Zhang et al.
2007; Guzzo et al. 2008). This led to a true renaissance of inter-
est in this technique (Acquaviva et al. 2008; Linder 2008; Nesseris
& Perivolaropoulos 2008; Wang 2008; Cabré & Gaztañaga 2009;
Percival & White 2009; Song & Percival 2009; White, Song &
Percival 2009; Blake et al. 2011), such that RSD have quickly be-
come one of the most promising probes for future large dark energy
surveys. This is the case of the recently approved European Space
Agency (ESA) Euclid mission (Laureijs et al. 2011), which is ex-
pected to reach statistical errors of a few per cent on measurements
of f (z) in several redshift bins out to z = 2 using this technique
(coupled to similar precisions with the complementary weak lens-
ing experiment).

In general, forecasts of the statistical precision reachable by future
projects on the measurements of different cosmological parameters
have been produced through widespread application of the so-called
Fisher information matrix technique (Tegmark 1997). This has also
been done specifically for RSD estimates of the growth rate and
related quantities (Linder 2008; Wang 2008; McDonald & Seljak
2009; Percival & White 2009; White et al. 2009). One limitation
of these forecasts is that they necessarily imply some idealized
assumptions (e.g. on the Gaussian nature of errors) and have not
been verified, in general, against systematic numerical tests. This is
not easily doable in general, given the large size of planned surveys.
A first attempt to produce general forecasts based on numerical
experiments was presented by Guzzo et al. (2008), who used mock
surveys built from the Millennium simulation (Springel et al. 2005)
to numerically estimate the random and systematic errors affecting
their measurement of the growth rate from the VIMOS VLT Deep
Survey (VVDS). Using a grid of reference survey configurations,
they calibrated an approximated scaling relation for the relative
error on β as a function of survey volume and mean density. The
range of parameters explored in this case was however limited, and
one specific class of galaxies only (i.e. bias) was analysed.

The second crucial aspect to be taken into consideration when
evaluating Fisher matrix predictions is that they only consider sta-
tistical errors and cannot say anything about the importance of
systematic effects, i.e. on the accuracy of the expected estimates.
This is clearly a key issue for projects aiming at per cent or sub-per
cent precisions, for which systematic errors will be the dominant
source of uncertainty.

In fact, a number of works in recent years suggest that the
standard linear Kaiser description of RSD is not sufficiently ac-
curate on quasi-linear scales (≈5–50 h−1 Mpc) where it is rou-
tinely applied (Scoccimarro 2004; Tinker, Weinberg & Zheng 2006;

Taruya, Nishimichi & Saito 2010; Jennings, Baugh & Pascoli 2011).
Various non-linear corrections are proposed in these papers, the dif-
ficulty often being their practical implementation in the analysis
of real data, in particular in configuration space (de la Torre &
Guzzo 2012). One may hope that in the future, with surveys cov-
ering much larger volumes, it will be possible to limit the analysis
to very large scales, where the simple linear description should be
adequate. Still, ongoing surveys like WiggleZ (Blake et al. 2011),
Baryon Oscillation Spectroscopic Survey (BOSS; Eisenstein et al.
2011) and VIMOS Public Extragalactic Redshift Survey (VIPERS;
Guzzo et al., in preparation) will still need to rely on the clustering
signal at intermediate scales to model RSD.

Here, we shall address in a more systematic and extended way
the impact of random and systematic errors on growth rate measure-
ments using RSD in future surveys. We shall compare the results
directly to Fisher matrix predictions, thoroughly exploring the de-
pendence of statistical errors on the survey parameters, including
also, in addition to volume and density, the bias parameter of the
galaxies used. This is also relevant, as one could wonder which
kind of objects would be best suited to measure RSD in a future
project. These will include using haloes of different mass (i.e. bias),
up to those traced by groups and clusters of galaxies. Potentially,
using groups and clusters to measure RSD could be particularly
interesting in view of massive galaxy redshift surveys as that ex-
pected from Euclid (Laureijs et al. 2011), which can be used to
build large catalogues of optically selected clusters with measured
redshifts. A similar opportunity will be offered by future X-ray sur-
veys, such as those expected from the e-Rosita mission (Cappelluti
et al. 2011), although in that case, mean cluster redshifts will have
to be measured first.

This paper is complementary to the parallel work of Marulli et al.
(2012), where we investigate the impact on RDS of redshift errors
and explore how to disentangle geometrical distortions introduced
by the uncertainty of the underlying geometry of the Universe –
i.e. the Alcock–Paczynski effect (Alcock & Paczynski 1979) – on
measurements of RSD. Also, while we were completing our work,
independent important contributions in the same direction appeared
in the literature by Okumura & Jing (2011) and Kwan, Lewis &
Linder (2012).

The paper is organized as follows. In Section 2 we describe the
simulations used and the mass-selected subsamples we defined; in
Section 3 we discuss the technical tools used to estimate and model
the two-point correlation function in redshift space, ξ (rp, π ), and
to estimate the intrinsic values of bias and distortion to be used as
reference; in Section 4 we present the measured ξ (rp, π ) and show
the resulting statistical and systematic errors on β, as a function
of the halo bias; here we discuss in detail how well objects related
to high-bias haloes, as groups and clusters, can be used to measure
RSD; in Section 5 we organize all our results into a compact analytic
formula as a function of galaxy density, bias and survey volume;
we then directly compare these results to the predictions of a Fisher
matrix code; finally, we summarize our results in Section 6.

2 SI M U L AT E D DATA A N D E R RO R
ESTI MATI ON

2.1 Halo catalogues from the BASICC simulations

The core of this study is based on the high-resolution baryonic
acoustic oscillation simulations at the Institute for Computational
Cosmology (BASICC) of Angulo et al. (2008), which used 14483

particles of mass 5.49 × 1010 h−1 M� to follow the growth of
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structure in dark matter (DM) in a periodic box of side
1340 h−1 Mpc. The simulation volume was chosen to allow for
growth of fluctuations to be modelled accurately on a wide range
of scales including those of BAO. The very large volume of the
box also allows us to extract accurate measurements of the cluster-
ing of massive haloes. The mass resolution of the simulation is high
enough to resolve haloes that should host the galaxies expected to be
seen in forthcoming high-redshift galaxy surveys [as e.g. luminous
red galaxies in the case of Sloan Digital Sky Survey III (SDSS-III)
BOSS]. The cosmological parameters adopted are broadly consis-
tent with recent data from the CMB and the power spectrum of
galaxy clustering (Sánchez et al. 2006): the matter density param-
eter is �M = 0.25, the cosmological constant density parameter
�� = 0.75, the normalization of density fluctuations, expressed
in terms of their linear amplitude in spheres of radius 8 h−1 Mpc
at the present day σ 8 = 0.9, the primordial spectral index ns = 1,
the dark energy equation of state w = −1 and the reduced Hubble
constant h = H0/(100 km s−1 Mpc−1) = 0.73. We note the high
value of normalization of the power spectrum σ 8, with respect to
more recent Wilkinson Microwave Anisotropy Probe (WMAP) esti-
mates (σ 8 = 0.801 ± 0.030; Larson et al. 2011). This has no effect
on the results discussed here (but see Angulo & White 2010 for
a method to scale self-consistently the output of a simulation to a
different background cosmology). Outputs of the particle positions
and velocities are stored from the simulations at selected redshifts.
DM haloes are identified using a friends-of-friends (FOF) percola-
tion algorithm (Davis et al. 1985) with a linking length of 0.2 times
the mean particle separation. Position and velocity are given by
the values of the centre of mass. In this paper, only groups with at
least Npart = 20 particles are considered (i.e. only haloes with mass
Mhalo ≥ 1.10 × 1012 h−1 M�). This limit provides reliable samples
in term of their abundance and clustering, which we checked by
comparing the halo mass function and correlation function against
Jenkins et al. (2001) and Tinker et al. (2010), respectively.

