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Siempre decía que los agradecimientos es lo más importante de una tesis. Será porque soy una 

persona muy ñoña, y me gustan las cosas ñoñas. Ahora, escribiendo los míos, me estoy dando 

cuenta de que también es la parte más difícil de escribir. Porque hay infinitas personas que han 

contribuido de una forma u otra a que este trabajo naciera y a que yo aprendiera tanto durante 

estos 3 años y medio. A todos vosotros por adelantado: ¡¡¡Mil gracias!!! 

Meme... todo esto es realmente „tu culpa“. Me has dado una oportunidad, aunque entonces no 

había tenido ninguna experiencia con genética más que la teórica. Creo, que lo que más te va 

a gustar leer en este momento es que he sido infinitamente feliz haciendo el doctorado contigo 

(en otras palabras, “me lo he pasado teta”). “Estábamos solas“ muy a menudo, pero lo cierto es 

que siempre salimos adelante. He aprendido muchísimo de ti, y si pudiera, nunca me iría. Te 

deseo todo lo mejor en todos los aspectos, porque eres sinceramente maravillosa como jefa y 

como persona.... 

Cristina y Alberto... es increíble la cercanía que transmitís, y lo fácil que siempre me ha 
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del cáncer endocrino.  

Roci... „rock E-star mammy“! tu sabes, que yo te iloveyou. Ni te sé decir cuánto te aprecio. No 

es solo que me haces mearme de risa (ah, que eso NO me pasó a mi ), y realmente te 

preocupas siempre por mi (y por todos los demás), y eres la primera en preguntar qué me pasa, 

pero me has tratado siempre con un nivel de cariño superior a lo que me merezco, y te lo 

agradezco un mundo. Las mañanas „nuestras“, cuando te soltaba todas mis novedades „del 

finde“, significan muchísimo para mi, y de verdad que no me imagino el labo sin ti. 

Iñaki... tu primero te convertiste en un amigo cercano y me has ayudado mucho en los 

principios (y luego también, claro ). Compartir la mesa los primeros meses fue todo un honor. 

Compartir las meriendas, las naranjas, las risas, los chistes que no entendía nadie más… En fin, 

eres muy cariñoso y muy amistoso, y espero que te vaya muy muy bien vayas a donde vayas. 

Maria Apellániz... tu le sustituiste al Navarrico este a mi lado izquierdo, y es cuando empezó la 

obsesión con Ryan . También desde entonces podía estar segura de que si no estaría en el labo 

a las 9 en punto, te preocuparías. No sé si conozco a alguien más con un corazón tan grande y 

tan bueno, como el tuyo. No te olvidaré nunca lo dispuesta que estas siempre a ayudarme, que 

me llevaste a tu Rioja, y me enseñaste Estados Unidos. Hay infinitos los recuerdos que tengo 

contigo y con David, y quiero de verdad que os vaya muy bien a los dos y que seáis felices! 

Lara... tú también me lo pusiste fácil considerarte una amiga, y siempre te has preocupado por 

mi. Eres increíblemente maja, tienes energía para regalar, y además, entiendes de política! 

Vamos, estoy segurísima que puedes llegar hasta la luna si te lo propones! Maria Curras... ya sé 

que fue el zapato  ahora en serio, tienes un sentido de humor inmejorable, y me he meado una 

barbaridad de veces con las cosas que sueltas. Además, eres increíblemente trabajadora, y muy 

maja. Espero que te vaya muy bien con todo lo que toques! Lucia... siempre me has ayudado 

con todo lo que te he pedido, y además te has vuelto loca por la bollería eslovaca  mil gracias 
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„estadísticamente significativamente torpe“, pero doy fe que lo has intentado! ;) Cristina 

Montero... tu solo puedes ser bilbaína!!! He de decir que fue un honor compartir unos meses 

contigo, para mi eras como una estrella para seguir, y tu tesis fue como una biblia. Cuál fue mi 

“sorpresa“, cuando descubrí que eres increíblemente buena investigadora, y tan graciosa!! 



   

 

Espero que con tu Sergio, y tu Maria os vaya muy muy bien!! Y a ver si de una vez me dejas 

que te abrace ;)  

Javi... los pelos rojos de mi corazón ya para siempre son tuyos. No solo me has ayudado una 

autentica barbaridad, y me he enamorado de tu sentido de humor, y de tu manera de ser (en 

fin...) sino también me dejaste dormir en tu casa en Nueva York! En fin, te quiero como uno 

puede querer a alguien que NO es uno de sus amigos en facebook ;)))!!! Iñigo... tu eres un 

ejemplo de seguir para mi todos los días.. ni te cuento las veces que se oye „Landa“ por el 

labo...! al principio me lo enseñaste todo, y luego te has acordado de TODO siempre que te 

escribí. No sé como lo haces, pero sí sé que con esta cabeza tan bien puesta llegarás lejos. Mil 

gracias por todo! Aguirre… gracias por toda la ayuda con las OMICas y los análisis. He 

aprendido mucho de ti! Álvaro... Muchísimas gracias por ser siempre tan amistoso conmigo, y 

espero que te vaya muy muy bien! 

Con todo esto, quería decir que ha sido todo un placer hacer el doctorado en el grupo del cáncer 

endocrino. Todos habéis contribuido en hacerme sentir muy a gusto cada día en el trabajo, y me 

es difícil imaginarme un ambiente mejor. Os merecéis la luna por lo buena gente que sois! 

He de decir que el resto del programa de la genética humana no se ha quedado atrás! 

Empezando con el jefe, Javier, que nunca se olvidó de alguna palabra motivadora al verme dar 

una charla. Luego, no puedo olvidarme de “esos chicos de moda”, que me llevaban a comer (o 

por lo menos lo intentaban). Ali, ¿qué sería del programa sin ti? Mil gracias por siempre 

dejarme cualquier cosa, y también por siempre pedir una votación cuando me quería venir a 

comer (sé, que lo hacías con todo tu amor ). Como te voy a echar de menos!!!! Nere, a ti 

nunca te voy a olvidar tu bromilla muñovera de sombreros, y lo dispuesta que eres siempre a 

ayudar a cualquiera guiri. Que sepas, que desde que te fuiste, se te extraña un montón por aquí. 

Ale, eres una chica maravillosa, sensible y maja, y espero que aunque los comienzos en el 

CNIO no eran del todo fáciles, tu doctorado al final terminará siendo un mega éxito, te lo 

mereces mucho. Javi, siempre tienes unas palabras amistosas para mi, y no sabes lo que te las 

agradezco! Carlos, que bien que te bajaste a la segunda planta, y coincidimos mas ahora, es un 

gusto tener una persona como tú, tan alegre y positiva, cerca. Maika, ¿hay alguien más cariñoso 

en el mundo que tú? No sabes cuánto me alegra cruzarme contigo en el pasillo, y salir de este 

encuentro con un abrazo fuerte… mil gracias por todos y cada uno de ellos! Kira, mil gracias 

por ser tan amable, y tan buena gente. Nunca dices no a ninguna petición, y te deseo todo lo 

mejor! Bea, no te vuelvas loca con las bromas que te hacen Javi y Carlos!!  Espero, que todo 

te vaya muy bien!!! Fati, las “clases de yoga” por la mañana contigo me hacían llorar de risa, 

eres imposiblemente graciosa, y maja! Eso sí, no sé qué vas a hacer la próxima vez, que 

cambien la hora cuando me vaya!! :D Ana y Maria, mil gracias por todas vuestras sugerencias 

que me habéis hecho durante los seminarios, por todas las palabras majas que me habéis dicho, 

y al final, también por ser tan buenas tutoras de dos de mis mejores amigas de aquí.  Hay 

muchas más personas del programa (realmente todas…), que siempre han tenido mucha 

paciencia conmigo, y me han tratado requetebién: Guille, Tais, Sara, Charo, Nuria, Belén, Anna 

Gonzalez, Sofia, Ana del Rio, Sandra, Juan, Oriol, Toya, Silvia…. A todos vosotros, y a todos 

los que no nombro, o que ya no están (en especial a LauPau y a Bárbara… a ti Barbi, te debo 

muchísimo por haberme presentado a tu Fofi ), un millón de gracias!!!! 

In the end, there were much more friendly faces in CNIO that “just” those from my Program. I 

would specially like to thank all my friends from La Caixa 2011. Francesc, Magdi, Marta, 

Silvia, Simone, Takis... for some of you, I still remember how your presentations impressed me 



 
 

during the interviews and how honored I felt to be selected together with you. You have all one 

way or another at some point helped me, borrowed reagents, or shared knowledge. For all that, 

thank you SO much!!! We always said, we would meet and go out together more, but in the end 

life got in the way. I hope we will manage to make up for that in the time we still have left in 

Madrid! Tubi, you are without doubt the most special of these people. I literally fell in love with 

you during that interview marathon, and when I’ve heard you were also offered a position, I 

knew we would be OK in Madrid. And indeed, we are. Sunday cocktails at 11am, stand-by 

tickets for the flights to Switzerland, amazing trips we took together to Sweden, and around 

Spain... The nights you slept in my place, or me in yours in endless discussions or just ordering 

chinese and watching (romantic) movies or New Girl… The closeness you’ve always 

demonstrated me, and the fact we could always count on each other - no matter what - means 

the world to me. From my heart, köszi… I hope to be able to pay you off for all this one day. 

Time for you sis! Esther, you came to Madrid in one of the most fragile moments I’ve had here, 

and kept me (an excellent) company through bad times, and the good ones. When you left, a 

piece of my heart went with you. You are one of the people who know me best, and you will 

always remain a dear friend to me. I don’t even know how many trips we took together, and 

how many countries did we visit in the end. But it was always a joyful time, and you made it 

possible. I hope we will never lose the bond that started so many years ago in La Fuentona over 

a glass of sangria .  

Les toca a mis Rusas ahora: 

Aneta…. Kochana moja. Myslím, ţe to bolo takmer hneď po tom ako som prišla do labu, 

moţno v novembri, keď si sa objavila Ty, v Tvojich krátkych sukienkach a salsou. Boţe, ako sa 

zmenil Madrid! Dnes si mojou najkochanejsou blonďatou Anetou, a neviem si predstaviť čo by 

som robila bez Teba. Koľko sme sa spolu natancovali! Aj keď sa moţno nemôţeme kaţdý deň 

zabaczit, kaţdý deň sme v kontakte. Viem, ţe Ty tu dla mňa jestesz zavse, a barzo Ti ďakujem 

za to, akou si mi dobrou kolezankou. Mam nadeje, ţe ešte duzo podruzi máme pred sebou, a 

duzo spoločných chvíľ. Barzo Ťa kocham!!! <3 

Karolina….♥ Nikdy nezabudnem, ako nás Natalia zoznámila v tom Irish bare (ďakujem 

Natalia!!!). Kieţby sa nikdy neskončili naše štvrtkové pivá, v Tvojom bare. Ďakujem Ti za 

všetky tie chvíle, čo sme spolu spendili na Bokatas, v gurach, na pilatese.... Neviem Ti ani 

povedať, ako veľmi mi na Tebe záleţí, ako veľmi Ťa kocham a čo dla mňa znaczi Tvoje 

priateľstvo. Si úţasná dievčina, krásna, a tak veľmi dobrá. Ţelám Ti len to najlepšie, lebo si 

myslím, ţe Ty si len to najlepšie zaslúţiš. Nikdy sa nezmeň, pretoţe ľudí ako si Ty, takých 

čistých a ozajstných, je na svete uţ pramálo.  

Terka moja…. Včera som Ťa nechala na letisku. Po všetkých tých peripetiách, kedy si mi viac 

ráz skoro umrela (;)), sme to spoločne dotiahli aţ do Tvojho Londýnskeho dobrodruţstva. 

Ţelám Ti tak veľmi, aby bolo ešte lepšie ako to Madridské!!! Ty si si tieţ odniesla kus môjho 

srdca. Nevieš ako mi na Tebe záleţí, a ako mi bude chýbať, ţe uţ nebudem môcť len tak prísť k 

Tebe kedykoľvek sa mi zachce, a ísť si s Tebou zabehať, len tak na pivo, alebo na nákupy. 

Všetky naše tripy, ktoré začali tým pamätným maratónom v Nice, boli tak úţasné, ţe na to niet 

ani slov. A naozaj sa obávam, ţe tieto riadky ani zďaleka nepokrývajú to, čo Ti chcem vlastne 

povedať. Vďaka!!! Za to, ţe si tu bola pre mňa vţdy, za všetku podporu, za Tvoje 

nenahraditeľné priateľstvo. Mám Ťa veľmi rada.  



   

 

Over the years, we had to say goodbye to some of the Russians... Martička, veľmi Ti ďakujem 

za všetko, čo som sa od Teba naučila. Je pravda, ţe skrz prácu sme sa aţ tak veľa nemohli 

vídať, ale vţdy keď sa to podarilo, bolo to super. Dúfam, ţe budeš v ţivote veľmi šťastná! 

Miljana, Ana… we really only coincided for short periods, but you both are so great it was easy 

to become friends. I wish you only the best, and hope to see you soon! 

También me gustaría  agradecerles a todos nuestros colaboradores toda la ayuda. Lo cierto es, 

que la mayoría de los artículos ha nacido de proyectos coordinados, en los que tuve la 

oportunidad de colaborar con científicos magníficos. Me gustaría agradecerle a Pilar, Garci y a 

todo el grupo la ayuda con las líneas celulares, y la secuenciación de miRNAs. Por otro lado, 

Esme, siempre has sido rapidísima en mandarme material de tumores, y responder todas mis 

preguntas: ¡Mil gracias! Si no fuera por Raquel, Mireia y el grupo de Miguel Angel Peinado, no 

llegaría a saber nada de la metilación. La estancia tan breve que hice en su día en Barcelona fue 

tan enriquecedora y agradable gracias a vosotros!!! A Elena, Javier y Fátima gracias por todo el 

magnífico trabajo que habéis hecho (de una manera tan eficiente) con los micros.  

Ale ţivot nezačal aţ v Madride. Prišla som sem s ohromným zázemím z domu, a z Prahy. Práve 

v Prahe som nechala skvelých priateľov, ktorých som na šťastie mala moţnosť aspoň z času na 

čas vídať počas PhD. Naska, bez Teba by som sa k tomu PhD ani nedostala. Veď skúšky by 

som bez nášho nočného pospevovania nezvládla! Ţelám Ti a Martinovi len to najlepšie v ţivote! 

Jitka, Ty si môjmu srdcu taká drahá osôbka, a spolu s Ondrom a Evičkou Vám ţelám len to 

najlepšie. Ste prekrásna rodina a mám Vás moc rada. Miro, Ty čo si vţdy pamätáš deň mojich 

narodenín, a Tvoje nečakané správy mi vţdy pozdvihnú náladu! Nakoniec si si vybral inú cestu, 

ale budem Ti veľmi drţať palce, keď budeš po nej kráčať. Lukáško Alkán, na Teba sa nedá 

zabudnúť. A na všetky naše pivné a bowlingové závody. Mám Ťa moc rada a bodaj by sme sa 

zvládli častejšie vídať! Marcelka, Ty si ma naučila všetko, čo som si so sebou doniesla sem do 

labu. Nevieš, ako si Ťa váţim, a ako veľmi som Ti vďačná. Dúfam, ţe so svojou úţasnou 

rodinou budeš mega šťastná! Silvi, čo by som bez Teba robila v Barcelone??? Ďakujem Ti za 

všetko, za Tvoje krásne priateľstvo, a za skvelý trip do Malagy. Dúfam, ţe sa nám čoskoro cesty 

opäť pretnú. Michal, vţdy som Ťa obdivovala, som si istá, ţe budeš úţasným vedcom, a som 

Tvoj prvý fanúšik! Eli, you were there at the crucial moments, when Madrid was being decided, 

and you really made that last year in Prague a great time, thank you so much!!! Dáška, čo uţ nie 

si bláhová , ďakujem za všetko. Rok bývania s Tebou bol super, a priateľstvo čo počas toho 

času vzniklo nám dúfam vydrţí celý ţivot. Evi, na Teba nemôţem zabudnúť. Bez Teba by Praha 

nebola to, čo bola. Ţelám Ti len to najlepšie, aby si bola šťastná a spokojná. Navţdy Ťa budem 

nosiť v srdci. 

Maťa, moja Áčkarka. Tvoje priateľstvo ma prenieslo cez toľko kríz, ţe ich ani nespočítam. Aj 

keď sa medzi nás postavil kontinent, časová zaneprázdnenosť, a čo ja viem čo ešte, vţdy si bola 

a budeš mojou najlepšou priateľkou, prvou polovicou najlepšej lavice, a mojou rebelkou s 

burning wondebras  lu a msu kaţdý deň! 

Chcem si spomenúť aj na ďalších ľudí: na Miku Púčika môjho (a naše katalánske 

dobrodruţstvo), na Zuzku Senciovú, na Dášku Dudu Vrzalovie (a jej filmársku rodinu), na 

Mariana Bôţika (ZP), na Obláčika…. Ste mi drahými priateľmi, a vţdy si na mňa nájdete 

chvíľku, keď sa náhodou doma objavíme v rovnakom čase, a pre mňa to veľa znamená! 

Ďakujem!!! 



 
 

He de decir, que la decisión de venirme a Madrid estuvo muy profundamente afectada por el 

apoyo y cariño de Daniel, y toda su familia. Nunca os olvidaré la manera con la que me habéis 

acogido, y como me habéis tratado como si fuera una de la familia. Me ayudasteis con los 

comienzos, que así no eran ni un poco duros, y os sigo recordando muy a menudo. Muchísimas 

gracias por todo, y os deseo todo lo mejor! 

Y como me gusta decir, hace “tan solo” 3 años conocí en la defensa de Bárbara al “chico de 

barba” y - mira tú por dónde - ahora le quiero más de lo que podría expresar con palabras, y 

no me imagino la vida sin él. Láska, gracias por hacerme sentir tan especial, por hacerme tan 

feliz. Eres lo que más aprecio y simplemente…. Te quiero. 

A konečne prišlo na tých najdôleţitejších ľudí, na moju rodinu. Začnem tou “nepokrvnou”, ale o 

to viac ľúbenou. Pretoţe ja som sa narodila pod šťastnou hviezdou, a vyrástla som v striedavej 

starostlivosti 5 rodičovských párov. Ďakujem Vám, rodičia Andrloví, Grmano-Kurinoví, 

Lipovskí a Michalíkoví. Od kaţdého z Vás som dostala niečo iné, či to uţ boli hodiny 

lyţovania, plávania, rybacie pomazánky, medvedie stisky, či “len” ten pocit, ţe k Vám patrím. 

Medzi tými našimi 5 “friend“-rodinami ste urobili zo mňa to, čím som dnes, a nikdy Vám to 

nezabudnem. Moji “friend”-súrodenci Hanka, Zuzka, Peťka, Katka, Tatianka, Peťko, František 

a Dominik: veľmi Vás mám rada a ţelám Vám len to najlepšie do ţivota. Kieţby sme 

pokračovali v krokoch našich rodičov, a boli sme priateľmi uţ navţdy.  

Krstná Mária, Janko, Linda, Krstná Katka, Peter, Alica, starkí… ďakujem Vám za Vašu 

podporu a za radosť s akou ma vţdy vítate, keď sa máme moţnosť stretnúť. Karol, Zuzka, Peter, 

Lili, Filipko, Peťka… ďakujem Vám za to, ako ste mi vţdy fandili, a za to ako ma vţdy 

dokáţete rozosmiať. Babi, Ty si tá najlepšia babka na svete! Si nezastaviteľná, si moja 

cestovateľka, si duchom celej našej rodiny, a bez Teba sa ani lístok nepohne. Ďakujem Ti, ţe mi 

vţdy voláš, aby si vedela kde som a čo robím, a vţdy mi na počkanie poradíš. Ďakujem Ti, ţe si 

taká trpezlivá, keď ja som taká netrpezlivá. Ďakujem Ti zo srdca. 

Maminka, Tatko Šmolko… dali ste mi moţnosť skúsiť svet, a vţdy ste ma vo všetkom 

bezpodmienečne podporovali. Viem, ţe som mala veľké šťastie, ţe ma ten gogdál priniesol 

práve k Vám. Obaja ste ma naučili hodnotám (kaţdý z Vás tým svojim ), ktoré zo mňa urobili 

človeka, ktorým som dnes. Dúfam, ţe som Vás ničím nesklamala, a môţete byť na mňa pyšní. 

Ja viem, ţe mám tých najlepších rodičov na svete, ktorí by sa za mňa postavili v akejkoľvek 

situácii. Viac si ani nemôţem ţelať. Ďakujem Vám!!! 

Macko, Ty si pre mňa tým najdôleţitejším človekom na svete. Myslím, ţe je to pre Teba, prečo 

sa kaţdodenne snaţím dať zo seba len to najlepšie, pretoţe Ty to zvládaš akoby to nič nebolo. 

Som na Teba taká pyšná, a tak strašne mi chýbaš kaţdý deň, keď s Tebou nie som. Si 

jednoducho ten najlepší brat, akého by som si mohla ţelať, a mám Ťa najradšej na celom svete. 

A nikdy sa to nezmení. 

Veron 
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Thyroid tumors can have two cellular origins and a variety of genetic drivers. Thus, 

thyroid cancer (TC) is a complex and heterogeneous disease. As much of its etiology remains 

poorly explored, TC represents an attractive model to study cancer disease process. Herein, we 

have coupled exhaustive genomic dissection of an exceptional collection of human samples to 

their genetic characterization, and comprehensive data analysis in order to address several 

aspects of clinical interest. 

In the first part of the study focused on follicular cell-derived cancer, by performing a 

two-step association study involving 1,820 cases and 2,410 controls, we provide novel insights 

into the genetic susceptibility of this disease. Apart from underscoring the importance of 

9q22.33 locus in disease risk, we identify novel associations at 10q26.12 and 6q14.1 and 

highlight that genetic heterogeneity between populations could be a part of this disease’s hidden 

heritability. Moreover, we describe the genomic landscape of a total of 165 follicular cell-

derived tumors including both papillary and follicular cases. We identify distinct molecular 

subgroups closely related to oncogenic drivers, and explore the diagnostic and prognostic utility 

of several genomic features. According to our results, the methylome and miRNome of benign 

and malignant disease is largely overlapping, which prevents from diagnostic markers’ 

identification. Of note, elevated promoter methylation of WT1 and EI24, and aberrant 

expression of let-7a and miR-192 could serve as potential novel molecular markers of shorter 

time to progression. 

The second part of this study is focused on the less frequent tumors of the gland arising 

from C-cells, named medullary thyroid carcinomas (MTC). By characterizing the MTC 

methylome, we have complemented the genomic dissection of an outstanding collection of 64 

frozen and confirmed that this disease comprises of several molecular entities closely related to 

the underlying mutations. Moreover, taking advantage of a series composed of 103 paraffin 

embedded tumors we show that even tyrosine kinase inhibitors’ (TKI) targets expression differs 

according to these mutations, and a priori genetic screening of MTC patients appears advisable 

to guide the selection of the most suitable TKI treatment. 

To summarize, we have performed genetic and genomic characterization of almost the 

whole spectrum of thyroid tumors. Our studies have revealed much of molecular mechanisms 

behind these tumors and shown that they tend to be tightly linked to the causal driver mutations. 

On the whole, these results are yet another example of the great potential that lies in high-

throughput techniques to decipher disease etiology, and discover disease markers.  
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Los tumores tiroideos pueden tener dos orígenes celulares y estar causados por una gran 

variedad de mutaciones genéticas, siendo entonces el cáncer de tiroides (CT) una enfermedad 

compleja y heterogénea. Gran parte de su etiología sigue siendo poco explorada, y el CT 

representa un modelo atractivo de estudio. En este trabajo, se ha llevado a cabo una disección 

exhaustiva de aspectos genómicos de una colección sobresaliente de muestras humanas 

caracterizadas genéticamente,  con el fin de abordar varios aspectos de interés clínico. 

La primera parte del estudio se centra en el cáncer derivado de célula folicular. 

Mediante un estudio de asociación en dos etapas que incluía 1,820 casos y 2,410 controles, 

pudimos confirmar la importancia del locus 9q22.33 en el riesgo de la enfermedad, e 

identificamos nuevas asociaciones en 10q26.12 y 6q14.1. Nuestros datos sugieren que la 

heterogeneidad genética entre poblaciones podría en parte explicar la falta de replicación en 

distintos estudios. Además, describimos las características genómicas de 165 tumores derivados 

de célula folicular incluyendo tanto casos con patrón de crecimiento papilar como folicular. 

Identificamos subgrupos moleculares específicamente relacionados con mutaciones concretas, y 

exploramos la utilidad diagnóstica y pronostica de varias de las características genómicas 

estudiadas. Así, el metiloma y el miRNoma de enfermedades benignas y malignas se solapan en 

gran medida, lo cual impide la identificación de marcadores diagnósticos. Sin embargo, la 

hipermetilación del promotor de WT1 y EI24, y la expresión aberrante de let-7a y miR-192 

podrían servir como nuevos marcadores moleculares para predecir el tiempo hasta la progresión. 

La segunda parte del estudio se centra en carcinomas tiroideos derivados de las células 

C, llamados carcinoma medular de tiroides (CMT). Se caracterizó el metiloma de 48 CMT 

congelados, complementando resultados previos de transcriptoma y miRNoma. Esta 

enfermedad se compone de varias entidades moleculares estrechamente relacionadas con las 

mutaciones subyacentes. Utilizando una colección de 103 tumores embebidos en parafina 

demostramos que la expresión de dianas de inhibidores tirosina quinasas difiere de acuerdo a la 

mutación. Por tanto, una caracterización genética previa de los pacientes con CMT parece 

aconsejable para guiar la selección del tratamiento más adecuado. 

 En resumen, hemos caracterizado genética y genómicamente casi todo el espectro de 

tumores tiroideos. Nuestros estudios han revelado mecanismos moleculares involucrados en su 

desarrollo y han demostrado que los perfiles genómicos tienden a estar estrechamente 

vinculados a mutaciones causales. En conjunto, estos resultados son una muestra del gran 

potencial de las técnicas de alto rendimiento para descifrar la etiología de la enfermedad, y 

descubrir marcadores de la enfermedad.  
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1. Cancer and OMICs 

 Although cancer encompasses many different tumor types classified by their cellular 

origin, they all share abnormal growth and unregulated proliferation. Approximately 14 million 

new cancer cases are diagnosed yearly worldwide and 8 million of cancer patients die due to the 

disease. Individual’s susceptibility to develop cancer has been for long known to be modulated 

in a complex manner by genetic predisposition combined with environmental factors (Bartsch 

and Hietanen, 1996). Ultimately, the disease arises from an accumulation of alterations in 

critical genes. To date, ~140 such genes have been identified among the common forms of 

human cancer that, when altered by intragenic mutations, can unleash the unregulated growth 

and “drive” tumorigenesis (Vogelstein et al., 2013). Importantly, these driver mutations are 

typically associated with profound changes of other genomic features such as methylation 

pattern or gene and microRNA expression profiles in neoplastic cells, and it is this complex 

deregulation that ultimately modulates the malignant potential of each cancer (Balbin et al., 

2013). However, for most of the cancer types, the peculiarities of these aberrant molecular 

changes leading the transformation process remain to be elucidated. 

 A better understanding of the molecular diversity of cancer may lead to more efficient 

diagnosis, management of the disease and emergence of novel therapeutic options. In this 

regard, high throughput genomic technologies (OMICs) have become instrumental in the study 

of the molecular mechanisms behind cancer in an unbiased manner, as well as an efficient tool 

for biomarkers discovery. Moreover, recent collaborative efforts in recruiting large sample sets 

of both non-cancerous and cancerous tissues, their exhaustive genomic characterization and the 

public availability of the generated data create an ideal environment for genomic dissection of 

this complex disease (e.g.: The Cancer Genome Atlas [TCGA]: http://cancergenome.nih.gov/, 

The Encyclopedia of DNA Elements [ENCODE]: http://genome.ucsc.edu/ENCODE/, The 

Roadmap Epigenomics Mapping Consortium: http://www.roadmapepigenomics.org/). 

 At this point, is it important to highlight that two main technologies are available for 

genomic characterization of a given sample. Microarrays have been used for over two decades, 

and are based on a collection of microscopic DNA molecules attached to a solid surface, which 

hybridize to the complementary sequence in the sample. A decade ago, next-generation 

sequencing (NGS) methods based on parallel sample sequencing producing millions of reads 

concurrently were developed. Nowadays, the cost of the exhaustive NGS methods has become 

very affordable. Yet, microarrays keep on being used due to the well-established analysis 

pipelines and less labor-intensive sample preparation.  

http://cancergenome.nih.gov/
http://genome.ucsc.edu/ENCODE/
http://www.roadmapepigenomics.org/
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2. Thyroid gland and thyroid cancer: general concepts 

 Thyroid is one of the largest human endocrine glands implicated in a wide range 

of physiological functions via production of thyroid hormones: triiodothyronine (T3), thyroxine 

(T4) and calcitonin. The former ones regulate the growth and rate of many metabolic processes, 

while calcitonin is involved in calcium homeostasis. 

 Macroscopically, the thyroid is a butterfly-shaped organ localized in the neck and 

composed of two lobes connected via the isthmus. The thyroid gland is covered by a thin 

fibrous sheath composed of an internal and external layer. From the internal layer, small septa 

of connective tissue penetrate the gland and divide it into incomplete lobules. Microscopically, 

these lobules are built up of 20-40 round to oval variable-sized follicles (15-500 μm in 

diameter) with a central cavity that contains a viscous material called colloid. Colloid is mainly 

composed of thyroglobulin – the precursor of thyroid hormones. Every colloid follicle is lined 

with a simple, non-stratified, cuboidal epithelium made up of follicular cells. Adjacent to the 

thyroid follicles and immersed in the connective tissue, C cells (or parafollicular cells) can be 

found. 

 Follicular cells are the main thyroid cell population accounting for >98% of all cellular 

content of the gland. These endoderm-derived cells are characterized by being polarized and 

specialized to uptake iodine due to the presence of sodium-iodine symporter (NIS) 

in their basolateral membrane. Furthermore, they are also known to regulate, produce and 

secrete triiodothyronine (T3) and thyroxine (T4) hormones (Kopp, 2005). On the other hand, 

C cells account for only around 1% of thyroid gland cellular content. They are derived 

from neural crest (ectoderm), lack polarization, are mostly localized in the posterior upper third 

of the gland and produce calcitonin. 

 Both of these cell types can be affected by malignant transformation resulting in a 

disease jointly referred to as thyroid cancer (TC) - the objective of this thesis. Notwithstanding 

they only represent around 2% of the over-all human cancer burden (accounting for 213,000 

new cases yearly worldwide), thyroid tumors represent the most common malignancies of the 

endocrine system and remain associated with important clinical challenges that shall be 

discussed further on in the following chapters. TC is a general term encompassing two main 

cancer entities depending on the cell type affected by transformation. Follicular cell-derived 

tumors arise from follicular cells of the gland and far outnumber those of C cell origin called 

medullary thyroid carcinomas (MTC) (DeLellis et al., 2004). 
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3. Follicular cell-derived thyroid cancer 

3.1 Epidemiology, diagnosis and clinical management of follicular cell-derived TC patients 

 Follicular cell-derived tumors account for >95% of all thyroid neoplasias. They likely 

arise as a result of interplay between environmental, genetic and hormonal factors. Because 

of the thyroid’s dependence on environmental iodine, the gland is particularly vulnerable 

to the genotoxic effects of radioactive iodine and to the nongenotoxic effects resulting 

from iodine deficiency (Dal Maso et al., 2009). As the disease is 2-4 times more frequent 

in females than in males (Agate et al., 2012) (Figure 1a), it has been suggested that a specific 

susceptibility gene with sex hormone receptor elements may be involved in the pathology 

of this disease.  

The annual incidence of follicular cell-derived thyroid cancer varies among countries 

ranging from 0.5 to 20 cases per 100 000 individuals each year. This number has been steadily 

increasing over the past decades (Figure 1b). Of note, since follicular cell-derived cancer 

displays the highest annual percentage change in incidence increase among all cancers (>5%), 

some authors started to refer to it as to an epidemic disease (Edwards et al., 2014). This increase 

is largely due to an improvement of the diagnostic techniques, which has caused an "over-

diagnosis" of small tumors that would have remained occult in the past (Leenhardt et al., 2004; 

Li et al., 2013). However, “over-diagnosis” does not fully account for such a dramatic change, 

suggesting that several unaccounted environmental and genetic factors may be interacting to 

mediate the disease risk (Pellegriti et al., 2013). 

 

Figure 1. Incidence of follicular cell-derived thyroid cancer. (adapted from Cancer Research UK, 

www.cancerresearchuk.org) A) Follicular cell-derived cancer incidence ranges from 0.5 to 20 cases per 100,000 

among countries, and is 2-4 times more frequently diagnosed in women than in men. B) The incidence of follicular 

cell-derived cancer has been steadily increasing over the past years. 

http://www.cancerresearchuk.org/
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 The diagnosis of the disease generally starts with finding of a suspicious nodule with 

signs of intra-nodal vascularization, irregular edges, solid aspect and presence of calcifications 

by ultrasound imaging technique (Papini et al., 2002). Of note, as little as 5% of thyroid nodules 

eventually turn out to be malignant lesions, and the accurate diagnosis of the malignant disease 

remains as unresolved challenge in the clinics (Rossing, 2013). Following ultrasound, potential 

malignancy is further explored by fine needle aspiration biopsy (Pacini et al., 2012). This 

technique is based on cytological analysis, which in turn allows for diagnosis of some of the 

many histological subtypes of TC (Figure 2).  

 

Figure 2. Classification of follicular cell-derived thyroid tumors. This general term represents a highly 

heterogeneous entity composed of a spectrum of differentiation stages, ranging from benign lesions [follicular 

adenoma (FA)], to well-differentiated carcinomas such as papillary thyroid carcinoma (PTC) or follicular thyroid 

carcinoma (FTC), through to undifferentiated, more invasive and lethal human malignancies, such those classified as 

poorly-differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC). Relative prevalence of 

malignant tumors is detailed in brackets. 

In this regard, around 85% of malignant thyroid tumors show characteristic nuclear 

changes including signs of enlarged and irregular nuclei with dusty to powdery chromatin, small 

nucleoli, nuclear grooves and often pseudoinclusions (DeLellis et al., 2004). These are features 

of papillary thyroid carcinomas (PTC). Around 10% of malignant aspirates present dispersed 

microfollicular arrangement of tumor cells and scant colloid, and often nuclear atypia. These are 

signs of follicular thyroid carcinomas (FTC). Benign lesions termed follicular adenomas (FA) 

may also present the cytological features of FTC and nuclear atypia, while some follicular 

carcinomas may have bland cytological characteristics. Jointly, the tumors described so far (FA, 
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FTC and PTC) maintain the differentiated state of follicular cells, from which they origin, and 

are therefore referred to as well-differentiated thyroid cancer (DTC). 

Due to cytological similarities between FA and FTC, as much as 25% of the aspirates 

can result in indeterminate diagnosis. For the accurate diagnosis of the indeterminate cases, 

there is an urgent need for identification of molecular diagnostic markers of malignancy. In this 

regard, methods based on mutation screening (Cantara et al., 2010; Nikiforov et al., 2011) or 

gene expression profiling (Alexander et al., 2012; Alexander et al., 2013) have been developed 

recently. Nevertheless, the usage of these techniques in the clinics has already been challenged 

(McIver et al., 2014) and is still limited. Therefore, the diagnosis of malignancy of 

indeterminate aspirates keeps on depending on the demonstration of capsular or vascular 

invasion, which is done in histological preparations following surgical sampling of the 

suspicious nodule (DeLellis et al., 2004). Of note, as little as one out of 5 patients that undergo 

this “diagnostic” surgery eventually has a malignant tumor.  

 A small proportion of follicular cell-derived tumors (<5%) lose their differentiation 

partially (poorly differentiated thyroid carcinoma; PDTC) or completely (anaplastic thyroid 

carcinoma; ATC). To some extent, these tumors also present characteristic cytological changes, 

including high cellularity, presence of numerous mitotic figures and necrotic debris. 

Nevertheless, definite diagnosis may sometimes require histological evaluation (DeLellis et al., 

2004). These tumors represent a very different entity as compared to the well-differentiated 

ones, showing a very adverse clinical evolution with very poor prognosis (<10% 10-year 

survival (Nikiforov and Nikiforova, 2011)). As they are not the objective of this thesis, they will 

not be discussed in more detail further on. 

