
Distributed Spanish Sign Language Synthesizer

Architecture

Fernando López-Colino, Javier Tejedor, Javier Garrido and José Colás

Human Computer Technology Laboratory, Escuela Politécnica Superior,
Universidad Autónoma de Madrid, Spain

[fj.lopez, javier.tejedor, javier.garrido, jose.colas]@uam.es

Abstract. This work presents the design of a distributed Sign Language
synthesis architecture. The main objective of this design is to adapt
the synthesis process to the diversity of the user devices. The synthesis
process has been divided into several independent modules that can be
executed either in a synthesis server or in the client device. Depending on
the modules assigned to the server or the client, four different scenarios
have been defined. These scenarios may vary from a heavy client design
which executes the whole synthesis, to a light client design similar to
a video player. These four scenarios will provide the maximum signed
message quality independently of the device hardware resources.

Key words: Spanish Sign Language, Ubiquitous Computing, Automatic
Synthesis, Deaf People

1 Introduction

Literature provides several examples of Sign Language (SL) synthesizers [1, 2, 3].
The most extended technique is based on the animation of a virtual avatar
based on abstract representations of the sign. These synthesizers require complex
calculations, specific libraries and 3D capable devices, which reduces the suitable
devices to PCs and laptops. Unfortunately, there are many real situations where
only a mobile device is available.

Mobile device hardware resources do not fulfill current SL synthesizers’ re-
quirements. For this reason, instead of proposing a low quality SL synthesis
adapted to these resources, we propose a distributed architecture. This architec-
ture is divided into several modules that can be run either in a synthesis server
or in the user’s device, so the resulting message quality is always the same.

2 Distributed Architecture

The SL synthesizer has been designed to deal with the great diversity of final user
devices. In order to cover most hardware and software platforms, a distributed
architecture has been established, dividing the whole process into five different
steps (Fig. 1): HLSML Parser, Avatar and Sign Description Retrieval, Gesture
Synthesis, Rendering and Visualization. This synthesizer has been adapted to
Spanish Sign Language (SpSL) contents.



2 Fernando López-Colino, Javier Tejedor, Javier Garrido and José Colás

HLSML

Sign

Description

Relational

Database

Web

Server

Sign

Description 

Retrieval

Avatar 

Description 

Retrieval

Avatar + Scene

Description

HLSML

Parser
Gesture 

Synthesis
Rendering Visualization

Video

Signal

Bone

Animation

Tracks

Avatar

Anatomy

Sign

Parameters

Definition

Fig. 1. This image shows the different elements of the SpSL Synthesizer.

HLSML Parser The sign message is described using a XML-based format. We
have defined HLSML (High Level Signing Markup Language) to describe all the
elements required for SpSL automatic synthesis. This module parses the HLSML
message and obtains the sequence of SpSL signs.

Avatar and Sign Description Retrieval We have chosen the JSR-184 stan-
dard [4] for 3D scene description. This standard defines the m3g file format to
describe all the elements in the scene such as geometry, lights, cameras, anima-
tion tracks, materials and hierarchical bone structures. The avatar, defined as a
skeleton mesh with a multiple material assigned, the default lights and the four
cameras are defined by means of this m3g file format. This file is downloaded from
the Web Server using the standard HTTP protocol. The sign definitions have
been recorded in a relational database by means of their basic parameters [5].
The database contains a standard sign representation and several variations for
some basic sign parameters such as hand shapes and movements. The sign rep-
resentation is different for every SL. In our case, this database contains the SpSL
sign definitions.

Gesture Synthesis This is the main module of the whole synthesis process.
Its role is to create the animation tracks for every skeleton bone that must be
animated in the final sequence. Each animation track consists of a sequence of
bone orientations with a timestamp that indicates the instant when the bone
must reach that orientation. These orientations can be retrieved from the Rela-
tional Database, such as the orientation for the hand bones, or calculated using
Inverse Kinematics, e.g. upper-arm and forearm orientations.

Rendering The rendering process consists of the generation of a 2D image from
a 3D scene definition. The 3D animated scene definition is created by merging
the scene definition retrieved from the Web Server and the bone animation tracks
created in the Gesture Synthesis module. Each 2D image, i.e. each video frame,
is generated at regular time intervals. These time intervals depend on the device
hardware resources. The maximal time interval for a fluid animation is 0.06 s.