We use the complete catalogue of haloes of the simulation at z =
1, from which we select subsamples with different mass thresholds
(i.e. number of particles). This corresponds to samples with different
bias values.Table 1 reports the main features of these catalogues.
In the following we shall refer to a given catalogue by its threshold

Table 1. Properties of the halo catalogues used in the
analysis. Ncut is the threshold value of Npart, e.g. the
catalogue Ncut = 20 is the set of groups (i.e. haloes)
with at least 20 DM particles; Mcut is the corresponding
threshold mass; Ntot is the total number of haloes (i.e.
the number of haloes with Mhalo ≥ Mcut) and n is
the number density (i.e. n = Ntot/V , where V =
13403 h−3 Mpc3 is the simulation volume).

Ncut Mcut (h−1 M�) Ntot n (h3 Mpc−3)

20 1.10 × 1012 7483 318 3.11 × 10−3

30 1.65 × 1012 4897 539 2.04 × 10−3

45 2.47 × 1012 3158 088 1.31 × 10−3

63 3.46 × 1012 2164 960 9.00 × 10−4

91 5.00 × 1012 1411 957 5.87 × 10−4

136 7.47 × 1012 866 034 3.60 × 10−4

182 9.99 × 1012 597 371 2.48 × 10−4

236 1.30 × 1013 423 511 1.76 × 10−4

310 1.70 × 1013 290 155 1.21 × 10−4

364 2.00 × 1013 230 401 9.58 × 10−5

455 2.50 × 1013 165 267 6.87 × 10−5

546 3.00 × 1013 124 497 5.17 × 10−5

mass Mcut (i.e. the mass of the least massive halo belonging to
that catalogue). We also use the complete DM sample, including
more than 3 × 109 particles.1 For each catalogue, we split the
whole (cubical) box of the simulation into N3

split subcubes (Nsplit = 3
unless otherwise stated). Each subcube ideally represents a different
realization of the same portion of the Universe, so that we are able
to estimate the expected precision on a quantity of cosmological
interest through its scatter among the subcubes. Using Nsplit = 3
is a compromise between having a better statistics from a larger
number of subsamples (at the price of not sampling some very
large scales), and covering even larger scales (with Nsplit = 2), but
with fewer statistics. In general, there are large-scale modes shared
between the subcubes. As a consequence, our assumption that each
subsample can be treated as an independent realization breaks down
on such scales. To overcome this problem, we limit our analysis to
scales much smaller than the size of the subcubes.

This analysis concentrates at z = 1, because this is central to the
range of redshifts that will become more and more explored by sur-
veys of the next generation. This includes galaxies, but also surveys
of clusters of galaxies, as those that should be possible with the
eRosita satellite, possibly due to launch in 2013. Exploring the ex-
pectations from RSD studies using high-bias objects, corresponding
e.g. to groups of galaxies, is one of the main themes of this paper.

2.2 Simulating redshift-space observations

For our measurements we need to simulate redshift-space obser-
vations. In other words, we have to ‘observe’ the simulations as if
the only information about the distance of an object was given by
its redshift. For this purpose we centre the sample (i.e. one of the
subcubes) at a distance given by

D1 = D(z = 1) =
∫ z=1

0

c

H (z′)
dz′

=
∫ z=1

0

c

H0

√
�M + ��(1 + z′)3

dz′, (1)

where the last equality holds for the flat � cold dark matter (�CDM)
cosmology of the simulation. More explicitly, we transform the
positions (Xi, Yi, Zi) of an object in a subcube of side L, into new
comoving coordinates:

−L

2
≤ Xi ≤ L

2 ,

D1 − L

2
≤ Yi ≤ D1 + L

2 ,

−L

2
≤ Zi ≤ L

2 ,

(2)

where we arbitrarily choose the direction of the Y axis for the trans-
lation (Z represents a coordinate, not to be confused with the redshift
z). This procedure assigns to each object a comoving distance in
real space Di =

√
X2

i + Y 2
i + Z2

i , hence, inverting equation (1),
a cosmological (undistorted) redshift zi. We then add the Doppler
contribution to obtain the ‘observed’ redshift, as

ẑi = zi + vr

c
(1 + zi), (3)

1 Such a number of points involves very long computational times when
calculating, e.g. a two-point correlation function. To overcome this problem,
we often use a sparsely sampled subset of the DM catalogue. In order to
limit the impact of shot noise, we nevertheless always keep the DM samples
denser than the least dense halo catalogue (i.e. Mcut = 1.10 × 1012 h−1 M�).
We verified directly on a subset that our results do not effectively depend on
the level of DM dilution.
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where vr is the line-of-sight peculiar velocity. Using ẑi instead of
zi to compute the comoving distance of an object gives its redshift-
space coordinate. Finally, in order to eliminate the blurring effect
introduced at the borders of the cube, we trim a slice of 10 h−1 Mpc
from all sides, a value about three times larger than typical pairwise
velocity dispersion.

3 MEASURING REDSHIFT-SPACE
D I S TO RT I O N S

3.1 Modelling linear and non-linear distortions

In a fundamental paper, Kaiser (1987) showed that, in the linear
regime, the redshift-space modification of the observed clustering
pattern due to coherent infall velocities takes a simple form in
Fourier space:

PS(k, μk) = (1 + βμ2
k)

2
PR(k), (4)

where P is the power spectrum (subscripts R and S denote, respec-
tively, quantities in real and redshift space), μk is the cosine of the
angle between the line of sight and the wave vector k and β = f /b
is the distortion factor, where f = d log G

d log a
and G is the linear growth

factor of density perturbations. Hamilton (1992) translated this re-
sult into configuration space (i.e. in terms of correlation function,
ξ ):

ξ
(L)
S (rp, π ) = ξ0(r)P0(μ) + ξ2(r)P2(μ) + ξ4(r)P4(μ), (5)

where rp and π are the separations perpendicular and parallel to the
line of sight, μ is the cosine of the angle between the separation
vector and the line of sight μ = cos θ = π /r, Pi are Legendre
polynomials and ξ i are the multipole moments of ξ (rp, π ), which
can be expressed as

ξ0(r) =
(

1 + 2

3
β + 1

5
β2

)
ξ (r), (6)

ξ2(r) =
(

4

3
β + 4

7
β2

)[
ξ (r) − ξ̄ (r)

]
, (7)

ξ4(r) = 8

35
β2

[
ξ (r) + 5

2
ξ̄ (r) − 7

2
¯̄ξ (r)

]
, (8)

where

ξ̄ = 3

r3

∫ r

0
ξ (t)t2 dt, (9)

¯̄ξ = 5

r5

∫ r

0
ξ (t)t4 dt . (10)

The superscript L reminds us that equation (5) holds only in linear
regime. A full model, accounting for both linear and non-linear
motions, is obtained empirically, through a convolution with the
distribution function of random pairwise velocities along the line of
sight ϕ(v):

ξS(rp, π ) =
∫ +∞

−∞
ξ

(L)
S

[
rp, π − v(1 + z)

H (z)

]
ϕ(v) dv, (11)

where z is the redshift and H(z) is the Hubble function (Davis &
Peebles 1983; Fisher et al. 1994b; Peacock 1999). We represent ϕ(v)

by an exponential form, consistent with observations and N-body
simulations (e.g. Zurek et al. 1994):

ϕ(v) = 1

σ12

√
2

e−
√

2|v|
σ12 , (12)

where σ 12 is a pairwise velocity dispersion. We note in passing that
the use of a Gaussian form for ϕ(v) is in some cases to be pre-
ferred, as e.g. when large redshift measurement errors affects the
catalogues to be analysed. This is discussed in detail in Marulli et al.
(2012). Hereafter we shall refer to equations (5) and (11) as the lin-
ear and linear-exponential model, respectively. Moreover, in order
to simplify the notations, we shall refer to the real- and redshift-
space correlation functions just as ξ (r) and ξ (rp, π ), respectively,
removing the subscripts R and S.