 Once the malignant diagnosis is confirmed, the standard treatment consists of total or 

partial thyroidectomy (in case of a localized disease), followed by therapeutic ablation with 

radioiodine (
131

I; dose≥100 mCi). The latter approach takes advantage of the capacity of 

follicular cells to selectively uptake iodine, and is thus applied in order to ablate the remaining 

thyroid tissue together with microscopic tumor foci (Mazzaferri and Kloos, 2001). In the vast 

majority of patients with well-differentiated tumors, these procedures lead to full remission 

(Verburg et al., 2013). However, for patients that develop recurrence, those with persistent 

disease, and patients with dedifferentiated tumors, the conventional therapy do not provide 

clinical benefit (Kebebew et al., 2005) and currently, these patients only dispose of palliative 

forms of treatment based on tyrosine kinase inhibitors (TKIs) (Ho et al., 2013; Brose et al., 

2014). 

 A clinically relevant proportion of patients (up to 30%) develop a recurrence relatively 

late after diagnosis (>10 years after diagnosis) (Duntas and Grab-Duntas, 2006). Therefore, it is 
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needed to routinely perform a post-surgical follow-up of all DTC patients based on physical 

examination, neck ultrasonography, simultaneous determination of serum anti-tiroglobulin 

antibodies with tiroglobulin and whole-body iodine scanning. In order to identify high risk 

patients who benefit from the follow-up, it is of utmost importance to uncover prognostic 

factors, as derived from retrospective studies. There are some clinico-histopathological 

characteristics already described, which can hint a worse outcome (late age of onset [>45], male 

gender, size and histology of the tumor, and mutation BRAF
V600E

). However, the predictive 

value of these features is limited and, to some extent, controversial, and nowadays there are still 

no molecular markers of recurrence that would be used in the clinical practice. 

3.2 Genetic susceptibility to DTC 

 Follicular cell-derived thyroid tumors arise in their vast majority (>95%) as sporadic 

entities. The remaining cases emerge in families affected by known hereditary syndromes 

(Gardner’s syndrome, Cowden syndrome, Werner syndrome and Carney complex), or families 

with a clear familial aggregation of DTC cases, but with no known genetic cause for it. 

Notwithstanding familial aggregations showing typical Mendelian mode of inheritance are 

extremely rare, large population studies established that DTC is a highly hereditable disease 

(Frich et al., 2001; Risch, 2001; Czene et al., 2002). In this regard, first-degree relatives of an 

individual affected by DTC have an 8.6 – 10.3 times higher risk of developing DTC than 

general population (Goldgar et al., 1994; Pal et al., 2001; Hemminki et al., 2004). Moreover, 

the hereditability rate of DTC is the highest among all cancers not showing typical Mendelian 

inheritance – 53% (Czene et al., 2002). All these observations highlight the important role that 

genetic elements may be playing in the development of DTC.  

Much effort was invested in identification of genetic factors predisposing to DTC. Due 

to familial manifestation of the disease, involvement of high-penetrance genes was considered 

and investigated. However, among familial cases, no high-penetrance protein-coding gene 

predisposing to DTC has been convincingly identified so far. Linkage analyses have only 

identified putative genomic loci (Figure 3), but most of these findings have not been 

consistently replicated (Malchoff et al., 2000; McKay et al., 2001; Cavaco et al., 2008; He et 

al., 2009; Suh et al., 2009).  

On the other hand, it has become generally accepted that sporadic DTC is a complex 

disease (Lander, 1996; Chakravarti, 1999). Thus, its genetic predisposition is likely a result of 

multiple common low-penetrance or rare moderate-penetrance variants (Landa and Robledo, 

2011). Moreover, as evidenced by results from our group, gene-gene interactions (Landa et al., 

2013) as well as gene-environment interactions (Bufalo et al., 2006; Bufalo et al., 2008) can 

modulate individual susceptibility. In this scenario, both carefully designed candidate-gene 
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association studies (Ho et al., 2009; Landa et al., 2009; Landa et al., 2010) and genome-wide 

association studies (GWAS) (Gudmundsson et al., 2009; Takahashi et al., 2010; Gudmundsson 

et al., 2012; Kohler et al., 2013; Figlioli et al., 2014) have been used successfully to identify 

numerous susceptibility variants for DTC (Figure 3), of which probably the most important is 

the variation found at 9q22.33. However, an important part of DTC hereditability remains to be 

explained.  

 

 

Figure 3. Model of individual genetic predisposition to well-differentiated thyroid cancer. The individual genetic 

background, either monogenic in familial cases or polygenic in sporadic cases, determines a thyroid cancer-prone 

condition for a given individual. In addition, gene-gene interactions (epistasis) and gene-environment interactions 

ultimately determine the development of the disease (adapted from Landa and Robledo, 2011). 

 Genetic variation at 9q22.33 has been extensively linked to susceptibility to sporadic 

DTC by both candidate gene (rs1867277; Landa et al., 2009) and genome-wide approaches 

(rs965513; Gudmundsson et al., 2009, Gudmundsson et al., 2012, Kohler et al., 2013; rs965513 

and rs1867277; Takahashi et al., 2010). This locus is exceptionally the only one to be invariably 

associated with the disease in all GWAS performed until the date and probably represents the 

best validated genetic factor identified in DTC so far. Interestingly, polymorphisms from this 

locus were even linked to familial DTC susceptibility (Tomaz et al., 2012). A gene, called 

forkhead box E1 (FOXE1), essential for the development, differentiation, and hormone 

responsiveness of thyroid gland (Cuesta et al., 2007) is located in this genomic region. Of note, 

our group was able to functionally demonstrate that variation at 9q22.33 affects transcription of 

FOXE1 gene (Landa et al., 2009). Thus far, this is one of the very few known functional 

mechanisms involving low-penetrance gene action in DTC susceptibility that has been 

described.  
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3.2.1 Missing hereditability 

Notwithstanding the great effort invested in identification of genetic factors 

predisposing to DTC, the associations described so far only explain a limited part of the DTC 

heritability, which will make additional research of particular relevance in the near future. In 

this regard, better stratification of the patients included in the studies could be a key factor 

warranting novel findings, since it is not clear neither whether the familial and sporadic disease 

are distinct entities (Capezzone et al., 2008), nor whether the same SNPs are involved in the 

etiology of PTC and FTC. 

At the time when this thesis was started (2011), first GWA studies addressing the 

genetic predisposition to DTC had already emerged (Gudmundsson et al., 2009; Takahashi et 

al., 2010), redundantly uncovering associations with 9q22.33 locus. As mentioned previously, 

our group reached the same results by a candidate-gene approach, and provided a functional 

explanation (Landa et al., 2009). In order to address the missing hereditability in an agnostic 

manner, we aimed to use the largest collection of DTC cases and healthy controls (at that time) 

composed of 1,820 cases and 2,410 controls in combination with a genome-wide approach. 

3.3 Drivers of DTC: the peculiarities of oncogenic signaling 

 With less than one somatic mutation per megabase, DTC is one of the cancers showing 

the lowest mutation density (Alexandrov et al., 2013). Importantly, it has been showed that it is 

a MAPK pathway-driven disease (Figure 4a), in which critical genes are frequently mutated via 

two distinct molecular mechanisms: point mutation or chromosomal rearrangement. It is 

established that the mutations in MAPK genes are typically mutually exclusive (Soares et al., 

2003) and are associated with particular clinical, histopathological and biological characteristics 

(Adeniran et al., 2006) (Figure 4b). Additionally, thyroid cancer progression and possible 

dedifferentiation often involves a number of secondary mutations that affect PI3K-AKT 

pathway (reviewed in (Nikiforov and Nikiforova, 2011)) (Figure 4a). 

3.3.1 RET/PTC rearrangements 

 The first DTC driver to be discovered was the one concerning the RET proto-oncogene 

in papillary tumors (Fusco et al., 1987). RET (REarranged during Transfection) encodes for a 

receptor tyrosine kinase implicated in nervous system development, kidney morphogenesis and 

spermatogenesis. It contains 3 functional domains: an extracellular one acting as a ligand-

sensitive receptor, a transmembrane one and an intracellular one, which possesses the kinase 

activity.  
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Figure 4. Molecular drivers of DTC. (adapted from (Nikiforov and Nikiforova, 2011)) A) The main signaling 

pathways involved in thyroid carcinogenesis are MAPK and PI3K-AKT pathways. The effector genes frequently 

affected by mutations are highlighted with red stars. B) Most prevalent DTC molecular alterations and their 

association with clinical and histopathological features of tumors. 

 The mechanism of oncogenic activation of RET in PTC is through a rearrangement with 

various partners. It results in the juxtaposition of the C-terminal region of the RET protein 

(containing the kinase domain) with an N-terminal portion of another protein. The generated 

constitutively active chimeric protein is known as RET/PTC (Santoro et al., 1992; Nikiforov, 

2002). To date, there are more than 15 genes known to act as rearrangement partners with RET, 

the most common ones being CCDC6 (“RET/PTC1”) (Grieco et al., 1994), PRKAR1A 

(“RET/PTC2”) (Sozzi et al., 1994) and NCOA4 (“RET/PTC3”) (Santoro et al., 1994). These 

rearrangements account for 10-20% of PTC cases, are especially frequent in pediatric cases and 

cases associated with radiation exposure (Figure 4b), like those related with the nuclear 

accident in Chernobyl (Bounacer et al., 1997; Rabes et al., 2000). 

3.3.2 BRAF alterations 

 In 2003, mutations in BRAF oncogene were associated with the emergence of PTC. 

BRAF is a member of RAF family of serine-threonine kinases, which additionally includes 

genes ARAF and CRAF. All three isoforms activate the MAPK pathway, which is involved in 

regulation of apoptosis, inflammation, cell growth and differentiation (Chang and Karin, 2001). 

The transversion of thymine to adenine in the nucleotide 1799 (p.Val600Glu) in the 

sequence of BRAF is the most common genetic alteration in PTC, explaining up to 69% cases in 

some of the series studied (Kimura et al., 2003). This alteration affects kinase domain of the 

protein, where the change from nonpolar valine to negatively charged glutamate mimics the 

phosphorylation of residues Threonine 599 and Serine 602, necessary for BRAF activation 

(Nikiforova et al., 2003). This results in an increase of protein’s kinase activity of 10 to 12 

times as compared to the native form of the protein, and as a consequence it can signal to the 

downstream MAPK effectors as a monomer. Thus, tumors driven by BRAF
V600E

 do not respond 
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to the negative feedback from ERK to RAF, resulting in high MAPK-signaling (Pratilas et al., 

2009) translated in profound phenotypic changes. For instance, expression of genes responsible 

for iodine uptake and metabolism are greatly reduced in BRAF
V600E

 tumors (Durante et al., 

2007). This could be the underlying mechanism accounting for the worse clinical outcome that 

has been observed among patients harboring BRAF mutation (Xing et al., 2005; Lupi et al., 

2007) (Figure 4b). 

Alternatively, mutations in other codons were described (Trovisco et al., 2004), 

involving a similar transforming mechanism as BRAF
V600E

. Fusions involving BRAF have been 

also identified in PTC (Ciampi et al., 2005; TCGA, 2014). Some fusions supported BRAF 

signaling with expression and conservation of its kinase domain (AKAP9/BRAF in (Ciampi et 

al., 2005) or MKRN1/BRAF in (TCGA, 2014)), while others suggested an alternative, yet 

unknown, activating mechanism. 

3.3.3 RAS mutations 

 RAS proto-oncogene (RAt Sarcoma) mutations are some of the most frequent genetic 

alterations found in human cancers in general. RAS family of genes (H-, N- and K-RAS) encodes 

for small GTPases involved in signal transduction within cells. RAS has a high affinity for 

numerous effectors, including PI3K and RAF proteins (Figure 4a).  

In DTC scenario, mutations in RAS genes are specific of neoplasias with a follicular 

pattern of growth (FA, FTC and follicular variant of PTC [PTCvf]). The mutations show 

differences in prevalence among the histological subtypes (20%, 44% and 43% among FA, FTC 

and PTCfv, respectively (Esapa et al., 1999; Kimura et al., 2003)), and different genes are 

mutated with different frequency (N-RAS mutations most frequent, followed by K-RAS (Esapa 

et al., 1999)). In any case, the alterations tend to affect the GTPase domain (residues 12, 13 and 

61) of the protein, conferring insensitivity to inactivation by GTPase activating proteins, and 

leaving RAS constitutively active. Of note, thyroid tumors driven by oncogenic RAS signal via 

RAF dimers and are thus responsive to the negative ERK feedback, resulting in a lower MAPK-

signaling as compared to BRAF
V600E

-driven tumors (Miller et al., 2009). 

3.3.4 Other driver alterations of DTC 

 RET, BRAF and RAS alterations explain up to 80% of PTC. Some of the remaining 

papillary tumors harbor other genetic modifications, such as NTRK1 rearrangements (Pierotti et 

al., 1995) or mutations in the novel PTC cancer gene EIF1AX (TCGA, 2014). However, these 

alterations only account for <5% of PTC. 
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 While RAS mutations are the most frequent alterations in FTC (40-50%), up to 40% of 

follicular tumors arise as a consequence of PAX8/PPARγ rearrangement (Nikiforova et al., 

2002). The resulting fusion protein is composed of the promoter region and DNA binding 

domain of thyroid-specific transcription factor PAX8 and almost the entire sequence of the 

nuclear receptor PPARγ. It causes the activation of NFKβ signaling pathway (Kato et al., 2006), 

resulting in increased proliferation and decreased apoptosis. Other, less frequent alterations 

among FTCs (<10%) affect PI3K-AKT pathway genes PIK3CA and PTEN (Nikiforov and 

Nikiforova, 2011). 

3.4 DTC in the age of molecular genomics: missing markers of malignancy and progression 

 High-throughput technologies have been instrumental in deciphering signal pathways 

associated with specific clinical features allowing for biomarkers identification in other cancer 

types. In 2011, little was known about the molecular fingerprints in DTC. Of note, ours was one 

of the pioneer groups to apply mRNA expression profiling to a large set of thyroid tumors 

(Montero-Conde et al., 2008). Similarly to an earlier work of Giordano and colleagues 

(Giordano et al., 2005), we observed that expression profiles tightly relate to histological 

classes. Moreover, we proposed a prognosis identifier based on a 23-gene expression signature. 

This study set a foundation for subsequent characterization of other genomic features in our 

large collection of thyroid tumors in search for biomarkers. Since the observed differences in 

gene expression could be caused by distinct gene regulatory mechanisms, such as DNA 

methylation or even action of microRNAs, these were the two genomic features we set off to 

study in detail.  

3.4.1 DNA methylation and its involvement in TC 

DNA methylation is the most thoroughly studied and understood epigenetic 

modification, which is based on addition of a methyl group to cytosine residue in context of 

cytosine-guanine dinucleotide sequence (CpG). It is typically associated with repressed 

regulatory regions or active gene transcripts (Cedar and Bergman, 2009; Smith and Meissner, 

2013). The global distribution of CpG methylation, termed “DNA methylome”, is variable 

between different cell types and dynamic during cell differentiation. Importantly, deep 

deregulation of DNA methylation patterns is a hallmark of cancer, where global loss of 

methylation often affects heterochromatin repeats leading to genome instability, while local 

discrepancies in DNA methylation can lead to aberrant expression of oncogenes and tumor 

suppressors.  

At the beginning of this thesis project, only a handful of studies were available 

addressing the role of aberrant DNA methylation in the etiology of DTC. All of these studies 
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used a candidate gene-based approach, and found an inverse relationship between DNA 

methylation and gene expression of genes either involved in thyroid gland function, such as 

thyroid-stimulating hormone receptor (TSHR) (Xing et al., 2003) or NIS (Venkataraman et al., 

1999), or well-known tumor suppressors, e.g. tissue inhibitor of metalloproteinase-3 (TIMP3), 

retinoic acid receptor β2 (RARβ2) (Hu et al., 2006; Brait et al., 2012) and RAS association 

domain family protein 1 (RASSF1) (Schagdarsurengin et al., 2002). Later on, the first 

exploratory genome-wide study involving 8 thyroid tumors uncovered there are differences in 

methylomes reflecting distinct histological subtype of TC (Rodriguez-Rodero et al., 2013). 

However, due to obvious reasons, more studies were needed in order to decipher the precise TC 

methylome. Thus, we aimed to provide a more detailed characterization, focusing not only on 

the specificities of DTC methylome with respect to histology, but also on the underlying drivers 

and differential patients’ outcome. Moreover, we explored the relationship between DNA 

methylation and gene expression using data generated for the same tumors. 

3.4.2 microRNAs in TC 

MicroRNAs (miRNAs) are small non-coding RNAs, which negatively regulate gene 

expression at the post-transcriptional level. They bind to semi-complementary sites at 3’-UTR 

of targeted mRNA, which can result in mRNA degradation, translational truncation, or both 

(Bartel, 2004; Liu et al., 2008). Each single miRNA is promiscuous with its targets, and can 

regulate several hundred genes, while a single gene can be targeted by several miRNAs (Lewis 

et al., 2003). In this way, miRNAs can regulate the expression of approximately one third of 

protein-coding genes (Bartel and Chen, 2004). Thus, they are involved in a wide variety of 

processes, including cellular proliferation, apoptosis as well as developmental processes and 

differentiation. Similar to DNA methylomes, miRNA signatures vary between distinct tissues, 

and diverge in a pathological state.  

Due to their potential clinical utility, miRNAs have been extensively studied in DTC. 

The vast majority of the data on deregulated miRNAs was generated using microarray 

technologies, which could be a source of bias. Notwithstanding this fact, up-regulation of miR-

146b and the miR-221~222 cluster are one of the best validated changes in papillary tumors (He 

et al., 2005; Pallante et al., 2006; Nikiforova et al., 2008). Only recently, the first studies 

applying next-generation sequencing technology started to emerge (Swierniak et al., 2013; 

TCGA, 2014). So far, the only histological subtype, in which the miRNAs were sequenced, is 

PTC. We used our large collection of DTC tumors and NGS in order to complete the spectrum 

of deregulated miRNAs involved in the other, less frequent, DTC subtypes, as well as to assess 

the relationship between miRNA and gene expression, and the possible prognostic role of 

miRNAs. 
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3.4.3 DTC in The Cancer Genome Atlas project 

 It is worthy to note that an important effort was invested through the TCGA project to 

gather 500 papillary tumors (of various subtypes) and the corresponding normal tissues. These 

samples were characterized for their genetic alternations, gene and miRNA expression as well 

as DNA methylation. All but the last genomic feature were assessed using NGS, while DNA 

methylation was measured by microarray technology (450 K Infinium Methylation Array from 

Illumina). The generated data is publically available, and the resulting genomic characterization 

of PTC was recently published (http://cancergenome.nih.gov/cancersselected/thyroid, (TCGA, 

2014)). It re-confirmed that different driver alterations lead to different pathologies with distinct 

signaling and differentiation characteristics, raising the possibility of subdividing this 

histological class into several molecular subtypes. With respect to the current thesis, this public 

resource provided a valuable source of data for validation of some of our findings.  

  

http://cancergenome.nih.gov/cancersselected/thyroid
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4. Medullary thyroid carcinoma 

4.1 Epidemiology, diagnosis and clinical management of MTC patients 

 MTC is a rare disease that accounts for approximately 1-2% of all thyroid malignancies. 

Conversely to the follicular cell-derived TC, MTC affects both genders with a similar 

frequency. Around 75% of cases are sporadic in nature, while the remaining 25% arise as a 

manifestation of the hereditary disease termed Multiple Endocrine Neoplasia type 2 syndrome 

(MEN 2). 

 MTC is characterized by a solid mass of polygonal shaped cells with frequently 

observed amyloid deposition. Aspirates from medullary carcinomas are typically hypercellular 

with loosely cohesive cells. Hyperchromic nuclei with granular chromatin as well as 

multinucleate giant cells are commonly found. MTC arises from the calcitonin-producing C 

cells of the gland, and the increased serum level of this hormone is often used as a diagnostic 

marker, as well as a marker of disease relapse (DeLellis et al., 2004).  

The diagnosis and treatment of MTC patients was revolutionized in 1993, when the 

implication of RET in the emergence of the disease was described (Mulligan et al., 1993). Ever 

since, the genetic testing is leading the clinical management of familial cases. Prophylactic 

thyroidectomy, which timing depends on the underlying genetic driver, is carried out ideally 

before the disease emerges. When it comes to the sporadic MTCs, the only possibly curative 

treatment option is complete thyroidectomy. Since medullary carcinoma tends to metastasize 

early and particularly frequently locally to cervical lymph nodes, the surgery is often coupled 

with lymphadenectomy. In total, up to 50% of patients may present with nodal metastases and 

up to 15% may have distant metastases (to lungs, bones and liver) (DeLellis et al., 2004). For 

patients with residual or recurrent disease after primary surgery, or for those with distant 

metastases, the most appropriate management (surgery, chemotherapy or radiotherapy) is not 

well established, as the traditional treatment options show little to no benefit for the patient 

(Orlandi et al., 2001). The 10-year survival rate of the patients with advanced disease is less 

than 20% (Leboulleux et al., 2004).  

4.1.1 Targeted therapies for advanced MTC  

As RET codes for a tyrosine kinase receptor, MTC patients with advanced disease have 

recently been treated with TKIs in a palliative manner (Schlumberger et al., 2009; Kurzrock et 

al., 2011; Almeida and Hoff, 2012; Durante et al., 2013; Fox et al., 2013). The results of 

clinical trials showed that these drugs may achieve remarkable response in some MTC patients 

while provoking strong toxicities in others. The molecular basis for the large variability in TKI 

response is unknown.  



Introduction 

49 

Currently, two TKIs are approved for treatment of MTC patients. Vandetanib (ZD6474, 

Zactima) is a potent inhibitor of RET, EGFR and VEGFR2/3 and was approved in 2011 for 

treatment of adults with advanced MTC. Some of the most common adverse events associated 

with this drug such as diarrhea, rash, nausea can be adequately managed, while others such as 

the corrected QT interval elongation are of particular concern (Grande et al., 2013). In 2012, 

Cabozantinib (XL184, Exelixis) was approved to treat metastatic MTC by inhibition of RET, 

VEGFR2, MET, KIT, VEGFR1/3, FLT3, Tie2 and AXL. Opposite to Vandetanib, QT interval 

elongation was not observed in any patient enrolled in the EXAM trial (Elisei et al., 2013).  

There are other TKIs such as Sorafenib, Sunitinib, Motesanib, and Axitinib currently 

being tested in different stages of clinical trials (Almeida and Hoff, 2012).  

4.2 MTC arising within MEN 2: general aspects and implication of genetics 

 Mutations in RET proto-oncogene explain more than 95% of MEN 2 cases. In the 

remaining families not harboring mutations in RET, the driver(s) remain to be discovered 

(Cerrato et al., 2009). In any case, the MEN 2 families display a dominant autosomal 

inheritance model, with a variable clinical expression pattern, and almost complete penetrance 

(according to the specific RET mutation). Inherited MTCs often emerge from precursor C-cell 

hyperplasia, are mostly multifocal and bilateral in character, and manifest at an early age 

(DeLellis et al., 2004). 

 More than 90% of MEN 2 affected individuals develop MTC, but there are other 

endocrine diseases associated with the syndrome and depending on the clinical manifestation, 

MEN 2 syndrome can be subdivided into two different subtypes: Multiple Endocrine Neoplasia 

type 2A (MEN 2A) and Multiple Endocrine Neoplasia type 2B (MEN 2B) (Wells et al., 2015). 

A half of MEN 2A and 2B patients develop pheocromocytoma (PCC), while 

hyperparathyroidism occurs in approximately 20-30% of MEN 2A individuals (Eng et al., 

1996).  

 Even if the MEN 2B subtype is the less frequent one, it is characterized by the most 

aggressive clinical manifestation of MTC. If MEN 2B patients do not undergo prophylactic 

thyroidectomy at an early age (less than 1 year), they are prone to developing metastatic MTC 

in childhood (Skinner et al., 1996). MEN 2A is the more prevalent subtype (accounting for 95% 

of all MEN 2 cases) showing less aggressiveness as compared to the former one. However, 

patients often present cervical lymph node metastases (Cohen and Moley, 2003). These 

subtypes and the associated phenotypes relate well to the genetic alterations the patients harbor 

(Table 1), and the genetic testing is therefore used to lead the clinical management. In this 

regard, hereditary MTCs were divided into four different risk categories according to the 



Introduction 

50 

germline mutation with associated recommendations for treatment (Kloos et al., 2009). The 

most severe phenotype is expectable in patients harboring the RET
M918T

 mutation, followed by 

mutations affecting the codon 634.   

Mutated RET codon  Risk level Syndrome Clinical recommendation 

883, 918 D MEN 2B Thyroidectomy within the first year of life 

634 C MEN 2A Thyroidectomy before 5 years of age 

609, 611, 618, 620, 

630 
B MEN 2A Thyroidectomy at 5-10 years of age 

768, 790, 804, 891 A MEN 2A 
Periodic  biochemical testing for MTC if 

thyroidectomy was not performed 

Table 1. Genotype-phenotype correlation among MEN 2 patients. MTC risk level correlates with the mutated 

codon of RET (level D is the most severe). Adapted from (Kloos et al., 2009). 

4.3 MTC oncogenic drivers 

4.3.1 RET signaling in MTC: mechanisms of aberrant activation 

RET is the major genetic player in the emergence of MTC. As stated previously, it 

explains up to 95% of familial cases, and up to 50% of sporadic cases (Dvorakova et al., 2006; 

Elisei et al., 2008). The mechanism of oncogenic transformation differs from the one described 

previously in PTC (chapter 3.3.1).  

Under normal physiological conditions, binding of calcium and ligand-specific 

coreceptor to the extracellular domain of RET is needed for RET homodimerization and 

activation (Airaksinen and Saarma, 2002). Following homodimerization, specific tyrosine 

residues are phosphorylated in order to serve as docking sites for adaptor proteins. Different 

activated sites trigger downstream signaling to different pathways. For instance, tyrosine 1015 

is a binding site for phospholipase C that activates protein kinase C (PKC), while 

phosphorylated tyrosine 1062 serves as a docking site for multiple adaptors, including Shc, 

FRS2, Dok family proteins, insulin receptor substrate 2, and Enigma (Takahashi, 2001). Then, 

various pathways, such as MAPK, PI3K, JNK and ERK pathway, are activated affecting cell 

survival, differentiation, proliferation and chemotaxis (de Groot et al., 2006). 

In MTC scenario, RET is constitutively active due to distinct gain-of-function 

mutations. Most of MEN 2B and sporadic cases carry the RET
M918T

 mutation, which shows the 

highest transformation capacity resulting from activation due to disruption of an auto-inhibited 

head-to-tail RET TK homodimer (Knowles et al., 2006). On the other hand, most of the MEN 

2A mutations affect the extracellular cystein-rich domain of RET (codons 609, 611, 618, 620, 

630, 634) (Kouvaraki et al., 2005; Marx, 2005; Zbuk and Eng, 2007), allowing for a ligand-
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independent homodimerization of the protein (Knowles et al., 2006). The remaining MEN 2A 

mutations affect the intracellular kinase domain (codons 768, 790, 791, 804, 891) (de Groot et 

al., 2006). However, little is known regarding the specific RET mutation-driven signaling 

pathways, even though the distinct mutations display differences in phosphorylation of docking 

sites, triggering specific intracellular signaling cascades (de Groot et al., 2006).  

4.3.2 RAS mutations and sporadic MTC 

 As shown recently, 18-80% of sporadic MTC lacking somatic RET mutations harbor 

somatic mutations of H-RAS, K-RAS or rarely N-RAS (Moura et al., 2011; Boichard et al., 2012; 

Ciampi et al., 2013). Interestingly, Ras is one of the many signaling effectors that mediate RET 

intracellular effects. The mutations found in MTC affect the same codons as previously 

discussed for follicular cell-derived tumors (chapter 3.3.3), triggering the same changes in the 

protein. The MTC genotype-phenotype correlation seems to encompass RAS positive MTCs as 

well, since Ciampi et al. described a higher prevalence of disease-free patients among those 

RAS-mutated when compared to RET-related cases (Ciampi et al., 2013), suggesting RAS 

mutations give rise to a milder phenotype. 

 In total, RET and RAS mutations explain up to 75% of all sporadic tumors. In the 

remaining cases, termed “wild type” (WT), where the molecular driver is unknown, the 

transforming mechanism remains to be uncovered.  

4.4 MTC in the molecular genomics era: from disease etiology to therapy 

 Notwithstanding the great technological possibilities, much of MTC etiology remains 

unknown likely due to the rareness of the disease and, in consequence, the difficulty to collect 

an informative sample set. There is an urgent need to identify signaling pathways associated 

with familial and sporadic forms of the disease in order to identify targetable molecules. 

 One of the first approximations using microarray technology in order to uncover 

disease-related signaling cascades was actually carried out in our laboratory. We characterized 

the transcriptome of the largest series of primary MTCs described so far (Maliszewska et al., 

2013). Together with the other works using similar approach (Jain et al., 2004; Ameur et al., 

2009), it became clear that distinct RET mutations lead to activation of different signaling 

cascades. Interestingly, the over-expression of genes related to epithelial to mesenchymal 

transition and tumor invasion and metastases was notable among the poor-prognosis MTCs 

caused by the RET
M918T 

mutation. Moreover, miRNome of the same tumors was also explored in 

the laboratory (unpublished data). This is of particular interest, as very little is known about the 

aberrant expression of miRNAs in MTCs. So far, three microarray-based studies have been 

published on the topic (Nikiforova et al., 2008; Abraham et al., 2011; Santarpia et al., 2013). 
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Little conclusions can be drawn from these articles as the authors study a low number of MTC 

tumors regardless of the genetic drivers they harbor.   

Similarly to follicular cell-derived cancer, the previously generated data set the basis for 

integrative genomic analysis. During this thesis project, we produced genome-wide data on 

DNA methylation in order to shed more light into the complex regulation leading to aberrant 

gene expression. DNA methylation is perhaps the least studied genomic feature of MTC, as 

only two candidate gene-based studies are available, exploring the promoter methylation of 

tumor suppressors RASSF1 (Schagdarsurengin et al., 2002) and Sprouty 1 (SPRY1) (Macia et 

al., 2012). Later on, two MTC samples were included in an exploratory genome-wide study 

showing low levels of DNA methylation is attributable to MTC (regardless of the driver 

alteration) (Rodriguez-Rodero et al., 2013). Nevertheless, the MTC methylome is still poorly 

characterized. As no integrative genomic studies of these rare tumors have been carried out so 

far, the combination of transcriptome, miRNome and DNA methylome data of the same 

samples could be a powerful tool to retrieve important information about the biology of this 

disease. 

 Moreover, given the limited therapeutic options and the great promise targeted therapies 

hold, we wanted to explore the possible biological reason underlying the diverse response to 

TKIs observed in the clinics among MTC patients. In order to do so, we firstly took advantage 

of the genome-wide transcriptomic data, as well as of an exceptional collection of formalin 

fixed paraffin-embedded MTC tumors, in order to confirm our hypothesis that the expression of 

key target proteins of these drugs vary in MTC according to the specific mutation. 
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The final goal of this work was to couple exhaustive genomic dissection of an 

exceptional collection of human thyroid cancer samples to their genetic characterization in order 

to address several disease aspects of clinical interest. The specific aims of this thesis were: 

1) To uncover novel low-penetrance genes associated with risk of developing well-

differentiated thyroid cancer by applying a genome-wide association study. 

 

2) To describe the methylome and miRNome of well-differentiated follicular cell-

derived thyroid tumors, and to assess the correlation between DNA methylation, miRNA and 

mRNA expression. 

 

3) Evaluate the potential utility of DNA methylation and miRNA signatures as 

diagnostic and/or prognostic markers of well-differentiated follicular cell-derived thyroid 

tumors. 

 

4) To complement the genomic characterization of medullary thyroid cancer by 

exploring its methylome. Also, to assess the correlation between DNA methylation, miRNA and 

mRNA expression in order to uncover regulatory axes important in the disease etiology. 

 

5) Assess potential associations between medullary thyroid cancer genetic drivers and 

the expression of several targets of tyrosine kinase inhibitors in order to uncover whether the 

mutations could serve in guiding the choice of the most suitable treatment. 
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Article 1: Thyroid cancer GWAS identifies 10q26.12 and 6q14.1 as novel susceptibility loci 

and reveals genetic heterogeneity among populations. 
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Abstract 

Thyroid cancer (TC) is the most heritable cancer of all those not displaying typical 

Mendelian inheritance. Notwithstanding the great effort that has been made to identify the 

causal genetic factors, most of these remain unknown. Here, by performing a two-step 

association study in differentiated thyroid cancer involving 1,820 cases and 2,410 controls, we 

provide novel insights into the genetic susceptibility of this disease. 

Our study highlights that the 9q22.33 locus contains the most strongly associated low 

penetrance common variants in TC. In addition, novel variants at 10q26.12 and 6q14.1 within or 

close to the WDR11-AS1 and HTR1B genes, respectively, were detected to be associated with 

risk of the disease in a population-specific manner. The findings herein described suggest that 

heterogeneity in genetic susceptibility between populations is a key feature to take into account 

when exploring risk factors related to TC. This heterogeneity may also explain at least part of 

the lack of replication of findings between studies. 

On the whole, this study depicts how genetic heterogeneity between populations 

influences thyroid cancer susceptibility and uncovers it as a part of the hidden heritability of this 

disease.  

Personal contribution: I participated in the extraction and preparation of the samples. I also 

contributed to the discussion of the results and drafting of the paper. 
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Thyroid cancer is the most heritable cancer of all those not displaying typical Mendelian inheritance. However, most of the

genetic factors that would explain the high heritability remain unknown. Our aim was to identify additional common genetic

variants associated with susceptibility to this disease. In order to do so, we performed a genome-wide association study in a

series of 398 cases and 502 controls from Spain, followed by a replication in four well-defined Southern European case-

control collections contributing a total of 1,422 cases and 1,908 controls. The association between the variation at the 9q22

locus near FOXE1 and thyroid cancer risk was consistent across all series, with several SNPs identified (rs7028661: OR 5 1.64,

p 5 1.0 3 10222, rs7037324: OR 5 1.54, p 5 1.2 3 10217). Moreover, the rare alleles of three SNPs (rs2997312, rs10788123

and rs1254167) at 10q26.12 showed suggestive evidence of association with higher risk of the disease (OR 5 1.35, p 5 1.2 3

10204, OR 5 1.26, p 5 5.2 3 10204 and OR 5 1.38, p 5 5.9 3 10205, respectively). Finally, the rare allele of rs4075570 at
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6q14.1 conferred protection in the series studied (OR 5 0.82, p 5 2.0 3 10204). This study suggests that heterogeneity in

genetic susceptibility between populations is a key feature to take into account when exploring genetic risk factors related to

this disease.

Thyroid cancer is the most common endocrine malignancy,
accounting for around 1% of all new cancer diagnoses yearly.
Around 85% of all thyroid tumors are diagnosed as papillary
thyroid carcinomas (PTC), while follicular thyroid carcino-
mas (FTC) account for up to 10% of cases. As both of these
carcinomas tend to preserve the differentiated state of the fol-
licular cell from which they originate, they are also termed
well-differentiated thyroid cancer (DTC). Of note, as many
as 10% of PTC patients have a family history of the disease
in a first- or a second-degree relative, suggesting that this is a
highly heritable disease.1–3 In fact, the genetic proportion of
susceptibility is the highest among all cancers not showing
typical Mendelian hereditability—53%.1 Since pedigrees dis-
playing a Mendelian mode of inheritance are extremely rare,
it is not surprising that no high-penetrance protein-coding
gene predisposing to PTC has been identified so far. Linkage
analyses have only identified putative genomic loci, but most
of these findings have not been consistently replicated.4–8

Therefore, it has become generally accepted that genetic
predisposition to DTC is likely due to common low-
penetrance or rare moderate-penetrance variants.9 Moreover,
there is evidence that gene-gene10,11 and gene-environment
interactions12,13 modulate individual susceptibility. In this
scenario, both carefully designed candidate-gene association
studies14–16 and genome-wide association studies
(GWAS)17–20 have been used to identify susceptibility var-
iants for DTC.

