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la pasión que generaron en mı́ por la ingenieŕıa, las telecomunicaciones y el procesado de señal.

Agradezco también muy especialmente a Maria José Garćıa-Gutiérrez su disponibilidad, eficacia
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Abstract1

The proliferation of handheld devices such as smartphones and tablets brings a new

scenario for biometric authentication, and in particular to automatic signature verification.

Research on signature verification has been traditionally carried out using signatures acquired

on digitizing tablets or Tablet-PCs.

This PhD Thesis addresses the problem of user authentication on handled devices using

handwritten signatures and graphical passwords based on free-form doodles, as well as the ef-

fects of biometric aging on signatures. The Thesis pretends to analyze: (i) which are the effects

of mobile conditions on signature and doodle verification, (ii) which are the most distinctive

features in mobile conditions, extracted from the pen or fingertip trajectory, (iii) how do dif-

ferent similarity computation (i.e. matching) algorithms behave with signatures and graphical

passwords captured on mobile conditions, and (iv) what is the impact of aging on signature

features and verification performance.

Two novel datasets have been presented in this Thesis. A database containing free-form

graphical passwords drawn with the fingertip on a smartphone is described. It is the first publicly

available graphical password database to the extent of our knowledge. A dataset containing

signatures from users captured over a period 15 months is also presented, aimed towards the

study of biometric aging.

State-of-the-art local and global matching algorithms are used, namely Hidden Markov Mod-

els, Gaussian Mixture Models, Dynamic Time Warping and distance-based classifiers. A large

proportion of features presented in the research literature is considered in this Thesis.

The experimental contribution of this Thesis is divided in three main topics: signature verifi-

cation on handheld devices, the effects of aging on signature verification, and free-form graphical

password-based authentication. First, regarding signature verification in mobile conditions, we

use a database captured both on a handheld device and digitizing tablet in an office-like scenario.

We analyze the discriminative power of both global and local features using discriminant anal-

ysis and feature selection techniques. The effects of the lack of pen-up trajectories on handheld

devices (when the stylus tip is not in contact with the screen) are also studied.

We then analyze the effects of biometric aging on the signature trait. Using three different

matching algorithms, Hidden Markov Models (HMM), Dynamic Time Warping (DTW), and

distance-based classifiers, the impact in verification performance is studied. We also study

the effects of aging on individual users and individual signature features. Template update

techniques are analyzed as a way of mitigating the negative impact of aging.

Regarding graphical passwords, the DooDB graphical password database is first presented.

A statistical analysis is performed comparing the database samples (free-form doodles and sim-

plified signatures) with handwritten signatures. The sample variability (inter-user, intra-user

1Un resumen extenso de la Tesis en español se incluye en el Apéndice A.



and inter-session) is also analyzed, as well as the learning curve for each kind of trait. Benchmark

results are also reported using state of the art classifiers.

Graphical password verification is afterwards studied using features and matching algorithms

from the signature verification state of the art. Feature selection is also performed and the

resulting feature sets are analyzed.

The main contributions of this work can be summarized as follows. A thorough analysis of

individual feature performance has been carried out, both for global and local features and on

signatures acquired using pen tablets and handheld devices. We have found which individual

features are the most robust and which have very low discriminative potential (pen inclination

and pressure among others). It has been found that feature selection increases verification

performance dramatically, from example from ERRs (Equal Error Rates) over 30% using all

available local features, in the case of handheld devices and skilled forgeries, to rates below 20%

after feature selection. We study the impact of the lack of trajectory information when the pen

tip is not in contact with the acquisition device surface (which happens when touchscreens are

used for signature acquisitions), and we have found that the lack of pen-up trajectories negatively

affects verification performance. As an example, the EER for the local system increases from

9.3% to 12.1% against skilled forgeries when pen-up trajectories are not available.

We study the effects of biometric aging on signature verification and study a number of ways

to compensate the observed performance degradation. It is found that aging does not affect

equally all the users in the database and that features related to signature dynamics are more

degraded than static features. Comparing the performance using test signatures from the first

months with the last months, a variable effect of aging on the EER against random forgeries is

observed in the three systems that are evaluated, from 0.0% to 0.5% in the DTW system, from

1.0% to 5.0% in the distance-based system using global features, and from 3.2% to 27.8% in the

HMM system.