3.2 Fitting the redshift-space correlation function

We can estimate β (and σ 12, for the linear-exponential model)
through this modelling, by minimizing the following χ2 function
over a spatial grid:

χ2 = −2 lnL =
∑
i,j

(
y

(m)
ij − yij

)2

δ2
ij

, (13)

where L is the likelihood and we have defined the quantity

yij = log[1 + ξ (rpi
, πj )]. (14)

Here the superscript ‘m’ indicates the model and δ2
ij represents the

variance of yij. The use of log (1 + ξ ) in equation (14) has the ad-
vantage of placing more weight on large (linear) scales (Hawkins
et al. 2003). However, unlike Hawkins et al. (2003), we simply use
the sample variance of yij to estimate δij (as in Guzzo et al. 2008).
We show in Appendix A that this definition provides more stable
estimates of β also in the low-density regime. The correlation func-
tions are measured using the minimum variance estimator of Landy
& Szalay (1993). We tested different estimators, such as Davis &
Peebles (1983), Hewett (1982) and Hamilton (1993), finding that
our measurements are virtually insensitive to the estimator choice,
at least for r � 50 h−1 Mpc. For the linear-exponential model, we
perform a two-parameter fit, including the velocity dispersion, σ 12,
as a free parameter. However, being our interest here focused on
measurements of the growth rate (through β), σ 12 is treated merely
as an extra parameter to (potentially) account for deviations from
linear theory.2

Finally, in performing the fit we have neglected an important
aspect, but for good reasons. In principle, we should consider that
the bins of the correlation function are not independent. As such,
equation (13) should be modified as to include also the contribution
of non-diagonal terms in the covariance matrix, i.e. (in matrix form)

−2 lnL = (
Y(m) − Y

)T
C−1(Y(m) − Y

)
, (15)

where Y and Y(m) are two (column) vectors containing all data
and model values, respectively (with dimension N2

b , where Nb is
the number of bins in one dimension used to estimate ξ (rp, π )),
whereas C is the covariance matrix, with dimension N2

b × N2
b .

This is routinely used when fitting 1D correlation functions (e.g.
Fisher et al. 1994a), but it becomes arduous in the case of the full
ξ (rp, π ), for which Nb ≈ 100 and the covariance matrix has ≈108

2 See, for instance, Scoccimarro (2004) for a detailed discussion about the
physical meaning of σ 12.
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Figure 1. Left: the real-space correlation functions of the halo catalogues, compared to that of the DM particles in the BASICC simulation. Right: the ratio
of ξhalo(r) and ξDM(r) for each catalogue, with the resulting best-fitting linear bias b2

t = ξhalo(r)/ξDM(r) = const, fitted over the range 10 < r < 50 h−1 Mpc.
Error bars correspond to the standard deviation (of the mean) over 27 subcubes.

elements. What happens in practice, is that the estimated functions
are oversampled, so that the effective number of degrees of free-
dom in the data is smaller than the number of components in the
covariance matrix, which is then singular. Still, a test with as many
as 100 blockwise bootstrap realizations yields a very unsatisfactory
covariance matrix. We tested on a smaller size ξ (rp, π ) the actual
effect of assuming negligible off-diagonal elements in the covari-
ance matrix, obtaining a difference of a few per cent in the measured
value of β, as also found in de la Torre & Guzzo (2012). Part of
this insensitivity is certainly related to the very large volumes of
the mock samples, with respect to the scales involved in the param-
eter estimations. This corroborates our forced choice of ignoring
covariances in the present work, also because of the computational
time involved in inverting such large matrices, size multiplied by
the huge number of estimates needed for the present work.

3.3 Reference distortion parameters and bias values
of the simulated samples

Before measuring the amplitude of redshift distortions in the var-
ious samples described above, we need to establish the reference
values to which our measurements will be compared, in order to
identify systematic effects. Specifically, we need to determine with
the highest possible accuracy the intrinsic ‘true’ value of β for all
mass-selected samples in the simulation. This can be obtained from

the relation (Peebles 1980; Fry 1985; Lightman & Schechter 1990;
Wang & Steinhardt 1998)

β(z) = �0.55
M (z)

b(z)
, (16)

where f (z) = �0.55
M (z) is the growth rate of fluctuations at the given

redshift.3 For the flat cosmology of the simulation �M(z) is

�M(z) = (1 + z)3�M0

(1 + z)3�M0 + (1 − �M0)
. (17)

The linear bias can be estimated as

b2 = ξhalo(r)

ξDM(r)
. (18)

Here ξ halo and ξDM have to be evaluated at large separations,
r � 10 h−1 Mpc, where the linear approximation holds. In the
following we shall adopt the notation bt and β t for the values thus
obtained. To recover the bias and its error for each Mcut listed in
Table 1 we split each cubic catalogue of haloes into 27 subcubes.
Fig. 1 shows the measured two-point correlation functions and the
corresponding bias values for the various subsamples. These are

3 In this section we adopt the notation �M = �M(z) and �M0 = �M(z = 0),
not to be confused with the notation �M = �M(z = 0) adopted elsewhere
in this work.
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Figure 2. The expected bias factor, expressed as b2 = ξhalo(r)/ξDM(r),
plotted over a wider range of separations than in the previous figure. Dashed
lines are obtained by fitting a constant bias model over the range denoted by
the grey area, 10 < r < 50 h−1 Mpc. Error bars give the standard deviation
of the mean over the 27 subcubes.

computed at different separations r, as the average over 27 sub-
cubes, with error bars corresponding to the standard deviation of
the mean. Dashed lines give the corresponding value of b2

t , obtained
by fitting a constant over the range 10 < r < 50 h−1 Mpc. In most
cases, the bias functions show a similar scale dependence, but the
fluctuations are compatible with scale independence within the er-
ror bars (in particular for halo masses Mcut ≤ 1.70 × 1013 h−1 M�).
For completeness, in Fig. 2 we show that this remains valid on larger
scales (r � 50 h−1 Mpc, whereas on small scales (r � 10 h−1 Mpc),
a significant scale dependence is present. The linear bias assumption
is therefore acceptable for r � 10 h−1 Mpc.

In a realistic scenario, β is measured from a redshift survey. Then
the growth rate is recovered as f = bβ. Unfortunately in a real sur-
vey it is not possible to estimate b through equation (18) as we
described above (and as it is done for DM simulations) since the
real observable is the two-point correlation function of galaxies,
whereas ξDM cannot be directly observed. A possible solution is
to assume a model for the dependence of the bias on the mass.
Using groups/clusters in this context may be convenient as their
total (DM) mass can be estimated from the X-ray emission tem-
perature or luminosity. We compare our directly measured b with
those calculated from two popular models: Sheth, Mo & Tormen
(2001, hereafter SMT01) and Tinker et al. (2010, hereafter T+10),
in Fig. 3. Details on how we compute bSMT01 and bT+10 are re-
ported in the parallel paper by Marulli et al. (2012). We see that for
small/intermediate masses our measurements are in good agreement
with T+10, whereas for larger masses, Mcut � 2 × 1013 h−1 M�,
SMT01 yield a more reliable prediction of the bias.

4 SYSTEMATIC ERRORS IN MEASUREMENTS
O F T H E G ROW T H R ATE

4.1 Fitting the linear-exponential model

As in the previous section, we split each of the 12 mass-selected
halo catalogues of Table 1 into 27 subcubes. Then we compute
the redshift-space correlation function ξ (rp, π ) for each of them.
Fig. 4 gives an example of three cases of different mass. Following
the procedure described in Section 3.2, we obtain an estimate of
the distortion parameter β. The 27 values of β are then used to

Figure 3. Comparison of the bias values measured from the simulated
catalogues as a function of their threshold mass, Mcut, with the predictions
of the SMT01 and T+10 models. The top axis also reports the number of
particles per halo, Ncut, corresponding to the catalogue threshold mass.

estimate the mean value and standard deviation of β as a function
of the mass threshold (i.e. bias). With the adopted set-up (binning
and range), the fit becomes unstable for Mcut > 3 × 1013 h−1 M�,
in the sense of yielding highly fluctuating values for β and its
scatter. Very probably, this is due to the increasing sparseness of
the samples and the reduced amplitude of the distortion (since β ∝
1/b). Fig. 4 explicitly shows these two effects: when the mass grows
(top to bottom panels) the shot noise, which depends on the number
density, increases, whereas the compression along the line of sight
decreases, since it depends on the amplitude of β. For this reason,
in this work we consider only catalogues below this mass threshold,
as listed in Table 1.