Even if the genome-wide approach does not offer a
straightforward biological explanation for all associations
found, it undoubtedly detects association signals on unex-
pected genes or genomic regions, unlikely to have been
included in a candidate-gene approach. Four such studies
have been carried out so far in DTC.17–20 While the first
three GWAS were conducted on a relatively small series of
patients, they all detected an association with locus 9q22
(rs965513), located close to thyroid-specific transcription fac-
tor FOXE1. Other weaker associations were detected with
rs944289 at 14q13.3 (near NKX2-1),18 rs966423 at 2q35 (in
an intron of DIRC3) and rs2439302 at 8p12 (in an intron of
NRG1).17 The last GWAS to be performed in DTC used a

considerably higher number of samples.19 Apart from
robustly replicating the associations with SNPs at 9q22 and
2q35, it became especially apparent from the study by Kohler
et al. that inter-population heterogeneity can be relevant for
some of the SNPs emerging as influencing the risk of DTC.19

The associations described in these studies only explain a
limited part of the heritability of DTC, which will make addi-
tional research on specific populations of particular relevance
in the near future.

Herein, we performed a GWAS in a collection of 398
cases and 502 controls from Spain, followed by a replication
step in four different well-characterized Southern European
case-control series, three from different Spanish regions and
one from Italy. Importantly, Italy is among the countries
with the highest incidence rate of DTC in the world. On the
other hand, Spain generally displays low incidence rates, but
there are some regional differences in the disease prevalence
(Cancer Incidence in Five continents, IX, 2000, http://ci5.iarc.
fr/CI5i-ix/ci5i-ix.htm). We once again confirm the implica-
tion of the 9q22 locus harboring FOXE1 in DTC risk, and
also detect suggestive novel associations that point to
10q26.12 and 6q14.1 regions as associated with DTC
susceptibility.

Material and Methods
Ethics statement

Written informed consent was obtained from all participants
in accordance with the protocols approved by the ‘‘Comit�e
de bio�etica y bienestar animal del Instituto de Salud Carlos
III’’ and the Ethics Committee of the COR (Regional Cancer
Center), Padova, Italy, which approved this study.

Subjects

All participants in this study were of European ancestry. Five
series of thyroid cancer cases were recruited in distinct
regions of Spain and Italy from January 1st, 2002 to Decem-
ber 31st, 2011. Tumor histology was assessed by pathologists
at each participating institution. The median time from diag-
nosis to recruitment was 4 years (range 1–19). Personal and
clinical data, such as family history of thyroid cancer and

What’s new?

Thyroid cancer shows the highest genetic susceptibility among all cancers with non-Mendelian hereditability. The authors per-

formed a two-step association study involving 1820 cases and 2410 controls in Europe and identify the 9q22 locus near the

FOXE1 locus as the most important low-penetrance variation in thyroid cancer. In addition, novel variations at 10q26.12 and

6q14.1 were found associated with risk of the disease in a population-specific manner, underscoring how genetic heterogene-

ity among populations influences thyroid cancer susceptibility.
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tumor subtype, stage, and surgery was collected by question-
naire, completed by clinicians at recruitment. In all five
patient series, predominantly sporadic (>97% of cases) and
adult cases (>98% of cases) were recruited. Controls free of
thyroid cancer and without family history of cancer were
recruited from the same geographical regions as the cases.

Discovery series (series I). We recruited 417 patients from
diverse geographic locations of Spain through the Spanish
hospital network to be used in the GWAS. A series of 505
cancer-free controls was available from the same geographical
regions as control group. Twenty-two individuals (19 cases
and 3 controls) were excluded because their ages were
unknown. The final set of samples consisted of 398 cases and
502 controls.

Replication series. A total of four independent case-control
series were recruited. The first comprised 541 cases and 532
controls from three Italian hospitals. The second included
287 cases and 437 controls from hospitals located in Galicia,
in Northwestern Spain. A third Spanish series recruited in
Madrid was composed of 240 cases and 531 controls. A
fourth independent group of Spanish thyroid cancer patients
and controls was obtained from hospitals located in Catalo-
nia, and included 354 cases and 408 controls. Overall, the
replication study comprised 1,422 thyroid cancer cases,
including 1,268 PTC (of which 189 corresponded to fvPTC)
and 154 FTC (Table 1) and 1,908 controls. Demographic and
histological information is shown in Table 1.

DNA isolation, genotyping and quality control

Blood or saliva samples were obtained from all cases and
controls. Genomic DNA was extracted from peripheral blood
lymphocytes by automated methods according to the manu-
facturer’s instructions (Magnapure, Roche, Madrid, Spain), or
manually, using standard methods. The Oragene DNA Self-
Collection Kit (DNA Genotek, Ottawa, Canada) was used for
DNA extraction from saliva. DNA concentration was quanti-
fied in all samples prior to genotyping using the Quant-iT
PicoGreen dsDNA Reagent (Invitrogen, Eugene, OR).

Genotyping for the GWAS was performed using the Affy-
metrix Axiom Genome-Wide CEU array (Affymetrix, Santa
Clara, CA) using solely DNA samples extracted from blood
lymphocytes. This genotyping panel is designed to maximize
coverage of common alleles (MAF >1%) across the genome
in European populations. SNPs were called using the Axiom
GT1 algorithm implemented in the Affymetrix Genotyping
Console software (v.4.1.2.837) and transformed into PLINK
format21 using the Genotyping Data Filter v.3.3.2.22 A total
of 628,348 markers were successfully called and corresponded
uniquely to base-pair substitutions.

SNPs showing the lowest p values for association
(p< 0.0001) in the initial series and seven additional SNPs
previously reported to be associated with DTC10,23,24

(rs2910164 at 5q33.3 in mir-146a gene, rs6983267 at
8q24.21 in LOC727677 intron, rs1867277 and rs965513 at
9q22 near FOXE1, rs2284734 at 14q31.1 in an intron of
TSHR, rs664677 at 11q22.3 in ATM intron and rs944289 at
14q13.3 near NKX2-1) were genotyped in the replication
study using MassARRAY SNP genotyping system (Sequenom
Inc., San Diego, CA) at the node of the Spanish National
Genotyping Center of the University of Santiago de Compos-
tela (CeGen-ISCIII, www.cegen.org). Multiplexed assays were
designed using the Sequenom Assay Design v3.1 software for
three plexes containing 59 SNPs. This assay design was used
to genotype the 3,330 samples included in this replication
step according to the manufacturer’s instructions for the
Sequenom iPLEX GOLD chemistry. Three trio samples pro-
vided by “Centre d’Etude du Polymorphisme Humain”
(CEPH) were used as positive controls, and non-DNA con-
trols and replicates were included in each plate. Genotyping
specificity was assessed by including two DNA duplicates (an
intra-assay and an inter-assay duplicate) and a negative con-
trol in each 96-well plate genotyped, yielding 100% consistent
results. In addition, each plate included case and control
samples. The resulting data were analyzed using the MassAR-
RAY Typer 4.0 Analyzer software.

Imputation was performed in the initial series for addi-
tional SNPs at 9q22 (rs965513 and rs1867277), and at

Table 1. Characteristics of the discovery and replication series used in the study

GWAS Italy Galicia Spanish network 2 Catalonia Total

Controls 502 532 437 531 408 2,410

Sex (M/F) 257/245 255/277 84/353 309/222 98/310 1,003/1,407

Median age (range) 55 (20–89) 72 (12–101) 49 (22–97) 72 (34–95) 50 (20–86)

Cases 398 541 287 240 354 1,820

Sex (M/F) 66/332 114/427 57/230 49/191 80/274 366/1,454

Median age (range) 46 (10–85) 50 (5–87) 50 (11–92) 46 (13–85) 45 (13–88)

Histology

FTC 45 (11%) 45 (8%) 37 (13%) 27 (11%) 45 (13%) 199

PTC 248 (62%) 475 (88%) 176 (61%) 166 (69%) 262 (74%) 1,327

fvPTC 105 (27%) 21 (4%) 74 (26%) 47 (20%) 47 (13%) 294

Abbreviations: FTC, follicular carcinoma; PTC, papillary carcinoma; fvPTC, papillary carcinoma follicular variant.
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14q13.3 (rs944289) based on data from the 1000 Genomes
Project using Beagle v3.25

Statistical analysis

Statistical tests were carried out using PLINK software, ver-
sion 1.07,21 IBM SPSS Statistics version 20 (IBM SPSS Statis-
tics) and R for Windows.

For each SNP, associations were assessed by applying
logistic regression to estimate odds ratios (ORs) with 95%
confidence intervals (CIs) and p values. All analyses were
performed assuming a log-additive effect for each polymor-
phism (the genotypes were coded as 0, 1 or 2 according to
the number of minor alleles). Gender and age were included
as covariates in all analyses. Moreover, for locus 9q22, we
tested for residual association by adding rs7028661 as
covariate.

A fixed-effects model of the Mantel-Haenszel method26

was applied to pooled data from the series. Between-series
heterogeneity was assessed by Cochran’s Q test and I2 statis-
tics. If the heterogeneity was significant (phet value <0.05 for
Q statistics), a random effects model was applied.

Gene-base tests (sequence kernel association test, SKAT)27

were applied to explore the cumulative effect of SNPs in or
near a given gene within each population and in the com-
bined data set, as implemented in skatMeta R library (http://
cran.r-project.org/).

A power analysis was conducted on our discovery series
sample size using the following assumptions: 400 patients
with thyroid cancer and 500 controls, a 5 0.0001 and a
minor allele frequency of 0.3. We estimated that we had
>30%, >57% and >80% power of detecting a per allele odds
ratio of 1.4, 1.5 and 1.6, respectively.

Results
Quality control (QC) procedures included exclusion of SNPs
with frequencies <5% (n5 109,205), missing genotypes for
>5% of samples (n5 41,432) and Hardy-Weinberg Equilib-
rium test p values <1026 in either the control or the all-
samples groups (n5 3,139). SNPs were also tested for differ-
ences in genotyping success rates in cases and controls, and
those with p values <1026 were excluded (n5 2,090). The
final set of markers consisted of 474,624 SNPs genotyped in
398 cases and 502 controls.

Fifty-two SNPs showed statistical significance below
p< 0.0001 in the initial series and are listed in Supporting
Information Table S1. These SNPs and seven additional ones,
selected based on a literature search, were considered for fur-
ther replication steps (59 SNPs in total). Table 2 shows
results for those SNPs, which displayed the strongest associa-
tion signals in the fixed-effects meta-analysis of the initial
and replication series, highlighted in bold in Table 2. While
the results shown in Table 2 were obtained comparing all
cases versus controls (regardless of the histological diagnosis),
similar results were obtained when only PTC cases were con-
sidered (data not shown).

9q22 locus

A significant association with SNPs from 9q22 locus, where
the FOXE1 gene is located, was also detected in the replica-
tion series, confirming once more the role of this locus in
DTC susceptibility. The SNPs previously associated with the
disease, rs96551318 and rs1867277,16 had to be imputed for
the genome-wide step, as they were not included on the plat-
form used (rs965513: OR5 1.73, p5 2.2 3 10207, rs1867277:
OR5 1.39, p5 1.2 3 10203). As shown in Supporting Infor-
mation Table S2, the meta-analysis for these two SNPs
revealed a strong association (rs965513: OR5 1.65, P5 2.7
3 10223, rs1867277: OR5 1.41, P5 3.4 3 10212). Moreover,
we detected associations with three other variants in the
same chromosomal location (Table 2). In all studied popula-
tions, strong LD was observed between rs965513 and
rs7028661, and between rs1867277 and rs10122541 (Support-
ing Information Figure S1). We assessed whether the associa-
tions observed remained after adjusting for the most strongly
associated genotyped variant by adding in rs7028661 as a
covariate in the logistic regression analyses. The association
with the disease remained significant in the meta-analysis of
all the other 9q22 SNPs: those genotyped (rs7037324:
OR5 1.25, p5 1.3 3 10204, rs10122541: OR5 1.22, p5 7.4
3 10204) and those imputed (rs1867277: OR5 1.18, p5 2.1
3 10203, rs965513: OR5 1.34, p5 0.037).

Other known SNPs

Apart from two SNPs at 9q22, only one of the seven previ-
ously published SNPs included in the replications steps (see
Material and Methods) reached significance in the final
meta-analysis (Supporting Information Table S2). It was the
SNP rs944289 at 14q13.3 localized upstream of NKX2-1 gene.
This polymorphism did not reach the threshold of signifi-
cance when imputed in the discovery phase (p5 0.07), but
was found to be nominally significant in the Catalonian
(p5 0.003) and Italian (p5 0.01) replicates, reaching a signif-
icant p values of 1.5 3 1025 in the meta-analysis (Supporting
Information Table S2). Additionally, a meta-analysis combin-
ing our results with those previously published on this
locus18,20,24 (Supporting Information Table S3) showed a sig-
nificant association with the disease (OR5 1.30, p< 0.0001).
Of note, Cochran’s Q test and I2 statistics did not reveal sig-
nificant heterogeneity among the populations (I2 5 0%, phet =
0.60).

The allele frequency of the four markers not replicated
was not different among the populations, in which the SNPs
were originally detected, and those studied here.

Novel SNPs

Results for the genotyped SNPs in the replication phase are
listed in Supporting Information Table S4. Several SNPs in
the GWAS series were located at the same locus. This was
the case for three SNPs from 10q26.12 localized in intronic
regions of WDR11-AS1 (rs2997312, rs10788123 and
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rs1254167) and three from 6q14.1 in the proximity of the
HTR1B gene (rs4075570, rs12206214 and rs4463226). Find-
ings from more detailed LD analyses from the genome-wide
step of the 10q26.12 and 6q14.1 loci are provided in Support-
ing Information Figure S2. All but the last two SNPs from
6q14.1 had p values below the cut-off to be considered as sig-
nificantly associated in the meta-analysis (Table 2). These
other two SNPs remained close to statistically significant in
the meta-analysis: rs12206214 (meta-analysis p value 0.0025,
with nominal significance in Italian replicate) and rs4463226
(meta-analysis p value 0.0006, nominal significance in the
Galician replicate). Both genes showed a suggestive p value in
the meta-analysis of the SKAT gene-base test: p5 9.37 3

1024 for the combined effect of the three SNPs of HTR1B
and p5 7.23 3 1025 for the three SNPs in WDR11-AS1
(meta-analysis performed excluding Catalonian population
due to the lack of data for rs10788123).

As shown in Table 2, the estimated OR from the Galician
replication series was that which most differed from the
others for four of the five SNPs, for which significant hetero-
geneity was observed, possibly due to heterogeneity among
the included populations. Therefore, a random effects model
was also applied when the phet was smaller than 0.05. Even if
the estimated p values (underlined in Table 2) were greater,
the associations assessed by this more rigorous method
remained statistically significant at p< 0.05 for all but one
SNP (rs10788123).

Discussion
The genetic contribution to thyroid cancer risk is greater
than that of any other cancer, and the effect extends beyond
the nuclear family.1,28 However, most of the hereditable risk
to DTC remains unexplained.9 Here, we performed a GWAS
in order to look for common variants predisposing to PTC
and FTC. We further confirmed some of the previously
reported genetic associations with DTC. Moreover, we
detected a suggestive association with DTC for several SNPs
within the 10q26.12 and 6q14.1 genomic loci.

All the GWAS in DTC performed until now have consis-
tently found an association between the locus 9q22 and dis-
ease risk. This locus was the only one associated with
susceptibility to DTC in all of the populations considered in
the present study, confirming it harbors the most important
low-penetrance variation in DTC. On the other hand, we
observed two high-risk LD blocks at 9q22. Importantly, the
two variants associated with DTC in other studies
(rs96551318 and rs186727716) lie in distinct LD blocks, which
is consistent with previous reports.24 Further analyses
revealed that SNPs of 9q22 remained statistically significantly
associated with disease risk after adjusting for rs7028661,
localized in the same LD block as rs965513. This suggests
that even though this latter SNP is the most validated low-
penetrance variation in DTC, additional independent disease-
associated genetic variation is found in the locus. Further

fine-mapping and functional studies are required to identify
the underlying risk-modifying variant(s) at this locus.

A SNP at 14q13.3 adjacent to NKX2-1 was reported by
Gudmundsson et al.18 to be associated with risk of the dis-
ease, and replicated by Jones et al.24 but not in other stud-
ies.20 We replicated this association in meta-analysis of our
data. Furthermore, as the meta-analysis involving all GWAS
studies published so far with data on rs94428918,20,24 con-
firmed the significant association of variation at locus
14q13.3 with DTC, it suggests this genomic region plays a
relevant role as a DTC risk factor, although probably having
a more subtle effect than variation at 9q22.

However, associations previously reported by others and
included in the replication steps of this study (rs2910164,
rs6983267, rs664677 and rs2284734) were not replicated.
Similarly, no association signal was observed in the genome-
wide step of this study for other markers identified previously
(rs966423 at 2q35 and rs2439302 at 8p1217 or rs10136427 at
14q24.3 and rs7267944 at 20q1229). As all of these genetic
variants were described in a single study, without replication
by subsequent studies, they could be associated with the dis-
ease in a population-specific manner. Indeed, there are
important differences observed among specific European
populations in thyroid cancer prevalence suggesting that
attention should be paid to the inter-population heterogeneity
in genetic susceptibility.

In this regard, the associations observed using our data
appeared to be different for the Galician population for some
SNPs, despite the lower number of cases and controls. Specif-
ically, rs7028661 in FOXE1 was more weakly associated with
DTC in the Galician than in the other series. This type of
population effect could be reflecting different population his-
tory30 and possibly gene-environment interactions.31 Galicia
is a large, but quite isolated region in North-western Spain,
surrounded by important geographic barriers and character-
ized by specific cultural characteristics including language,
which could have contributed to the emergence of genetic
diversity. In fact, founder effects have been commonly
observed in Galicia. For instance, the founder mutation
BRCA1 330A>G (p.R71G) explains more than 50% of all
inherited breast cancer cases in this population,32 while in
other Spanish as well as Caucasian populations it is not
observed.

The disparity observed among different DTC GWAS is
similar to findings reported in other diseases, such as breast
cancer.33 It seems that to identify novel low-penetrance var-
iants conferring very small effects, very large numbers of
cases and controls (>10,000 of each) need to be used in
order to achieve sufficient statistical power, which generally
requires international collaboration.34 Indeed, the limitation
of the current study is the sample size available. Still, we
were able to identify novel low-penetrance variants associated
with DTC that were heterogeneously validated in different
populations. It seems plausible that the differences observed
among the studied cohorts are due to genetic heterogeneity
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and not to other factor; the genotyping was done in only one
centre and the results obtained were consistent after restric-
tion to only one disease subtype.

Regarding the novel associations, we focused our attention
on loci exhibiting more than one association signal. Two low
correlated SNPs (rs10788123 and rs1254167, r2 5 0.32),
located at 10q26.12 in intronic regions of WDR11-AS1, were
associated with risk of DTC. This gene codes for an antisense
RNA to WDR11, which is a scaffold protein involved in
many cellular processes, including cell cycle progression, sig-
nal transduction, apoptosis, and gene regulation. Therefore,
the disruption of the WDR11 regulation axis may represent a
potentially transforming molecular mechanism in DTC etiol-
ogy. Of note, this locus has been found to be disrupted in
cancer by translocation events,35 and proposed to have a
tumor suppressor role. The eQTL analysis Genevar tool
(http://www.sanger.ac.uk/resources/software/genevar/) found
a significant association between rs10788123 and WDR11
expression in lymphocytes. Although data on thyroid tissue is
not available in this browser, it is tempting to suggest that
this SNP could potentially interfere with the expression of
the WDR11 gene in the thyroid.

Finally, rs4075570 located at 6q14.1 in an intergenic
region with very few nearby genes, is significantly associated
with HTR1B expression in lymphocytes and adipocytes
according to the Genevar browser. This gene codes for a
serotonin receptor involved in a wide variety of physiological
functions. The role of the HTR1B gene has already been
studied in lung, breast, ovary and endometrial cancer.36–39

Methylation-mediated decreased HTR1B expression was
apparently a common feature among most of these neopla-
sias, pointing to a potential tumor suppressor role. Notwith-
standing this, there is evidence that this receptor can activate
ERK,40 a well-known member of the MAPK pathway, whose
deregulation is the causal aberrance of thyroid cancer.41

Finally, this receptor seems to mediate serotonin-induced
angiogenic signaling,42 which is yet another hallmark of can-
cer. Therefore, although further confirmation is warranted,
the association of several SNPs belonging to a gene involved
in the MAPK pathway and angiogenic signaling converts
HTR1B in an attractive potential low penetrance DTC gene.

Although only variation at 9q22 reached genome-wide sta-
tistical significance (p< 1027), the fact that several independ-
ent association signals were observed within 10q26.12 and
6q14.1 loci, increase the interest of our findings, suggesting
that these two regions could carry new risk factors related to
DTC. Taking into account the effect of population heteroge-
neity demonstrated in this study, the existence of risk
markers whose role in thyroid cancer susceptibility is exclu-
sive to a specific population seems to be a feasible possibility.
It could explain at least part of the lack of inter-study repli-
cation often observed in thyroid carcinoma and the consider-
ation of this phenomenon may give rise to important insights
into this complex disease.
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Abstract 

Previous transcriptome profiling in the laboratory showed the expression patterns are 

subtype specific and capable of identifying high-risk patients. In this following work, we aimed 

to uncover the potential regulators of the differentially expressed genes. Firstly, we set off to 

study DNA methylation. Although methylation is an emerging hallmark of cancer, little is 

known about aberrant epigenetic profiles in thyroid cancer. This study aimed to characterize, at 

the genome-wide level, the DNA methylation patterns of well-differentiated thyroid tumors, 

previously classified according to the presence of RET/PTC rearrangements, or mutations in 

BRAF or RAS genes. Moreover, we aimed to uncover the regulatory DNA methylation changes 

by integration of transcriptomic data from the same tumors in the analysis. 

According to the results of this study, follicular and papillary tumors present distinct 

methylation profiles, closely linked to specific mutations. We were able to identify genes whose 

expression is controlled by methylation of their promoters, as well as aberrant methylation 

events with potential diagnostic and prognostic value. In this regard, it is remarkable the 

diagnostic value of KLK10 for BRAF-positive tumors, and hypermethylation of EI24 and WT1, 

which confers higher risk of recurrence, as independent prognostic markers. These findings 

could have an impact on the clinical management of thyroid cancer patients. 

Personal contribution: I extracted and prepared the samples for this study. I performed genetic 

screening of the samples. I was actively involved in all the statistical analysis, and contributed 

to the formation of the hypothesis. I also contributed to the discussion of the results and drafting 

of the paper. 

  



   

 

 



DNA methylation profiling of well-differentiated thyroid cancer
uncovers markers of recurrence free survival
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Thyroid cancer is a heterogeneous disease with several subtypes characterized by cytological, histological and genetic altera-

tions, but the involvement of epigenetics is not well understood. Here, we investigated the role of aberrant DNA methylation

in the development of well-differentiated thyroid tumors. We performed genome-wide DNA methylation profiling in the largest

well-differentiated thyroid tumor series reported to date, comprising 83 primary tumors as well as 8 samples of adjacent nor-

mal tissue. The epigenetic profiles were closely related to not only tumor histology but also the underlying driver mutation;

we found that follicular tumors had higher levels of methylation, which seemed to accumulate in a progressive manner along

the tumorigenic process from adenomas to carcinomas. Furthermore, tumors harboring a BRAF or RAS mutation had a larger

number of hypo- or hypermethylation events, respectively. The aberrant methylation of several candidate genes potentially

related to thyroid carcinogenesis was validated in an independent series of 52 samples. Furthermore, through the integration

of methylation and transcriptional expression data, we identified genes whose expression is associated with the methylation

Key words: well-differentiated thyroid cancer, methylation, BRAF, RAS, prognostic markers
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status of their promoters. Finally, by integrating clinical follow-up information with methylation levels we propose etoposide-

induced 2.4 and Wilms tumor 1 as novel prognostic markers related to recurrence-free survival. This comprehensive study pro-

vides insights into the role of DNA methylation in well-differentiated thyroid cancer development and identifies novel markers

associated with recurrence-free survival.

Follicular cell-derived carcinoma arises from the main cell
population of the thyroid gland and is the most common
endocrine malignancy, accounting for more than 95% cases.
This general term represents a highly heterogeneous entity
composed of a spectrum of differentiation stages, ranging
from benign lesions such as follicular adenoma (FA), to well-
differentiated but mostly indolent carcinomas such as papil-
lary thyroid carcinoma (PTC) or follicular thyroid carcinoma
(FTC), through to undifferentiated, more invasive and lethal
human malignancies, such those classified as poorly differen-
tiated thyroid carcinoma and anaplastic thyroid carcinoma.
Most well-differentiated carcinomas can be effectively clini-
cally managed and have an excellent prognosis. However, a
subset of these tumors behave aggressively, and there is cur-
rently no effective treatment for them.1 As all these malig-
nancies arise from the same cell type, it is of great interest to
understand the molecular alterations giving rise to the
observed heterogeneity.

Genetics has been shown to play an important role in the
development of this disease. The most recurrent point muta-
tions and rearrangements tend to affect the effector genes of
the MAPK pathway, such as v-raf murine sarcoma viral
oncogene homolog B1 (BRAF), the RAS family and the
“rearranged during transfection” protooncogene RET. These
early alterations have been shown to be exclusive, subtype-
specific and to a certain extent prognostic. Virtually all
tumors bearing RAS mutations present a follicular pattern of
growth (FA, FTC or PTC follicular variant [fvPTC]), while
BRAF mutations and rearrangements in the RET gene are
characteristic of PTC.2 It is widely accepted that BRAF-posi-
tive tumors tend to have a worse prognosis.3,4 Conversely,
RAS mutations are detected among both follicular carcinomas
and adenomas, thus having diagnostic value but not prognos-
tic value, and leaving many clinical questions to be answered.

At present, high-throughput techniques are being used to
identify altered pathways related to the development of spe-
cific tumor types or clinical features. In thyroid cancer, it has
been demonstrated that aberrant expression patterns can pre-
dict a patient’s prognosis.5 Moreover, these patterns have

been closely linked to the presence of particular mutations
and shown to be specific to each.5–7 Although it might be
expected that other genomic features such as methylation are
also closely related to the particular mutated gene that leads
to carcinogenesis, little is known about aberrant epigenetic
profiles specific to individual thyroid cancer subtypes. Studies
published to date have followed either a strict candidate
gene-based approach or have used a limited number of sam-
ples.8 Therefore, the genes identified so far as repressed by
aberrant methylation are either involved in thyroid gland
function (e.g., thyroid-stimulating hormone receptor
[TSHR],9 sodium-iodine symporter [NIS]10 or have a tumor
suppressor gene function (e.g., tissue inhibitor of
metalloproteinase-3 [TIMP3], retinoic acid receptor b2
[RARb2],11,12 RAS association domain family protein 1
[RASSF1]13. A global view of genome-wide aberrant methyla-
tion in thyroid cancer is still lacking.

In this study, we quantitatively profiled the genome-wide
DNA methylation of 83 primary thyroid tumors (18 FA, 18
FTC and 47 PTC) and 8 samples of adjacent normal thyroid
tissue using the 27 K Infinium Methylation Array. We identi-
fied disease subtype- and mutation-specific DNA methylation
patterns and propose novel markers related to recurrence-
free survival (RFS). Moreover, by integrating methylation
data with mRNA expression, we were able to identify genes
whose expression is associated with the methylation status of
their promoter regions, thereby adding new insights into thy-
roid carcinogenesis.

Material and Methods
Sample collection and patient follow-up

One hundred and thirty-two thyroid tumors were snap fro-
zen following surgery at Hospital Sant Pau and Hospital
Sabadell in Barcelona (Spain) and at Hospital Arnau de Vila-
nova in Lleida (Spain), and stored at 280�C. Of these, 83
primary thyroid tumors (42 PTC, 5 fvPTC, 18 FA and 18
FTC) not previously profiled at the genome-wide DNA meth-
ylation level8 were used in the discovery phase of the study,
and the remaining 49 tumor samples (24 PTC, 9 fvPTC, 12

What’s new?

Follicular cell-derived carcinomas of the thyroid gland, which are the most common endocrine malignancies, are of special

interest for molecular research, given their common cellular origin. However, whether epigenetic modifications contribute to

the heterogeneous nature of follicular thyroid malignancies remains unclear. Here, genome-wide characterization of DNA meth-

ylation patterns of well-differentiated thyroid tumors shows that tumors with distinct subtypes and mutational status have

unique methylation profiles, offering insight into the biology underlying the heterogeneity and differential outcomes of thyroid

cancers. Novel markers associated with recurrence-free survival were also identified and could be used for patient

classification.
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FA and 4 FTC) in the replication phase. Sections of each
sample were evaluated by a pathologist and, when necessary,
non-tumoral tissue was dissected. We studied eight adjacent
normal thyroid tissues in the discovery and three in the repli-
cation series. At least 80% of the cells were cancerous in all
tumor samples, while non-tumor samples had no observable
tumor epithelium. Tumors were classified as PTC, fvPTC, FA
and FTC according to the criteria proposed by WHO classifi-
cation of tumors of the endocrine system, by three patholo-
gists with experience on thyroid pathology (XM, MRB and
EL). All cases in the PTC group exhibited the typical cytolog-
ical and architectural features of the classical variant. Strict
criteria were used for fvPTC; tumors showed unquestionable
cytological features together with a follicular pattern of
growth. For FA, presence of capsule and absence of hyperpla-
sic changes in the adjacent thyroid tissue was required. For
FTC, obvious evidence of vascular and capsular invasion was
also required. Genomic DNA was extracted from all samples
using the DNeasy Blood and Tissue kit (QIAGEN) according
to the manufacturer’s protocol.

The clinical follow-up of the patients was performed by
physical examination, neck ultrasonography, simultaneous
determination of serum anti-tiroglobulin antibodies with
tiroglobulin (basal, or after thyrotropin stimulation by
thyroid hormone withdrawal or the administration of
recombinant human thyrotropin) and whole-body iodine
scanning. If there was a suspicion of local or distant dis-
ease, other imaging techniques such as CT, MRI, PET-CT
or scintigraphy were used. The frequency and the type of
technique used depended on the postoperative staging,
which was also used to assess prognosis and to guide
adjunctive therapy.

Mutation analysis

All PTCs were screened by Sanger sequencing for BRAF
mutations at codon 600 in exon 15, while FA, FTC and
fvPTC samples were screened for mutations in H-, N- and
K-RAS at mutational hotspots on codons 12 and 13 of exon
2 and codon 61 of exons 3. When available, cDNA from
PTC samples was also screened for RET/PTC1 and RET/
PTC3 rearrangements as previously described.5

DNA methylation assay, data processing and data analysis

Briefly, genomic DNA was bisulfite-converted using the EZ
DNA Methylation Kit (Zymo Research, Orange, CA) follow-
ing the manufacturer’s recommended procedures. Genome-
wide promoter DNA methylation profiling was performed at
the Spanish “Centro Nacional de Genotipado (CEGEN-
ISCIII)” (www.cegen.org) using the Illumina Infinium
HumanMethylation 27K Platform (Illumina, San Diego, CA)
as described previously.14 This assay generates DNA methyla-
tion data for 27,578 CpG dinucleotides covering 14,473
unique genes. The raw intensity data were quartile-
normalized using the R package, HumMeth27QCReport.15

For each CpG site, methylation levels were quantified using

b-values, which represent the proportion of methylation, cal-
culated as M/(M 1 U), where M is the methylated probe
intensity and U the unmethylated probe intensity. b-Values
range from 0 to 1, with 0 being completely unmethylated
and 1 being completely methylated. M-Values, defined as
log2(M/U), were used for statistical analyses; negative values
indicate less than 50% methylation and positive values indi-
cate more than 50% methylation.16 We excluded probes that
were detected in less than 95% of the samples (16 probes),
probes designed for sequences on either the X or the Y chro-
mosome (1,084 or 7 probes, respectively) as well as probes
that potentially hybridized to more than one genomic locus
(538 probes). The data discussed in this publication have
been deposited in NCBI’s Gene Expression Omnibus and are
accessible through GEO Series accession number GSE51090
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51090).

Unsupervised hierarchical clustering was performed using
Cluster 3.0 software with “complete linkage” (Pearson corre-
lation, uncentered metrics). The clusters were subsequently
visualized using Treeview (http://rana.stanford.edu/software),
and Principal Component Analysis (PCA) was performed
using R CRAN version 2.15.3 (R, 2013).

Differences in DNA methylation status between normal
thyroid tissue and specific subtypes were tested using
POMELLO II, applying either a t-test with 200,000 permuta-
tions or linear models (limma).17 To account for multiple
hypotheses testing, p-values were adjusted using Benjamini’s
false discovery rate (FDR) correction. We defined a probe to
be hypomethylated or hypermethylated when it displayed a
mean M-value difference (DM-value) < 21.4 or >1.4,
respectively, between a particular tumor group and normal
tissue, and had a FDR < 0.05.

Methylation status validation: selection of candidate

genes and bisulfite sequencing

Three of the most differentially methylated probes, all with a
high fold-change across the experimental groups, were
selected for validation. Biological functions were considered
as additional criteria to select candidate promoter regions.
Technical validation of microarray results was performed
using bisulfite sequencing, first in a subset of the original dis-
covery series (comprising 4 FA, 7 FTC, 13 PTC and 8 adja-
cent normal thyroid tissue samples). The candidate markers
were then validated in 52 independent samples (24 PTC, 9
fvPTC, 12 FA, 4 FTC and 3 adjacent normal thyroid tissue
samples).

From the bisulfate-treated DNA, at least two independent
nested PCRs (for each sequence to be studied) were per-
formed using two sets of primers specifically designed to con-
tain no CpG sites (Supporting Information Table S1). The
pooled PCR products were purified (High Pure PCR product
Purification Kit, Roche) and analyzed by Sanger sequencing
(BigDye Terminator v3.1 Cycle Sequencing Kit, Applied Bio-
systems). Primary tumors were classified as hyper- or hypo-
methylated when the studied locus showed an increase or a
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decrease, respectively, in methylation level of over 20% rela-
tive to the average methylation of normal thyroid samples.

Integration of gene expression and DNA methylation

To identify genes whose expression is associated with methyl-
ation of their promoters, we assessed correlations between
methylation and mRNA expression using two approaches.
First, mRNA expression was compared to DNA methylation
using the 31 primary thyroid tumors5 for which data were
available. Expression of all the available genes identified as
differentially methylated (FDR < 0.05, DM-value > j1.4j)

was examined in this study. For genes with multiple probes
included in the methylation array, the probe with the highest
variance was selected, as previously described.18 Correlation
was measured using the Spearman coefficient. Second, we
used an independent mRNA expression dataset available
from GEO (http://www.ncbi.nlm.nih.gov/geo; GEO data base
GSE27155).6 This database contains both histopathological
and genetic information on the samples included. We merged
the list of genes with differential methylation (FDR < 0.05,
DM-value > j1.4j) with that of those identified as differen-
tially expressed (t-test, FDR < 0.05).

Identification of genes whose methylation is of potential

prognostic value

To identify methylation changes that could serve as potential
prognostic markers, we integrated available clinical follow-up
data of 60 patients with the methylation profiles. First, we
performed supervised analysis with the POMELO II tool
using methylation data for carcinoma samples from individu-
als free of the disease for at least 5 years and those with
recurrence within 5 years after the appearance of the disease.
Next, we chose probes with the most significant changes in
methylation (FDR < 0.05, DM-value > j1.4j), and using
SPSS (IBM SPSS Statistics version 19) we conducted an uni-
variate Cox regression analysis to determine the impact of
methylation status on RFS. RFS was defined as the time
between initial diagnosis and relapse or death by the disease,
with observations censored at last follow-up if no event had
occurred. p-Values were adjusted using Benjamini’s FDR
correction.

Results
DNA methylation profiles reflect histology and RAS/BRAF

mutational status in well-differentiated thyroid cancer

The main clinical and pathological characteristics, as well as
the somatic tumoral mutation status, of the patients
included in the study are summarized in Table 1 (more
detailed information is available in Supporting Information
Table S2). The prevalence of the mutations found among
our samples is similar to that previously described.2 We
excluded probes that appeared to be constitutively unme-
thylated (M-value < 22.0, corresponding to a b-value
<0.2; 8,657 probes) or methylated (M-values >2.0, corre-
sponding to a b-value >0.8; 717 CpGs) in all samples. The
vast majority of the unmethylated probes were in CpG
islands (97.8%); DAVID functional annotation analysis19

returned GO terms such as primary metabolic processes
(Benjamini–Hochberg-adjusted p-value 5 1.8 3 10218) and
cellular metabolic processes (Benjamini-Hochberg-adjusted p-
value 5 4.8 3 10224) as best hits (Supporting Information
Fig. S1), suggesting an enrichment of housekeeping genes.
Most of the methylated probes were located at non-CpG
islands (63.6%), and no functional enrichment of the genes
involved was observed. Further analyses were performed with
the remaining 17,274 probes.