Distributed Spanish Sign Language Synthesizer Architecture 3

Visualization The visualization of the resulting video sequence is the last stage
of the process, which defines two different alternatives. The first one involves
performing the live visualization directly from the rendered output. The second
alternative is reserved for devices with low 3D capabilities or without the required
rendering API. In this case, the Visualization process would consist of playing
the video sequence that can be downloaded after a synthesis server has finished
rendering the whole message or while the message is being rendered by means
of streaming technology.

3 Final User Device Adaptation

The most hardware dependent modules are the Gesture Synthesis, the Rendering
and the Visualization. The first two modules can be assigned either to the final
client device or to a synthesis server, while the Visualization must be run on the
client side using one of the visualization alternatives described before. The dis-
tribution of these modules between server and client sides and the visualization
alternative defines four different scenarios (Fig. 2):

Gesture 

Synthesis

Rendering

Visualization

Video

Signal

Bone

Animation

Tracks

Video 

Streaming

Server

Enriched 

m3g file 

generation

Animation 

Adaptation

m3g file player

Rendering

+

Visualization

Video 

Streaming 

Client

Visualization

Video

Streaming

3D rendering 

capable client

Animation

Definition

Merge 
Rendering

+

Visualization

New Avatar

Description

Avatar

Repository

m3g file

Server – Client

Connection

α

γ

δ

β

Fig. 2. This image shows the four scenarios designed for the final user device adaptation

– The first scenario (scenario α) is designed for PC devices. These devices have
enough resources to run the whole synthesis process. For this reason all the
modules are assigned to the client device. This solution does not involve a
high network load because of the small size of the m3g scene description file
and the reduced amount of data required in the sign definitions.

– The second scenario (scenario β) is suitable when the client device does not
have 3D rendering resources or the required API is not available. This light
client strategy requires only a video program on the client device. Obviously,



4 Fernando López-Colino, Javier Tejedor, Javier Garrido and José Colás

the main synthesis stages (Gesture Synthesis and Rendering) must be done
on the server side. The resulting sequence is transferred to the client device
by means of a standard file transfer protocol or by video streaming.

– The third is a low network load scenario that assigns the Gesture Synthesis
module to the server side (scenario γ). Only a complete m3g file including
an avatar description and bone animation tracks is transmitted to the client
device. This requires only 3D graphic resources, so this third scenario is ideal
for mobile devices with Java 3D mobile API. The downside of this scenario
is that the server must generate the extended m3g file containing the scene
description and the animation information.

– The last scenario (scenario δ) is similar to the third one as it is a low network
load approach and requires 3D management capabilities in the client device.
The bone animation tracks obtained in the Gesture Synthesis module are
adapted and transmitted to the final user device. The client program merges
these bone animation tracks with the avatar description in order to obtain
the desired SpSL message. This scenario may be used as an interface to be
used by other rendering technologies such as VRML, XNA, etc.

4 Current Development and Future Work

At the current state of the project, scenarios α and β are completely functional
and they are under final user tests. The γ approach depends on the version
2.0 of the m3g library release which will implement the export feature for the
γ scenario. Finally, the δ scenario is at the first stage of its development. We
have chosen the VRML standard as the rendering technology to adapt our SpSL
Synthesizer.

5 Acknowledgements

Authors would like to acknowledge the FPU-UAM program for its support.

References

[1] Zwiterslood, I., Verlinden, M., Ros, J., Schoot, S.: Synthetic signing for the deaf:
esign. In: Proc. of the Conference and Workshop on Assistive Technologies for
Vision and Hearing Impairment, Granada, Spain, CVHI (June 2004)

[2] Bangham, A., Cox, S., Elliot, R., Glauert, J., Marshall, I.: Virtual signing: Capture,
animation, storage and transmission - an overview of the visicast project. In: IEE
Sem. on Speech and Language Processing for Disabled and Elderly People. (2000)

[3] Kennaway, R., Glauert, J.R.W., Zwitserlood, I.: Providing signed content on the
internet by synthesized animation. ACM Transactions on Computer-Human Inter-
action 14(15) (2007) 1–29

[4] Java Community Process: Jsr-184. mobile 3d graphics api for j2me.
http://www.jcp.org/en/jsr/detail?id=184 (2005)

[5] López, F., Tejedor, J., Garrido, J., Colás, J.: Use of a hierarchical skeleton for
spanish sign language 3d representation over mobile devices. In: Proc. of INTER-
ACCION, AIPO (November 2006) 565–568