Fig. 5 summarizes our results. The plot shows the mean values of
β for each mass sample, together with their confidence intervals (ob-
tained from the scatter of the subcubes), compared to the expected
values of the simulation β t (also plotted with their uncertainties,
due to the error on the measured bias bt, Section 3.3). These have
been obtained using the linear-exponential model, equation (11),
which represents the standard approach in previous works, fitting
over the range 3 < rp < 35 h−1 Mpc, 0 < π < 35 h−1 Mpc with
linear bins of 0.5 h−1 Mpc. We also remark that here the model is
built using the ‘true’ ξ (r) measured directly in real space, which is
not directly observable in the case of real data. This is done as to
clearly separate the limitations depending on the linear assumption,
from those introduced by a limited reconstruction of the underlying
real-space correlation function. In Appendix B we shall therefore
discuss separately the effects of deriving ξ (r) directly from the
observations.

Despite the apparently very good fits (Fig. 4), we find a sys-
tematic discrepancy between the measured and the true value of
β. The systematic error is maximum (≈10 per cent) for low-bias
(i.e. low-mass) haloes and tends to decrease for larger values (note
that here with ‘low bias’ we indicate galaxy-sized haloes with
M ≈ 1012 h−1 M�). In particular for Mcut between 7 × 1012 and
≈1013 h−1 M� the expectation value of the measurement is very
close to the true value β t.

It is interesting, and somewhat surprising, that, although massive
haloes are intrinsically sparser (and hence disfavoured from a statis-
tical point of view), the scatter of β (i.e. the width of the green error
corridor in Fig. 5) does not increase in absolute terms, showing little
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Figure 4. ξ (rp, π ) for the catalogues with Mcut = 1.10 × 1012 h−1 M�
(upper panel), Mcut = 9.99 × 1012 h−1 M� (central panel) and Mcut =
3.00 × 1013 h−1 M� (lower panel). Iso-correlation contours of the data
are shown in cyan, whereas the best-fitting model corresponds to the black
curves. Note that the colour scale and contour levels differ in the three
panels. The latter are arbitrarily set to {0.07, 0.13, 0.35, 1}, {0.15, 0.3, 0.7,
2.8} and {0.25, 0.5, 1.3, 5}, respectively, from top to bottom. When the
mass grows, the distortion parameter β (i.e. the compression of the pattern
along the line of sight) decreases, whereas the correlation and the shot noise
increase.

dependence on the halo mass. Since the value of β is decreasing,
however, the relative error does have a dependence on the bias, as
we shall better discuss in Section 5.

4.2 Is a pure Kaiser model preferable for cluster-sized haloes?

Groups and clusters would seem to be natural candidates to trace
large-scale motions based on a purely linear description, since they
essentially trace very large scales and most non-linear velocities are
confined within their structure. Using clusters as test particles (i.e.
ignoring their internal degrees of freedom) we are probing mostly
linear, coherent motions. It makes sense therefore to repeat our
measurements using the linear model alone, without exponential
damping correction. The results are shown in Fig. 6. The relative
error (lower panel) obtained in this case is in general smaller than
when the exponential damping is included. This is a consequence of
the fact that the linear model depends only on one free parameter, β,
whereas the linear-exponential model depends on two free parame-
ters, β and σ 12. Both models yield similar systematic error (central
panel), except for the lower mass cut-off range where the exponen-
tial correction clearly has a beneficial effect. In the following we
briefly summarize how relative and systematic errors combine. To
do this we consider three different mass ranges arbitrarily chosen.

(i) Small masses (Mcut � 5 × 1012 h−1 M�)
This range corresponds to haloes hosting single L∗ galaxies. Here
the linear exponential model, which gives a smaller systematic er-
ror, is still not able to recover the expected value of β. However,
any consideration about these ‘galactic haloes’ may not be fully
realistic since our halo catalogues are lacking in substructure (see
Section 4.4).

(ii) Intermediate masses (5 × 1012 � Mcut � 2 × 1013 h−1 M�)
This range corresponds to haloes hosting very massive galaxies and
groups. The systematic error is small compared to that of the other
mass ranges, for both models. This means that we are free to use the
linear model, which always gives a smaller statistical error (lower
panel), without having to worry too much about its systematic er-
ror, which in any case is not larger than that of the more complex
model. In particular, we notice that using the simple linear model
in this mass range, the statistical error on β is comparable to that
obtained with a galaxy-mass sample using the more phenomenolog-
ical linear-exponential model. This may be a reason for preferring
the use of this mass range for measuring β.

(iii) Large masses (Mcut � 2 × 1013 h−1 M�)
This range corresponds to haloes hosting what we may describe as
large groups or small clusters. The random error increases rapidly
with mass (Fig. 6, lower panel), regardless of the model, due to the
reduction of the distortion signal (β ∝ 1/b) and to the decreasing
number density.

4.3 Origin of the systematic errors

The results of the previous two sections are not fully unexpected. It
has been evidenced in a number of recent papers that the standard
linear Kaiser description of RSD, equation (4), is not sufficiently
accurate on the quasi-linear scales (≈5/50 h−1 Mpc) where it is
normally applied (Scoccimarro 2004; Tinker et al. 2006; Taruya
et al. 2010; Jennings et al. 2011; Kwan et al. 2012; Okumura & Jing
2011). This involves not only the linear model, but also what we
called the linear-exponential model. Since the pioneering work of
Davis & Peebles (1983) the exponential factor is meant to include
the small-scale non-linear motions, but this is in fact empirical and
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Figure 5. The mean values of β averaged over 27 subcubes, as measured in each mass sample (open circles) estimated using the ‘standard’ linear-exponential
model of equation (11). The dark- and light-green bands give, respectively, the 1σ and 3σ confidence intervals around the mean. The measured values are
compared to the expected values β t, computed using equations (16)–(18). We also give the 1σ and 3σ theoretical uncertainty around β t, due to the uncertainty
in the bias estimate (brown and red bands, respectively).

only partially compensates for the inaccurate non-linear descrip-
tion. The systematic error we quantified with our simulations is
thus most plausibly interpreted as due to the inadequacy of this
model on such scales. Various improved non-linear corrections are
proposed in the quoted papers, although their performance in the
case of real galaxies still requires further refinement (e.g. de la Torre
& Guzzo 2012). On the other hand, considering larger and larger
(i.e. more linear) scales, one would expect to converge to the Kaiser
limit. In this regime, however, other difficulties emerge, as specif-
ically the low clustering signal, the need to model the BAO peak
and the wide-angle effects (Samushia, Percival & Raccanelli 2012).
We have explored this, although not in a systematic way. We find
no indication for a positive trend in the sense of a reduction of the
systematic error when increasing the minimum scale rmin included
in the fit, at least for rmin = 20 h−1 Mpc. Systematic errors remain
present, while the statistical error increases dramatically. The situa-
tion improves only in a relative sense, because statistical error bars
become larger than the systematic error. This is seen in more detail
in the parallel work by de la Torre & Guzzo (2012). Finally, it is
interesting to remark the indication that systematic errors can be
reduced by using the Kaiser model on objects that are intrinsically
more suitable for a fully linear description.

4.4 Role of substructure: analysis of the Millennium mocks

In the simulated catalogues we use here, substructures inside haloes,
i.e. subhaloes, are not resolved, due to the use of a single linking
length when running the FOF algorithm (Section 2.1). As such, the
catalogues do not in fact reproduce correctly the small-scale dy-
namics observed in real surveys. Although we expect that our fit
(limited to scales rp > 3 h−1 Mpc) is not directly sensitive to what
happens on the small scales where cluster dynamics dominate, we
have decided to perform here a simple direct check of whether these
limitations might play a role on the results obtained. Essentially, we
want to understand if the absence of substructure could be respon-

sible for the enhanced systematic error we found for the low-mass
haloes.