Table 1. Summary of the main clinical and pathological characteris-
tics of samples used in this study

Discovery series
(n 5 83)

Replication
series (n 5 49)

Clinical characteristics Number (%)1 Number (%)1

Gender

Male 17 (20.5) 13 (26.5)

Female 66 (79.5) 35 (71.5)

Missing 0 (0) 1 (2.0)

Age

Median 47 45

Min-max 13–78 20–84

Histology

PTC 42 (50.6) 24 (49.0)

fvPTC 5 (6.0) 9 (18.4)

FTC 18 (21.7) 4 (8.2)

FA 18 (21.7) 12 (24.4)

NT 8 3

Recurrence2

Yes 14 (21.5) 7 (18.9)

No 47 (72.3) 24 (64.9)

Missing 4 (6.2) 6 (16.2)

Follow-up (months)

Median 36 46.5

IQR 13.5–84 21–73.25

Mutation

BRAFV600E 23 (27.7) 13 (26.5)

RAS 13 (15.7) 2 (4.1)

RET/PTC1 3 (3.6) 0 (0)

Negative 44 (53.0) 44 (69.4)

A total of 132 tumor samples and 11 normal adjacent tissues were
used in this study, divided in the discovery series (83 tumors and 8
normal thyroid tissues) and replication series (49 tumors and 3 normal
samples).
IQR, interquartile range.
1The percentage is calculated taking into account only the total number
of tumors (normal tissues were not included).
2The data on recurrence are only included for the malignant tumors
(adenomas were not taken into account).
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An unsupervised hierarchical cluster analysis of the 912
CpGs with standard deviation >1.2 identified two distinct
clusters based on histological subtype and the underlying
mutation (Fig. 1a). More specifically, “cluster 1” was enriched
with FTC (p-value < 0.0001) and showed statistically signifi-
cantly higher levels of methylation when compared to normal
tissue samples grouped in “cluster 2” (p-value 5 2.7 3

1027). “Cluster 2” comprised two sub-clusters. “Cluster 2A”
consisted of tumors with substantial histological heterogene-
ity, including, among others, the majority of FA samples (11
out of 18 FA) and all the normal thyroid tissue samples. Of
note, the branch lengths between the normal thyroid samples
were shorter than those between the tumor samples, indicat-
ing greater heterogeneity in methylation profiles among the
latter. The tumors grouped in this sub-cluster also showed
higher levels of methylation compared to normal tissue
(p-value 5 4.6 3 1023). Finally, “cluster 2B” showed a
robust methylation profile and comprised 36 tumors, 35 of
which were PTCs; this sub-cluster included all those with the
BRAFV600E mutation and RET/PTC1 rearrangement. The
methylation levels of samples in “cluster 2B” showed no sta-
tistical difference compared with normal tissue samples, sug-
gesting methylation profiles differences between tumors with
follicular and papillary growth patterns.

Although no clustering of samples harboring RAS muta-
tions was observed using unsupervised analysis, it is notewor-
thy that those fvPTC bearing a RAS mutation were grouped
in clusters 1 and 2A, together with RAS-FTC and RAS-FA,
while the only tumor bearing a BRAF mutation clustered
with BRAF-PTC tumors. Therefore, we applied a principal
components analysis (PCA) using the 912 CpGs with highest
methylation variability, and confirmed the grouping of sam-
ples according to their mutational status (Fig. 1b). Using
publically available data from The Cancer Genome Atlas
(TCGA) project (87% of the 912 probes used for the unsu-
pervised analysis were also included in the 450K platform),
we were able to confirm the robust clustering of thyroid
tumors according to primary mutation, BRAF versus RAS
(Fig. 1c).

Identification of differentially methylated regions in well-

differentiated thyroid cancer

We identified 9 hypomethylated probes (9 genes) in FA, 83
(77 genes) in FTC and 53 (51 genes) in PTC. We also
observed 89 hypermethylated CpGs (83 genes) in FA, 460
(416 genes) in FTC and 39 (31 genes) in PTC. A Venn dia-
gram analysis revealed that a substantial proportion of differ-
entially methylated regions identified in FA was also altered
in FTC. Sixty-nine (83%) hypermethylated and six (67%)
hypomethylated probes in FA were also hyper- and hypo-
methylated, respectively, in FTC (Figs. 2a and 2b and
Supporting Information Fig. S2). Table 2 summarizes the
20 most significant subtype specific probes identified as well
as their corresponding Db-values. An extended list of all

differentially methylated probes is listed in Supporting
Information Table S3.

After dividing FA and FTC samples according to their
mutational status, we assessed associations of individual
probes with each of the genetic subgroups. For RAS-positive
tumors, we identified 72 probes (70 genes) and 203 probes
(181 genes) to be hypomethylated in FA and FTC, respec-
tively. Hypermethylated were 263 probes (258 genes) and 454
probes (426 genes) in FA and FTC, respectively. In tumors
with no mutations, we identified on one hand 11 hypomethy-
lated probes (11 genes) in FA and 77 (71 genes) in FTC, and
on the other hand 105 hypermethylated probes (97 genes) in
FA and 587 (528 genes) in FTC (Figs. 2c and 2d upper and
Supporting Information Fig. S2).

After dividing PTC samples according to the genetic alter-
ations they harbored, we identified 126 hypomethylated
probes (121 genes) in BRAF-positive tumors, 74 (72 genes)
in RAS-positive tumors and 7 (7 genes) in tumors with no
detectable mutations (16 tumors); we found 78 hypermethy-
lated probes (70 genes) in BRAF-related tumors, 141 (132
genes) RAS-mutated tumors and 84 (78 genes) in tumors
with no mutations. No probes were found to be specific to
PTC tumors harboring the RET/PTC1 rearrangement (Figs.
2c and 2d lower and Supporting Information Fig. S2). All
hypo- and hypermethylated genes for each tumor subtype are
listed in Supporting Information Table S3.

Furthermore, we aimed to identify the differentially meth-
ylated probes specifically associated with mutational status,
independently of histology, by separately comparing with
normal tissue all RAS-tumors, all BRAF-tumors and all non-
mutated tumors. We obtained 450 probes from these analyses
(Supporting Information Table S3) that, when used to per-
form PCA, resulted in a robust separation of mutated sam-
ples into two main groups: BRAF-positive samples together
with RET/PTC1 samples and samples harboring RAS muta-
tions (Fig. 3).

For all differentially methylated probes identified (both
mutation- and subtype-related), we also investigated the
genomic context of their location, as it is well-known that
hypo- and hypermethylation target different genomic regions
in cancer (Supporting Information Fig. S3). We observed that
hypermethylation in thyroid tumors occurred preferentially
within a CpG island, whereas hypomethylation tended to
affect probes outside of CpG islands (p-value < 0.0001). In
addition and as previously reported,20 hypermethylation
occurred preferentially at stem cell PolyComb Group (PcG)
target genes (p-value < 0.0001), while hypomethylated probes
were highly enriched with CpGs that are heavily methylated
in Embryonic Stem Cells (p-value < 0.0001).

Validation and replication of differentially methylated loci

We chose the promoter regions of three genes for validation
using bisulfite sequencing; hypermethylation of two of them
(COL4A2 and DLEC1) was more common in thyroid neopla-
sias in general than in normal tissues, while hypomethylation

C
an

ce
r
G
en
et
ic
s

602 DNA methylation profiling of well-differentiated thyroid cancer

Int. J. Cancer: 135, 598–610 (2014) VC 2013 UICC



Figure 1. (a) Unsupervised hierarchical cluster analysis. Hierarchical cluster analysis of 83 primary thyroid tumors and 8 adjacent normal

tissue samples based on the 912 CpGs with the greatest variability (SD > 1.2). The analysis divided the sample set into two main clusters.

“Cluster 1” was statistically significantly enriched with FTC samples. In “cluster 2B” the majority of PTC was gathered, while in “cluster 2A”

normal tissues, showing a very homogeneous profile, were localized together with the majority of FA. (b) Principal component analysis. PCA

analysis of 83 primary thyroid tumors and 8 adjacent normal tissue samples based on the 912 CpGs with the greatest variability (SD >

1.2). PCA analysis showed a clear relationship between DNA methylation and histology as well as genetic alterations. The three tumors con-

taining a RET/PTC rearrangement group with BRAF-positive samples. (c) Principal component analysis. PCA analysis using DNA methylation

data from the TCGA project (including 304 primary thyroid tumors and 50 adjacent normal tissue samples) based on the same CpGs with

the greatest variability (SD > 1.2) identified in our study.
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of KLK10 was specific to PTC tumors harboring the
BRAFV600E mutation. Comparison of quantitative methylation
values at these three CpG sites from the HumanMethylation
27K Platform and bisulfite sequencing in 32 samples con-
firmed the accuracy of the array-based measurement (Sup-
porting Information Fig. S4). The analysis by bisulfite
sequencing assessed not only the methylation state of the
CpG within the probe but also the flanking CpGs, revealing
that the differential methylation affected a larger region (Sup-
porting Information Fig. S4). These results validate the use of
the single CpG sites interrogated by Illumina Infinium
HumanMethylation 27K Platform as surrogate reporters of
regional methylation. In addition, we replicated the findings
for the three candidate genes in an independent series of 24
PTC, 9 fvPTC, 12 FA, 4 FTC and 3 normal thyroid tissues
(Supporting Information Table S2).

In the discovery series, as measured by the array, COL4A2
was hypermethylated in 66% of PTC, 21% of FA and in 56%
of FTC samples; in the independent replication series hyper-
methylation was observed in 41% of PTC and 33% of FA

samples. The lack of COL4A2 hypermethylation among FTC
samples could be due to the fact that only four samples were
available. Conversely, DLEC1 showed hypermethylation in
the discovery series in 23% of PTC, 42% of FA and 56% of
FTC samples, compared to 23% of PTC, 8% of FA and 75%
of FTC samples in the replication series. In the replication
series, we confirmed the KLK10 hypomethylation in all
BRAF-positive samples (Supporting Information Fig. S4).

Correlation between DNA methylation and mRNA

expression

The integration of methylation and expression data available5

from 31 thyroid tumors allowed us to examine gene expres-
sion levels of a limited number of genes (4,029 genes on both
platforms that represent 27.8% of the genes included on the
methylation array). We examined the correlation between
DNA methylation and mRNA expression in all histological
groups where at least five samples were available for the anal-
ysis. In PTCs with the BRAFV600E mutation, we observed an
inverse correlation with expression for 13.3% (6 out of 45

Figure 2. Differentially methylated probes. (a) Subtype-specific probes identified using POMELO II based on FDR < 0.05 and DM-value >

j1.4j. (b) Venn diagram showing the overlap between the identified subtype-specific hyper- and hypomethylated probes. (c) Mutation-

specific probes identified using POMELO II and the criteria listed above. (d) Venn diagram analysis showing overlap between the identified

mutation-specific hypermethylated and hypomethylated probes, respectively.
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Table 2. TOP 20 subtype-specific probes for FA, FTC and PTC

Probe ID Gene ID FDR DM-value Db-value Chr. CpG Island

TOP 20 FA-specific probes

cg06367117 ALDOC 2.00E-07 2.71093869 0.3926528 17 TRUE

cg08047457 RASSF1 9.00E-07 2.29675986 0.40019958 3 TRUE

cg21554552 RASSF1 2.40E-06 2.44631867 0.36554431 3 TRUE

cg17568996 NFAM1 2.42E-05 2.25126535 0.33678735 22 FALSE

cg06821120 RASSF1 0.0001938 1.7311015 0.33777293 3 TRUE

cg27219973 GNRHR 0.0008154 1.54777294 0.2221765 4 FALSE

cg13926569 PAPSS2 0.0013162 1.72337985 0.27635483 10 FALSE

cg09606564 MFAP4 0.0013598 1.4726875 0.25294503 17 FALSE

cg16393207 GDPD5 0.0013598 1.54616899 0.22478436 11 TRUE

cg14129786 MGMT 0.0014039 1.66225486 0.22401578 10 TRUE

cg14973995 TETRAN 0.0014039 2.07575889 0.30959818 4 TRUE

cg18055007 DDAH2 0.0014133 1.88659804 0.25590677 6 TRUE

cg17582777 EFNA3 0.0017439 21.53694597 20.23233439 1 FALSE

cg05656364 VAMP8 0.0021883 21.55332458 20.16488351 2 FALSE

cg22995106 COG4 0.0022767 1.40257423 0.1805763 16 TRUE

cg15692239 ALDOC 0.0022767 2.53820971 0.20161756 17 TRUE

cg21402071 CHRNB4 0.0028915 1.82059373 0.20535253 15 FALSE

cg26365553 MADD 0.0031854 1.42934142 0.24722019 11 FALSE

cg12783776 SERPING1 0.0033165 1.9289042 0.27738869 11 TRUE

TOP 20 FTC-specific probes

cg21554552 RASSF1 7.00E-07 2.98852759 0.45417166 3 TRUE

cg08047457 RASSF1 9.00E-07 2.72818463 0.47218605 3 TRUE

cg14679230 LIPE 3.80E-06 1.45037569 0.1459732 19 FALSE

cg04972979 C20orf54 5.50E-06 1.61451484 0.30256229 20 FALSE

cg16517394 TNFSF4 9.60E-06 1.8536169 0.23950413 1 FALSE

cg00804392 RHOH 1.11E-05 1.85216994 0.29420054 4 TRUE

cg05467458 SLC7A9 1.52E-05 1.70161824 0.28134819 19 FALSE

cg20802392 CTSK 1.52E-05 1.98033411 0.27687162 1 TRUE

cg26218269 MAB21L2 1.58E-05 1.72450003 0.21028063 4 TRUE

cg06367117 ALDOC 1.58E-05 3.13695217 0.45480542 17 TRUE

cg16779976 BLNK 1.58E-05 21.5932182 20.17493057 10 FALSE

cg04629204 EXTL1 1.68E-05 1.4815062 0.24451418 1 FALSE

cg14120436 GNB5 2.62E-05 1.59384173 0.20025587 15 FALSE

cg20592700 WIPI2 2.62E-05 21.50386259 20.13059051 7 TRUE

cg00777121 RASSF1 4.72E-05 1.4952662 0.24566678 3 TRUE

cg10861599 TNFSF4 4.72E-05 1.57521415 0.19950722 1 FALSE

cg20356482 FBP2 5.00E-05 1.40957532 0.20331262 9 TRUE

cg09538582 KRTHA5 5.45E-05 1.47233264 0.09209393 17 FALSE

cg20394284 JAK2 6.48E-05 1.69088777 0.22587538 9 TRUE

TOP 20 PTC-specific probes

cg13019092 PDZK1 <0.0000001 1.4330228 0.15003065 1 FALSE

cg07763768 C9orf45 <0.0000001 1.85389182 0.22681097 9 TRUE

cg02423618 SPATA8 <0.0000001 21.56480549 20.20065839 15 FALSE
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genes available for integration) of genes with significant
changes in methylation. Among FTC, 10.4% (16/153) of
genes showed a similar trend, while in the case of FA it was
11.6% (5/43).

Additionally, we identified differentially expressed genes
using an mRNA expression data from an independent case

series.6 After comparing these genes with the lists of differen-
tially methylated genes we found that 10% (7 out of 70 dif-
ferentially methylated genes) and 2.9% (12/416) of the genes
hypermethylated in PTC (BRAF-related) and FTC, respec-
tively, were down-regulated. Moreover, we found that 20.7%
(25/121) of the hypomethylated genes in PTC (BRAF-related)

Table 2. TOP 20 subtype-specific probes for FA, FTC and PTC (Continued)

Probe ID Gene ID FDR DM-value Db-value Chr. CpG Island

cg18302652 IL8 2.58E-05 21.69117713 20.22868075 4 FALSE

cg17568996 NFAM1 7.01E-05 1.87197435 0.24967876 22 FALSE

cg24497819 SELPLG 0.0001279 22.22238036 20.3194521 12 FALSE

cg19385139 COL4A2 0.0002352 1.95997347 0.2680565 13 FALSE

cg03001305 STAT5A 0.000285 22.54273891 20.31643091 17 FALSE

cg15262516 COL4A2 0.0004566 1.40539859 0.16244608 13 FALSE

cg04057858 UNQ9391 0.0008376 21.40846284 20.18092863 8 FALSE

cg02523400 SERPIND1 0.0009559 2.57803439 0.31279995 22 FALSE

cg27105123 EPS8L1 0.0009877 21.60910587 20.23177057 19 FALSE

cg03733371 LIPH 0.0012087 22.5252893 20.35653317 3 FALSE

cg18752880 C1QTNF3 0.0014062 1.47593113 0.26132674 5 FALSE

cg04756629 LOC400696 0.0015227 21.8391597 20.21467597 19 FALSE

cg12385643 UGT1A6 0.0016378 21.65626606 20.18292765 2 FALSE

cg12530080 PMCHL1 0.0016882 21.81689239 20.26447097 5 FALSE

cg18343292 MS4A7 0.0016882 21.49789853 20.18361614 11 FALSE

cg27009703 HOXA9 0.0017272 1.75344159 0.18988395 7 TRUE

cg10236239 SULT1C2 0.001969 1.48508253 0.23764054 2 FALSE

Figure 3. PCA analysis using 450 mutation-specific probes. PCA analysis using 450 probes identified to be differentially methylated in

supervised cluster analysis. The probes were identified to be specifically associated with the mutational status and independent of the his-

tology and their usage resulted in a robust separation of samples into two main groups: BRAF- and RET/PTC-positive tumors and RAS-posi-

tive tumors.
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and 1.9% (1/77) in FTC were up-regulated. We did not, how-
ever, find any association between changes in methylation
and gene expression in FA.

A substantial portion of the genes whose expression we
observed to be inversely correlated with the methylation level
of their corresponding promoters has been already described
to play a role in the tumorigenic process (CTSF, KLK10,
PHLDA2, RUNX1, TACSTD2, BAALC, CTSF, HMGA1,
RASSF2, IMPDH1 and TNFRSF10C). Moreover, for BRAF-
related PTC they also included genes from the MAPK path-
way (MAPK13, DUSP5 and RAP1GA1) and genes involved in
apoptosis (LCN2, RIPK1 and LGALS1), whereas for FTC we
observed a down-regulation by hypermethylation of several
genes involved in innate immune response (C7, SERPING1,
TRAF3, PYCARD and CFH). All genes identified in this anal-
ysis are listed in Supporting Information Table S4.

Identification of methylation-related prognostic markers

The analysis of 34 samples (PTC and FTC) with available
follow-up information identified 32 probes differentially
methylated among patients with and without recurrence
(Supporting Information Table S3). We performed survival
analysis of 60 patients to evaluate the impact of methylation
levels of these genes on RFS, obtaining significant associa-
tions with risk of recurrence for etoposide induced 2.4 (EI24)
and Wilms tumor 1 (WT1) (Fig. 4). Among all known risk

factors associated with poor prognosis (sex, age of onset,
mutation in BRAF, FTC and tumor size), only the latter
showed statistical significance in our study (p 5 0.016). After
including tumor size as a covariable, the association of EI24
and WT1 methylation levels with prognosis remained signifi-
cant (p 5 0.004; HR 5 2.08; CI: 1.262–3.445 and p 5 0.006;
HR 5 1.64; IC 5 1.149–2.335, respectively); results from the
univariate analysis are shown in Figure 4. In addition, the
association of EI24 and WT1 methylation level with recur-
rence remained significant in multivariable analysis including
separately each of the remaining clinical variables known to
be related to poor prognosis.

Discussion
Alterations in DNA methylation have been shown to play a
role in tumorigenesis and disease progression in many malig-
nancies, including thyroid cancer. Until recently, technical
limitations have restricted methylation studies to the charac-
terization of a handful of candidate loci9–11,13 and one
genome-wide exploratory study, mainly focused on identifica-
tion of subtype specific methylation patterns.8 Here, we
describe quantitative DNA methylation levels at more than
26,000 loci across 14,000 gene promoters. By assaying the
largest collection of thyroid tumors described so far, we were
able to not only confirm methylation changes seen in previ-
ously published candidate loci studied but also identify novel

Figure 4. Prognostic value of the methylation status of EI24 and WT1 genes. RFS of 60 thyroid cancer patients based on the methylation

levels, considered as a continuous variable, of each of the proposed prognostic factors. RFS was defined as the time between initial diag-

nosis and recurrence or death due to the disease, with follow-up censored at last contact if no event had occurred. The unadjusted p-val-

ues (Unadj. p-value) were obtained from Cox regression analysis, and were corrected for multiple testing (adj. p-value, shown in bold).

C
an

ce
r
G
en
et
ic
s

Mancikova et al. 607

Int. J. Cancer: 135, 598–610 (2014) VC 2013 UICC



recurrent ones. Our results suggested that in thyroid cancer,
aberrant methylation targets specific genomic regions, partic-
ularly PcG-associated stem cell genes and sequences that are
highly methylated in stem cells, which are also commonly
epigenetically deregulated in other cancer types.20 Moreover,
according to our results, the methylation patterns in thyroid
cancer are specific to the follicular and papillary patterns of
growth as well as to the underlying mutational event. Fur-
thermore, by comparing DNA methylation with mRNA
expression data, we further confirmed that the relationship
between methylation and expression is complex and context-
dependent.21 Finally, by integrating methylation data with
clinical information we were able to propose novel prognostic
markers in well-differentiated thyroid cancer.

Alterations in DNA methylation have been observed in
early cancers and precursor lesions, suggesting that they play
an important role in malignant initiation,20,22,23 and our
observations are largely consistent with this hypothesis. It has
been proposed that follicular adenoma is a precursor lesion
for follicular thyroid carcinoma, as evidenced by both the
simultaneous presence of carcinomas in benign lesions and
the similarity in the molecular alterations observed in FA
and FTC.24 The few differences in methylation between FA
and normal thyroid tissue samples that were also observed in
FTC could represent the initiating changes, providing an
additional piece of evidence that FA may give rise to FTC,
and new insights about the critical steps in follicular cell neo-
plastic transformation. We also observed a progressive gain
of promoter CpG-island hypermethylation between benign-
(83 probes) and malignant-stage tumors (460 probes), which
confirms previous findings.20,23

Although in other cancer types distinct methylation pat-
terns have been found to be associated with the presence of
specific mutations,25–29 to our knowledge, ours is the first
study to assess this in thyroid cancer. We observed a robust
separation of mutated samples, especially evident for fvPTC,
where the mutation apparently was tightly associated with
their methylation pattern and subsequent clustering. These
findings are consistent with those from a recent genome-wide
methylation study in two thyroid cancer cell lines showed
they undergo hypermethylation in an important proportion of
genes upon the knockdown of BRAF.30 Given that TCGA
project’s methylation data validated the pattern according to
the mutation, it seems reasonable to conclude that methyla-
tion pattern is specific to the particular mutation involved in
thyroid cancer. However, the biological mechanism explaining
this remains unknown, and further experiments are needed.

We found it particularly striking that PTCs had a higher
proportion of hypomethylated probes. In cancer, hypomethy-
lation is more prominent in large inter-genic satellite regions
and has been related to genomic instability,31,32 whereas PTC
has been described as the thyroid cancer subtype with least
structural rearrangements.33 As the platform used in the
study was biased towards gene promoters, it is likely that the
observed hypomethylation events on unique sequences could

cause increased expression of cancer-promoting genes, rather
than genomic instability. An integrative study applying vari-
ous OMICs approaches to a common series of PTC tumors
is required to shed light on the relationship between hypome-
thylation and genomic instability.

The results for PTC tumors harboring the BRAFV600E

mutation specifically caught our attention. The presence of
BRAFV600E has been strongly associated with the “CpG island
methylator phenotype” (CIMP) in colorectal cancer,25,28 but it
has been suggested that this mutation is not sufficient to
induce CIMP in a colorectal cell line.26 Rather, to promote its
oncogenic effects, it requires additional cooperative events,
often of an epigenetic nature,26,34 which bypass the senescence
and apoptosis that this mutation induces in cells.27,35 Impor-
tantly, this tumor suppressor mechanism has been recently
described in thyroid carcinogenesis36 even though it remains
to be established which events are associated with its impair-
ment. Concomitant activation of v-akt murine thymoma viral
oncogene homolog 3 (AKT3) was reported to overcome BRAF-
induced senescence in melanoma cells.37 Indeed, in our experi-
mental setting, we observed strong AKT3 promoter hypome-
thylation (FDR 5 6.6 3 1026, DM-value 5 22.26). However,
we did not observe a correlation between AKT3 methylation
and expression, probably due to the fact that the correspond-
ing CpG dinucleotide arrayed did not lie within a CpG island.
Nevertheless, a tendency towards elevated expression of AKT3
specifically in PTC has been reported by others.38 In addition,
the over-activation of the mTOR pathway, which is classically
regulated through the phosphatidylinositol-3-kinase (PI3K)/
AKT pathway, has been recently reported to be strongly asso-
ciated with BRAF mutation-positive PTC.39 Further studies are
necessary to decipher the precise role of AKT3 in the develop-
ment of BRAF-related thyroid tumors.

In both case series considered, the hypermethylation of
the promoter regions of COL4A2 and DLEC1 was confirmed
in follicular cell-derived tumors, while the hypomethylation
of KLK10 was strongly associated with BRAF mutation-
positive PTC. KLK10 is a member of the kallikrein family of
genes, which are secreted serine proteases that have been
extensively studied in cancer due to their involvement in
extracellular matrix degradation as well as their promising
role as disease biomarkers.40 Hypomethylation of KLK10 has
been recently associated with biochemical recurrence in pros-
tate cancer.41 Conversely, COL4A2 encodes one of the six
subunits of type IV collagen, the major structural component
of basement membranes. The C-terminal portion of the pro-
tein, known as canstatin, is an inhibitor of angiogenesis and
tumor growth.42 Finally, DLEC1 is a candidate tumor-
suppressor gene, which is commonly deleted in various carci-
nomas; more importantly, it has been reported to be epige-
netically repressed in many tumor types.43,44

To gain insights into the functional implications of epige-
netic changes, we integrated the DNA methylation data with
gene expression profiling data. The integration with an inde-
pendent series of samples identified a relatively lower
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proportion of correlated genes in FTC, and we observed no
correlations for FA, which was probably due to the small
number of samples included in the original study.6 Neverthe-
less, in general, we observed similar proportions of genes
showing correlation to those reported in previous studies.18,25

The products of some of the correlated genes in PTC samples
harboring the BRAFV600E mutation were clustered in the
MAP kinase cascade, which further confirms the importance
of impairment of this pathway in the development of this
tumor subtype. In FTC samples, we observed an enrichment
of genes involved in innate immunity response mechanisms,
known for a long time to promote carcinogenesis.45

We found that elevated levels of methylation of at least
two genes known to participate in carcinogenesis were asso-
ciated with increased risk of recurrence of thyroid cancer.
Interestingly, both genes, EI24 and WT1, exhibited a signifi-
cant association with poor prognosis even after adjustment
for relevant clinical variables. Although preliminary, the
associations of these novel markers with disease recurrence
could potentially serve to better stratify patients. Specifically,
EI24 is a putative tumor-suppressor gene, the expression of
which is impaired in several types of cancer by either aber-
rant methylation or deletion.46 More importantly, this
impairment has been found to be associated with tumor

invasiveness46 and poor response to treatment.47 WT1 enco-
des a transcription factor, mutated in a small subset of
patients with Wilm’s tumors, and whose expression has
been suggested to be indicative of minimal residual disease
in leukemias.48,49 Furthermore, its methylation status has
been recently proposed to be correlated with time to recur-
rence in prostate cancer.50

To summarize, the assessment of genome-wide DNA
methylation profiles in the largest series of well-
differentiated thyroid tumors described so far allowed us to
identify and replicate distinct epigenetic signatures that
reflect the underlying tumor histology as well as the muta-
tion status. Specific aberrant methylation associated with the
early development of this disease was found, and DNA
methylation events associated with changes in gene expres-
sion were identified. We proposed novel prognostic
markers, which according to our data are independent of
the already established ones.
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Abstract 

In this study, the action of microRNAs as gene expression regulators was considered. 

We have characterized the complete spectrum of deregulated microRNAs using our series of 

127 genetically classified thyroid tumors, including 49 follicular cases, as well as 17 normal 

thyroid tissues. The use of deep-sequencing allowed us to accurately quantify miRNAs across 

the genome. These data were also assessed along with the transcriptomic data for the same 

tumors and clinical follow-up of the corresponding patients. 

We found that follicular and papillary tumors present distinct microRNA profiles that 

are closely linked to specific driver mutations. It was especially interesting to uncover few 

miRNAs consistently up-regulated across all tumor classes, suggesting their role as “master 

regulators” of thyroid transformation. Furthermore, we detected deregulation of several novel 

miRNAs associated with specific tumor subgroups. For example, down-regulation of the miR-

1247 was observed in follicular tumors in particular. By integrating these miRNA data with 

gene expression data, we were able to identify target genes for these key miRNAs, which is a 

novel finding for thyroid pathologies.  

Further, based on an analysis of clinical follow-up information, we propose a prediction 

model for disease relapse based on the expression of 2 miRNAs (miR-192 and let-7a) and 

clinicopathological features.  

Personal contribution: I extracted and prepared the samples for this study. I performed the 

genetic screening of known genetic drivers. I also contributed to the discussion of the results, 

formation of the hypothesis and drafting of the paper. 

 



   

 

 

 



MicroRNA deep-sequencing reveals master
regulators of follicular and papillary
thyroid tumors
Veronika Mancikova1,13, Esmeralda Castelblanco2,13, Elena Pineiro-Yanez3,
Javier Perales-Paton3, Aguirre A de Cubas1, Lucia Inglada-Perez1,4, Xavier Matias-Guiu5,
Ismael Capel6, Maria Bella7, Enrique Lerma8, Garcilaso Riesco-Eizaguirre9,10,
Pilar Santisteban9, Francisco Maravall2, Didac Mauricio11,12, Fatima Al-Shahrour3 and
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MicroRNA deregulation could be a crucial event in thyroid carcinogenesis. However, current knowledge is based
on studies that have used inherently biased methods. Thus, we aimed to define in an unbiased way a list of
deregulated microRNAs in well-differentiated thyroid cancer in order to identify diagnostic and prognostic
markers. We performed a microRNA deep-sequencing study using the largest well-differentiated thyroid tumor
collection reported to date, comprising 127 molecularly characterized tumors with follicular or papillary patterns
of growth and available clinical follow-up data, and 17 normal tissue samples. Furthermore, we integrated
microRNA and gene expression data for the same tumors to propose targets for the novel molecules identified.
Two main microRNA expression profiles were identified: one common for follicular-pattern tumors, and a second
for papillary tumors. Follicular tumors showed a notable overexpression of several members of miR-515 family,
and downregulation of the novel microRNA miR-1247. Among papillary tumors, top upregulated microRNAs were
miR-146b and the miR-221 ~222 cluster, while miR-1179 was downregulated. BRAF-positive samples displayed
extreme downregulation of miR-7 and -204. The identification of the predicted targets for the novel molecules
gave insights into the proliferative potential of the transformed follicular cell. Finally, by integrating clinical
follow-up information with microRNA expression, we propose a prediction model for disease relapse based on
expression of two miRNAs (miR-192 and let-7a) and several other clinicopathological features. This
comprehensive study complements the existing knowledge about deregulated microRNAs in the development
of well-differentiated thyroid cancer and identifies novel markers associated with recurrence-free survival.
Modern Pathology advance online publication, 27 February 2015; doi:10.1038/modpathol.2015.44

MicroRNAs (miRNAs) are potent regulators of gene
expression in a tissue-specific manner. Their dereg-
ulation has been demonstrated to be a hallmark of
cancer. It has been suggested that miRNA profiles
can reliably identify the cell origin of tumors and
that they are specific to differentiation stage and
driver alterations, and associated with progression
and response to treatment.1–3 Thus, their clinical
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utility has been extensively studied for many
cancer types.

It is especially appealing to explore the diagnostic
and prognostic value of miRNA profiles in thyroid
cancer, since this is a very complex and hetero-
geneous disease showing various stages of differentia-
tion. Further, the accurate diagnosis of some patients
remains an unresolved challenge in the clinical
setting.4 The vast majority of thyroid tumors develop
from follicular epithelial cells of the gland, often after
the emergence of a driver mutation altering the MAPK
pathway (affecting key genes such as BRAF, RAS, or
RET). They include benign (follicular adenoma) and
malignant forms (papillary thyroid carcinoma; follic-
ular carcinoma). Both papillary and follicular thyroid
carcinomas may progress to poorly differentiated
thyroid carcinoma or lose their differentiation com-
pletely (anaplastic thyroid cancer), or the dediffer-
entiated disease can emerge spontaneously.5 There is
an urgent need to understand the biology underlying
both progressive and dedifferentiated disease, as there
is still no effective treatment available for patients
diagnosed with these subtypes.6 Although the remain-
ing thyroid cancers, termed well-differentiated thy-
roid carcinomas, are generally indolent malignancies
with well-established clinical management and excel-
lent prognosis,7 a clinically relevant proportion
presents recurrent disease and it is equally important
to pinpoint predictive markers of disease relapse.

MiRNA profiling has been already extensively
applied to well-differentiated thyroid cancer. Simi-
larly to other genomic features,8–10 the miRNA expres-
sion fingerprints have been shown to be subtype- and
driver alteration-specific (reviewed in Pallante et al11).
Moreover, the role of polymorphisms in the comple-
mentary sites of target mRNAs was initially proposed
in the context of papillary carcinomas,12 and poly-
morphisms in the miRNA sequence itself were shown
to be predisposing to thyroid cancer,13 highlighting
the role of miRNAs in thyroid tumorigenesis. Upreg-
ulation of miR-146b and the miR-221~222 cluster are
the most commonly documented miRNA changes
related to papillary tumors.12,14–17 However, little data
are available on downregulated miRNAs, or on the
changes present in less frequent histological subtypes
such as follicular tumors. It is also important to
highlight that apart from recent miRNA deep-
sequencing studies using papillary tumors,16,18,19 the
remaining data on deregulated miRNAs in thyroid
cancer were generated at a time when only ~300
miRNAs had been identified, compared with the
~1300 miRNAs that are known today.11

We have performed a miRNA deep-sequencing
study using the largest collection of thyroid samples
published to date, comprising of 127 thyroid tumors
(including 26 follicular adenomas, 23 follicular
carcinomas and 78 papillary thyroid carcinomas)
and 17 normal thyroid tissues. We not only confirm
some of the miRNA expression changes previously
described as implicated in thyroid cancer, but also
identify novel ones, such as the downregulation of

miR-1247 in tumors with a follicular pattern of
growth. By integrating miRNA and mRNA expres-
sion data from the same tumors, we identify several
possible targets for the top novel deregulated
candidates. Finally, we propose a relapse prediction
model based on expression of two miRNAs and
several other clinicopathological features.

Materials and methods

Thyroid Sample Collection and Patient Follow-Up

One hundred and twenty-seven thyroid tumors were
snap frozen following surgery at Hospital Sant Pau
and Hospital Sabadell in Barcelona (Spain) and at
Hospital Arnau de Vilanova in Lleida (Spain), and
stored at −80 °C. An informed consent was obtained
from all the study participants, and the study was
approved by the Institutional Review Board (comité de
bioética y bienestar animal) of the Instituto de Salud
Carlos III. Of the samples collected upon surgery, 26
were follicular adenomas, 23 follicular carcinomas,
and 78 papillary carcinomas. Sections of each sample
were evaluated by a pathologist and, when necessary,
non-tumoral tissue was dissected. We studied 17
normal thyroid tissues in total, which were obtained
from patients with localized disease that underwent
hemithyroidectomy and gave consent to take a sample
from the unaffected contralateral thyroid lobule. Nine
corresponded to tumors included in the study, while
for the eight remaining normal thyroid tissues, the
matched tumors were not available. At least 80% of
the cells were cancerous in all tumor samples, while
non-tumor samples had no observable tumor epithe-
lia. Tumor samples were grouped into two sets, the
first composed of tumors from Sant Pau and Sabadell
hospitals (16 follicular adenomas, 17 follicular carci-
nomas, 35 papillary carcinomas, and 8 normal thyroid
tissues), and the second composed of tumors from
Arnau de Vilanova (10 follicular adenomas, 6 follic-
ular carcinomas, 43 papillary tumors, and 9 normal
thyroids). The histological classification criteria
applied have been previously described.9

The clinical follow-up of the patients was carried
out by physical examination, neck ultrasonography,
simultaneous determination of serum anti-
tiroglobulin antibodies with tiroglobulin (basal, or
after thyrotropin stimulation by thyroid hormone
withdrawal, or the administration of recombinant
human thyrotropin), and whole-body iodine scan-
ning. If there was a suspicion of local or distant
disease, other imaging techniques such as CT, MRI,
PET-CT, or scintigraphy were used. Both structural
and biochemical recurrence were considered events
in the analysis of recurrence-free survival.