A new graphical password database has been acquired and made publicly available. Verifi-

cation algorithms for finger-drawn graphical passwords and simplified signatures are compared

and feature analysis is performed. We have found that inter-session variability has a highly

negative impact on verification performance, but this can be mitigated performing feature selec-

tion and applying fusion of different matchers. It has also been found that some feature types

are prevalent in the optimal feature vectors and that classifiers have a very different behavior

against skilled and random forgeries. An EER of 3.4% and 22.1% against random and skilled

forgeries is obtained for free-form doodles, which is a promising performance.
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derivative. Features 3, 10, 15, 16, 17 and 18 are not available on touchscreens. . . 45

4.1. Global feature set described in Chapter 3. The optimal 40-feature subsets, as

described in the Experimental Results (Sect. 4.3.2), are shown for each optimiza-

tion scenario: “Ps” and “Pr” denote PDA skilled and random forgeries, “Ts” and

“Tr” pen tablet skilled and random forgeries and “Us” and “Ur” refer to pen

tablet with interpolated pen-ups against skilled and random forgeries respectively. 57

4.2. Local feature sets selected by the SFFS algorithm on the development datasets.

“SK.” denotes skilled forgeries and “RD.” random forgeries. . . . . . . . . . . . 58

4.3. System performance in terms of EER on the BMDB-VAL70 validation set using

global or local features on both scenarios for random (rd) and skilled (sk) forgeries.

The combined EER (EERc) is also presented, as described in Sect. 4.3.3. Vectors

of 40 features have been selected in every configuration for the global system. . . 58

4.4. System performance in terms of EER on the SG-NOTE set using global or local

features on both scenarios for random (rd) forgeries. Vectors of 40 features have

been selected in every configuration for the global system. “SK.” denotes skilled

forgeries and “RD.” random forgeries. . . . . . . . . . . . . . . . . . . . . . . . . 59

xvii



LIST OF TABLES

4.5. System performance in terms of EER in the BSEC 2009 Signature Evaluation

Campaign both for random (rd) and skilled (sk) forgeries. Table data has been

extracted from Houmani et al. (2012). . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1. Division of the feature set introduced in Table 3.1 according to the type of infor-

mation they contain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2. Enrollment and test signatures used to compute the genuine scores in the aging

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3. EER for the aging experiments defined in Table 5.2. The whole DET curves for

these experiments are shown in Fig. 5.3. . . . . . . . . . . . . . . . . . . . . . . . 69

5.4. Most and least affected users by aging in the Signature Long-Term DB accord-

ing to the three systems considered in the experiments. Users with the most

appearances in the AC rows (in bold) are depicted in Fig. 5.6. . . . . . . . . . . . 72

5.5. Enrollment and test signatures used to compute the genuine scores in the template

update experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6. Most and least variable features over time. The numbering criterion is the same

used in Table 3.1. ‘S’ stands for Static and ‘D’ for Dynamic according to the

classification established in Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1. Verification performance in terms of EER (%) using samples from different ses-

sions for authentication. EERsk refers to the EER for skilled forgeries and EERrd

for random forgeries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2. Verification performance in terms of EER (%) using samples from session 2 for

authentication. EERsk refers to the EER for skilled forgeries and EERrd for

random forgeries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1. Feature sets selected by the SFFS algorithm on the development datasets. . . . . 103

7.2. Verification performance in terms of EER and average individual EER (aEER)

using the feature sets selected by the SFFS algorithm (Table 7.1). Results on the

development (left) and validation (right) datasets are shown. Enrollment with

Session 1 (5 signatures) and testing with Session 2. Data in (%). . . . . . . . . . 103

7.3. Verification performance using samples from Session 1 both for enrollment and

testing. The feature sets described in Table 7.1 are considered. Data in (%). . . . 103

xviii



Chapter 1

Introduction

How does automatic signature verification perform on handheld devices with touchscreens?