To this end, we further analysed 100 Millennium mock surveys.
These are obtained by combining the output of the pure DM Mil-
lennium run (Springel et al. 2005) with the Munich semi-analytic
model of galaxy formation (De Lucia & Blaizot 2007). The Mil-
lennium run is a large DM N-body simulation which traces the
hierarchical evolution of 21603 particles between z = 127 and
z = 0 in a cubic volume of 5003 h−3 Mpc3, using the same cos-
mology of the BASICC simulation (�M, ��, �b, h, n, σ8) =
(0.25, 0.75, 0.045, 0.73, 1, 0.9). The mass resolution, 8.6 ×
108 h−1 M� allows one to resolve haloes containing galaxies with
a luminosity of 0.1L∗ with a minimum of 100 particles. Details
are given in Springel et al. (2005). The 100 mocks reproduce the
geometry of the VVDS-Wide ‘F22’ survey analysed in Guzzo et al.
(2008) (except for the fact that we use complete samples, i.e. with
no angular selection function), covering 2 × 2 deg2 and 0.7 < z <

1.3. Clearly, these samples are significantly smaller than the halo
catalogues built from the BASICC simulations, yet they describe
galaxies in a more realistic way and allow us to study what happens
on small scales. In addition, while the BASICC halo catalogues
are characterized by a well-defined mass threshold, the Millennium
mocks are meant to reproduce the selection function of an IAB <

22.5 magnitude-limited survey like VVDS-Wide. From each of the
100 light cones, we further consider only galaxies lying at 0.7 <

z < 1.3 to have a median redshift close to unity. The combination
of these two sets of simulations should hopefully provide us with
enough information to disentangle real effects from artefacts.

Performing the same kind of analysis applied to the BASICC halo
catalogues (Fig. 7), we find a comparable systematic error, corre-
sponding to an underestimate of β by 10 per cent. We recover β =
0.577 ± 0.018, against an expected value of β t = 0.636 ± 0.006,
suggesting that our main conclusions are substantially unaffected
by the limited description of subhaloes in the BASICC samples.
Another potential source of systematic errors in the larger simula-
tions could be resolution: the dynamics of the smaller haloes could
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Figure 6. Comparison of the performances of the linear and linear-exponential models. Upper panel: measurements of β from the different halo catalogues,
obtained with the linear model of equation (5) (squares) and the linear-exponential model of equation (11) (triangles). Mean values and errors are computed as
in Fig. 5 from the 27 subcubes of each catalogue. We also plot the expected values of β from the simulation, β t = f /bt (i.e. β ‘true’) and from the models of
Fig. 3, βT+10 = f /bT+10 and βSMT01 = f /bSMT01. Central panel: relative systematic error. Lower panel: relative statistical error.

Figure 7. ξ (rp, π ) for the Millennium mocks. The coding is the same as in
Fig. 4, with iso-correlation contours arbitrarily set to {0.05, 0.1, 0.25, 1}.

be unrealistic simply because they contain too few DM particles.
Our results from the Millennium mocks and those of Okumura &
Jing (2011), which explicitly tested for such effects, seem however
to exclude this possibility.

5 FORECASTI NG STATI STI CAL ERRO RS
I N FUTURE SURV EYS

A galaxy redshift survey can be essentially characterized by its vol-
ume, V , the number density, n, and bias factor, b, of the galaxy
population it includes (besides more specific effects due to sam-
ple geometry or selection criteria). The precision in determining β

depends on these parameters. Using mock samples from the Millen-
nium run similar to those used here, Guzzo et al. (2008) calibrated
a simple scaling relation for the relative error on β, for a sample
with b = 1.3,

δ(β)

β
≈ 50

n0.44V 0.5
. (19)

While a general agreement has been found comparing this relation
to Fisher matrix predictions (White et al. 2009), this formula was
strictly valid for the limited density and volume ranges originally
covered in that work. For example, the power-law dependence on
the density cannot realistically be extended to arbitrarily high den-
sities, as also pointed out by Simpson & Peacock (2010). In this
section we present the results of a more systematic investigation,
exploring in more detail the scaling of errors when varying the sur-
vey parameters. This will include also the dependence on the bias
factor of the galaxy population. In general, this approach is expected
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Table 2. Properties of the diluted subsamples constructed to test the dependence of the error of β on bias and mean density. Each
entry in the table is uniquely defined by a pair (Mcut, n); moving along rows or columns the samples keep a fixed bias (mass threshold)
or density, respectively. Bias values are explicitly reported at the right-hand side of the table. The diagonal coincides with the full
(i.e. non-diluted) samples. Empty circles indicate catalogues which have been used also to test the dependence on the volume: they
have been split into N3

split subsamples for Nsplit = 3, 4, 5, 6, whereas all other catalogues (filled circles) use Nsplit = 3 only for the
sake of building statistical quantities.

n × 105 (h3 Mpc−3)

311 204 131 90.0 58.7 36.0 24.8 17.6 12.1 9.58 6.87

1.10 × 1012 ◦ • • ◦ • • ◦ • • • • 1.44
1.65 × 1012 • • • • • • • • • • 1.54
2.47 × 1012 • • • • • • • • • 1.67
3.46 × 1012 • • • ◦ • • • • 1.80
5.00 × 1012 • • • • • • • 1.95

Mcut (h−1 M�) 7.47 × 1012 • • • • • • 2.15 b
9.99 × 1012 ◦ • • • • 2.32
1.30 × 1013 • • • • 2.49
1.70 × 1013 • • • 2.69
2.00 × 1013 • • 2.81
2.50 × 1013 • 3.01

Figure 8. Dependence of the relative error of β on the bias and number density of the catalogues in Table 2, overplotted on the surface described by the scaling
formula of equation (20). While the left-hand panel is intended to give an overall view, the right-hand panel is expressly oriented to show that the formula is
an excellent description of the data.

to provide a description of the error budget which is superior to a
Fisher matrix analysis, as it does not make any specific assumption
on the nature of the errors. All model fits presented in the following
sections are performed using the real-space correlation function ξ (r)
recovered from the ‘observed’ ξ (rp, π ). This is done through the
projection/deprojection procedure described in Appendix B (with
πmax = 25 h−1 Mpc), which as we show increases the statistical
error by a factor of around 2. The goal here is clearly to be as close
as possible to the analysis of a real data set.

5.1 An improved scaling formula

In doing this exercise, a specific problem is that, as shown in Table 1,
catalogues with larger mass (i.e. higher bias) are also less dense.
Our aim is to separate the dependence of the errors on these two
variables. To do so, once a population of a given bias is defined by
choosing a given mass threshold, we construct a series of diluted

samples obtained by randomly removing objects. The process is
repeated down to a minimum density of 6.87 × 10−5 h3 Mpc−3,
at which shot noise dominates and for the least massive haloes the
recovered β is consistent with zero. In this way, we obtain a series of
subsamples of varying density for fixed bias, as reported in Table 2.
The full samples are the same used to build, e.g., Fig. 5.

In Fig. 8 we plot the relative errors on β measured from each
catalogue of Table 2, as a function of the bias factor and the num-
ber density. These 3D plots are meant to provide an overview of
the global behaviour of the errors; a more detailed description is
provided in Figs 10 and 11, where 2D sections along n and b
are reported. For all the samples considered, the volume is held
fixed.