Genotyping

Using Sanger sequencing, all papillary samples were
screened for BRAF mutations at codon 600 in exon
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15, while follicular adenomas, follicular carcinomas,
and follicular variants of papillary tumors were
screened for mutations in H-, N-, and K-RAS at
mutational hotspots on codons 12 and 13 of exon 2,
and codon 61 of exons 3. When available, cDNA
from papillary samples was also screened for RET/
PTC1 and RET/PTC3 rearrangements.

RNA Extraction and Next-Generation Sequencing

Whole RNA from tumor set 1 was extracted using
TRIzol (Life Technologies, MD, USA) according to the
manufacturer’s instructions. RNAs from tumor set 2
were further purified using RNeasy MinElute Cleanup
columns (Qiagen, Valencia, CA, USA). The integrity of
RNA was assessed using Agilent BioAnalyzer 2100
(Agilent Technologies).

RNA samples were processed as described in the
'TruSeq Small RNA Sample Preparation Guide'
(Illumina part # 15004197 Rev. A of November
2010). Briefly, 1 μg of purified total RNA containing
the small fraction of RNA was sequentially ligated to
3' and 5' adapters using the truncated form of T4
RNA ligase 2 and the T4 RNA ligase, respectively.
Reverse transcription with SuperScript II reverse
transcriptase was then used to yield cDNA adapter-
ligated libraries that were amplified by PCR with
Phusion DNA polymerase and Illumina RNA PCR
primers. cDNA-amplified libraries were pooled and
separated by polyacrylamide gel electrophoresis,
and a fraction of 145–160 bases was extracted. The
purified fraction constituted the multiplexed, pur-
ified libraries that were applied to an Illumina flow
cell to generate clusters, and sequenced on the
Genome Analyzer IIx with SBS TruSeq v5 reagents
following manufacturer's protocols.

Statistical Analyses

Detailed statistical methods are presented in
Supplementary Materials and Methods. Briefly, after
quality assessment,20 adapter removal,21 and
sequence mapping,22 differential miRNA expression
assessment was carried out using the Bioconductor
package edgeR.23 Benjamini and Hochberg's24 cor-
rection was applied to ensure a false discovery rate
(FDR) below 1% and those miRNAs meeting this
criterion and with a fold change 42 or o0.5 were
considered for further analysis.

For 38 samples of tumor set 1 (see Supplementary
Table S1), mRNA expression data were available
from previous studies.10 Taking advantage of the
available data from mRNA and miRNA expression
from the same tumors, MirRGate, a specific tool for
miRNA targets' identification, was used for target
prediction (http://mirgate.bioinfo.cnio.es/API/). The
miRNA was considered regulatory if its expression
was negatively correlated with that of the target
mRNA as assessed by Pearson's correlation test.

For recurrence-free survival analysis, a shrinking
LASSO regression applied via the R package ‘glmnet’
(v.1.9–8)25 was used for variable selection.
Recurrence-free survival was defined as the time
between initial diagnosis and relapse or death due to
the disease, with observations censored at the last
follow-up if no event had occurred. MiRNA covari-
ates for which the estimated corresponding regres-
sion coefficient (β) did not shrink to zero (β≠0) were
considered active coefficients, and evaluated in
further steps. An exploratory univariate Cox regres-
sion was carried out for these miRNA covariates
using the ‘survival’ package in R (v.2.37–7). Those
with FDRo0.05 were considered statistically sig-
nificant, and evaluated in the multivariate Cox
regression model. A signature score (SScore) repre-
sentative of the signature expression for each sample
was calculated as the sum of each miRNA expression
level multiplied by the value of the coefficient
obtained in the LASSO regression (β). The median
value of the SScore was used to stratify tumors into
two groups: high risk and low risk. The final
multivariate Cox proportional hazards model was
established with a miRNA signature expression
based on the goodness of the fit by the Akaike
Information Criteria (AIC) along with all remaining
covariates, adjusting for the following confounding
variables: histological subtype, tumor stage, gender,
and age at diagnosis.

Results

MiRNA Sequencing Reveals Differential miRNAs
Expression Patterns Among Thyroid Tumors

Altogether, data from 127 thyroid tumors including
26 follicular adenomas, 23 follicular carcinomas and
78 papillary carcinomas and 17 normal tissues were
generated using next-generation miRNA sequencing.
However, since slightly different extraction methods
were used for the two tumor sets (see Materials and
Methods section), we analyzed them separately, in
order to avoid the introduction of technical bias in
the results. Tumor set 1 was chosen as discovery
series in part because expression profiling data were
also available. Tumor set 2 was used to validate
results from tumor set 1. The histopathological and
mutational characteristics of both tumor sets are
summarized in Table 1 (for further information, see
Supplementary Table S1).

Unsupervised hierarchical clustering of data from
the discovery set revealed the existence of two main
clusters (Figure 1a), which resembled those
described in a recent DNA methylation study.9
Follicular tumors (both carcinomas and adenomas)
were localized in the same branch, together with
normal tissues, while papillary tumors were in a
separated branch. Moreover, a separation of samples
according to the mutational status was evident. This
observation led us to perform a supervised analysis
subdividing samples according to both histology and
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genetics. Of the 808 significantly differentially
expressed miRNAs, 170 and 100 were significantly
up- and downregulated, respectively. It is worth
noting that 7 and 13 miRNAs were consistently up-
and downregulated, respectively, in all thyroid
tumors (regardless of their malignancy, histological
or mutational status; Figure 1b).

The comparison of each histological subtype with
normal thyroid samples allowed us to identify a long
list of subtype-specifically deregulated miRNAs
(Figure 1c). Ninety miRNAs were overexpressed in
follicular adenomas by at least twofold compared to
normal tissue. There were 114 and 26 overexpressed

in follicular and papillary carcinomas, respectively.
The miRNAs with maximum changes exhibited
extreme overexpression in follicular adenomas and
follicular carcinomas (3452- and 1866-fold, respec-
tively), and 101-fold for papillary samples. Converse-
ly, there were 32 miRNAs downregulated at least
twofold in adenomas (maximum 9), 53 in follicular
carcinomas (maximum 17), and 42 in papillary
tumors (maximum 13). According to a Venn diagram
analysis, it seemed papillary samples had a distinct
miRNA expression spectrum to that of tumors with a
follicular pattern of growth (Figure 1c). Even having
relatively few tumors classified as follicular variant of
papillary carcinoma, a Venn diagram analysis showed
they share more features with follicular tumors than
papillary ones (Supplementary Figure S1). Moreover,
there was substantial overlap between the deregulated
miRNAs identified in follicular adenomas and follic-
ular carcinomas (Figure 1b and c); 89% of upregu-
lated and 94% of downregulated miRNAs identified
in the former were also up- and downregulated,
respectively, in the latter. A large number of the
highly upregulated miRNAs in both of these his-
togroups belonged to the gene family miR-515 (miR-
-517a/b, -518a/b/c/e/f, and -516a/b). Other commonly
highly upregulated molecules were miR-182, miR-
-183, and miR-96. The most downregulated miRNA
among tumors with a follicular pattern of growth was
miR-1247, which has not previously been implicated
in thyroid cancer, followed by several members of the
miR-199 family (miR-199a/b). Downregulation of
miR-150 seemed to be follicular carcinoma specific
as it was not detected among adenomas. For samples
with a papillary pattern of growth, miR-146b and the
miR-221~222 cluster were the most upregulated
miRNAs in tumor set 1, followed by miR-21 and
-31. MiR-1179 was one of the most downregulated
molecules in these tumors. All deregulated miRNAs
are listed in Supplementary Table S2.

As the specific driver mutation genotype was
available, it was possible to group tumors according
to this information, and to compare miRNA expres-
sion with that of normal thyroid tissues. Because of
low prevalence, RET/PTC1-related tumors were not
further considered. Figure 1b clearly shows that
RAS-mutated tumors shared deregulated miRNAs
with tumors with a follicular pattern of growth (both
adenomas and carcinomas).

This rationale allowed us to identify extended lists
of deregulated miRNAs associated with the presence
of specific driver alterations. There were 61 upregu-
lated miRNAs in BRAF-mutated and 56 in RAS-
related tumors (showing a maximum 134-fold and
16-fold expression, respectively). However, 53 and 51
miRNAs were downregulated in BRAF- and RAS-
positive samples, respectively (maximum 25- and 17-
fold, respectively). In both cases, the most signifi-
cantly overexpressed miRNAs were those previously
described for papillary tumors (miR-146b and the
miR-221~222 cluster). Conversely, miR-7 and
miR-204 were the most downregulated molecules in

Table 1 Summary of the main clinical and pathological
characteristics of samples

Tumor set 1
(n=68)

Tumor set 2
(n=59)

Clinical characteristics Number (%) Number (%)

Gendera

Male 18 (27) 9 (15)
Female 50 (73) 50 (85)

Agea
Median 43 49
Min-max 13–77 22–78

Histologya

Conventional variant of
papillary thyroid carcinoma

26 (38) 31 (53)

Follicular variant of
papillary thyroid carcinoma

6 (9) 7 (12)

Other variants of papillary
thyroid carcinomab

3 (4) 5 (8)

Follicular thyroid
carcinoma

17 (25) 6 (10)

Follicular adenoma 16 (24) 10 (17)

Mutationa
BRAFV600E 19 (28) 17 (29)
RAS 12 (18) 1 (2)
RET/PTC1 3 (4) 0 (0)
Negative 34 (50) 41 (69)

Recurrencec
Yes 16 (31) 14 (29)
No 36 (69) 34 (69)
Missing 0 (0) 1 (2)

Follow-up (months)d
Median (interquartile range) 72 (41–96) 24 (10–36)

Normal thyroid tissue 8 9

A total of 127 tumor samples and 17 normal tissues were used in this
study, divided in the discovery series (tumor set 1 = 68 tumors and 8
normal thyroid tissues) and replication series (tumor set 2 =59 tumors
and 9 normal samples).
aThe percentage was calculated taking into account only the total
number of tumors (normal tissues were not included).
bOther variants of papillary thyroid carcinoma include tall-cell
variant, diffuse sclerosing, and oncocytic variant (for more information
see Supplementary Table S1).
cThe data on recurrence are only included for the malignant tumors
(neither normal tissues nor adenomas were taken into account).
dMedian follow-up time and interquartile range were calculated only
for disease-free patients with a malignant disease.
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BRAF tumors; the latter was statistically significant
when BRAF tumors were compared with wild-type
papillary samples (data not shown). All deregulated
miRNAs are listed in Supplementary Table S2.

Validation of Deregulated miRNAs

A smaller number of deregulated miRNAs was
observed in tumor set 2, possibly due to the slightly
different RNA extraction procedure followed. Never-
theless, two out of the three commonly upregulated
miRNAs had been already detected in tumor set 1
(miR-221 and miR-34a), termed from now on ‘master
regulators’.

When it comes to the subtype-specifically deregu-
lated miRNAs, a considerable proportion of these had

been already detected in the discovery phase (62, 34,
and 43% among follicular adenoma-, follicular thy-
roid carcinoma-, and papillary thyroid carcinoma-
specific probes; Figure 2a and Supplementary Table
S3). It seemed that the grouping of samples according
to the mutational status was more robust, as a higher
proportion of miRNAs was validating the results of
tumor set 1 (60 and 58% in BRAF and RAS, re-
spectively; Figure 2a and Supplementary Table S3).
Commonly deregulated miRNAs in both tumor sets
are summarized in Supplementary Table S4.

As detailed in the Figure 2, upregulation of
miR-96, -182, and -183 was confirmed for tumors
with a follicular pattern of growth, while a consider-
able increase in some members of the miR-515
family was only detected among follicular adenomas

Figure 1 miRNoma from the discovery series. (a) Unsupervised hierarchical cluster analysis of 68 primary thyroid tumors and 8 normal
tissue samples divided the sample set into two main clusters. ‘Branch 1’ was composed of all follicular carcinomas (FTC) and follicular
adenomas (FA) as well as all normal tissues. ‘Branch 2’ included the majority of papillary samples (PTC). Separation of samples according
to the driver mutation was also apparent. (b) Heatmap representation of differentially expressed miRNAs. Tumors were compared to
normal thyroid tissues based on histological as well as driver mutation grouping, which was apparent from the unsupervised analysis.
Color legend: red, upregulated; blue, downregulated. The 13 down- and 7 up- commonly deregulated miRNAs among all tumor classes
(regardless of the malignancy and mutational status) are listed. (c) Venn diagram analysis of subtype-specific differentially expressed
miRNAs revealed substantial overlap between follicular adenomas (FA) and follicular carcinomas (FTC), while papillary samples (PTC)
showed a distinct miRNA expression signature. Moreover, 14 miRNAs were commonly upregulated while 7 were downregulated among
all three subtypes. Only miR-3676 was not present when the mutation was considered (b). Blue arrows denote miRNAs previously
described elsewhere to be implicated in thyroid cancer. Red arrows denote molecules described in Swierniak et al.16
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of tumor set 2. Significant downregulation of
miR-1247 was observed for tumors with follicular
pattern of growth in both tumor sets, while, miR-150
downregulation was validated to be follicular carci-
noma specific. In papillary tumors, several upregu-
lated (miR-21, -31, -222, and -146b) as well as
downregulated (miR-451a, -486, and -1179) mole-
cules were validated in the tumor set 2. The down-
regulation of miR-7 and -204 was again strongly
associated with the presence of BRAF mutation in
the validation set. The proportions of tumors show-
ing these deregulations are detailed in Figure 2b.

Integrated Gene Expression Reveals Possible Targets
for Novel miRNAs

For those novel deregulated miRNAs common to
both tumor sets, we integrated the miRNAseq data
with gene expression data available for the tumors
from tumor set 1 using miRGate software (Figure 3).

MiR-1247 was less expressed in all tumors with a
follicular pattern of growth (follicular adenomas,
follicular carcinomas, and follicular variant of papil-
lary tumors) than in normal tissue (fold change 3–46).
According to validated and predicted interaction data
available, the negative regulation of relevant targets
could be impaired. These include molecules
involved in cell proliferation (FGFR4), migration
(BAIAP2L1 and PTK2), apoptosis (FAM129B), as
well as a thyroid-specific transcription factor

(PAX8). Mir-150 was downregulated in follicular
thyroid carcinomas (8- to 10-fold change) and its
expression correlated negatively with genes involved
in proliferation (FGF12, PRKCA, and TGFBR1) and
invasive growth (TGFBR1). The compromised
expression of miR-1179 seen in papillary tumors
(three- to ninefold change) could lead to the dereg-
ulation of molecules involved in cell cycle progres-
sion (ESP8 and ANXA4) or invasiveness (HPN and
MMP13). Finally, miR-7 and miR-204 were severely
downregulated in BRAF-positive samples (25- to 29-
and 11- to 23-fold change, respectively), potentially
affecting a long list of possible targets, including
genes involved in extracellular matrix remodeling
(KLK10, MMP9, MMP15, and MMP16), angiogenesis
(AMOT, CLIP1, CTSS, and GAB2), and epithelial-
mesenchymal transition (CDH11 and DUSP6).

A 2-Gene miRNA Signature Associated with
Recurrence

Using the linear regression selection method LASSO,
16 miRNAs were selected for inclusion in the
recurrence-free survival analysis. Univariant analy-
sis and correction for multiple testing pointed to the
relevance of five of them (let-7a-3p, miR-30e-5p,
miR-192-3p, let-7d-3p, and miR-493-5p). Applying
Akaike Information Criteria the best model
included two molecules (miR-192 and let-7a) whose
expression individually (Figure 4a), but even more

Figure 2 Validation step. (a) Venn diagram analysis identified those molecules commonly detected in both tumor sets and therefore
considered validated. (b) Proportion of tumors of both sets showing deregulation of some of the commonly deregulated miRNAs. Arrow
next to the miRNA name indicates whether the molecule was detected as downregulated (↓) or upregulated (↑).
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significantly in combination (Figure 4b), discrimi-
nated patients with a higher probability of recur-
rence. In this model, a combination of increased
expression of let-7a, together with decreased
miR-192 expression, was associated with an
increased risk of recurrence. Even after correcting
for other important clinical features, such as subtype,
stage, gender, and age, the miRNAs remained
significant predictors of disease relapse in the final
prediction model (Supplementary Figure S2).

Discussion

The currently available evidence suggests that
miRNA deregulation could be a crucial event in
thyroid carcinogenesis. Most of what is known about
deregulated miRNAs has been based on microarray
profiling or real-time PCR, both of which
have inherent biases. Approaches based on next-

generation sequencing permit the detection and
simultaneous quantification of the miRNAs present
in a specimen,26 thus affording an in-depth, un-
biased characterization of full miRNomes. In the
present work, using two independent series of well-
differentiated thyroid tumors and next-generation
sequencing, we were able to identify deregulated
miRNAs related to the specific histological subtypes
and driver mutations. These included not only
miRNAs previously reported to be related to thyroid
cancer, but also novel recurrent markers. We propose
possible targets for these novel molecules based
on in silico prediction using miRNA and mRNA
expression data from the same tumors. Finally, we
describe a model based on a two-miRNA signature
that could be used in relapse prediction.

Two miRNA molecules, miR-221 and miR-34a,
were found to be consistently deregulated among all
the tumor groups studied, suggesting that they play a
key role, both in the first steps of the malignant

Figure 3 Predicted and validated targets of novel miRNAs. MiRGate software was applied to identify possible targets of novel molecules
identified in this study. A small downward arrow to the left of specific microRNAs refers to downregulation. Larger arrows denote where
downregulation of the miRNA gives rise to a lack of inhibition of the target gene pointed to. (1) refers to results from tumor set 1, while (2)
refers to those from tumor set 2. EMT, epithelial-mesenchymal transition; FA, follicular adenoma; FC, fold change; FDR, false discovery
rate; FTC, follicular thyroid carcinoma; fvPTC, follicular variant of papillary thyroid carcinoma; PTC, papillary thyroid carcinoma.

Modern Pathology (2015) 00, 1–10

MiRseq study of well-differentiated thyroid tumors

V Mancikova et al 7



transformation process in thyroid carcinogenesis, and
in more advanced forms of the disease. That is, they
may act as master regulators in thyroid cancer. The
involvement of miR-221 in carcinogenesis has already
been studied, as its expression is increased in various
neoplasias. Our results confirm those of a previous
microarray study, where the authors observed upreg-
ulation of miR-221 in various histological subtypes of
thyroid cancer (follicular adenomas, follicular carci-
nomas, and papillary carcinomas).14 In thyroid
cells, it was shown that miR-221 has oncogenic
properties, as it induces cell cycle progression by
targeting p27Kip1.27 To date, the overexpression of
miR-34a has been described in both papillary
tumors12,17 and papillary thyroid carcinoma cell
lines.28 Recently, it has been suggested that its
oncogenic effect in PTC involves activation of the
PI3K/Akt/Bad pathway,29 which is consistent with it
having a master regulator role. Moreover, both
miR-34a and -221 have been very recently identified
in the TCGA data set as crucial regulators of the
immune response activities among all papillary
carcinoma variants studied by this consortium,19
further confirming our results.

As observed with other genomic features,4,9 the
miRNomes of tumors with a follicular pattern of
growth were largely similar, pointing to a possible
progressive evolution of carcinomas from follicular
adenomas.30 The observed upregulation of miR-96,
miR-182, and miR-183 in both follicular adenomas
and follicular carcinomas has been reported
previously.14,31,32 Of the other molecules that had
been previously reported to be deregulated in thyroid

cancer,32 it is noteworthy that several members of the
miR-515 family were highly overexpressed in both
follicular adenomas (showing a maximum fold
change of 3452) and follicular carcinomas (maximum
fold change of 1867) in tumor set 1. However, for few
of those was that overexpression replicated in tumor
set 2. Similarly, downregulation of the miR-199
family was detected in the discovery phase of our
study, confirming previously published findings, but
not in the validation phase.31,32 It is likely that the use
of a purification column introduces bias into miRNA
profiles. Indeed, the effect of extraction technique on
miRNA expression detection has been previously
reported by others.33 The identification of deregulated
miRNAs common to both tumor sets, despite the
different methodologies employed, adds weight to the
evidence that they play a role in thyroid cancer.

One interesting novel marker was miR-1247,
which was found to be downregulated in all tumors
with a follicular pattern of growth (including even
adenomas), indicating it could be an early event in
the development of these neoplasias. The lack of
negative regulation of its predicted targets could give
proliferative potential to the follicular cell. Indeed, it
has recently been confirmed that this molecule plays
a tumor-suppressive role in pancreatic cancer by
inhibiting proliferation and tumorigenesis and trig-
gering G0/G1 cell cycle arrest.34 Further, miR-150
was downregulated specifically in follicular carci-
nomas. In line with its recently described down-
regulation in poorly differentiated thyroid tumors,35

the candidate targets identified here (FGF12, PRKCA,

Figure 4 Markers of recurrence-free survival. (a) Individual Kaplan–Meier curves for each signature member (miR-192 and let-7a) with
expression dichotomized at the median value. (b) Kaplan–Meier survival analysis. A signature score (SScore) representing the signature
expression for each sample was calculated as SScorej = βmiR-192 ×miR-192j + βlet-7a × let-7aj, where βx is the coefficient for x obtained from
the LASSO regression. The score was dichotomized at the median to create two groups for comparison.

Modern Pathology (2015) 00, 1–10

MiRseq study of well-differentiated thyroid tumors

8 V Mancikova et al



and TGFBR1) could lead to a more aggressive
neoplasm.

As reported in tumors with follicular growth
pattern, we observed upregulation in papillary
tumors of previously described markers, such as
miR-146b, the miR-221~222 cluster, miR-21 and
miR-31.12,14,15,17 Several other miRNAs (miR-486,
-873, -1179, -451a, and -652), firstly described in the
first next-generation sequencing study performed in
papillary thyroid carcinoma,16 were also detected.
This consistency with findings from earlier studies
served as an external validation of our results.
Particularly noteworthy was the consistent miR-204
downregulation observed in both tumor sets, specifi-
cally associated with the presence of the BRAF
mutation. The targets of this miRNA were predicted
to impair several cellular processes, such as those
maintaining epithelial physiology,36 which could
explain the relatively poor prognosis described for
these patients.37 Another interesting marker was
miR-7, highly significantly associated with BRAF
mutation when compared to normal thyroid tissues
in tumor set 1, and with wild-type papillary carcino-
mas in the validation set. Moreover, one of the
predicted targets of miR-7 was KLK10, which our
group recently identified as specifically hypomethy-
lated in BRAF-mutated tumors and correlated with
gene expression.9 Thus, overexpression of miR-7
represents a second mechanism by which this
molecule may be specifically upregulated in BRAF-
positive papillary thyroid tumors, thereby highlight-
ing its importance.

Though most well-differentiated tumors can be
effectively clinically managed, there is a subset of
patients who develop recurrences and often respond
poorly to the current therapeutic options. Here, we
propose a relapse prediction model based on a two-
miRNA signature composed of a combination of let-7a
increase together with a miR-192 decrease. The let-7
family of miRNAs are well-established tumor suppres-
sors;38 their increased expression has been detected in
the serum from papillary thyroid cancer patients
(compared to healthy individuals or benign cases) as
associated with the presence of multifocal lesions
(Po0.001).39 Thus, further studies are required to
elucidate the role of this miRNA family in thyroid
tumorigenesis. However, the tumor suppressive
role of miR-192 has been robustly functionally
demonstrated,40–42 and is consistent with our current
observation. In this regard, the value of the tumor set 2
was limited for validation, as the time of follow-up
was shorter. Thus, while the predictive value of our
signature requires validation, it seems that these
miRNAs could be considered as markers of recur-
rence, acting independently of other known prognos-
tic factors, and therefore potentially contributing to an
improved stratification of thyroid cancer patients.

To summarize, this is the first next-generation
sequencing study to be applied to all major histolog-
ical subtypes of well-differentiated thyroid cancer in
the largest tumor collection reported so far. We

update the current knowledge about deregulated
miRNAs by confirming some of those that have been
previously reported as well as by describing novel
ones. According to our results, there are at least two
miRNA molecules (miR-34a and miR-221) acting as
master regulators of thyroid carcinogenesis. More-
over, by integrating miRNA and mRNA expression
data for the same tumors, we were able to explore the
possible targets of the novel molecules detected, and
thus shed further light on the biological mechanisms
involved in thyroid carcinogenesis. By integrating
clinicopathological data with the miRNA expression,
we identified a two-miRNA signature associated
with disease recurrence.
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Abstract 

 Medullary thyroid carcinoma (MTC) is one of the orphan rare cancers, whose etiology 

is so far little explored. Ours is one of the pioneer groups, where OMICs techniques (mRNA 

and miRNA profiling) were applied to dissect the disease. In this work, we have complemented 

the acquired genomic data by studying the methylome in the largest MTC cohort published until 

today. We show that the DNA methylation profiles differ according to different RET mutations, 

with the most distinctive profile found among RET
M918T

-related MTCs characterized by a large 

number of hypomethylation events. Moreover, through the integration of methylation with 

mRNA and miRNA expression data available from the same tumors, we identified genes whose 

expression is negatively correlated with the methylation status of their promoters. For PLCB2, 

DKK4 and MMP20 genes as well as miR-10a, -30a and -200c, we also assessed the impact of 

promoter methylation levels on expression of the genes in MZ-CRC-1 and TT cell lines. 

Finally, we validated three DNA methylation markers specific of distinct RET mutations in an 

independent set of 25 MTCs by bisulfite pyrosequencing. 

 On the whole, this integrative genomic study uncovers some interesting regulatory axes 

that could play a role in MTC etiology, and underscores the importance of DNA methylation 

regulation in the disease process. 
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prepared the samples for this study. I performed the genetic screening of known genetic drivers. 

I performed the statistical analyses. I technically validated the array results and performed the in 

vitro experiments with the MTC cell lines. Finally, I contributed to the discussion of the results 

and the drafting of the paper. 
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ABSTRACT 

Medullary thyroid carcinoma (MTC) accounts for 1-2% of thyroid malignancies. Around 75% 

of them are sporadic, and the remaining 25% are hereditary and related to Multiple Endocrine 

Neoplasia type 2 syndrome. Although a genotype-phenotype correlation related to specific 

germline RET mutations is well established, the disease etiology specifically associated with 

each mutation still remains largely unknown. Here, we investigated the role of aberrant DNA 

methylation in the development of MTC. We performed DNA methylation profiling assessing 

>27,000 CpGs across the genome in the largest MTC series reported to date, comprising 48 

molecularly characterized tumors. We observed significant differences between the methylation 

patterns among the samples bearing the RET
M918T

, RET
C634X

 mutation and “wild-type” (WT) 

tumors; those RET
M918T

 –related had a larger number of hypomethylation events when compared 

to RET
C634X 

– positive and WT tumors. Moreover, through the integration of methylation with 

mRNA and miRNA expression data of the same tumors, we identified genes whose expression 

is negatively correlated with the methylation status of their promoters. For PLCB2, DKK4 and 

MMP20 genes as well as miR-10a, -30a and -200c, we also assessed the impact of promoter 

methylation levels on expression of these genes in MZ-CRC-1 and TT cell lines. Finally, we 

validated the aberrant methylation events of three of the genes in an independent set of 25 

MTCs by bisulfite pyrosequencing.   
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INTRODUCTION 

 Medullary thyroid carcinoma is a malignant tumor of the thyroid gland showing C-cell 

differentiation accounting for up to 2% of all thyroid cancers (DeLellis et al., 2004). Around 

25% of MTC cases are inherited attributable to germline mutations in the "rearranged during 

transfection" (RET) proto-oncogene, while the remaining forms are sporadic. The majority of 

the latter arise due to somatic mutations either in RET (Leboulleux et al., 2004) or, as described 

recently, in RAS family of genes (Moura et al., 2011; Ciampi et al., 2013). Of note, there is a 

distinct genotype-phenotype correlation described for these alterations (Romei et al., 1996; 

Elisei et al., 2008; Ciampi et al., 2013). However, the underlying molecular mechanisms 

specifically altered according to each of the driver mutations require further study. 

 Microarray profiling has been already used to define genomic signatures linked to 

particular driver mutations in cell lines and other thyroid cancer subtypes (Giordano et al., 

2005; Montero-Conde et al., 2008; Hou et al., 2011; Rodriguez-Rodero et al., 2013; Mancikova 

et al., 2014; Mancikova et al., 2015); uncovering molecular events associated with progression, 

recurrence etc. However, data on MTC are scarce due to the disease’s low prevalence and, in 

consequence, the difficulty to collect an informative sample set. So far, only a handful of studies 

using mRNA expression arrays have been published reporting the MTC expression profiles are 

mutation-specific (Jain et al., 2004; Ameur et al., 2009; Maliszewska et al., 2013). Interestingly, 

the over-expression of genes related to epithelial to mesenchymal transition (Jain et al., 2004) 

and tumor invasion and metastases (Ameur et al., 2009; Maliszewska et al., 2013) was notable 

among MTCs caused by the RET
M918T 

mutation, widely accepted as associated with poor 

prognosis (Elisei et al., 2008). On the other hand, the miRNA profiling studies so far available 

focused rather on the patients’ outcome than on the genetics, and successfully uncovered some 

molecular events related to metastasis and worse outcome (Nikiforova et al., 2008; Abraham et 

al., 2011; Santarpia et al., 2013). 

Undoubtedly, some of the differentially expressed genes identified in the previous 

profiling studies could be regulated by aberrant methylation. However, this epigenetic 

mechanism, whose de-regulation is a well-known hallmark of cancer, has so far been explored 

in a rather limited manner in MTC, either focused on specific candidate genes, such as RAS 

association domain family protein 1 (RASSF1) (Schagdarsurengin et al., 2002) and Sprouty 1 

(SPRY1) (Macia et al., 2012), or exploring the whole methylome in a very few samples 

(Rodriguez-Rodero et al., 2013). Thus, it remains poorly characterized.  

Herein, we quantitatively profiled the largest cohort of medullary tumors published until 

today composed of 48 samples for the DNA methylation levels of >27,000 CpGs across the 

genome. We observed significant differences between the methylation patterns among the 
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samples carrying the RET
M918T

, RET
C634X

 mutation and “wild-type” tumors. By means of 

integrating methylation data with mRNA and microRNA expression data of the same tumors, 

we were able to identify genes whose expression was controlled by the methylation of their 

promoters, thereby adding new insights into MTC carcinogenesis. The negative effect of 

promoter methylation on gene expression of DKK4, PLCB2, miR-10a, -30a and miR-200c was 

also validated in two MTC cell lines (MZ-CRC-1 and TT). Finally, validation of methylation 

levels of selected protein-coding genes was performed in a subset of arrayed samples by 

bisulfite sequencing, and subsequently in an independent cohort of 25 formalin-fixed paraffin-

embedded (FFPE) MTC samples by pyrosequencing.   
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MATERIAL AND METHODS 

Human MTC tissue samples and cell lines 

Forty-eight fresh frozen MTC tumor samples were collected at the Spanish National 

Cancer Research Center (CNIO) in collaboration with the CNIO Tumor Bank. Written informed 

consent was obtained from all study participants and the study was approved by institutional 

review board (Comité de bioética y bienestar animal of the Instituto de Salud Carlos III). 

Sections of each sample were evaluated by a pathologist. Only samples in which at least 80% of 

the cells were cancerous were used in this study, and cases with high amyloid content were 

excluded. Moreover, twenty-five unrelated FFPE MTC samples and 2 MTC cell lines were used 

in the validation steps. MZ-CRC-1 cell line is derived from a metastatic MTC and harbors the 

RET
M918T

 mutation, while TT cell line has a mutation in the 634
th
 codon of RET. Genomic DNA 

from all the samples was extracted using the DNeasy Blood and Tissue kit (QIAGEN) 

according to the manufacturer’s protocol. Total RNA was extracted from 5x10
6 

of
 
MZ-CRC-1 

and TT cells and 1 ml of TRIzol
®
 (Life Technologies) using the standard conditions. 

Mutation analysis 

 All samples were screened for hotspot mutations of RET gene in exons 10, 11, 15 and 

16 by Sanger sequencing. If negative, the hotspot codons 12, 13 and 61 of exons 2 and 3, 

respectively, of all RAS genes were screened by the same technique. Tumors were classified as 

“wild-type” (WT) if no mutation was found in neither of the genes screened. 

DNA methylation assay, data processing and data analysis 

 Briefly, genomic DNA was bisulfite-converted using the EZ DNA Methylation Kit 

(Zymo Research, Orange, CA) following the manufacturer’s recommended procedures. 

Genome-wide promoter DNA methylation profiling was performed using the Illumina Infinium 

HumanMethylation 27K Platform (Illumina, San Diego, CA, USA) as described previously 

(Bibikova et al., 2009). This assay generates DNA methylation data for 27,578 CpG 

dinucleotides covering 14,473 unique genes. For each CpG site, methylation levels were 

quantified using β-values, which represent the proportion of methylation, calculated as 

M/(M+U), where M is the methylated probe intensity and U the unmethylated probe intensity. 

β-values range from 0 to 1, with 0 being completely unmethylated and 1 being completely 

methylated. We excluded probes that were detected in less than 95% of the samples (24 probes), 

probes designed for sequences on either the X or the Y chromosome (1,085 or 7 probes, 

respectively), as well as probes with missing value in at least one of the samples (22 probes). 
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Unsupervised hierarchical clustering was carried out using Cluster 3.0 software with 

“average linkage” (Pearson correlation, uncentered metrics). The clusters were subsequently 

visualized using Treeview (http://rana.stanford.edu/software). Principal Component Analysis 

(PCA) was performed using R CRAN version 2.15.3 (R, 2013). Differences in DNA 

methylation status among tumor groups (based on the driver mutations present in the samples) 

were tested using POMELLO II, applying linear models (limma) (Morrissey and Diaz-Uriarte, 

2009). Tumors with less frequent RET mutations were not considered in the analysis. To 

account for multiple hypotheses testing, p-values were adjusted using Benjamini’s False 

Discovery Rate (FDR) correction. We defined a probe to be hypomethylated or 

hypermethylated when it displayed a mean β-value difference (Δβ-value) < -0.2 or > 0.2, 

respectively, among particular tumor groups, and had a FDR<0.05. 

Integration of gene expression and DNA methylation 

 Since we disposed of both mRNA (Maliszewska et al., 2013) and miRNA expression 

data for 33 and 31 of the tumors used in this study, respectively, we aimed to identify genes 

whose expression is correlated with the methylation status of their corresponding promoter 

regions. In total, 8,622 protein-coding genes were included on both platforms and thus available 

for integration. In case of miRNA integration, there were 254 probes included on the 

methylation platform that mapped to promoters of 110 microRNA genes already annotated by 

the manufacturer (Bibikova et al., 2009). To this number, we added 423 additional probes 

belonging to putative promoter regions of 151 miRNAs identified using PROmiRNA method 

(Marsico et al., 2013). These additional probes and their corresponding miRNA genes are listed 

in Supplementary Table S1. Correlation was measured by the Spearman coefficient using R 

CRAN version 2.15.3 (R, 2013).  

Confirmation of negative correlation between methylation and gene expression using MZ-

CRC-1 and TT cell lines 

Cell culture and 5-Aza-2-’Deoxycytidine treatment 

 MZ-CRC-1 and TT were cultured in Dulbecco’s modified Eagle medium Gluta MAX 

(DMEM, Invitrogen), supplemented with 10% (v/v) foetal bovine serum (FBS, PAA 

laboratories), 1% (v/v) penicillin/streptomycis and 0.6% (v/v) Fungizone (Gibco). MZ-CRC-1 

cells at 60% of confluence were treated with 2.5 μg/ml 5-Aza-2-’Deoxycytidine (Sigma). After 

48 hours of incubation, the treatment was renewed and on the following day, the cells were 

collected for subsequent analyses. 