Is it feasible to reliably authenticate users with signatures traced with the fingertip, or even just

with finger-drawn gestures? How does signature verification performance vary over long periods

of time? These topics, among others, arise with the proliferation of touchscreen-enabled hand-

held devices (e.g. smartphones and tablets), as they have dramatically changed user interaction

schemes, from keyboards and mouses to natural gestures.

In the current era of electronic services and pervasive access to information, secure access

control and user authentication are common tasks which are usually performed with tokens or

passwords. In this field, biometrics has become a focus of interest as it relies on anatomical (e.g.

fingerprint, iris) or behavioral (e.g. voice, signature) traits to authenticate a user (Jain et al.,

2008). These traits cannot be easily stolen or forgotten. It is now common to find fingerprint

verification systems in laptops, face recognition systems on smartphones or for border control

purposes and iris verification in a number of airports.

Within biometrics, signature verification is a convenient authentication method that has been

an active research field in the last three decades (Fierrez and Ortega-Garcia, 2008; Impedovo and

Pirlo, 2008; Impedovo et al., 2012; Plamondon and Lorette, 1989). However, reliable automatic

signature verification is a challenging task, mainly because of the notable variability among

signatures from the same individual and the risk of highly skilled forgers which, due to their

unpredictable nature, are not completely possible to model during the design of a verification

system. Since signatures are a behavioral biometric trait, they present a considerable variability

even between successive realizations, which can be increased over medium or large periods of

time (i.e. biometric aging) (Galbally et al., 2013). Thus, a signature verification system designer

must face a high intra-class variability (among the signatures of a specific user) and a low inter-

class variability, when forgeries are considered.

Despite these challenges, signature is one of the most socially accepted biometric traits, as

it has been used in financial and legal transactions since long time (Impedovo and Pirlo, 2008;

Plamondon and Lorette, 1989).
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1. INTRODUCTION

In contrast with the recent growth of mobile smart devices, little research has been car-

ried out in the field of dynamic signature verification on handheld devices. In most works

related to automatic signature verification, experiments are reported using samples captured

on a pen tablet (Impedovo and Pirlo, 2008). As a matter of fact, most research-oriented sig-

nature databases have been acquired with a pen tablet (Martinez-Diaz and Fierrez, 2009), al-

though there is an emerging interest in signature-based authentication on mobile devices (Blanco-

Gonzalo et al., 2013a,b; Houmani et al., 2012, 2008; Impedovo et al., 2012; Sae-Bae and Memon,

2014; Vivaracho-Pascual and Pascual-Gaspar, 2012).

Touchscreens present however some potential drawbacks for signature verification compared

to pen tablets. In contrast with touchscreens, most pen tablets usually capture more information

than the pen trajectory, namely pen orientation (azimuth and altitude) and pen pressure (see

Fig. 1.1). Moreover, pen tablets also detect the pen trajectory when the tip is not in contact with

the surface, allowing trajectory acquisition during pen-ups. Thus, due to the reduced amount

of available information, it seems reasonable to hypothesize that systems that use signatures

captured on a touchscreen for verification may have worse performance that systems using

signatures captured with a digitizing tablet.

As an evolution of traditional signature verification, touchscreen devices offer also the pos-

sibility to trace the signature, or an equivalent sequence of gestures, directly with the finger-

tip. Moreover, it has also been found that users tend to type much slower on touchscreen

keyboards (Findlater et al., 2011). Thus, finger-drawn gestures (e.g. signatures or graphical

passwords) are a convenient and intuitive alternative to traditional alphanumerical passwords.

This has been subject of research in the field of graphical passwords (Biddle et al., 2012). Graph-

ical user validation methods are also being implemented by major players in the industry (e.g.

Google pattern-lock in AndroidTM devices and Microsoft Windows 8TM Picture Password). Au-

thentication based on simple gestures or doodles traced with the fingertip on a touchscreen is

gathering as well some interest in the research community (Sae-Bae et al., 2014; Zhao et al.,

2014). Unfortunately graphical passwords tend to be much simpler than signatures and may

be in general not composed of previously learned or heavily practiced movements. This may

imply higher intra-class variability (i.e. variations between different authentication attempts)

than signatures or may cause users to forget part or the whole graphical password, that they

provided during enrolment. On the other hand, while some users may be concerned about their

privacy when registering their signature on an automatic authentication system, doodles may

have a higher acceptability.