As shown by the figure, the bias dependence is weak and approx-
imately described by δ(β)/β ∝ b0.7, i.e. the error is slightly larger
for higher bias objects. This indicates that the gain of a stronger
clustering signal is more than cancelled by the reduction of the
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Figure 9. Relative error on β as a function of volume, bias and number density. The dependence on volume is explored by dividing the sample into N3
split

subsamples, with Nsplit = 3, 4, 5, 6. As in all of this section, in modelling the measured ξ (rp, π ) through equation (11) we use the deprojected ξ (r) (with
πmax = 25 h−1 Mpc), as to represent a condition as close as possible to real observations. The superimposed grid is described by the scaling formula of
equation (20). Left-hand panel: δ(β)/β t as a function of volume and bias, considering three different threshold masses (i.e. biases), but randomly diluting the
catalogues as to keep a constant number density, n = 2.48 × 10−4 h3 Mpc−3 in all cases (see Table 2, empty circles). Right-hand panel: δ(β)/β t as a function of
the volume, V , and the number density, n. Here we consider a single threshold mass, Mcut = 1.10 × 1012 h−1 M�, corresponding to a constant bias, b = 1.44.

distortion signal, when higher bias objects are considered. This
is however fully true only for samples which are not too sparse
intrinsically. We see in fact that at extremely low densities, the re-
lationship is inverted, with high-bias objects becoming favoured.
At the same time, there is a clear general flattening of the depen-
dence of the error on the mean density n. The relation is not a
simple power law, but becomes constant at high values of n. In
comparison, over the density range considered here, the old scaling
formula of Guzzo et al. would overestimate the error significantly.
This behaviour is easily interpreted as showing the transition from a
shot-noise-dominated regime at low densities to a cosmic-variance-
dominated one, in which there is no gain in further increasing
the sampling. Such behaviour is clear for low-mass haloes (i.e.
low bias) but is much weaker for more massive, intrinsically rare
objects.

We can now try to model an improved empirical relation to repro-
duce quantitatively these observed dependences. Let us first con-
sider the general trend, δ(β)/β ∝ b0.7, which describes well the trend
of δ(β)/β in the cosmic variance dominated region (i.e. at high den-
sity). In Fig. 8 such a power law is represented by a plane. We then
need a function capable to warp the plane in the low-density region,
where the relative error becomes shot noise dominated. The best
choice seems to be an exponential: δ(β)/β ∝ b0.7exp (n0/n), where,
by construction, n0 roughly corresponds to the threshold density
above which cosmic variance dominates. Finally, we need to add an
exponential dependence on the bias so that at low density the rel-
ative error decreases with b, such that the full expression becomes
δ(β)/β ∝ b0.7exp [n0/(b2n)]. The grid shown in Fig. 8 represents the
result of a direct fit of this functional form to the data, showing that
it is indeed well suited to describe the overall behaviour. In the right-
hand panel we have oriented the axes as to highlight the goodness
of the fit: the rms of the residual between model and data is ≈0.015,
which is an order of magnitude smaller than the smallest measured
values of δ(β)/β. This gives our equation the predictive power we
were looking for: if we use it to produce forecasts of the precision

of β for a given survey, we shall commit a negligible error4 (�20
per cent) on δ(β)/β (at least for values of bias and volume within the
ranges tested here). To fully complete the relation, we only need to
add the dependence on the volume, which is in principle the easiest.
To this end, we split the whole simulation cube into N3

split subcubes,
with Nsplit = 3, 4, 5, 6. By applying this procedure to five samples
with different bias and number density (see Table 2) we make sure
that our results do not depend on the particular choice of bias and
density. Fig. 9 shows that δ(β)/β ∝ V−0.5 independently of n and b,
confirming the dependence found by Guzzo et al. (2008). We can
thus finally write the full scaling formula for the relative error of β

we were seeking for:

δ(β)/β ≈ Cb0.7V −0.5 exp

(
n0

b2n

)
, (20)

where n0 = 1.7 × 10−4 h3 Mpc−3 and C = 4.9 × 102 h−1.5 Mpc1.5.
Clearly, by construction, this scaling formula quantifies random
errors, not the systematic ones.

5.2 Comparison to Fisher matrix predictions

The Fisher information matrix provides a method for determining
the sensitivity of a particular experiment to a set of parameters and
has been widely used in cosmology. In particular, Tegmark (1997)
introduced an implementation of the Fisher matrix aimed at fore-
casting errors on cosmological parameters derived from the galaxy
power spectrum P(k), based on its expected observational uncer-
tainty, as described by Feldman, Kaiser & Peacock (1994). This
was adapted by Seo & Eisenstein (2003) to the measurements of
distances using the BAO in P(k). Following the renewed interest
in RSD, over the past few years the Fisher matrix technique has

4 This estimate is obtained by comparing the smallest measured error,
δ(β)/β ≈ 0.07 (Fig. 10), with the rms of the residuals, ≈0.015.
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Figure 10. The relative error on β as a function of the mean number density of the sample, predicted with the Fisher matrix approach (solid and dotted lines)
and measured from the simulated samples (filled circles; colours coded as in previous figures). The solid and dotted lines correspond to using, respectively,
kmax = 0.2 or 1 h Mpc−1 (with Lorentzian damping) in the Fisher forecasts. The dashed lines show in addition the behaviour of the scaling formula obtained
from the simulation results (equation 20). This is also compared, in the top left-hand panel, to the old simplified fitting formula for b = 1.3 galaxies of
equation (19).

also been applied to predict the errors expected on β, f and related
parameters (e.g. Linder 2008; Wang 2008; Percival & White 2009;
White et al. 2009; Simpson & Peacock 2010; Wang et al. 2010;
Bueno Belloso, Garcı́a-Bellido & Sapone 2011; Samushia et al.
2011; di Porto, Amendola & Branchini 2012). The extensive sim-
ulations performed here provide us with a natural opportunity to
perform a first simple and direct test of these predictions. Given the
number of details that enter in the Fisher matrix implementation,
this cannot be considered as exhaustive. Yet, a number of interesting
indications emerge, as we shall see.

We have computed Fisher matrices for all catalogues in Table 2,
using a code following White et al. (2009). In particular, our Fisher
matrix predicts errors on β and b, given the errors on the linear
redshift-space power spectrum modelled as in equation (4) (Kaiser
1987). We first limit the computations to linear scales, applying the
standard cut-off k < kmax = 0.2 h Mpc−1. We also explore the possi-
bility of including wavenumbers as large as k = π/3 ∼ 1 h Mpc−1

(that should better match the typical scales we fit in the correla-
tion functions from the simulations), accounting for non-linearity
through a conventional small-scale Lorentzian damping term. Our
fiducial cosmology corresponds to that used in the simulation, i.e.
�M = 0.25, �� = 0.75, H0 = 0.73 and σ 8 = 0.9 today. We
also choose σ 12 = 200 km s−1 as reference value for the pairwise
dispersion. We do not consider geometric distortions (Alcock &
Paczynski 1979), whose impact on RSD is addressed in the parallel
paper by Marulli et al. (2012). To obtain the Fisher predictions on
β, we marginalize over the bias, to account for the uncertainty on
its precise value, and on the pairwise velocity in the damping term
(when present).

Fig. 10 shows the measured relative errors on β as a function of
the number density, compared to the Fisher forecasts for the two

choices of kmax. We also plot the scaling relation from equation (20),
which best represents the simulation results. We see that the simula-
tion results are in fairly good agreement with the Fisher predictions,
when we limit the computation to very linear scales in the power
spectrum (solid line). The inclusion of higher wavenumbers pro-
duces unrealistically small errors and with a wrong dependence on
the number density. Both the solid lines and points reproduce the ob-
served flattening at high number densities, which corresponds to the
transition between a shot-noise- and a cosmic-variance-dominated
regime, respectively.

Similarly, Fig. 11 looks at the dependence of the error on the
linear bias parameter, comparing the simulation results (points and
scaling formula best fit) to the Fisher forecasts. The behaviour is
similar to that observed for the number density: there is a fairly good
agreement when the Fisher predictions are computed using kmax =
0.2 h Mpc−1, except for very low values of the number density and
the bias. Again, when non-linear scales are included, the Fisher
predictions become too optimistic by a large factor.

6 SU M M A RY A N D D I S C U S S I O N

We have performed an extensive investigation of statistical and sys-
tematic errors in measurements of the redshift-distortion parameter
β from future surveys. We have considered tracers of the large-scale
distribution of mass with varying levels of bias, corresponding to
objects like galaxies, groups and clusters. To this purpose, we have
analysed large catalogues of DM haloes extracted from a snapshot
of the BASICC simulation at z = 1. Our results clearly evidence
the limitations of the linear description of RSD, showing how er-
rors depend on the typical survey properties (volume and number
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Figure 11. The relative error on β as a function of the effective bias factor, predicted by the Fisher matrix (solid and dotted lines) and measured from the
simulated samples (filled circles; colours coded as in previous figures). The solid and dotted lines correspond to using, respectively, kmax = 0.2 or 1 h Mpc−1

(with Lorentzian damping) in the Fisher forecasts. The dashed lines show in addition the behaviour of the scaling formula obtained from the simulation results
(equation 20).

density) and the properties of the tracers (bias, i.e. typical mass).
Let us recap them and discuss their main implications.