DNA methylation level assessment 

http://rana.stanford.edu/software
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MTC cell lines and bisulfite sequencing using primers listed in Supplementary Table S2 

were used to assess methylation levels of the selected promoters (belonging to 3 protein-coding 

genes and 3 miRNA genes) according to protocols described elsewhere (Mancikova et al., 

2014). 

qRT-PCR 

 For the assessment of expression of the selected protein-coding genes, one microgram 

of total RNA was reverse transcribed using Superscript II (Invitrogen) and an oligo dT14 primer 

following manufacturer’s instructions. The amounts of DKK4, MMP20 and PLCB2 mRNA 

were quantified by real-time PCR with the Sequence Detection System 7900HT (Applied 

Biosystems, Foster City, CA), using primers designed to be specific for the three genes 

(Supplementary Table S2) and probes from the Universal ProbeLibrary Set, Human (Roche). 

Normalization was carried out with the internal standard β-actin (ACTB).  

 For miRNA gene expression quantification, 10 nanograms of total RNA were used for 

first-strand cDNA synthesis using miRCURY LNA Universal RT miR PCR system (Exiqon) 

and LNA miR-PCR primer/SYBR Green mix (Exiqon) was used for subsequent quantification 

of miR-10a, -30a and -200c according to the manufacturer’s recommendations. MiR-16 was 

selected as reference gene for normalization. 

Negative controls were included in all PCR series and assays were carried out in 

triplicates. The ∆∆Ct method was used for the calculation of mRNA content (Livak and 

Schmittgen, 2001). 

Methylation status validation 

 Three of the most differentially methylated probes, all showing negative correlation 

with expression of the corresponding protein-coding gene, were selected for validation. 

Biological functions were considered as additional criteria to select candidate promoter regions. 

The technical validation of microarray results in a subset of the original discovery series 

(comprising 6 RET
M918T

, 6 RET
C634X

, 3 RAS, 2 “wild-type” tumors and 6 tumors bearing other 

RET mutations) was performed using bisulfite sequencing as described elsewhere (Mancikova 

et al., 2014). The candidate markers were then validated by pyrosequencing in 25 independent 

FFPE MTC samples (8 RET
M918T

, 4 RET
C634X

, 3 RAS and 10 “wild-type” tumors). The region of 

interest was firstly amplified from the bisulfite-treated DNA by a set of primers designed with 

PyroMark assay design software (version 2.0.01.15). After the PCR amplification, 

pyrosequencing was performed using PyroMark Q24 reagents, vacuum prep workstation, 

equipment and software (Qiagen). Primers used in these steps are listed in Supplementary Table 

S2.  
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RESULTS 

Molecular characterization of the MTC discovery series 

 Among the tumors whose genome-wide DNA methylation levels were measured, 13 

samples harbored the RET
M918T

 mutation, 14 RET
6C34X

, 6 tumors harbored a RAS mutation, and 9 

tumors carried different, less frequent, RET mutations. The remaining 6 tumors did not carry 

any alteration in the studied genes and were considered “wild-type” (WT). The results of the 

mutational screening together with the main clinico-histopathological characteristics of the 

samples are summarized in the Supplementary Table S3.  

MTC methylation profiles relate closely to the RET mutational status 

 After excluding all the possible sources of bias (see Material and Methods), we 

identified probes that appeared to be constitutively unmethylated in all samples (β-value <0.2; 

11,915 probes). Of these, the majority (97.5%) was located within CpG islands adjacent to 

house-keeping genes (Benjamini-Hochberg adjusted p-value 7.1x10
-10

). On the other hand, 179 

probes were constitutively methylated (β-values among all the samples>0.8) in our data. Both 

constitutively unmethylated and methylated probes were excluded from the further analysis. 

A PCA of the remaining 14,346 probes (belonging to 9,216 consensus coding sequences) did 

not reveal any apparent batch effect affecting the data (Supplementary Figure S1). 

 Unsupervised hierarchical analysis using the probes with the highest variance among 

the data set (SD>0.2; 851 probes) pointed towards the existence of differences among the two 

principal clusters based on underlying genetics (Figure 1). Only two samples did not fall into 

either of them. Interestingly, cluster B showed significantly higher levels of methylation when 

compared to cluster A (p-value 3.0x10
-9

), and was enriched with WT cases and those harboring 

RET
C634X

 mutation, while cluster A was composed mostly of RET
M918T

-positive tumors (p-

value<0.02). We did not observe any clear clustering of the RAS-mutated samples.  

 Supervised analysis allowed us to identify a list of differentially methylated probes 

associated with a specific genetic condition, especially long for RET
M918T

-related tumors. In this 

regard, the results confirmed those of unsupervised clustering, as in this group there were more 

hypomethylated probes (Figure 2A, Supplementary Table S4). Interestingly, when exploring the 

genes affected by hypomethylation, DAVID functional analysis (Huang da et al., 2009) returned 

KEGG pathways such as cytokine-cytokine receptor interaction (p-value 1.5x10
-7

) or JAK/Stat 

signaling pathway (p-value 2.3x10
-4

). Moreover, DKK4, previously described to be up-regulated 

in RET
M918T

-related MTCs (Maliszewska et al., 2013), was affected by hypomethylation. As 

could have been expected from the unsupervised clustering result, the lists of differentially 

methylated probes characteristic of the other genetic conditions (RET
C634X

- and RAS-related 
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tumors) were considerably shorter and did not allow identification of any pathway enrichment. 

Nevertheless, hypomethylation of GAL was detected among RET
C634X

-positive tumors when 

compared to WT, and this event could cause the increased expression of this molecule reported 

elsewhere (Maliszewska et al., 2013).  

It was noteworthy that hypermethylation affected more frequently probes located within 

CpG islands (p-value 0.0014) as well as those located near to stem cell PolyComb Group target 

genes (p-value<0.0001). Hypomethylated probes, on the other hand, were enriched with CpGs 

that are heavily methylated in Embryonic Stem Cells (p-value<0.0001) (Figure 2B). 

Genome-wide integration reveals those DNA methylation changes potentially functional in 

MTC 

The fact of finding differential methylation in genes previously reported to be 

deregulated in MTC indicated these epigenetic changes might be functional. Therefore, we 

systematically explored genes regulated by promoter methylation. When considering protein-

coding genes, mRNA expression data was available for 93.55% genes from the methylation 

array. Of these, almost 12% was showing significant negative correlation between expression 

and methylation (Table 1). Moreover, expression data of 31 matching samples for 78 

microRNA genes was available for the integration. In this case, 5 genes (6.9%) were showing 

negative correlation (Table 1). 

 Importantly, some of the genes showing inverse correlation between expression and 

methylation were also found as differentially methylated in the previous analyses (Table 1). Of 

these, PLCB2, DKK4, MMP20 and miR-10a were selected for further studies. Moreover, two 

additional miRNA genes (miR-30a and -200c) showing negative correlation between expression 

and methylation, but not differential methylation, were also studied further due to their 

biological function (Cheng et al., 2012; Kumarswamy et al., 2012; Santarpia et al., 2013). As 

assessed by bisulfite sequencing, the levels of methylation of these 6 genes differed among the 

two available MTC cell lines (Figure 3A). Apart from two genes that were not expressed by 

none of the cell lines (MMP20 and miR-30a), the expression of the remaining confirmed the 

results of in silico predictions of inverse correlation between DNA methylation and gene 

expression (Figure 3B). Moreover, it was possible to achieve re-expression of all genes but 

MMP20 in MZ-CRC-1 cell line by treatment with 5-Aza-2-’Deoxycytidine (Figure 3C), further 

confirming the functionality of these epigenetic changes. 

Validation of aberrant methylation of candidate oncogenes 

 CpGs from promoters of 3 differentially methylated genes (DKK4, MMP20, PLCB2) 

were selected for validation steps. These genes also showed a negative correlation between 
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DNA methylation levels and gene expression, and have been previously described to have 

tumor-growth promoting role (Bertagnolo et al., 2007; Liu et al., 2011; Maliszewska et al., 

2013; Takeuchi et al., 2013). As depicted in Figure 4, the results of bisulfite sequencing in a 

subset of the original sample set revealed a high concordance with those array-based (R
2 
ranging 

from 0.6597 to 0.8008). Moreover, we were able to replicate the findings in an independent 

FFPE series of 25 MTCs by bisulfite pyrosequencing (Figure 4), even if the differences between 

the DNA methylation levels of the compared groups were smaller, probably since the DNA 

source was a paraffin tissue. 
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DISCUSSION 

 In the current genomic era, an increasing number of cancers are being studied in a 

collaborative manner via international consortia (such as the TCGA project, 

http://cancergenome.nih.gov/). The results of such studies generate a comprehensive integrative 

view of the disease that responds to many clinically relevant questions. However, there are still 

some orphan cancer types that are being neglected by these efforts, generally due to their low 

prevalence, and thus small overall public health impact. In this regard, medullary thyroid 

carcinoma is one of the least prevalent subtypes of thyroid cancer, but responsible for a large 

proportion of thyroid cancer-related deaths (Roman et al., 2006). Herein, in the largest cohort of 

MTC samples reported to date, we apply an integrative approach focused on the effects of DNA 

methylation in the etiology of this tumor. Not only do we find that underlying genetics relate 

closely with the genome-wide DNA methylation fingerprints, but also that the aberrant 

methylation events affect specific genomic loci pointing towards the existence of epigenetic 

progenitor cell signature in MTC (Zhuang et al., 2012). Furthermore, we identify both protein-

coding and microRNA genes, whose expression is negatively correlated with the methylation 

status of their promoters and confirm some of these findings in MTC cell lines. Finally, we also 

validate some of the DNA methylation markers in an independent collection of samples.  

 So far, the knowledge generated by mRNA profiling studies in MTC indicates that this 

genomic feature is driven by the driver alteration (Jain et al., 2004; Ameur et al., 2009; 

Maliszewska et al., 2013). The current work is the first one reporting the same for another 

genomic attribute -DNA methylation- since the only genome-wide study on MTC did not 

address this aspect (Rodriguez-Rodero et al., 2013). Actually, we observed larger proportion of 

hypomethylation events in RET
M918T

-related MTCs as compared to the other genetic classes. 

Interestingly, global hypomethylation using the same platform was correlated with poorer 

prognosis in different gynecological cancers (Zhuang et al., 2012), which would be in 

concordance with the clinically worst behavior of RET
M918T

-positive MTC (Elisei et al., 2008). 

Moreover, this deregulation affected genes enriched within pathways such as cytokine-cytokine 

interaction and JAK/Stat, previously reported as activated in this genomic class (Maliszewska et 

al., 2013), and related to the malignant tumor behavior. Thus, it seems that at least some of the 

deregulated pathways in this tumor subgroup are indeed affected at this epigenetic regulatory 

level.  

 DNA methylation is traditionally believed to be a regulator of gene expression. In case 

of protein-coding genes, the classical view on the inverse effect of methylation on expression is 

being challenged by recent technical advances (Suzuki and Bird, 2008). Many cancer-orientated 

studies report a surprisingly low percentage of genes fulfilling this rule (Hinoue et al., 2012; 
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Kulis et al., 2012; Selamat et al., 2012) that we confirm in the current one. The situation with 

microRNAs is even more complex given the difficulties with predicting their promoter regions 

(Krol et al., 2010). Recently, a methodology was developed that recognizes putative promoter 

regions of miRNAs using both sequence- and histone-based techniques (Marsico et al., 2013). 

By integrating this strategy in our analysis, we were able to identify CpGs belonging to 

additional putative miRNA promoters included on the 27K array. However, the overall portion 

of miRNA genes showing negative correlation between methylation and expression was still 

lower than in case of protein-coding genes. This suggests that even with the new promoter-

recognizing algorithms, our understanding of the complex relationship between DNA 

methylation and gene expression is still limited. 

 Nevertheless, in the majority of the genes selected for validation of the inverse 

correlation between expression and methylation in MTC cell lines, we could confirm the in 

silico results. Of these genes, DKK4 has been already connected with the MTC pathogenesis in 

a previous study (Maliszewska et al., 2013), and here we propose the aberrant methylation as 

the regulatory mechanism responsible for its over-expression in RET
M918T

-related tumors. On 

the other hand, PLCB2 plays a role in multiple transmembrane signal transduction pathways 

involving inositol lipids’ metabolism. In cancer, its over-expression has been associated with 

mitosis promotion, migration and poor outcome (Bertagnolo et al., 2006; Bertagnolo et al., 

2007). Our findings are in agreement given we found hypomethylation in the RET
M918T

-postive 

tumor samples, which was negatively correlated with the gene expression. Even though the 

prognostic utility of MMP20 gene from the family of metalloproteinases, has been already 

demonstrated in cancer (Liu et al., 2011), we did not detect its expression in the studied cell 

lines. 

 In case of miRNA genes, the expression of miR-200c has been recently described as 

causative of the metastatic potential of human MTCs (Santarpia et al., 2013). Interestingly, 

according to our results in the MTC cell lines, the aberrant methylation of miR-200c putative 

promoter could underlie its differential expression among patients with distinct outcome. MiR-

10a is mostly exerting oncogenic effect (Weiss et al., 2009; Bryant et al., 2012; Long et al., 

2012) and we have found little DNA methylation of its promoter in both MTC cell lines. 

Interestingly, there is evidence from hepatocellular carcinoma that miR-10a is negatively 

regulated by DNA methylation (Shen et al., 2012), which got further validated by our findings. 

Finally, our miRNA array results pointed to the relevance of down-regulation of miR-30a in 

RET
M918T

-related MTCs (unpublished data). We found corresponding hypermethylation of its 

promoter in MZ-CRC-1 cells. This molecule deserves further studies due to its tumor-

suppressive features (Cheng et al., 2012; Kumarswamy et al., 2012). Moreover, PROM1, a 
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cancer stem cell marker found over-expressed in RET
M918T

-positive tumors (Maliszewska et al., 

2013), is one of its predicted targets according to targetscan tool (http://www.targetscan.org/). 

 To sum, this comprehensive genome-wide DNA methylation study performed using the 

largest cohort of MTC samples reported to date provides insights into the involvement of this 

regulatory epigenetic mechanism in the etiology of this disease. According to our results, 

hypomethylation may induce activation of key pathways related to the malignant tumor 

behavior of RET
M918T

-related MTCs. Moreover, we were able to confirm the regulatory role of 

DNA methylation for of DKK4, PLCB2, miR-10a, -30a and miR-200c using MZ-CRC-1 and 

TT cell lines. The validation of aberrant methylation markers in an independent cohort of 

samples warranted the accuracy of our results.  
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 Protein-coding genes microRNA genes 

Total # genes available for integration 8,622 78 

r<0 5,569 (64.6%) 52 (66.7%) 

P<0.05 1,033 (11.9%) 5 (6.9%) 

Differentially methylated 54 1 

Table 1. Genome-wide integration of DNA methylation, mRNA and miRNA expression 

data. Correlation between CpG methylation and adjacent gene expression was measured by the 

Spearman coefficient. 

 

 

 

 

Figure 1. Methylome of the discovery series. Unsupervised hierarchical cluster analysis of 48 

medullary tumors divided the sample set into 2 main clusters. “Cluster A” was composed 

mostly of RET
M918T

-related samples. “Cluster B” included the majority of RET
C634X

- and wild-

type cases. 
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Figure 2. Identification of differentially methylated probes. A) Volcano plots, from each of 

the supervised analysis carried out, identifying differentially hypomethylated (green) and 

hypermethylated (red) probes, defined based on FDR<0.05 and Δβ-value ≥ |0.2|. B) Number of 

probes hypermethylated and hypomethylated, by location with respect to: CpG islands; gene 

targeted by PolyComb Repressive Complex; loci that are heavily methylated in Embryonic 

Stem Cells. 
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Figure 3. Confirmation of negative correlation between methylation and gene expression 

in MZ-CRC-1 and TT cell lines. A) DNA methylation levels of promoter CpGs of DKK4, 

PLCB2, MMP20, miR-10a, -200c and -30a as measured by bisulfite sequencing. B) Expression 

of DKK4, PLCB2, MMP20, miR-10a, -200c and -30a shows an opposite trend as compared to 

the DNA methylation levels of the genes, confirming in silico results. C) 5-aza-2′-deoxycytidine 

(5AdC) treatment causes the reactivation of DKK4, PLCB2, miR-10a, -200c and -30a 

expression. 
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Figure 4. Validation of selected loci. Three CpGs from promoter regions of MMP20, PLCB2 

and DKK4 were selected for validation. In the left panel, results from the discovery series are 

represented. In the middle panel, correlation between the results from Illumina Infinium 

HumanMethylation 27K Platform and bisulfite sequencing for selected loci is shown. Bisulfite 

sequencing was performed in a subset of samples included in the discovery series (6 RET
M918T

, 6 

RET
C634X

, 3 RAS, 2 “wild-type” tumors and 6 tumors bearing other RET mutations). In the right 

panel, results of bisulfite pyrosequencing of 25 independent MTC samples (8 RET
M918T

, 4 

RET
C634X

, 3 RAS and 10 “wild-type” tumors) are depicted. 
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Abstract 

 Management of sporadic medullary thyroid carcinoma (MTC) has substantially changed 

recently due to the development of targeted cancer drugs. MTC patients with metastatic or 

locally advanced disease are treated with small-molecule tyrosine kinase inhibitors (TKIs) with 

promising results. Yet, some of MTC patients need to discontinue the treatment due to severe 

toxicities, and the molecular basis for the large variability in TKI response is unknown. 

According to our results (Maliszewska et al., 2013) and those from other laboratories 

(Jain et al., 2004; Ameur et al., 2009), there is emerging evidence that gene expression profiles 

in MTC are driven by the underlying genetics. Therefore, we decided to investigate if the key 

TKIs targets are expressed in MTCs in a mutation-dependent manner by means of 

immunohistochemistry. Apart from showing that multiple TKI targets are highly expressed in a 

subset of MTCs, we found that MTC samples with the RET
C634X 

mutation exhibited a higher 

expression of VEGFR3 and KIT than the RET
M918T

-mutated and non-mutated RET tumor 

samples (P=0.005 and P=0.007, respectively) and a lower expression of VEGFR1 (P=0.04). 

These results seem crucial for MTC patients’ enrollment into TKI trials and the choice 

of the most appropriate treatment. 

Personal contribution: I helped with genetic screening of the samples. 
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Aguirre A de Cubas1, Veronika Mancikova1, Marta Cañamero4,
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Abstract
The therapeutic options for patients with metastatic medullary thyroid carcinoma (MTC)

have recently increased due to the development of tyrosine kinase inhibitors (TKIs), some of

which have achieved remarkable clinical responses in MTC patients. However, the molecular

basis for the large variability in TKI responses is unknown. In this exploratory study, we

investigated the expression of eight key TKI target proteins (EGFR, KIT, MET, PDGFRB, VEGF

(VEGFA), VEGFR1 (FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4)) by immunohistochemistry in 103

molecularly characterized MTC samples and identified the associated clinical and molecular

features. A number of MTC samples exhibited a high expression of VEGFR2 and VEGFR3,

which were overexpressed in 57 and 43% of the MTC samples respectively. VEGFR1, PDGFRB,

VEGF, KIT, and MET were present in 34–20% of the cases, while EGFR was highly expressed in

only 10% of the MTC samples. Some proteins exhibited large differences in expression

between sporadic and familial cases, suggesting that different RET mutations may be

associated with the immunohistochemical profiles. MTC samples with the C634 RET mutation

exhibited a higher expression of VEGFR3 and KIT than the M918T RET-mutated and non-

mutated RET tumor samples (PZ0.005 and PZ0.007 respectively) and a lower expression of

VEGFR1 (PZ0.04). Non-mutated RET MTC cases exhibited a lower expression of PDGFRB

(PZ0.04). Overall, this is the first study, to our knowledge, to show that multiple TKI targets

are highly expressed in a subset of MTCs, suggesting that molecular stratification of patients

may have the potential to improve TKI therapies for MTC.
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Introduction
Medullary thyroid carcinoma (MTC) arises from the

parafollicular cells of the thyroid gland. Sporadic MTC

accounts for 75% of the cases, and the remaining 25%

is inherited in nature as part of multiple endocrine

neoplasia type 2 syndrome. The RET proto-oncogene

plays a major role in MTC development, with 30–50% of

the sporadic MTCs carrying somatic RET mutations

(Uchino et al. 1999). RET mutations involved in MTC are

gain-of-function alterations that increase RET kinase

activity, resulting in a constant activation of downstream

signaling pathways that ultimately lead to tumor growth

(Schuffenecker et al. 1998, Randolph & Maniar 2000, Nagy

et al. 2004). The presence of specific RET mutations

determines the age of presentation and aggressiveness of

the tumor, allowing for genetic screening and recommen-

dations for preventive surgical management in familial

cases (Brandi et al. 2001, Cote & Gagel 2003).

Patients with MTC undergo total thyroidectomy and

lymph node dissection. However, because MTC is derived

from neuroendocrine cells, it is unresponsive to radio-

iodine and TSH suppression, and it is unclear as to which is

the most appropriate treatment for patients with residual

or recurrent disease after primary surgery and for those

with distant metastasis. Until recently, management of

metastatic disease has primarily been oriented toward the

relief of symptoms (Wells et al. 1982, Giraudet et al. 2007),

but in the last few years, much effort has been devoted to

developing clinical trials using targeted therapies.

In addition to RET mutations, vascular endothelial

growth factor (VEGF)-mediated angiogenesis, leading to

increased tumor growth and invasiveness, has been

recognized as an important feature in MTC. Thus, targeted

molecular therapies that inhibit oncogenic kinases such as

RET and tyrosine kinase receptors involved in angiogen-

esis could be important for the treatment of metastatic or

locally advanced MTC. In this regard, a number of small-

molecule inhibitors that selectively inhibit tyrosine kinase

receptors, such as vandetanib, sorafenib, sunitinib, axiti-

nib, motesanib, and cabozantinib (XL184), have shown

remarkable clinical responses in MTC patients, inducing

partial responses and stabilization of the disease in a

substantial number of patients (Cohen et al. 2008,

Schlumberger et al. 2009, Carr et al. 2010, Lam et al.

2010, Robinson et al. 2010, Wells et al. 2010, 2012, Ahmed

et al. 2011, Hong et al. 2011, Kurzrock et al. 2011).

Although comprehensive clinical trials for MTC should

ideally incorporate patient and tumor characteristics,

most of these studies include only a small number of
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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MTC patients who are not characterized or are hetero-

geneous with respect to the specific RET mutation. Some

kinase receptors, such as EGFR and VEGFR2, have been

shown to be overexpressed in subsets of primary MTC

tumors and metastases (Rodriguez-Antona et al. 2010).

However, currently such information is lacking for most

of the tyrosine kinase inhibitor (TKI) targets, and it is

unknown whether they are expressed in MTC and whether

this expression is associated with specific clinical and

molecular features. Therefore, we set out to investigate the

expression of eight key TKI target proteins in an out-

standing series of 103 molecularly characterized MTC

cases. This is the first study, to our knowledge, to

demonstrate that multiple TKI targets are highly expressed

in a subset of MTCs in a RET mutation-dependent manner.

This information might be critical for the inclusion

of MTC patients in future clinical trials and, ultimately,

for improving treatment response.
Subjects and methods

Human MTC samples

A total of 103 paraffin-embedded MTC samples from 101

patients were obtained from the Spanish National Cancer

Centre in collaboration with the CNIO tumor Bank.

Institutional Review Board approval was obtained for the

study, and informed consent was obtained from all the

patients. The patients were aged from 11 to 80 years

(median age 50 years), and 56% were females. Of the 103

MTC samples, 92 corresponded to primary tumors and 8 to

metastases (see Table 1). The mutational status of the RET

proto-oncogene in exons 10, 11, 13, 14, 15, and 16 was

assessed from genomic DNA using standard PCR con-

ditions, primers, and automated sequencing as described

previously (Ceccherini et al. 1993). The tumor samples

corresponded in most cases to patients diagnosed as

sporadic or familial, based on the analysis of the RET

proto-oncogene in peripheral blood samples. Familial

cases carried germline mutations in exon 10, 11, 14, or

15, while sporadic cases carried somatic RET mutations in

exon 10, 11, 15, or 16, or were classified as ‘no mutation in

RET’ when no somatic mutations were found in exon 10,

11, 13, 14, 15, or 16 (Table 1). Among the apparently

sporadic cases (without RET mutations in blood samples),

four tumors were classified as ‘undetermined RET

mutation’ due to the failure of the PCR analysis caused

by low tumor DNA quality. Among the familial cases, one
Published by Bioscientifica Ltd.
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Table 1 Characteristics of the 101 MTC patients included in

the study and mutational status of the corresponding samples

Characteristics n

Percentage

(%)

Age (years)
Median 50
Range (min–max) 38–59 (11–80)

Gender
Female 57 56
Male 40 40
Unknown 4 4

Type of tumor
Primary 92 89
Metastatic 8 8
Unknown 3 3

Genetic featuresa

Sporadic 69 68
RET exon 10 (C618, F619,

and C620)
3 4

RET exon 11 (C634, c.1894_1900
del GAGCTGT ins A)

5 7

RET exon 15 (A883) 1 1
RET exon 16 (M918T) 17 25
No mutation in RETb 39 57
Undetermined RET mutationc 4 6

Familial 27 27
RET exon 10 (C618) 4 15
RET exon 11 (C634) 20 74
RET exon 14 (V804) 1 4
RET exon 15 (S891) 1 4
Undetermined RET mutationc 1 4

Unknown 5 5
Undetermined RET mutationc 5 100

aPercentages in bold type refer to all the patients, whereas percentages in
regular type refer to the specific subgroup (sporadic, familial, or unknown).
bNo mutations found in RET exons 10, 11, 13, 14, 15, and 16.
cTumors in which RET exon 10, 11, 13, 14, 15, or 16 could not be assessed.
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tumor derived from a patient with a family history of

multiple neoplasia type 2 (second-degree relative diag-

nosed with a pheochromocytoma and mother with a

MTC) was classified as ‘undetermined RET mutation’

because no blood sample was available and the tumor

DNA was of low quality. Five cases could not be classified

as sporadic or familial (referred to as ‘unknown’) because

blood samples were not available.
Immunohistochemical study

Hematoxylin and eosin-stained sections of each tumor

sample were examined by two pathologists to confirm

the diagnosis and to select MTC areas representative of

each tumor to construct tissue microarrays (TMAs). Three

TMAs containing all the tumor samples (103) were

constructed as described previously with two cores of
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-12-0316 Printed in Great Britain
each tumor placed at different positions in the TMAs

(Cascon et al. 2005).

The three paraffin-embedded TMAs were used for the

detection of EGFR, KIT, MET, PDGFRB, VEGF (VEGFA),

VEGFR1 (FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4)

proteins by immunohistochemistry (IHC) using specific

antibodies. The suppliers, dilutions, visualization systems,

and immunostainers used for the antibodies are given in

Supplementary Table 1, see section on supplementary data

at the end of this article. Two independent experienced

pathologists (I Muñoz-Repeto and M Cañamero) evaluated

the intensity and extension of staining for all the

antibodies by visual examination under a microscope.

Not only the tumoral cells but also the stroma (fibroblasts,

inflammatory cells, and blood vessels) were evaluated,

taking into account the fact that these tumors are highly

cellular with low stromal component, mostly consisting of

blood vessels. Since each TMA included two different

tumor cylinders from each case, immunohistochemical

scoring was done after examining both samples.

The IHC scoring used was as follows: for EGFR,

VEGFR2, and PDGFRB, tumor samples with moderate/

strong staining were considered positive (Maderna et al.

2007, Rodriguez-Antona et al. 2010); for KIT, both the

intensity and extent of staining were evaluated (Miliaras

et al. 2004), and the intensity of staining was graded as

0 (absent), 1 (weak), 2 (moderate), or 3 (strong), and the

extent of staining was evaluated semiquantitatively and

categorized as 0 (0% of cells), 1 (!10%), 2 (between 10 and

50%), 3 (between 50 and 80%), and 4 (more than 80%),

and aggregate scores were obtained for each case

(range 0–7) and cases with scores O3 were regarded as

KIT-positive; MET protein was considered positive when

its expression was positive for 30% of the tumor cells with

moderate/strong staining (Lee et al. 2010); for VEGF, the

intensity of staining was estimated on a four-tiered scale

encoded as 0 (absent), 1 (weak), 2 (moderate), and 3

(strong), and immunopositivity was defined by strong

staining (Duncan et al. 2008); for VEGFR1, a tumor was

considered positive if cytoplasmic expression was

detected; for VEGFR3, the percentage of cells with positive

staining was evaluated for each case and the median was

calculated, and tumor samples with a percentage of

positive cells higher than the median (50% of the positive

tumor cells) were considered to have a high expression of

VEGFR3. The staining intensity for each protein marker

analyzed and the number of tumor samples included in

each category are given in Supplementary Table 2,

see section on supplementary data at the end of

this article.
Published by Bioscientifica Ltd.
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Clustering

Hierarchical unsupervised cluster analysis of the 92 primary

tumor cases was carried out by the average linkage clustering

method using GeneCluster 3.0 (mean centered; de Hoon

et al. 2004) and viewed in a visualizer (TreeView) that

displays cluster profiles and relevant cluster member infor-

mation. Immunohistochemical results were represented by

a range of colors from green to red, with the brightest green

representing the lowest staining intensity for each marker

and the brightest red the highest one (Fig. 1). Three samples

in which more than three antibodies failed to yield results

were excluded from the analysis.
Statistical analyses

All statistical analyses were carried out using SPSS version

17.0 statistical software. The c2 test or Fisher’s exact test was

used to compare variables representing patient charac-

teristics (male/female) and tumor types (primary tumors/

metastases and sporadic/familial) with IHC protein

expression (Tables 2 and 3). In addition, logistic regression

analyses were carried out to obtain odds ratios (ORs) and

95% CI, which are given in Supplementary Table 4, see

section on supplementary data given at the end of this

article. For RET mutation analysis, we considered indepen-

dently each of the major RET-mutated groups: C634,

M918T, and no RET mutation. The C634 RET-mutated

group included both familial and sporadic forms with

germline and somatic mutations respectively; the M918T

RET-mutated group corresponded exclusively to sporadic

forms with M918T somatic mutation; and the ‘no mutation

inRET’ group corresponded exclusively to sporadic forms in

which germline mutations were discarded and no somatic

RETmutation was detected (see Table 1). Other less frequent

RET mutations were not considered for further analysis as

they represented a heterogeneous group. To calculate the

correlation between the expression of the different proteins

evaluated, we used the Spearman’s test. Since this is an

exploratory study, no correction of P values due to multiple

testing was performed, and bilateral P values !0.05 were

considered significant.
Figure 1

Hierarchical clustering of 89 primary MTC samples. The staining intensity

for each immunohistochemical marker is represented as a range of colors

between the brightest green (lowest expression) and the brightest red

(highest expression). Gray squares indicate that no data was available.

Published by Bioscientifica Ltd.
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Table 2 Protein expression of EGFR, KIT, MET, PDGFRB, VEGF, VEGFR1, VEGFR2, and VEGFR3 according to the type of MTC

Protein

Primary

n (%)

Metastatic

n (%) P

Sporadica

n (%)

Familiala

n (%) P

EGFRKb 83 (91) 5 (71) NS 58 (92) 24 (89) NS
EGFRCc 8 (9) 2 (29) 5 (8) 3 (11)
KITK 65 (75) 8 (100) NS 50 (83) 14 (54) 0.0040
KITC 22 (25) 0 (0) 10 (17) 12 (46)
METK 63 (83) 4 (50) 0.049 48 (84) 14 (78) NS
METC 13 (17) 4 (50) 9 (16) 4 (22)
PDGFRBK 60 (70) 3 (38) NS 46 (78) 13 (50) 0.010
PDGFRBC 26 (30) 5 (63) 13 (22) 13 (50)
VEGFK 62 (69) 4 (50) NS 41 (65) 20 (77) NS
VEGFC 28 (31) 4 (50) 22 (35) 6 (23)
VEGFR1K 45 (62) 8 (100) 0.046 31 (58) 14 (78) NS
VEGFR1C 27 (38) 0 (0) 22 (41) 4 (22)
VEGFR2K 32 (43) 2 (29) NS 23 (42) 8 (44) NS
VEGFR2C 42 (57) 5 (71) 32 (58) 10 (56)
VEGFR3K 50 (57) 4 (57) NS 39 (65) 10 (38) 0.022
VEGFR3C 37 (43) 3 (43) 21 (35) 16 (61)

aOnly primary tumor cases included in the analysis.
bA negative expression is indicated by ‘K’.
cA positive expression is indicated by ‘C’.
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Results

Immunohistochemical study in MTC cases

The different TKI targets tested in the 103 MTC

samples available for the study presented a variable

expression (Supplementary Figure 1, see section on

supplementary data given at the end of this article).

Many MTCs showed positive staining with 57, 43, 34, 33,

32, 23, 20 and 10% positive cases for VEGFR2, VEGFR3,

VEGFR1, PDGFRB, VEGF, KIT, MET and EGFR, respect-

ively. The IHC intensity observed for each marker is

summarized in detail in Supplementary Table 2.

The expression of several TKI targets was correlated.

The strongest correlations corresponded to PDGFRB,

which exhibited a positive correlation with VEGFR3

and a negative correlation with VEGFR1 (correlation

coefficients of 0.51 and K0.34, PZ9!10K8 and 0.002

respectively). A positive correlation was also detected

between VEGF and VEGFR2 (correlation coefficient of

0.37, PZ0.0006). The expression of EGFR correlated

with that of MET and VEGFR3, and the expression of

MET correlated with that of VEGFR2 and VEGF (see

Supplementary Table 3, see section on supplementary

data given at the end of this article). Similar results

were observed when only primary tumor samples

were analyzed.

Unsupervised clustering analysis of the primary MTCs

based on the eight immunohistochemical markers eval-

uated clustered tumor samples into two main groups

(Fig. 1). The left branch, which grouped 35% of the MTC
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-12-0316 Printed in Great Britain
cases, was characterized by positive PDGFRB and VEGFR3

staining and included most cases with EGFR overexpres-

sion. The right branch of the cluster included some of the

VEGFR2-, VEGF-, MET-, KIT-, and VEGFR1-positive cases

and cases displaying a negative expression for all the tested

proteins. The left branch tended to be enriched in cases

carrying the C634 RET mutation, either germline or

somatic (35 vs 21%, in the left and right branches

respectively), while the right branch was apparently

enriched in tumors with the M918T RET somatic mutation

(14 vs 6%).
Protein expression of TKI targets in different MTC types

Gender was associated with the expression of VEGFR1

(45% of female MTC cases exhibited positive staining vs

16% of the male cases, PZ0.007) and VEGF (23 and 46%

positive cases for females and males respectively,

PZ0.017), but age at diagnosis was not associated with

IHC staining. We next determined whether the expression

of the markers could be influenced by the type of tumor:

primary tumors vs metastases and sporadic vs familial.

MET displayed a higher expression in the metastatic cases

than in the primary tumor cases (PZ0.049; Table 2),

similar to EGFR, PDGFRB, and VEGF, although differences

for the latter proteins did not reach statistical significance

(see Table 2). On the other hand, VEGFR1 displayed a

higher expression in the primary tumor samples

(PZ0.046), similar to KIT, although this protein did not

show any statistically significant difference. Some of the
Published by Bioscientifica Ltd.
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Table 3 Protein expression of EGFR, KIT, MET, PDGFRB, VEGF, VEGFR1, VEGFR2, and VEGFR3 according to the RET mutation

in primary MTCs

Protein

C634 muta

n (%)

Restb

n (%) P

M918T mutc

n (%)

Restb

n (%) P

Wt RETd

n (%)

Restb

n (%) P

EGFRKe 22 (92) 56 (90) NS 14 (93) 64 (90) NS 33 (92) 45 (90) NS
EGFRCf 2 (8) 6 (10) 1 (7) 7 (10) 3 (8) 5 (10)
KITK 13 (54) 48 (83) 0.0069 12 (92) 49 (71) NS 29 (83) 32 (68) NS
KITC 11 (46) 10 (17) 1 (8) 20 (29) 6 (17) 15 (32)
METK 13 (77) 46 (84) NS 9 (75) 50 (83) NS 31 (91) 28 (74) 0.054
METC 4 (22) 9 (16) 3 (25) 10 (17) 3 (9) 10 (26)
PDGFRBK 13 (54) 43 (75) 0.058 10 (71) 46 (69) NS 27 (82) 29 (60) 0.040
PDGFRBC 11 (46) 14 (25) 4 (29) 21 (31) 6 (18) 19 (40)
VEGFK 18 (75) 41 (67) NS 10 (70) 49 (67) NS 23 (64) 36 (73) NS
VEGFC 6 (25) 20 (33) 5 (30) 21 (33) 13 (36) 13 (27)
VEGFR1K 14 (82) 28 (55) 0.044 4 (44) 38 (64) NS 20 (61) 22 (63) NS
VEGFR1C 3 (18) 23 (45) 5 (56) 21 (36) 13 (39) 13 (37)
VEGFR2K 7 (41) 25 (47) NS 6 (54) 26 (44) NS 15 (45) 17 (46) NS
VEGFR2C 10 (59) 28 (53) 5 (44) 33 (56) 18 (55) 20 (54)
VEGFR3K 8 (33) 39 (67) 0.0047 9 (64) 38 (56) NS 24 (71) 23 (48) 0.041
VEGFR3C 16 (67) 19 (33) 5 (36) 30 (44) 10 (29) 25 (52)

aTumors with an activating mutation in RET residue C634, either germline or somatic.
bThe rest of the tumors that do not have the analyzed genetic characteristic.
cTumors with the activating somatic RET mutation M918T.
dSporadic tumors with no mutations in RET exons 10, 11, 13, 14, 15, and 16.
eA negative expression is indicated by ‘K’.
fA positive expression is indicated by ‘C’.
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markers exhibited large differences in expression in relation

to the inherited character of the disease. We found that

positive KIT, PDGFRB, and VEGFR3 staining was more

frequently associated with familial forms than with sporadic

forms (P values of 0.0040, 0.010, and 0.022 respectively;

Table 2; see also Supplementary Table 4). On the other hand,

EGFR, MET, VEGF, VEGFR1, and VEGFR2 exhibited similar

positive staining in familial and sporadic forms. Because

familial cases are associated with specific mutations, these

data suggest that different RET mutations can predict

differences in the expression of some of these proteins.
Expression of TKI targets according to RET mutations

Because the metastatic samples exhibited altered

expression of some of the proteins studied (see Table 2),

we examined only primary tumor cases to determine the

effect of specific RET mutations on protein levels. Cases

with the C634 RET mutation included both germline and

sporadic tumors, while cases with the M918T RET

mutation and cases with no mutation in RET were all

sporadic forms. We found that 67% of the MTC cases with

the C634 RET mutation expressed VEGFR3, compared

with 36 and 29% respectively of the MTC cases with

the M918T RET mutation and the MTC cases without the

RET mutation (PZ0.0047; see Table 3; ORZ4.1, 95%
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-12-0316 Printed in Great Britain
CIZ1.5–11; Supplementary Table 4). The expression of

KIT was also more frequently found in the C634 RET

mutation cases than in the M918T RET mutation cases and

non-mutated RET cases (PZ0.0069; Table 3; ORZ4.1, 95%

CIZ1.4–11; Supplementary Table 4). By contrast, VEGFR1

exhibited a lower expression in the C634 RET mutation

cases than in the M918T or non-mutated RET cases (18, 56,

and 39% respectively, PZ0.044; Table 3). The expression

of PDGFRB was higher in the C634 and M918T RET

mutation cases than in the non-mutated RET cases

(PZ0.040; Table 3). Other proteins such as EGFR, VEGF,

and VEGFR2 did not display differences in expression

among the different types of RET-mutated tumors, while

MET had a tendency toward a lower expression in MTC

cases without RET mutations (Table 3).

The expression of KIT, PDGFRB, VEGFR1, and VEGFR3

was also examined in stroma: blood vessels, inflammatory

cells, and fibroblasts (data not shown). KIT was only

present in the inflammatory population in scattered cells;

PDGFRB was expressed in blood vessels and fibroblasts,

with an expression level ranging from moderate to high;

and VEGFR1 and VEGFR3 were expressed in most blood

vessels and occasionally in inflammatory cells. In

addition, the expression of KIT was significantly lower

in MTC cases with the C634 mutation (PZ0.0018); no

statistically significant differences for the expression of

PDGFRB, VEGFR1, and VEGFR3 were found.
Published by Bioscientifica Ltd.
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Discussion

The lack of effective therapies for MTC may be changed

drastically by the use of already available TKIs and the

development of novel targeted drugs. Some of the TKIs

have demonstrated remarkable clinical responses in MTC

patients, and several new trials with these molecules

are currently being conducted (Cohen et al. 2008,

Schlumberger et al. 2009, Carr et al. 2010, Lam et al.

2010, Robinson et al. 2010, Wells et al. 2010, 2012, Ahmed

et al. 2011, Hong et al. 2011, Kurzrock et al. 2011).

However, there is a large inter-patient variability in TKI

responses. The molecular basis for this variability is

unknown, and the identification of biomarkers that

could identify MTC patients who will probably benefit

from these different drugs will improve clinical trial

outcomes and ultimately progression-free survival and

overall survival of patients with a disease that not long

ago was untreatable. In this study, we used a large

retrospective series of well-characterized MTC patients to

define the expression of TKI target proteins in relation to

specific clinical and tumor characteristics to provide data

that could be used for rational selection of patients for TKI

treatment.

So far, vandetanib and cabozantinib, which have

markedly improved the progression-free survival of MTC

patients (Schoffski et al. 2013, Thornton et al. 2012), are

the only agents that have been approved for the treatment

of this disease, but a wide variety of additional multi-

targeted kinase inhibitors have entered clinical trials and

several have shown clinical benefit in MTC patients.

Promising results have been obtained with agents that

primarily target angiogenesis and inhibit VEGF receptors

at nanomolar concentrations. Because of the structural

similarity between kinases, many of these molecules also

have an effect on RET and other kinases, such as PDGFR,

MET, and KIT, which could be all-important for the

clinical responses observed. However, axitinib does not

have an anti-RET activity and has displayed objective

responses in MTC patients, suggesting that VEGFR might

be as important as RET for targeted therapy (Cohen et al.

2008). Comparison of outcomes among the various phase

II trials carried out so far is limited by variations in patient

eligibility and response assessment. In addition, in most

cases, genetic characteristics of the different MTC patients

included (e.g. sporadic or familial and type of RET

mutation) have not been reported.

In this study, we examined the expression of eight key

proteins for TKI action (EGFR, KIT, MET, PDGFRB, VEGF,

VEGFR1, VEGFR2, and VEGFR3) in 103 paraffin-embedded
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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MTC samples characterized for RET mutations. We

observed that these proteins were highly expressed in

a subset of MTCs in a coordinated manner (Fig. 1,

Supplementary Table 3). A previous publication that

examined VEGF, VEGFR1, and VEGFR2 in 38 MTC samples

has reported 95, 96, and 91% positive expression for these

proteins respectively (Capp et al. 2010). In the present

study, we adopted more strict criteria to define immuno-

positivity and, thus, the proportions of MTC samples

exhibiting overexpression of these proteins were lower

(32, 34, and 57% respectively). Applying criteria the same as

those used by Capp et al., we obtained similar results for

VEGF and VEGFR2, but observed a lower expression of

VEGFR1 (see Supplementary Table 2). This difference

could be due to the different VEGFR1 antibody used.

The expression of some proteins was significantly different

between primary tumor and metastatic samples (Table 2),

but the number of metastatic samples included in this study

was small, and we cannot rule out the possibility that

additional changes would be detected in a larger series. In

fact, a previous study by our group, including more

metastatic cases and paired primary tumor/metastatic

samples, had found a significant overexpression of

VEGFR2 in the metastatic samples (Rodriguez-Antona

et al. 2010). In the present study, we also found a higher

expression of VEGFR2 in the metastatic samples than in the

primary tumor samples (71 vs 55%), but it did not reach

statistical significance. Additional histopathological infor-

mation and clinical outcome data were not available to

conduct additional analyses. Differences in the expression

of the proteins were evident when comparing sporadic and

familial MTC cases (Table 2), with a higher expression of

KIT, PDGFRB, and VEGFR3 being observed in the familial

cases. Most hereditary MTCs are caused by RET mutations

affecting residue C634 and most sporadic cases have the

M918T RET mutation (see Table 1), suggesting that the

expression of TKI targets and RET mutations may be

associated. In agreement with this, we found that MTC

cases exhibiting VEGFR3 and KIT overexpression were

mainly C634 RET-mutated cases; VEGFR1-positive cases

were mainly M918T RET-mutated cases and cases without

RET mutations; and MTC cases exhibiting PDGFRB over-

expression were mainly tumors without RET mutations.

VEGFR2, which is a target of several TKIs, exhibited similar

staining among the different RET-mutated tumor cases,

with the number of positive cases exceeding 40% in all cases

(Table 3). When we examined the expression of KIT,

PDGFRB, VEGFR1, and VEGFR3 in the tumor stroma, only

KIT displayed a statistically significant difference in the

C634 RET-mutated tumor cases, suggesting that for the
Published by Bioscientifica Ltd.
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expression of the receptors, RET mutation is only relevant

in the tumor cells. In general, and although a validation

with an independent series is required to confirm these

data, these results indicate that different TKI treatments

could be more effective according to the specific RET

mutation present in the MTC. It could be suggested that

C634 RET-mutated cases (mainly hereditary), with a higher

expression of VEGFR3, PDGFRB, and KIT, might benefit

from drugs with a high affinity for these targets, while for

the M918T RET-mutated cases (mostly sporadic), TKIs

targeting RET and VEGFR2 might be more appropriate. In

fact, a phase III clinical trial comparing vandetanib vs

placebo has found that the response rate to this drug is

greater in patients with sporadic tumors who had a M918T

RET mutation (Wells et al. 2012). However, it is also

important to note that intratumoral heterogeneity and

changes in tumor molecular profile through the acquisition

of new somatic mutations suggest that combinations of

more than one TKI may be more effective than single-agent

treatments and that changing to different TKIs over time

might also be needed.

In conclusion, this study shows for the first time to our

knowledge that a substantial number of MTCs exhibit

high expression levels of kinases targeted by TKIs for

which promising results have been obtained in recent

clinical trials. Furthermore, the expression of these targets

is associated with clinical and molecular characteristics of

the MTCs, supporting the notion that these data could be

used for the identification of patients most likely to benefit

from specific TKIs, thus helping to design rational clinical

trials and perform a molecular selection of treatments to

ultimately improve the clinical response of MTC patients.
Supplementary data

This is linked to the online version of the paper at http://dx.doi.org/10.1530/

ERC-12-0316.
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Abstract 

 The work from article 5 underscored the effect that distinct RET mutations exert on the 

expression of key TKI targets. While this project was being carried out, the involvement of RAS 

somatic alterations emerged as an important driver of sporadic MTCs (Moura et al., 2011; 

Boichard et al., 2012; Ciampi et al., 2013). This prompted us to complete the mutational 

screening of the stained MTCs by additionally testing for RAS mutations and carrying out the 

corresponding statistical analyses. We found out that RAS-mutated MTCs in general express 

lower levels of several targets when compared to RET-related tumors, and in particular none of 

them expressed neither PDGFRB nor MET. This could be an important finding given that RAS 

alterations have been related to TKI treatment resistance in other cancer types and should be 

taken into consideration when choosing the most adequate treatment for MTC patients.   

Personal contribution: I performed the genetic screening of the samples. I also participated in 

discussion of the results and drafting of the paper. 

  



 

 

 

 



VEGF, VEGFR3, and PDGFRB Protein
Expression Is Influenced by RAS Mutations

in Medullary Thyroid Carcinoma

Veronika Mancikova,1,* Lucı́a Inglada-Pérez,1,2,* Maria Curras-Freixes,1 Aguirre A. de Cubas,1

Álvaro Gómez,1 Rocı́o Letón,1 Iris Kersten,1 Luis Javier Leandro-Garcı́a,1 Iñaki Comino-Méndez,1

Marı́a Apellaniz-Ruiz,1 Lara Sánchez,1 Alberto Cascón,1,2 Julia Sastre-Marcos,3

Juan F. Garcı́a,4 Cristina Rodrı́guez-Antona,1,2 and Mercedes Robledo1,2

Background: Tyrosine kinase inhibitors (TKIs) have achieved remarkable clinical results in medullary thyroid
carcinoma (MTC) patients. However, the considerable variability in patient response to treatment with TKIs
remains largely unexplained. There is evidence that it could be due, at least in part, to alterations in genes
associated with the disease via their effect on the expression of TKI targets. The objective of this study was to
evaluate the influence of RAS mutations on the expression levels in MTC tumors of eight key TKI target
proteins.
Methods: We assessed by immunohistochemistry the expression of EGFR, KIT, MET, PDGFRB, VEGF,
VEGFR1, VEGFR2, and VEGFR3 in a series of 84 primary MTC tumors that had previously been molecularly
characterized, including 14 RAS-positive, 18 RETM918T-positive, and 24 RETC634-positive tumors, as well as 15
wild-type tumors with no mutations in the RET or RAS genes.
Results: In contrast to RET-positive tumors, RAS-positive tumors expressed neither PDGFRB nor MET ( p = 0.0060
and 0.047, respectively). Similarly, fewer RAS-positive than RET-related tumors expressed VEGFR3 ( p = 0.00062).
Finally, wild-type tumors expressed VEGF more often than both RAS- and RET-positive tumors ( p = 0.0082 and
0.011, respectively).
Conclusions: This is the first study identifying that the expression of TKI targets differs according to the presence of
RAS mutations in MTC. This information could potentially be used to select the most beneficial TKI treatment for
these patients.

Introduction

Upon neoplastic transformation, parafollicular cells
of the thyroid gland give rise to medullary thyroid car-

cinoma (MTC), a rare malignancy that accounts for ap-
proximately 2–5% of all thyroid neoplasias (1). Around 75%
of MTCs are sporadic, while the remaining cases arise as a
manifestation of the hereditary multiple endocrine neoplasia
type 2 syndrome (MEN2). Interestingly, in both scenarios,
different activating point mutations in the ‘‘rearranged during
transfection’’ (RET) proto-oncogene have been shown to lead
to carcinogenesis (2,3). It has recently been described that a

substantial proportion of non-RET-mutated sporadic MTCs
are caused by mutations in RAS genes (4,5). Both types of
molecular alterations have been shown to have an impact on
the evolution of MTC: while RAS gene mutations have been
associated with better outcomes, RET mutations give rise to a
more aggressive phenotype with a worse prognosis (4).

The clinical outcome of MTC depends greatly on when in
the disease process the patient is diagnosed. The 10-year
survival rate of patients with MTC diagnosed at an advanced
stage is less than 20% (6), mainly because treatment with
cytotoxic drugs and/or standard radiotherapy has been proven
to be ineffective (7). In this regard, because RET is a tyrosine
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2ISCIII Center for Biomedical Research on Rare Diseases, Madrid, Spain.
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kinase receptor, MTC patients with metastatic or locally ad-
vanced disease have more recently been treated with small-
molecule tyrosine kinase inhibitors (TKIs), with promising
results (8–13). Remarkably, it has already been shown that
the expression of the key target proteins of these drugs varies
in MTC according to the specific RET mutation present (14),
a finding that could undoubtedly have an important impact on
clinical practice. However, little is known about how RAS-
positive MTC patients respond to TKI drugs.

On the basis of the evidence that expression of TKI target
proteins is associated with the presence of particular genetic
mutations and, more importantly, since RAS mutations have
also been associated with resistance to TKI therapy for other
tumor types (15), we assessed the relationship between the ex-
pression of key TKI targets in a series of 84 molecularly char-
acterized primary MTC tumors. We observed differences in the
frequency of expression of VEGFR3, MET, and PDGFRB be-
tween RAS- and RET-mutated tumors. Wild-type (WT) tumors,
those with no mutations in these two genes, more frequently
expressed VEGF. These results could be of clinical importance
when enrolling these patients in clinical trials of TKI treatments.

Materials and Methods

Human MTC samples

Eighty-four formalin-fixed paraffin-embedded MTC pri-
mary tumor samples were collected at the Spanish National
Cancer Research Center (CNIO) in collaboration with the
CNIO Tumor Bank. Written informed consent was obtained
from all study participants, and the study was approved by the
institutional review board (Comité de Bioética y Bienestar
Animal) of the Instituto de Salud Carlos III. The tumor sam-
ples corresponded in most cases to patients diagnosed as
sporadic or familial, based on the analysis of the RET proto-
oncogene in peripheral blood samples. The mutational status
of exons 10, 11, 13, 14, 15, and 16 of RET was assessed in
genomic germline DNA using standard PCR conditions,
primers, and automated sequencing, as previously described
(16). When no RET mutation was found in peripheral blood,
the same RET screening was performed in the corresponding
tumor. Twenty-nine RET-negative samples were subsequently
screened for somatic alterations in H-, N-, and K-RAS mutation

hotspots: codons 12 and 13 in exon 2, and codon 61 in exon 3,
as previously described (5) (see Table 1 for details).

Of the 84 formalin-fixed paraffin-embedded samples, 79
were distributed across 3 tissue microarrays as previously
described (14), and 5 were evaluated as complete sections.
The tissue microarrays were constructed with 2 cores of 1 mm
from each tumor. Sections of each tissue microarray and in-
dividual tumors were immunostained using antibodies spe-
cific for the EGFR, KIT, MET, PDGFRB, VEGF, VEGFR1,
VEGFR2, and VEGFR3 proteins. The immunohistochemis-
try (IHC) protocols used, immunostaining, and the scoring
applied are detailed in Supplementary Table S1 (Supple-
mentary Data are available online at www.liebertpub.com/
thy) and have been previously described (14). Briefly, for
EGFR, VEGFR2, and PDGFRB, tumors with moderate/
strong staining were considered positive (17,18); for KIT,
both the intensity and the extent of the staining were evalu-
ated, and cases with aggregate scores > 3 were regarded as
positive (19). The MET protein was considered positive
when the expression was positive for 30% of tumor cells with
moderate/strong staining (20); for VEGF, the intensity of
the staining was estimated on the 4-tiered scale (0, absent; 1,
weak; 2, moderate; 3, strong), and immunopositivity was
defined by strong staining (21); for VEGFR1, a tumor was
considered positive if cytoplasmic expression was detected;
for VEGFR3, tumors with a percentage of cells with positive
staining greater than the observed median (50%) were con-
sidered positive.

Statistical analysis

All statistical analyses were performed using SPSS version
17.0. The v2-test or Fisher’s exact test was used to assess as-
sociations between mutation status and IHC expression of each
protein. RET-mutated tumors were classified into three groups:
RET-mutated group as a whole (including all RET-related tu-
mors, regardless the mutation), RETC634 tumors, and RETM918T

tumors. The RETC634-mutated group included tumors from fa-
milial and sporadic cases with germline and somatic mutations,
respectively; the RETM918T-mutated group comprised exclu-
sively tumors from sporadic cases. Tumors were classified as
RAS-mutated regardless of the particular RAS gene involved,
although we also carried out an analysis stratified by gene. The

Table 1. Molecular Characteristics of the 84 Medullary Thyroid Carcinoma

Primary Tumors Included in the Study

Tumor group Total = 84, N (%) Specific mutation Other features

RAS gene mutation 14 (17%) H-RAS exon 2 (n = 3; 4%) Sporadic (n = 3)
H-RAS exon 3 (n = 7; 8%) Sporadic (n = 7)
K-RAS exon 2 (n = 2; 2%) Sporadic (n = 2)
K-RAS exon 3 (n = 2; 2%) Sporadic (n = 2)

RET gene mutation 55 (65%) RET M918T (n = 18; 22%) Sporadic (n = 18)
RET C634 (n = 24; 29%) Sporadic (n = 4)

Familial (n = 20)
RET 618 (n = 6; 7%) Sporadic (n = 1)

Familial (n = 5)
RET 611, 619, 620, 804, 883, or 891 (n = 6; 7%) Sporadic (n = 4)

Familial (n = 2)
Other (n = 1; 1%) Sporadic (n = 1)

WT 15 (18%)

H-RAS accession number: ENSG0000017477; K-RAS accession number: ENSG00000133703.
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WT group consisted exclusively of tumors from sporadic cases
in which both germline and somatic RET mutations and RAS
somatic mutations were not found. Two-sided p-values < 0.05
were considered statistically significant.

Results

The results of mutational screening are summarized in
Table 1. In our series, 55 (65%) tumors harbored a mutation
in RET proto-oncogene (27 familial and 28 sporadic), with
codons 634 and 918 being the most frequently affected (24
and 18 cases, respectively). Other, less frequent RET muta-
tions were present in 13 tumors. A RAS gene mutation was
found in 14 of the 29 RET-negative primary tumors (48%),
which represented 17% of the entire collection of primary
tumors. The majority of the mutations were located in H-
RAS, while four were in K-RAS.

There were clear differences in the immunohistochemical
expression of the TKI receptors (Fig. 1). Table 2 summarizes
significant results of the analysis of IHC status with the un-
derlying mutated gene. Briefly, we observed differences in
the frequency of expression of four key TKI target genes
(PDGFRB, VEGFR3, MET, and VEGFR1) between RAS
gene-mutated samples and RET-mutated tumors, and one,
VEGF, when comparing RAS with WT.

Notably, all RAS-related samples lacked PDGFRB expres-
sion, while RET-related MTC frequently stained positive (0%

vs. 40%, p = 0.0060). In order to assess whether this associa-
tion was because of one RET mutation in particular, the
analysis was repeated considering only the two more prevalent
RET mutations. PDGFRB expression was more strongly as-
sociated with RETC634-mutated (46%) than RETM918T-mutated
cases (35%, p = 0.0032 and 0.024, respectively). RAS-related
tumors less often expressed VEGFR3 than RET-related tumors
( p = 0.00062), seemingly more associated with harboring a
RETC634 mutation ( p = 3.7 · 10- 4) than the RETM918T change
( p = 0.0067). Although VEGFR1 expression in RAS-mutated
tumors was not significantly different from that in RET-
mutated tumors as a whole, it was compared with the RETC634-
mutated group (60% vs. 18%, p = 0.039). Finally, RAS-related
tumors less often expressed MET than RET tumors, mainly
because of RETM918T samples (0% vs. 36%, p = 0.042).

In order to identify a characteristic staining profile for WT
cases, we compared this group to RET and RAS samples sep-
arately. In both comparisons, the only significant difference
observed was in the frequency of VEGF expression, which
was more common in the WT group ( p = 0.011 and 0.0082,
respectively).

Discussion

The appropriate clinical management of familial MTC is
already well established, including prophylactic thyroidec-
tomy at an early age, determined according to the particular

FIG. 1. Examples of immunohistochemical staining of the selected proteins. Representative cases are shown with low and
high protein expression of KIT (A), EGFR (B), MET (C), PDGFRB (D), VEGF (E), VEGFR2 (F), VEGFR1 (G), and
VEGFR3 (H).
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germline mutation detected (22). It is the management of
sporadic and de novo patients with germline RET mutations
that presents a clinical challenge. These patients are often
diagnosed at advanced stage with local or distant metasta-
ses (23), for which the standard therapeutic options are not
effective (7).

Since the transforming event in 30–50% of MTC sporadic
cases is the activation of RET by point mutations, one
promising approach to extend the progression-free survival
of patients with advanced disease is targeted therapy to in-
hibit tyrosine kinase receptors. However, the molecular basis
underlying the great variability in the response of MTC pa-
tients to TKI treatment remains unknown (8). There is
emerging evidence that expression profiles in MTC are dri-
ven by the underlying genetics (24) and, in consequence, that
the expression of TKI target proteins could be dictated by
particular mutations (14). In our series, the proportion of non-
RET but RAS-positive MTCs was 48% (17% of the entire
collection), with H- and then K-RAS being the most often
mutated genes, and N-RAS mutations being totally absent.
The reported prevalence of RAS gene mutations in non-RET
MTC varies considerably, ranging from 17.6% to 81.0%
(4,5,25), explaining nevertheless a substantial proportion of
sporadic patients. Therefore, there is an urgent need to dis-
tinguish this subset of patients and to find out if they share a
specific targetable expression pattern.

Currently, two main TKIs are available in the treatment of
advanced MTC. Vandetanib (ZD6474), which targets VEGFR2,
VEGFR3, RET, and EGFR, was the first TKI approved for the
treatment of adults with symptomatic or progressive MTC (9).
Recently, this drug has been used for treatment of pediat-
ric patients with MTC, who harbor almost exclusively the
RETM918T mutation, with encouraging results (10). In addition,
Cabozantinib (XL184), which inhibits VEGFR2, MET, RET,
KIT, VEGFR1/3, FLT3, Tie2, and AXL (11), was approved by
the FDA for metastatic MTC in 2012.

Recent results from phase III clinical trials showed shorter
progression-free survival in RETM918T-negative patients
treated with Vandetanib when compared with M918T-
mutated patients (26). Even though RAS gene mutation status
was not assessed in this study, according to the known RAS gene
mutations’ prevalence, it seems reasonable to assume that a
proportion of the RETM918T-negative patients with worse re-
sponse to Vandetanib carried RAS alterations, which according
to our results express less frequently some of its targets. Ciampi
et al. (4) reported a higher but not significant prevalence of
disease-free patients among the patients with RAS-mutated
MTC. Thus, it could be expected that less RAS-positive patients
were included in TKI trials, which usually require patients to
have advanced metastatic disease. However, it should be noted
that even RET mutations with lower transforming capacity
eventually trigger advanced disease. In addition, our findings
could also explain in part the tendency for longer progression-
free survival observed for RET-mutated patients treated with
Cabozantinib when compared with RAS-mutated patients (60
vs. 47 weeks) (13), as the latter group expresses much less fre-
quently important targets of this drug. Additionally, differential
expression of other Cabozantinib targets (e.g., Flt-3, Tie2, or
AXL) could also contribute to differences in drug response.

There are other TKIs such as sorafenib, sunitinib, mote-
sanib, and axitinib, currently being tested in clinical trials to
treat aggressive MTC. Some of these drugs target PDGRFB
(12), which according to our observations was not expressed
by RAS-related tumors at all. On the other hand, it was par-
ticularly interesting that a major part of WT tumors expressed
VEGF, suggesting that antiangiogenic therapy could be an
option for these patients. In this regard, bevacizumab, a hu-
manized monoclonal antibody that produces inhibition of
angiogenesis by inhibiting vascular endothelial growth fac-
tor, has shown promising results in various cancers.

This is an exploratory study, which requires further con-
firmation in an independent series of samples. Moreover, we

Table 2. Proportion of Tumors with Proteins Differentially Expressed

RAS vs. RET WT vs. RET WT vs. RAS

Proteinsa RAS RET p WT RET p WT RAS p

VEGF 2/12 (17%) 15/52 (29%) 0.49 9/13 (69%) 15/52 (29%) 0.011 9/13 (69%) 2/12 (17%) 0.0082b

PDGFRB 0/13 (0%) 21/53 (40%) 0.0060b 2/12 (17%) 21/53 (40%) 0.19 2/12 (17%) 0/13 (0%) 0.22
VEGFR1 6/10 (60%) 13/37 (35%) 0.28 6/13 (46%) 13/37 (35%) 0.52 6/13 (46%) 6/10 (60%) 0.68
VEGFR2 4/10 (40%) 22/39 (56%) 0.48 10/13 (77%) 22/39 (56%) 0.19 10/13 (77%) 4/10 (40%) 0.10
VEGFR3 1/14 (7%) 31/53 (59%) 0.00062b,c 5/12 (42%) 31/53 (59%) 0.35 5/12 (42%) 1/14 (7%) 0.065
MET 0/12 (0%) 12/40 (30%) 0.047 4/14 (29%) 12/40 (30%) 0.99 4/14 (29%) 0/12 (0%) 0.10

RAS vs. RETC634 RAS vs. RETM918T

Proteinsa RAS RETC634 p RAS RETM918T p

VEGF 2/12 (17%) 6/24 (25%) 0.69 2/12 (17%) 6/16 (38%) 0.40
PDGFRB 0/13 (0%) 11/24 (46%) 0.0032b 0/13 (0%) 6/17 (35%) 0.024b

VEGFR1 6/10 (60%) 3/17 (18%) 0.039c 6/10 (60%) 5/10 (50%) 0.99
VEGFR2 4/10 (40%) 10/17 (59%) 0.44 4/10 (40%) 6/12 (50%) 0.69
VEGFR3 1/14 (7%) 16/24 (67%) 0.00037b,c 1/14 (7%) 10/17 (59%) 0.0067b,c

MET 0/12 (0%) 4/17 (24%) 0.12 0/12 (0%) 5/14 (36%) 0.042

aOnly proteins with a p-value £ 0.10 in at least one of the comparisons are shown.
bRemained statistically significant when considering only tumors with mutations in H-RAS. H-RAS accession number: ENSG0000017477.
cRemained statistically significant when considering only tumors with mutations in K-RAS. K-RAS accession number: ENSG00000133703.
p-Values < 0.05 highlighted in boldface.
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did not have access to information about the treatment that
patients received or their response to treatment. Thus, it was
not possible to assess the impact of the differential expression
of TKI targets on the treatment outcomes of these patients.

To conclude, this is the first report evaluating the expres-
sion of key TKI target proteins in RAS-related MTC tumors.
RAS-related MTCs do not express MET and PDGFRB, and
stain less frequently for VEGFR3. VEGF was notably more
frequently expressed in WT MTCs. These findings could
have an important impact on treatment decisions for MTC
patients based on the likelihood of benefiting from a partic-
ular therapy, and therefore constitute a first step toward
personalized medicine for these patients.
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 In 2012 in the USA, thyroid cancer accounted for approximately 5% of all female 

malignancies (being the fifth most common female cancer), and 1.5% men cancer cases (Siegel 

et al., 2012). Even if the increasing incidence is converting TC into an epidemic, much of the 

disease etiology remains poorly explored. The main objective of this thesis project was to 

provide a better understanding of various aspects of the disease by applying an exhaustive 

genetic and genomic characterization to an exceptional collection of human samples (blood & 

saliva in Article 1, tumor samples in Articles 2-6) from individuals affected by TC.  

1. Follicular cell-derived thyroid cancer (Articles 1-3) 

1.1 Missing heritability (Article 1) 

The genetic contribution to thyroid cancer risk is greater than that of any other cancer, 

and the first-degree relatives of an individual affected by DTC have more than 8 times higher 

risk of developing the disease than general population (Goldgar et al., 1994; Pal et al., 2001; 

Hemminki et al., 2004). Thus, it might come as surprising that the majority of genetic factors 

related to DTC remains undetermined. For now, involvement of mutations in high-penetrance 

genes seems little plausible as no such alterations have been convincingly replicated (Malchoff 

et al., 2000; McKay et al., 2001; Cavaco et al., 2008; He et al., 2009; Suh et al., 2009). These 

observations imply that the follicular cell-derived thyroid cancer susceptibility is polygenic in 

nature, meaning that a relatively large number of low-penetrance genes (LPGs) could be 

involved. Variation in these LPGs is associated with a small increase in the disease risk, ranging 

from 1.1 to 1.6 (Fletcher and Houlston, 2010), creating a requirement for a rather large sample 

sets in order to detect these associations. In a disease such as TC, which prevalence keeps on 

being relatively low, this represents an important limiting factor obstructing the identification of 

genetic risk factors. 

In the last years, both carefully designed candidate gene-based and genome-wide 

association studies have been applied to discover novel TC LPG. As a result, variants in many 

potential LPGs were identified (such as in RET (Lesueur et al., 2002; Ho et al., 2005), ATM 

(Akulevich et al., 2009), CHEK2 (Cybulski et al., 2004), RAD52 (Siraj et al., 2008), VEGFA 

(Hsiao et al., 2007), CYP2D6 (Lemos et al., 2007), NAT2 (Hernandez et al., 2008), FOXE1 

(Gudmundsson et al., 2009; Landa et al., 2010) and NKX2-1 (Gudmundsson et al., 2009; 

Matsuse et al., 2011; Gudmundsson et al., 2012)). Some of these LPGs are involved in DNA 

repair pathways (such as ATM, RAD52 or CHEK2), and could thus be linked to irradiation - a 

well-known risk factor of TC. Others are closely related to the function and development of 

thyroid gland (such as FOXE1 and NKX2-1). 
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However, the mentioned LPGs are in their great majority described by a single study 

and lack subsequent validation. This could be potentially explained by limited detection power, 

a recurrent pitfall of many of these studies, and a consequence of a moderate sample size and 

the minor allele frequency of the assessed variants. Another possible limitation affecting many 

of the above-mentioned LPGs is the fact that it is not accounted for the disease heterogeneity in 

the study design and patients with tumors of different histological subtypes are grouped together 

in the final analyses. This could be affecting the results, as it is not known whether the same 

variants are involved in the etiology of different histological subtypes of TC. In fact, previous 

results from our laboratory strongly point towards involvement of distinct SNPs in PTC, FTC 

and PTCvf susceptibility. Finally, it is worthy to consider that some associations could be 

related to the disease in a population-specific manner. This could well be due to distinct genetic 

background of different populations and possibly gene-environment interactions, and could 

ultimately underlie the observed world-wide differences in the TC prevalence. 

In this scenario, we performed a two-step association study in differentiated thyroid 

cancer involving 1,820 cases and 2,410 controls. At the time the study was designed, it was 

involving the largest collection of TC patients in the genome-wide discovery step, warranting 

novel insights into the genetic susceptibility of this disease. During the course of the thesis, a 

work involving more numerous sample collection emerged (Kohler et al., 2013). Both ours and 

the work by Kohler and colleagues show that there are not too many TC LPGs that are 

universally associated with the disease in all populations. As we determined in the meta-

analysis of all TC GWAS, for now SNPs at two genomic loci (9q22.33 and 14q13.3 close to 

FOXE1 and NKX2-1 genes, respectively) were invariably detected in all studies and could 

therefore be considered bona fide thyroid cancer SNPs. Moreover, variation at 9q22.33 serves 

as an exceptional example of a universally validated genetic factor that acts above known 

environmental factors, as depicted in the work of Takahashi and colleagues (Takahashi et al., 

2010). 

Apart from re-confirming the associations at 9q22.33 and 14q13.3, we detected novel 

ones at 10q26.12 and 6q14.1. SNPs from these loci were clearly heterogeneously associated 

with the disease in the studied populations. Nevertheless, we were able to find a correlation 

between the genotype of rs10788123 from 10q26.12 and rs4075570 from 6q14.1 and the 

expression of WDR11 and HTR1B genes, respectively, showing they may be expression 

quantitative trait loci (eQTL). WDR11 plays a role in many processes including cell signaling, 

apoptosis and gene regulation, while HTR1B is involved in MAPK signaling and angiogenesis 

(Leone et al., 2000; Zamani and Qu, 2012). Thus, even if the novel associations did not reach 
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genome-wide statistical significance, it is very tempting to suggest their involvement in TC 

susceptibility. 

In order to work with homogeneous patients’ sets, we conducted the analyses sub-

stratifying the affected individuals according to their histopathological diagnosis. We were able 

to confirm the associations from 9q22.33, 14 q13.3, 10q26.12 and 6q14.1 among PTC patients, 

who represented the vast majority of all the cases. When considering exclusively FTC patients, 

we obtained significant results for 9q22.33 locus (p<0.05), and borderline significant ones for 

14q13.3 and 10q26.12 loci (p<0.1). However tempting, we consider we did not have a sufficient 

number of FTC cases that would allow us to unequivocally conclude if the same SNPs are 

involved in the etiology of FTC or not. 

Taking into consideration the Hazard Ratios (HR) corresponding to the variants that are 

being detected, it is clear that on its own, each low-penetrance locus has a relatively small effect 

on thyroid cancer risk and would not produce dramatic familial aggregation. However, in 

combination with other genetic loci and/or environmental factors, particularly given how 

common these can be, variants of this kind might significantly alter disease risk. Yet, studies 

that would consider cooperative influence of several SNPs on the TC risk are extremely rare 

(Landa et al., 2013). Nevertheless, these studies of epistasia hold a great promise of providing 

novel insights into the genetic mechanisms underlying TC inheritance. Moreover, it is 

expectable that in order to identify novel low-penetrance variants with small associated HR, 

very large numbers of cases and controls (>10 000 of each) need to be used in order to achieve 

sufficient statistical power. Hopefully, this need will culminate in international collaboration in 

the future, which would add missing pieces to the TC heritability puzzle. 