(i) Estimating β using the Hamilton/Kaiser harmonic expansion
of the redshift-space correlation function ξ (rp, π ) extended to typ-
ical scales, leads to a systematic error of up to 10 per cent. This
is much larger than the statistical error of a few per cent reachable
by next generation surveys. The larger systematic error is found for
small bias objects, and decreases reaching a minimum for haloes
of 1013 h−1 M�. This reinforces the trend observed by Okumura &
Jing (2011).

(ii) Additional analysis of mock surveys from the Millennium
run confirms that the observed systematic errors are not the result
of potentially missing substructure in the BASICC halo catalogues.

(iii) The use of the deprojected correlation function increases the
statistical error, inducing also some additional systematic effects
(details are given in Appendix B and also in the companion paper
by Marulli et al. 2012).

(iv) For highly biased objects, which are sparser and whose sur-
veys typically cover larger, more linear scales, the simple Kaiser
model describes fairly well the simulated data, without the need of
the empirical damping term with one extra parameter accounting
for non-linear motions. This results in smaller statistical errors.

(v) We have derived a comprehensive scaling formula, equa-
tion (20), to predict the precision (i.e. relative statistical error)
reachable on β as a function of survey parameters. This expression

improves on a previous attempt (Guzzo et al. 2008), generalizing the
prediction to a population of arbitrary bias and properly describing
the dependence on the number density.

This formula can be useful to produce quite general and reliable
forecasts for future surveys.5 One should in any case consider that
there are a few implementation-specific factors that can modify the
absolute values of the recovered rms errors. For example, these
would depend on the range of scales over which ξ (rp, π ) is fitted.
The values obtained here refer to fits performed between rmin = 3
and rmax = 35 h−1 Mpc. This has been identified through several
experiments as an optimal range to minimize statistical and system-
atic errors for surveys this size (Bianchi 2010). Theoretically, one
may find natural to push rmax, or both rmin and rmax to larger scales,
as to (supposedly) reduce the weight of non-linear scales. In prac-
tice, however, in both cases we see that random errors increase in
amplitude (while the systematic error is not appreciably reduced).

Similarly, one should also keep in mind that the formula is strictly
valid for z = 1, i.e. the redshift where it has been calibrated. There
is no obvious reason to expect the scaling laws among the different
quantities (density, volume, bias) to depend significantly on the
redshift. This is confirmed by a few preliminary measurements we

5 For example, it has recently been used, in combination with a Fisher matrix
analysis, to predict errors on the growth rate expected by the ESA Euclid
spectroscopic survey (cf. fig. 2.5 of Laureijs et al. 2011).
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performed on halo catalogues from the z = 0.25 snapshot of the
BASICC. Conversely, the magnitude of the errors may change, as
shown e.g. in de la Torre & Guzzo (2012). We expect these effects
to be described by a simple renormalization of the constant C.

Finally, one may also consider that the standard deviations mea-
sured using the 27 subcubes could be underestimated, if these are
not fully independent. We minimize this by maximizing the size of
each subcube, while having enough of them as to build a meaning-
ful statistics. The side of each of the 27 subcubes used is in fact
close to 500 h−1 Mpc, benefiting of the large size of the BASICC
simulation.

(vi) We have compared the error estimations from our simu-
lations with idealized predictions based on the Fisher matrix ap-
proach, customarily implemented in Fourier space. We find a good
agreement, but only when the Fisher computation is limited to
significantly large scales, i.e. k < kmax = 0.2 h Mpc−1. When more
non-linear scales are included (as an attempt to roughly match those
actually involved in the fitting of ξ (rp, π ) in configuration space),
then the predicted errors become unrealistically small. This indi-
cates that the usual convention of adopting kmax ∼ 0.2 h Mpc−1 for
these kind of studies is well posed. On the other hand, it seems
paradoxical that in this way with the two methods we are looking at
different ranges of scales. The critical point clearly lies in the ide-
alized nature of the Fisher matrix technique. When moving up with
kmax and thus adding more and more non-linear scales, the Fisher
technique simply accumulates signal and dramatically improves the
predicted error, clearly unaware of the additional ‘noise’ introduced
by the breakdown of linearity. On the other hand, if in the direct fit
of ξ (rp, π ) (or P(k, μ)) one conversely considers a corresponding
very linear range r > 2π/kmax ∼ 30 h−1 Mpc, a poor fit is obtained,
with much larger statistical errors than shown e.g. in Fig. 5. There is
no doubt that smaller, mildly non-linear scales at intermediate sepa-
rations have necessarily to be included in the modelling if one aims
at reaching per cent statistical errors on measurements of β (or f ). If
one does this in the Fisher matrix, then the predicted errors are too
small. The need to push our estimates to scales which are not fully
linear will remain true even with surveys of the next generation,
including tens of millions of galaxies over Gpc volumes, because
that is where the clustering and distortion signals are (and will still
be) the strongest. Of course, our parallel results on the amount of
systematic errors that plague estimates based on the standard dis-
persion model also reinforce the evidence that better modelling of
non-linear effects is needed on these scales. The strong effort being
spent in this direction gives some confidence that significant tech-
nical progress will happen in the coming years (see e.g. Kwan et al.
2012; de la Torre & Guzzo 2012, and references therein).

In any case, this limited exploration suggests once more that
forecasts based on the Fisher matrix approach, while giving useful
guidelines evidence the error dependences, have to be treated with
significant caution and possibly verified with more direct methods.
Similar tension between Fisher and Monte Carlo forecasts has been
recently noticed by Hawken et al. (2012).

(vii) Finally, in Appendix A we have also clarified which is the
most unbiased form to be adopted for the likelihood when fitting
models to the observed redshift-space correlation function, propos-
ing a slightly different form with respect to previous works.

With RSD having emerged as probe of primary interest in cur-
rent and future dark-energy-oriented galaxy surveys, the results
presented here further stress the need for improved descriptions
of non-linear effects in clustering and dynamical analyses. On the
other hand, they also indicate the importance of building surveys

for which multiple tracers of RSD (with different bias values) can
be identified and used in combination to help understanding and
minimizing systematic errors.
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A P P E N D I X A : D E F I N I T I O N O F TH E
L I K E L I H O O D F U N C T I O N TO ES T I M ATE β

To estimate β, in Section 3.2 we defined a likelihood function
comparing the measured correlation function ξ (rp, π ) and the cor-
responding parametrized models. Our likelihood is simply given by
the standard χ2 expression

−2 lnL =
∑
i,j

(
y

(m)
ij − yij

)2

δ2
ij

, (A1)

where however the stochastic variable considered is not just the
value of ξ (rp, π ) at each separation (rp, π ) = (ri, rj), but the expres-
sion

yij = log[1 + ξ (ri , rj )], (A2)

which has the desirable property of placing more weight on large,
more linear scales. This was first proposed by Hawkins et al. (2003),
who correspondingly adopt the following expression for the expec-
tation value of the variance:

δ2
ij = {log[1 + ξij + δ(ξij )] − log[1 + ξij − δ(ξij )]}2. (A3)

This simply maps on to the new variables yij, the interval including
68 per cent of the distribution in the original variables ξ ij, i.e. twice
the standard deviation if this were Gaussian distributed. Strictly
speaking, here an extra factor 1/2 would be formally required if one
aims at defining the equivalent of a standard deviation, but this is
in the end ineffective in the minimization and thus in finding the
best-fitting parameters.