To sum up, the findings herein described suggest that heterogeneity in genetic 

susceptibility between populations is a key feature to take into account when exploring risk 

factors related to TC. This phenomenon may also explain at least part of the disparity observed 

between TC association studies. On the whole, this study depicts how genetic heterogeneity 

between populations influences TC susceptibility and uncovers it as a part of the hidden 

heritability of this disease.  

1.2 In search of markers of malignancy and progression (Articles 2&3) 

Follicular cell-derived thyroid cancer represents an attractive and intriguing model to 

study cancer initiation and progression, since it shows all relevant stages of cancer evolution as 

benign precursor lesions, indolent carcinomas and aggressive and highly invasive forms. Much 

of the processes occurring at the stage-switching points remain unknown, which is associated 

with important unresolved issues in the clinics. 
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In this thesis, we had the opportunity to add to the already existing data on gene 

transcriptome (Montero-Conde et al., 2008) the information about miRNome and DNA 

methylome of a large sample set of thyroid tumors. As shown in Figure 5, there were 30 

samples characterized at all three genomic levels. Moreover, all samples were characterized for 

their somatic alterations, and these were taken into account when the data analyses were 

performed. Unlike in the TCGA project, which comprehensively characterized exclusively 

papillary tumors, we were able to generate data about an important number of follicular 

neoplasias (both adenomas and carcinomas). This provided us with a generous data platform to 

address the two main clinical issues that persistently complicate TC patients’ management: the 

lack of markers of malignancy leading to an excess of diagnostic thyroidectomies, and those 

related to disease progression. By doing so, we aimed to decipher the missing pieces in the DTC 

cancer etiology. 

 

Figure 5. OMICs strategy used in order to decipher DTC etiology and identify novel biomarkers. Several 

genomic features were characterized at a genome-wide level, and the data was integrated, bearing in mind not only 

distinct histology, but also the underlying driver mutation and patients’ outcome. Data on gene expression were 

available from previous studies in the laboratory (Montero-Conde et al., 2008).  

 As revealed by both miRNA and DNA methylation profiles, there are essentially two 

molecular subtypes in DTC, which correlate greatly with the histological subdivision into 

tumors with papillary and follicular pattern of growth. Nevertheless, as evidenced from the 

behavior of PTCvf, it is the underlying driver mutation that ultimately leads the genomic 

profiles. In this way, we could observe that BRAF-mutated PTCvf tumors always cluster 

together with papillary tumors (in DNA methylation and miRNA profiling, as well as in the 

previously available mRNA transcriptional profiling), while RAS-mutated ones invariably 

gather with follicular tumors. This observation is in agreement with previous studies (Giordano 

et al., 2005; Nikiforova et al., 2008; Ellis et al., 2014), and can even be extrapolated to the 
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findings from the TCGA consortium (TCGA, 2014). With respect to the latter study, where 

authors genomically dissected exclusively papillary tumors, they could observe a strong 

association between RAS mutations and follicular variant histology. Moreover, just as in our 

unsupervised analyses, in the TCGA data set, the RET/PTC-driven tumors share genomic 

properties with BRAF
V600E

-mutated samples. 

 When it comes to the specificities of each molecular subtype, papillary tumors show 

similar levels of DNA methylation when compared to normal thyroid tissues, and 

characteristically over-express miR-146b and the miR-221 ~ 222 cluster, confirming previous 

results (He et al., 2005; Pallante et al., 2006; Tetzlaff et al., 2007; Jazdzewski et al., 2008; 

Nikiforova et al., 2008; Swierniak et al., 2013). Of note, BRAF-mutated PTCs show aberrant 

hypomethylation of a number of important genes (such as AKT3 or KLK10) accompanied by a 

remarkable down-regulation of miR-7 and miR-204. Conversely, follicular tumors on the whole 

show higher genome-wide levels of DNA methylation, which is again observable in the TCGA 

data (TCGA, 2014). MicroRNA sequencing additionally revealed an extreme over-expression of 

several members of miR-515 family, accompanied by already described up-regulation of miR-

182, -183 and -96 (Nikiforova et al., 2008; Rossing et al., 2012; Dettmer et al., 2013; TCGA, 

2014). Importantly, we were able to pinpoint several miRNAs with a possible master regulator 

function. According to our results, miR-34a and miR-221 are invariable up-regulated and thus 

play a role in all TC histological subtypes, while down-regulation of novel miR-1247 is specific 

to all tumors with follicular pattern of growth. Given the increased role of miRNAs in 

determining cancer phenotype, these candidates deserve further investigation. 

 Moreover, mRNA transcriptomic data from matching tumors allowed us to identify 

molecules that are potentially regulated by DNA methylation and/or action of miRNAs. An 

attractive candidate for further studies, which according to our analysis is regulated in a 

complex manner, is KLK10. It is a member of the kallikrein family of genes, which are secreted 

serine proteases that have been extensively studied in cancer due to their involvement in 

extracellular matrix degradation as well as their promising role as disease biomarkers (Borgono 

and Diamandis, 2004; Olkhov-Mitsel et al., 2012). According to our data, this molecule is 

specifically involved in the pathology of BRAF-positive tumors. A negative regulator of KLK10 

– miR-7 – was found extremely down-regulated in BRAF-related tumors, and the promoter 

region of this gene was found highly hypomethylated. Further functional studies should uncover 

what advantage could the up-regulation of KLK10 give to the PTC cancer cells. 

 Such a broad classification into only two molecular classes already hints that it might be 

difficult to pinpoint diagnostic markers of malignancy differentiating between benign follicular 

adenomas and their malignant counterparts in this particular data set. The results of 
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unsupervised analyses of both DNA methylation and miRNA data showed that even though a 

FTC-specific profile could be intuited, it was always disrupted by some FA samples. These 

samples could well be having a molecular profile closer to carcinogenic transformation. It is 

expectable that the transformation is a multi-step process (Rhodes et al., 2004), and we did 

observe a cumulative increase in the DNA methylation levels between benign and malignant 

tumors. Nevertheless, on the whole, there was a large overlap (>82%) among the deregulated 

events identified in adenomas as compared to those from follicular carcinomas (Figure 6). 

These results further confirm that FA could be a precursor lesion of FTC (Arora et al., 2008), 

and suggest that several steps take place in the conversion between these two TC stages. At this 

point, it is worthy to note that even though our miRNome characterization was exhaustive using 

deep-sequencing techniques, we were only able to array roughly 0.01% of all genomic CpGs. 

Thus, a deeper DNA methylome characterization could uncover additional information, 

potentially even markers of malignancy. 

 

Figure 6. A large overlap between alterations identified in FA and FTC. Both the DNA methylation and miRNA 

transcription study revealed a large overlap between the deregulated events identified in adenomas and those from 

follicular carcinomas. This implies that malignancy markers remain elusive. 

 Another issue that complicates the clinical management of the TC patients is the lack of 

prognostic markers that would characterize those of them at high risk of eventually developing a 

disease recurrence. Thyroid cancer recurrences are prone to appear after long periods of time 

following the initial diagnosis (even more than 10 years). This makes it especially challenging 

to investigate markers of recurrence-free survival, as retrospective studies need to count with 

long term follow-up periods. In this thesis, we fortunately worked with samples with a median 

follow-up of 6 years, which gave us an excellent opportunity to evaluate the prognostic value of 

DNA methylation and miRNA signatures. We were able to identify several alterations that have 

a prognostic value in our tumor set. Elevated levels of DNA methylation of WT1 and EI24 were 

associated with worse prognosis. Expression or methylation levels of WT1 have been proposed 

as markers of disease recurrence in many cancers (Trka et al., 2002; Weisser et al., 2005; 

Kobayashi et al., 2011), while EI24 expression has been found to be associated with tumor 

invasiveness and poor prognosis to treatment (Mork et al., 2007; Mazumder Indra et al., 2011). 
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In the case of miRNA markers, it was the combination of high levels of let-7a with lower levels 

of miR-192 that discriminated the best between the low-risk and high-risk patients. The 

increased expression of let-7 has been detected in serum from papillary thyroid cancer patients 

as associated with the presence of multifocal lesions (Yu et al., 2012), while miR-192 display a 

robust tumor suppressive role (Song et al., 2008; Feng et al., 2011; Kim et al., 2011). In all 

analyses, other important clinical features, such as subtype, stage, gender, mutational status and 

age were corrected for, and the associations of the novel prognostic markers with recurrence 

remained significant. However, it is important to state that these markers require further 

validation. In this regard, the TCGA data set was of little use, as the tumors involved have a 

rather short follow-up and thus the series is in this regard little informative yet. 

 On the whole, according to our results at the resolution used in this thesis, the profiles 

of benign and malignant follicular tumors are highly overlapping, preventing from diagnostic 

markers identification. Nevertheless, we were able to identify several promising novel markers 

of recurrence-free survival, whose potential utility deserves further study. 
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2. Medullary thyroid cancer (Articles 4-6) 

2.1 Genomic dissection of Medullary Thyroid Carcinoma (Article 4) 

 In the current genomic era, the precise molecular etiology of MTC remains elusive. 

MTC is so far a disease of few genetic drivers (RET and RAS), but a variety of mutations whose 

emergence has important clinical consequences (Ciampi et al., 2013). Yet, there are some 

limitations that have been obstructing a true genomic dissection of the disease, such as the 

challenge to collect an informative sample set, and perhaps partially also the fact it is not 

possible to compare the disease state to a normal one due to low cell fraction of C-cells in the 

normal thyroid (about 1%). In this scenario, we planned to finish the comprehensive 

characterization of several genomic aspects of the largest collection of MTC samples published 

so far, and provide an integrative overview of the disease etiology.  

 It was previously demonstrated in MTC that mRNA transcriptomic profiles are altered 

according to the driver mutation (Jain et al., 2004; Ameur et al., 2009; Maliszewska et al., 

2013). Similarly, explorative studies involving a limited number of tumors showed that miRNA 

signatures could potentially serve as prognostic markers in this disease (Abraham et al., 2011; 

Santarpia et al., 2013). These findings encouraged us to continue with the MTC methylome 

characterization, paying special attention to the underlying genetics of the tumors (thus 

following a similar strategy as in case of follicular cell-derived thyroid cancer). According to 

the results of the unsupervised analysis, there are two main methylome profiles in MTC, which 

to a certain extend relate to the genetic alterations. In detail, RET
M918T

-related tumors show 

higher frequency of hypomethylation events, while RET
C634X

-related tumors together with those 

tumors not harboring mutations neither in RET nor RAS share a more methylated profile. These 

distinct profiles once more indicate that medullary thyroid tumors comprise of several 

molecular entities.  

Integrative analysis using matching mRNA, miRNA and DNA methylation data 

available for 31 samples uncovered those DNA methylation changes, which have a negative 

regulatory effect on gene expression. It caught our attention that promoters of several genes 

previously described by our group as up-regulated in distinct MTC genetic classes (DKK4 in 

RET
M918T

-, and GAL among RET
C634X

-positive tumors, respectively (Maliszewska et al., 2013)), 

displayed corresponding promoter hypomethylation. In agreement with our findings, these 

genes showed oncogenic properties in other cancers (Berger et al., 2005; Hawes et al., 2006; 

Matsui et al., 2009; Sugimoto et al., 2009). Moreover, we found enrichment for cytokine-

cytokine interaction and JAK/Stat pathway among the genes affected by hypomethylation in 

RET
M918T

-related MTCs. These pathways were already found aberrantly activated in this genetic 
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class in our previous work (Maliszewska et al., 2013). Altogether, these findings show that 

some of the deregulated genes and pathways involved in distinct MTC molecular subclasses are 

affected at this epigenetic regulatory level. 

Interestingly, we could also find several miRNA genes that seemed to be regulated by 

DNA methylation. miRNAs have gained importance in cancer, serving as markers of cell of 

origin, differentiation stage or response to treatment (Calin et al., 2005; Lu et al., 2005; Calin 

and Croce, 2006). Even if they fine-tune the expression of 1/3 of human genes, their own 

regulation remains elusive (Krol et al., 2010). Here, by identifying putative promoters (Marsico 

et al., 2013), we could demonstrate that at least the miRNAs tested (miR-10a, -30a and -200c) 

show that promoter DNA methylation negatively control their expression. Surely further 

research and algorithm development to define miRNA promoters will lead to unveiling more 

information on miRNA regulation. 

When considering results from this thesis in light of those previously obtained in the 

laboratory, an interesting regulatory axis was uncovered. PROM1 is over-expressed in 

RET
M918T

-positive MTCs (Maliszewska et al., 2013), and due to its cancer stem cell marker 

properties it could be linked to resistance to treatment. Our unpublished data highlighted a sharp 

down-regulation of miR-30a in the same tumor group. Using MAGIA tool, a negative 

correlation between PROM1 and miR-30a expression was found in matching tumors (R=-0.74, 

FDR=0.037). Finally, using in silico target prediction softwares, we confirmed PROM1 as a 

possible miR-30a target. According to the current integration, this post-transcriptional 

regulation could be further regulated by epigenetics, as we found that the miR-30a down-

regulation might be caused by DNA methylation in RET
M918T

-related MTCs.  

By our focused analyses taking into account the underlying genetics of MTC, we were 

able to unveil several interesting regulatory axes in RET
M918T

-positive MTCs that deserve 

further studies. Moreover, according to our results, WT tumors share a similar methylome with 

RET
C634X

-positive tumors and thus perhaps similar pathways might be implicated in the 

emergence of these two MTC subclasses. Probably due to sample number limitations, we could 

not unmask any methylation markers of RAS-positive tumors. Thus, a continued interest in 

MTC genomics warrants further insights into its etiology. However, it is important to gather a 

diverse sample collection, where the less frequent genetic classes (WT, RAS-mutated, less 

frequent RET mutations) would be represented by a reasonable number of tumors. 

 

 



Discussion 

164 

2.2 Implication of genetics in treatment of MTC patients with targeted therapies (Articles 5-6) 

Medullary thyroid carcinoma is one of the least prevalent subtypes of thyroid cancer, 

but responsible for a large proportion of thyroid cancer-related deaths (Roman et al., 2006). 

Genetic screening has been leading the clinical management of familial MTC cases for over 20 

years. Among the sporadic patients, it became equally important to uncover the genetic driver of 

the disease, and either rule out germinal RET mutations, or, if a potential index case is 

uncovered, proceed with screening of the family members. Understanding the genetic 

foundation of the disease recently led to applying TKIs as an alternative to the conventional 

therapies. Importantly, some of the TKIs targets have been shown to be over-expressed in 

subsets of primary MTCs and metastases (Rodriguez-Antona et al., 2010). This might be the 

underlying reason for which this alternative palliative treatment has achieved encouraging 

results in many patients, inducing partial responses and stabilization of the disease. Yet, the 

therapy has to be discontinued due to important toxicities in others. The molecular basis for the 

large variability in TKI response remains largely unknown. 

As detailed above, there is piling evidence that several genomic attributes, including 

expression profiles, are driven by the underlying genetics. Therefore, we wondered if the 

expression of TKI target proteins could also be traced back to particular mutations, as this could 

potentially affect the response. Using an exceptional collection of 103 paraffin-embedded 

MTCs, we only considered RET mutations in the first approximation. By means of unsupervised 

analysis, we observed that TKI target proteins’ expression differs according to the RET status in 

primary tumors. In detail, MTC samples with the RET
C634X

 mutation exhibited a higher 

expression of VEGFR3 and KIT than the RET
M918T

-mutated and non-mutated RET tumor 

samples and a lower expression of VEGFR1. These results could be underlying the greater 

response rate to vandetanib of sporadic patients who harbored RET
M918T

 mutation (Wells et al., 

2012) and highlight that molecular stratification of patients may have the potential to improve 

TKI therapies for MTC. 

Subsequently, we set off to establish if RAS-mutated MTCs share a TKIs targetable 

profile, as these alterations have been related to treatment resistance in other cancer types 

(Linardou et al., 2008). We found that RAS-positive MTCs indeed express lower levels of 

several targets when compared to RET-related tumors. This could be explaining the tendency for 

shorter progression-free survival observed for RAS-mutated patients treated with cabozantinib 

when compared with RET-mutated patients (47 vs. 60 weeks) (Sherman et al., 2013). 

Importantly, even though the etiology of the tumors not harboring neither RET nor RAS 

mutations remains unknown, it seems these patients could benefit from anti-angiogenic therapy, 

as they more often express VEGF.  
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Taking all this into consideration, a priori genetic screening of MTC patients appears 

advisable to guide their enrollment in TKIs clinical trials. One interesting aspect to address in 

the future similar studies is to assess the relationship between TKI targets’ expression profile 

and the ultimate patients’ treatment outcome. Moreover, some other genomic factors could be 

potentially affecting the treatment response. It is encouraging to see that genomics is slowly 

starting to be taken into account in the current MTC clinical trials’ designs, such as in the case 

of microRNAs (https://clinicaltrials.gov/ct2/show/NCT02268734). Surely, similar efforts will 

lead to important advances in the treatment options of MTC patients in the near future. 

 

https://clinicaltrials.gov/ct2/show/NCT02268734
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1. We demonstrate that there are two bona fide thyroid cancer susceptibility loci: 9q22.33 and 

14q13.3. The novel detected variants from 10q26.12 and 6q14.1 are associated with the disease 

risk in a population-specific manner. The genetic heterogeneity between populations could 

explain the lack of replication of already identified LPGs and needs to be taken into account as a 

part of the hidden heritability of this disease. 

 

2. As revealed by both miRNA and DNA methylation profiles, there are essentially two 

molecular subtypes in DTC, which correlate greatly with the histological subdivision into 

tumors with papillary and follicular pattern of growth and are ultimately determined by the 

driver mutation.  

 

3. The methylome and miRNome of benign tumors highly overlaps with those of their 

malignant counterparts, which complicates the identification of differential markers that could 

serve for precise diagnosis of malignant disease. 

 

4. WT1 and EI24 hypermethylation, and the combination of aberrant expression of let-7a and 

miR-192 could serve as potential novel molecular markers of time to progression of patients 

with well-differentiated follicular cell-derived tumors, and may contribute to identification of 

those at high risk of disease recurrence. 

 

5. DNA methylome profiles are closely related to distinct RET mutations in MTCs and verify 

that there are several molecular subgroups in this disease closely linked to the driver mutations. 

Hypomethylation of effector genes of cytokine-cytokine interaction and JAK/Stat pathway 

could be underlying the aberrant activation of these pathways described among RET
M918T

-related 

MTCs. 

 

6. A priori genetic screening of MTC patients should be considered to guide the choice of the 

most suitable TKI treatment, as the TKI targets’ expression differs according to the distinct 

MTC genetic drivers. 
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1. Clin Cancer Res. 2015 Mar 30. pii: clincanres.2804.2014. [Epub ahead of print] 

Title: DNA methylation profiling in pheochromocytoma and paraganglioma reveals 

diagnostic and prognostic markers. 

Authors: de Cubas AA, Korpershoek E, Inglada-Perez L, Letouze E, Curras-Freixes M, 

Agustin FF, Comino-Mendez I, Schiavi F, Mancikova V, Eisenhofer G, Mannelli M, Opocher 

G, Timmers H, Beuschlein F, de Krijger RR, Cascon A, Rodriguez-Antona C, Fraga MF, Favier 

J, Gimenez-Roqueplo AP, Robledo M 

ABSTRACT 

PURPOSE: Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumors, 

associated with highly variable post-operative evolution. The scarcity of reliable PPGL 

prognostic markers continues to complicate patient management. In this study, we explored 

genome-wide DNA methylation patterns in the context of PPGL malignancy to identify novel 

prognostic markers.  

EXPERIMENTAL DESIGN: We retrospectively investigated DNA methylation patterns in 

PPGL with and without metastases utilizing high-throughput DNA methylation profiling data 

(Illumina 27K) from two large, well-characterized discovery (n=123; 24 metastatic) and 

primary validation (n=154; 24 metastatic) series. Additional validation of candidate CpGs was 

performed by bisulfite pyrosequencing in a second independent set of 33 paraffin-embedded 

PPGLs (19 metastatic).  

RESULTS: Of the initial 86 candidate CpGs, we successfully replicated fifty-two (47 genes), 

associated with metastatic PPGL. Of these, 48 CpGs showed significant associations with time 

to progression even after correcting for SDHB genotype, suggesting their value as prognostic 

markers independent of genetic background. Hypermethylation of RDBP (negative elongation 

factor complex member E) in metastatic tumors was further validated by bisulfite 

pyrosequencing (Δβmetastatic-benign=0.29, p=0.003; HR: 1.4 (CI95%: 1.1-2.0), p=0.018), and 

may alter transcriptional networks involving (RERG, GPX3, and PDZK1) apoptosis, invasion, 

and maintenance of DNA integrity. 

 CONCLUSION: This is the first large-scale study of DNA methylation in metastatic PPGL that 

identifies and validates prognostic markers, which could be used for stratifying patients 

according to risk of developing metastasis. Of the three CpGs selected for further validation, 

one (RDBP) was clearly confirmed, and could be used for stratifying patients according to the 

risk of developing metastases.  
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2. J Natl Cancer Inst. 2015 Mar 11;107(5). pii: djv053. doi: 10.1093/jnci/djv053. 

Title: Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. 

Authors: Cascón A, Comino-Méndez I, Currás-Freixes M, de Cubas AA, Contreras L, Richter 

S, Peitzsch M, Mancikova V, Inglada-Pérez L, Pérez-Barrios A, Calatayud M, Azriel S, Villar-

Vicente R, Aller J, Setién F, Moran S, Garcia JF, Río-Machín A, Letón R, Gómez-Graña Á, 

Apellániz-Ruiz M, Roncador G, Esteller M, Rodríguez-Antona C, Satrústegui J, Eisenhofer G, 

Urioste M, Robledo M  

ABSTRACT 

Disruption of the Krebs cycle is a hallmark of cancer. IDH1 and IDH2 mutations are found in 

many neoplasms, and germline alterations in SDH genes and FH predispose to 

pheochromocytoma/paraganglioma and other cancers. We describe a paraganglioma family 

carrying a germline mutation in MDH2, which encodes a Krebs cycle enzyme. Whole-exome 

sequencing was applied to tumor DNA obtained from a man age 55 years diagnosed with 

multiple malignant paragangliomas. Data were analyzed with the two-sided Student's t and 

Mann-Whitney U tests with Bonferroni correction for multiple comparisons. Between six- and 

14-fold lower levels of MDH2 expression were observed in MDH2-mutated tumors compared 

with control patients. Knockdown (KD) of MDH2 in HeLa cells by shRNA triggered the 

accumulation of both malate (mean ± SD: wild-type [WT] = 1±0.18; KD = 2.24±0.17, P = .043) 

and fumarate (WT = 1±0.06; KD = 2.6±0.25, P = .033), which was reversed by transient 

introduction of WT MDH2 cDNA. Segregation of the mutation with disease and absence of 

MDH2 in mutated tumors revealed MDH2 as a novel pheochromocytoma/paraganglioma 

susceptibility gene. 
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3. Pharmacogenomics J. 2014 Nov 4. doi: 10.1038/tpj.2014.67. [Epub ahead of print] 

Title: High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the 

Spanish population classifies CYP3A4 as a polymorphic enzyme. 

Authors: Apellániz-Ruiz M, Inglada-Pérez L, Naranjo ME, Sánchez L, Mancikova V, Currás-

Freixes M, de Cubas AA, Comino-Méndez I, Triki S, Rebai A, Rasool M, Moya G, Grazina M, 

Opocher G, Cascón A, Taboada-Echalar P, Ingelman-Sundberg M, Carracedo A, Robledo M, 

Llerena A, Rodríguez-Antona C 

ABSTRACT 

Cytochrome P450 3A4 (CYP3A4) is a key drug-metabolizing enzyme. Loss-of-function variants 

have been reported as rare events, and the first demonstration of aCYP3A4 protein lacking 

functional activity is caused by CYP3A4*20 allele. Here we characterized the world distribution 

and origin of CYP3A4*20 mutation. CYP3A4*20 was determined in more than 4000 individuals 

representing different populations, and haplotype analysis was performed using CYP3A 

polymorphisms and microsatellite markers. CYP3A4*20 allele was present in 1.2% of the 

Spanish population (up to 3.8% in specific regions), and all CYP3A4*20 carriers had a common 

haplotype. This is compatible with a Spanish founder effect and classifies CYP3A4 as a 

polymorphic enzyme. This constitutes the first description of a CYP3A4 loss-of-function variant 

with high frequency in a population. CYP3A4*20 results together with the key role of CYP3A4 

in drug metabolism support screening for rare CYP3A4 functional alleles among subjects with 

adverse drug events in certain populations. 
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4. J Clin Endocrinol Metab. 2014 Jul;99(7):E1376-80. doi: 10.1210/jc.2013-3879. Epub 2014 

Mar 31. 

Title: H-RAS mutations are restricted to sporadic pheochromocytomas lacking specific 

clinical or pathological features: data from a multi-institutional series. 

Authors: Oudijk L, de Krijger RR, Rapa I, Beuschlein F, de Cubas AA, Dei Tos AP, Dinjens 

WN, Korpershoek E, Mancikova V, Mannelli M, Papotti M, Vatrano S, Robledo M, Volante 

M. 

ABSTRACT 

CONTEXT: Somatic or germline mutations in up to 15 disease-causative genes are detectable in 

up to 50% of patients with pheochromocytoma (PCC) and paraganglioma (PGL). Very recently, 

somatic H-RAS mutations were identified by exome sequencing in approximately 7% in 

sporadic PCCs and PGLs, in association with male sex and benign behavior. 

OBJECTIVE: To explore the prevalence of RAS mutations in a cohort of 271 PCC and PGL 

from a European registry and to compare the genotype with clinical and pathological 

characteristics of potential clinical interest.  

SETTING AND DESIGN: Genetic screening for hotspot mutations in H-, N-, and K-RAS genes 

was performed by means of Sanger sequencing or pyrosequencing methods on tumor DNA in a 

series of patients with (n = 107) or without (n = 164) germline or somatic PCC/PGL-related 

gene mutations. 

RESULTS: Overall, H-RAS mutations were detected in 5.2% of cases (14/271), which were 

confined to sporadic PCCs resulting in a prevalence of 10% (14/140) in this cohort. In contrast, 

no mutations were found in PCC with PCC/PGL-related gene mutations (0/76) or in PGL (0/55) 

harboring or not mutations in PCC/PGL susceptibility genes. In this large series, H-RAS 

mutations in PCCs lacked any significant correlation with pathological or basic clinical 

endpoints.  

CONCLUSIONS: Somatic H-RAS mutations are restricted to a relevant proportion of sporadic 

PCC. These findings provide the basis to study potential H-RAS-dependent correlations with 

long-term outcome data. 
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Santisteban P, Valencia A, Robledo M 

ABSTRACT 

Papillary Thyroid Cancer (PTC) is a heterogeneous and complex disease; susceptibility to PTC 

is influenced by the joint effects of multiple common, low-penetrance genes, although relatively 

few have been identified to date. Here we applied a rigorous combined approach to assess both 

the individual and epistatic contributions of genetic factors to PTC susceptibility, based on one 

of the largest series of thyroid cancer cases described to date. In addition to identifying the 

involvement of TSHR variation in classic PTC, our pioneer study of epistasis revealed a 

significant interaction between variants in STK17B and PAX8. The interaction was detected by 

MD-MBR (p = 0.00010) and confirmed by other methods, and then replicated in a second 

independent series of patients (MD-MBR p = 0.017). Furthermore, we demonstrated an inverse 

correlation between expression of PAX8 and STK17B in a set of cell lines derived from human 

thyroid carcinomas. Overall, our work sheds additional light on the genetic basis of thyroid 

cancer susceptibility, and suggests a new direction for the exploration of the inherited genetic 

contribution to disease using association studies. 
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Title: DNA methylation signatures identify biologically distinct thyroid cancer subtypes. 

Authors: Rodríguez-Rodero S, Fernández AF, Fernández-Morera JL, Castro-Santos P, Bayon 

GF, Ferrero C, Urdinguio RG, Gonzalez-Marquez R, Suarez C, Fernández-Vega I, Fresno 

Forcelledo MF, Martínez-Camblor P, Mancikova V, Castelblanco E, Perez M, Marrón PI, 

Mendiola M, Hardisson D, Santisteban P, Riesco-Eizaguirre G, Matías-Guiu X, Carnero A, 

Robledo M, Delgado-Álvarez E, Menéndez-Torre E, Fraga MF. 

ABSTRACT 

OBJECTIVE: The purpose of this study was to determine the global patterns of aberrant DNA 

methylation in thyroid cancer.  

RESEARCH DESIGN AND METHODS: We have used DNA methylation arrays to determine, 

for the first time, the genome-wide promoter methylation status of papillary, follicular, 

medullary, and anaplastic thyroid tumors. 

RESULTS: We identified 262 and 352 hypermethylated and 13 and 21 hypomethylated genes in 

differentiated papillary and follicular tumors, respectively. Interestingly, the other tumor types 

analyzed displayed more hypomethylated genes (280 in anaplastic and 393 in medullary 

tumors) than aberrantly hypermethylated genes (86 in anaplastic and 131 in medullary tumors). 

Among the genes indentified, we show that 4 potential tumor suppressor genes (ADAMTS8, 

HOXB4, ZIC1, and KISS1R) and 4 potential oncogenes (INSL4, DPPA2, TCL1B, and NOTCH4) 

are frequently regulated by aberrant methylation in primary thyroid tumors. In addition, we 

show that aberrant promoter hypomethylation-associated overexpression of MAP17 might 

promote tumor growth in thyroid cancer. 

CONCLUSIONS: Thyroid cancer subtypes present differential promoter methylation 

signatures, and nondifferentiated subtypes are characterized by aberrant promoter 

hypomethylation rather than hypermethylation. Additional studies are needed to determine the 

potential clinical interest of the tumor subtype-specific DNA methylation signatures described 

herein and the role of aberrant promoter hypomethylation in nondifferentiated thyroid tumors. 
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Title: Integrative analysis of miRNA and mRNA expression profiles in 

pheochromocytoma and paraganglioma identifies genotype-specific markers and 

potentially regulated pathways. 

Authors: de Cubas AA, Leandro-García LJ, Schiavi F, Mancikova V, Comino-Méndez I, 

Inglada-Pérez L, Perez-Martinez M, Ibarz N, Ximénez-Embún P, López-Jiménez E, 

Maliszewska A, Letón R, Gómez Graña A, Bernal C, Alvarez-Escolá C, Rodríguez-Antona C, 

Opocher G, Muñoz J, Megias D, Cascón A, Robledo M 

ABSTRACT 

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare neuroendocrine neoplasias of 

neural crest origin that can be part of several inherited syndromes. Although their mRNA 

profiles are known to depend on genetic background, a number of questions related to tumor 

biology and clinical behavior remain unanswered. As microRNAs (miRNAs) are key players in 

the modulation of gene expression, their comprehensive analysis could resolve some of these 

issues. Through characterization of miRNA profiles in 69 frozen tumors with germline 

mutations in the genes SDHD, SDHB, VHL, RET, NF1, TMEM127, and MAX, we identified 

miRNA signatures specific to, as well as common among, the genetic groups of PCCs/PGLs. 

miRNA expression profiles were validated in an independent series of 30 composed of VHL-, 

SDHB-, SDHD-, and RET-related formalin-fixed paraffin-embedded PCC/PGL samples using 

quantitative real-time PCR. Upregulation of miR-210 in VHL- and SDHB-related PCCs/PGLs 

was verified, while miR-137 and miR-382 were confirmed as generally upregulated in 

PCCs/PGLs (except in MAX-related tumors). Also, we confirmed overexpression of miR-133b 

as VHL-specific miRNAs, miR-488 and miR-885-5p as RET-specific miRNAs, and miR-183 

and miR-96 as SDHB-specific miRNAs. To determine the potential roles miRNAs play in 

PCC/PGL pathogenesis, we performed bioinformatic integration and pathway analysis using 

matched mRNA profiling data that indicated a common enrichment of pathways associated with 

neuronal and neuroendocrine-like differentiation. We demonstrated that miR-183 and/or miR-96 

impede NGF-induced differentiation in PC12 cells. Finally, global proteomic analysis in SDHB 

and MAX tumors allowed us to determine that miRNA regulation occurs primarily through 

mRNA degradation inPCCs/PGLs, which partially confirmed our miRNA-mRNA integration 

results.  
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Alonso MR, Leandro-García LJ, Gómez-Graña A, Inglada-Pérez L, Mancikova V, Rodríguez-

Antona C, Mannelli M, Robledo M, Cascón A 

ABSTRACT 

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are chromaffin-cell tumors that arise 

from the adrenal medulla and extra-adrenal paraganglia, respectively. The dysfunction of genes 

involved in the cellular response to hypoxia, such as VHL, EGL nine homolog 1, and the 

succinate dehydrogenase (SDH) genes, leads to a direct abrogation of hypoxia inducible factor 

(HIF) degradation, resulting in a pseudo-hypoxic state implicated in PCC/PGL development. 

Recently, somatic post-zygotic mutations in EPAS1 (HIF2A) have been found in patients with 

multiple PGLs and congenital erythrocytosis. We assessed 41 PCCs/PGLs for mutations in 

EPAS1 and herein describe the clinical, molecular and genetic characteristics of the 7 patients 

found to carry somatic EPAS1 mutations; 4 presented with multiple PGLs (3 of them also had 

congenital erythrocytosis), whereas 3 were single sporadic PCC/PGL cases. Gene expression 

analysis of EPAS1-mutated tumors revealed similar mRNA EPAS1 levels to those found in 

SDH-gene- and VHL-mutated cases and a significant up-regulation of two hypoxia-induced 

genes (PCSK6 and GNA14). Interestingly, single nucleotide polymorphism array analysis 

revealed an exclusive gain of chromosome 2p in three EPAS1-mutated tumors. Furthermore, 

multiplex-PCR screening for small rearrangements detected a specific EPAS1 gain in another 

EPAS1-mutated tumor and in three non-EPAS1-mutated cases. The finding that EPAS1 is 

involved in the sporadic presentation of the disease not only increases the percentage of 

PCCs/PGLs with known driver mutations, but also highlights the relevance of studying other 

hypoxia-related genes in apparently sporadic tumors. Finally, the detection of a specific copy 

number alteration affecting chromosome 2p in EPAS1-mutated tumors may guide the genetic 

diagnosis of patients with this disease. 
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peripheral neuropathy. 
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Dolan ME, Inglada-Perez L, Maliszewska A, de Cubas AA, Comino-Méndez I, Mancikova V, 

Cascón A, Robledo M, Rodríguez-Antona C 

ABSTRACT 

PURPOSE: Peripheral neuropathy is the dose-limiting toxicity of paclitaxel, a chemotherapeutic 

drug widely used to treat several solid tumors such as breast, lung, and ovary. The cytotoxic 

effect of paclitaxel is mediated through β-tubulin binding in the cellular microtubules. In this 

study, we investigated the association between paclitaxel neurotoxicity risk and regulatory 

genetic variants in β-tubulin genes. 

EXPERIMENTAL DESIGN: We measured variation in gene expression of three β-tubulin 

isotypes (I, IVb, and IIa) in lymphocytes from 100 healthy volunteers, sequenced the promoter 

region to identify polymorphisms putatively influencing gene expression and assessed the 

transcription rate of the identified variants using luciferase assays. To determine whether the 

identified regulatory polymorphisms were associated with paclitaxel neurotoxicity, we 

genotyped them in 214 patients treated with paclitaxel. In addition, paclitaxel-induced 

cytotoxicity in lymphoblastoid cell lines was compared with β-tubulin expression as measured 

by Affymetrix exon array. 

RESULTS: We found a 63-fold variation in β-tubulin IIa gene (TUBB2A) mRNA content and 

three polymorphisms located at -101, -112, and -157 in TUBB2A promoter correlated with 

increased mRNA levels. The -101 and -112 variants, in total linkage disequilibrium, conferred 

TUBB2A increased transcription rate. Furthermore, these variants protected from paclitaxel-

induced peripheral neuropathy [HR, 0.62; 95% confidence interval (CI), 0.42-0.93; P = 0.021, 

multivariable analysis]. In addition, an inverse correlation between TUBB2A and paclitaxel-

induced apoptosis (P = 0.001) in lymphoblastoid cell lines further supported that higher 

TUBB2A gene expression conferred lower paclitaxel sensitivity. 

CONCLUSIONS: This is the first study showing that paclitaxel neuropathy risk is influenced by 

polymorphisms regulating the expression of a β-tubulin gene. 
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