However, the weighting factors 1/δij in the likelihood definition
depend explicitly on ξ ij, which may result in an improper weighting

Figure A1. Mean value (top) and relative scatter (bottom) of β, as recovered
from catalogues with varying density (but same volume and bias), using the
two different definitions of the variance of each data point of equations
(A3) (open blue squares) and (A4) (open red circles). The dashed line
shows as reference the asymptotic common value of β that both methods
identically recover at high densities. Note how using equation (A4) yields
an unbiased estimate down to significantly smaller densities, whereas the
estimator based on equation (A3) becomes rapidly more and more biased
below n ≈ 5×10−4 h3 Mpc−3. The intrinsic scatter of the measurements, as
usual obtained from the 27 subcubes of this specific catalogue, also follows
a similar trend.

of the data when the correlation signal fluctuates near zero. We have
directly verified that when the estimate is noisy, it is preferable to
use a smooth weighting scheme rather than one that is sensitive to
local random oscillations of ξ , which is more likely to yield biased
estimates. This supported our choice of adopting the usual sample
variance expression,

δ2
ij = 1

N

∑
k

(
y

(k)
ij − 〈

yij

〉)2
, (A4)

estimated over N realizations of the survey. This can be done us-
ing mock realizations (Guzzo et al. 2008), or, alternatively, through
appropriate jackknife or bootstrap resamplings of the data. Specifi-
cally, we find a significant advantage of the weighting scheme based
on sample variance when dealing with low-density samples. This
is shown in Fig. A1, where β is estimated on the catalogue with
Mcut = 1.10 × 1012 h−1 M� using the two likelihoods and gradually
diluting the sample [note that all computations in this section use
the linear-exponential model, with ξ (r) directly measured in real
space].

In order to understand the reasons behind this behaviour, we
have studied independently the various terms composing the like-
lihood. We use one single subcube (i.e. 1/27 of the total volume),
from the catalogue with Mcut = 1.10 × 1012 h−1 M�, and con-
sider two extreme values of the mean density. First, we consider
the case of the highest density achievable by this halo catalogue,
n = 3.11 × 10−3 h3 Mpc−3. In the upper panel of Fig. A2 we plot
a section of ξ (rp, π ) at constant π = 9.75 h−1 Mpc, together with
the model ξm(rp, π ) corresponding to the best-fitting β and σ 12

parameters. In this density regime the values of the recovered best-
fitting parameters are essentially independent of the form chosen
for δ2

ij (as shown by the coincident values of β on the right-hand
side of Fig. A1). The match of the model to the data is very good.
In the central panel, we plot instead, for each bin i along rp, the
absolute value of the difference between model and observation,
(|y − ym|)i, together with the corresponding standard deviations
in the two cases, which are virtually indistinguishable from each
other. Finally, the lower panel shows the full values of the terms
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Figure A2. Comparison of the performances of the two likelihood forms
discussed in the text in the high-density regime, using the fully sampled
population of haloes from a single subcube (1/27 of the volume) with
Mcut = 1.10 × 1012 h−1 M�. Top panel: cut through ξ (rp, π ) at fixed
π = 9.75 h−1 Mpc (broken line), and corresponding best-fitting model
ξm(rp, π ) using the Hawkins et al. (2003) form for the scatter of each

data point (continuous line). Central panel: residual values |yij − y
(m)
ij | be-

tween the data and model values (light grey line) and values for the scatter
of each point, according to the two definitions of equations (A4) (solid red
line) and (A3) (dashed blue line). Bottom panel: corresponding terms in the
χ2 sum (see equation A1). The two definitions for the scatter, as expected,
produce virtually identical values for the likelihood.

contributing to the χ2 sum, again showing the equivalence of the
two choices in this density regime.

However, when we sparsely sample the catalogue, as to reach a
mean density of n = 9.58 × 10−5 h3 Mpc−3 (leaving all other pa-
rameters unchanged), a very different behaviour emerges (Fig. A3).6

Using the Hawkins et al. (2003) definition for the variance yields
a best-fitting model that overestimates the data on almost all scales
(top panel), corresponding to unphysical values of β = 2.33 and
σ12 = 2112 km s−1. The central panel now shows how in this regime
the two definitions of the scatter (which weigh the data-model dif-
ference) behave in a significantly different way, with the Hawkins
et al. (2003) definition being much less stable than the one used
here, and in general anticorrelated with the values of ξ (rp, π ) in
the upper panel. In the lower panel, the dashed line shows how this
anticorrelation smoothes down the (|y − ym|)i peaks resulting in er-
roneously low values for the χ2 that drive the fit to a wrong region of
the parameter space. In the same panel, the solid line shows how the
likelihood computed with our definition for these same parameters
gives high χ2 values, thus correctly rejecting the model.7

6 In Fig. A1 (upper panel, second blue square from the left) we show the
same behaviour when averaged over 27 subsamples.
7 For rp = 4.75 h−1 Mpc (and π = 9.75 h−1 Mpc) we find 1 + ξ − δ(ξ ) < 0.
Consequently, δHawkins is not well defined (Fig. A3, central panel) resulting
in a zero weight for the corresponding χ2 summand (lower panel).

Figure A3. Same as Fig. A2, but now in the low-density regime (n =
9.58 × 10−5 h3 Mpc−3). Again, the model curve in the top panel corresponds
to the best-fitting parameters obtained using the Hawkins et al. (2003) form
of the scatter of each measurements. The fit is very unsatisfactory. The
bottom panel shows how the likelihood expression based instead on the
standard deviation of y as from equation (A4) rejects these parameter values,
giving high χ2 values (red solid curve). Note the different scale on the
ordinate, with respect to previous figure.

APPENDI X B: ADDI TI ONAL SYSTEMATIC
E F F E C T W H E N U S I N G T H E D E P RO J E C T E D
C O R R E L AT I O N F U N C T I O N

In a real survey, the direct measurement of ξ (r) is not possible. A
way around this obstacle is to project ξ (rp, π ) along the line of
sight, i.e. along the direction affected by redshift distortions. We
hence define the projected correlation function as

wp(rp) = 2
∫ ∞

0
ξ (rp, π ) dπ = 2

∫ ∞

rp

r ′ξ (r ′) dr ′√
r ′2 − r2

p

. (B1)

Inverting the integral we recover ξ (r). More precisely, following
Saunders, Rowan-Robinson & Lawrence (1992), we have

ξ (r) = 1

π

∫ ∞

r

dwp(rp)/drp√
r2

p − r2
drp, (B2)

where π is the usual mathematical constant, not to be confused with
the line-of-sight separation π in equation (B1).

A more extended investigation of the effects arising when using
the deprojected ξ (r) instead of that directly measured (hereafter ξ dep

and ξ dir, respectively) is carried out in Marulli et al. (2012). Here
we limit the discussion to the impact of the deprojection technique
on the estimate of β, as a function of the mass (i.e. the bias) of
the adopted tracers, focusing on the systematic effects (Fig. B1).
One possible source of systematic error in performing the depro-
jection is the necessity of defining a finite integration limit πmax

in equation (B2). In Fig. B1 two different choices of πmax are
considered. We notice that these choices (purple inverted triangles
and yellow rhombs) result in different slopes of β as a function
of bias, which differ from the slope obtained using ξ dir (green
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Figure B1. The effect of using the deprojected real-space correlation func-
tion in the RSD model. Upper panel: values of β obtained when the real-
space correlation function ξ (r) is directly measured from the simulation
(triangles) or deprojected as in real surveys (rhombs and inverted triangles).
The latter correspond to two different integration limits πmax in the pro-
jection. The two lower panels give the systematic and statistical error as in
Fig. 6.

triangles). This is plausibly due to the fact that using a limiting πmax

we are underestimating the integral (consider that ξ > 0 for π �
100 h−1 Mpc). This effect grows when the bias increases, because
of the corresponding growth of ξ which leads to a larger ‘loss of
power’ in wp. However, we cannot use arbitrarily large values of
πmax because the statistical error increases for larger πmax (see
lowest panel of Fig. B1). This may be due to the increase of the shot
noise at large separations. Similarly, the drop of correlation signal at
small separations due to the finite size of the DM haloes produces an
impact on β which grows with bias. Finally, as suggested previously
(Guzzo et al. 2008) and discussed extensively in Marulli et al.
(2012), Fig. B1 shows how using ξ dep in modelling RSD, produces
a statistical error about twice as large as that obtained using ξ dir

(lower panel).
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