Due to the fact that biometrics, as an automatic means of human recognition, constitutes

a relatively novel field of research (Jain et al., 2008), most efforts undertaken by the different

parties involved in the development of this technology (researchers, industry, evaluators, etc.)

have been mainly focused on the improvement of its performance (i.e., finding novel methods to

obtain lower error rates) (Cappelli et al., 2006; Wayman et al., 2005). As a consequence, other

important aspects closely related to this type of systems such as the performance degradation

effect known as aging have been left partially uncovered (Fairhurst, 2013). Although there always

2
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Figure 1.1: Example of a signature acquisition using a Wacom Intuos 3TM digitizing tablet and a paper
template with a delimited signing area for each sample.

exists a certain variability among biometric samples of one given user (even when they have been

acquired successively) (Alonso-Fernandez et al., 2009; Doddington et al., 1998; Houmani et al.,

2009), in biometrics the term aging is generally used to refer to the gradual decrease in a system

performance caused by the changes suffered by the users’ trait in the long-term (which cannot be

avoided as is inherent to human nature) (Lanitis, 2010). These changes provoked by age imply

that, after a sufficiently long period of time, the initial enrolment template of a certain subject

substantially differs from his current biometric samples, producing this way lower similarity

scores and increasing the error rates of the system. Thus, aging may be considered as a especial

type of large intra-class variability caused by the inherent transformations of the human body

or behavior over time.

This PhD Thesis addresses the problem of user authentication on handled devices using tra-

ditional signatures and graphical passwords based on free-form doodles. The experimental work

of the Thesis pretends to analyze: (i) which are the effects of mobile conditions on signature and

doodle verification, (ii) which are the most distinctive features in mobile conditions, extracted

from the pen or fingertip trajectory, (iii) how do different similarity computation (i.e. matching)

algorithms behave with signatures and graphical passwords captured on mobile conditions, and

(iv) what are the effects of aging on signature verification.
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1. INTRODUCTION

1.1. Biometrics

Biometrics are generally used for identification or verification purposes (Jain et al., 2004).

In the former mode of operation, the biometric trait that individuals present to the system is

used to determine which one of the enrolled users in the database they are, leading to a 1 : N

comparison, where N is the number of users in the database. In the latter, the biometric trait

is used to authenticate an individual claiming to be a specific user, which is performed by a

1 : 1 comparison between the provided biometric trait and the enrolled data of the claimed

user. Following a particular identity claim, the user will be accepted as client or rejected as an

impostor by the system. Throughout this work, we will address the problem of verification, also

known as authentication.

Verification systems are essentially two-class classifiers, which produce an accept or reject

decision when a biometric trait along with a user identity are presented to the system. Usu-

ally, verification is based on a decision threshold. If the similarity (or match score) between

the provided trait and the model from the claimed user is higher than a specific threshold, the

user is accepted by the system. On the contrary, the user is rejected. In this context, verifi-

cation systems face two type of errors: False Acceptance (FA) and False Rejection (FR). False

Acceptance is produced when a user that falsely claims to be another user is accepted by the

system as being the genuine user. False Rejection means that a genuine user is rejected by the

system as being an impostor. Given a population of genuine users and impostors and a series

of verification trials, the False Acceptance Rate (FAR) and False Rejection Rate (FRR) of the

biometric verification system at hand can be computed for any decision threshold.

A common measure to compare the performance of biometric systems is the Equal Error

Rate (EER). It is computed as the system error rate when the decision threshold is set to satisfy

that FAR = FRR. Due to the fact that the output of a verification system is in general a binary

decision (i.e. accept/reject), the performance of a biometric system is usually represented by a

Receiver Operating Characteristic (ROC) or a Detection Error Trade-off (DET) plot (Martin

et al., 1997). These plots allow an easy comparison between different systems at any decision

threshold.

1.1.1. Biometric Modalities

Several biometric modalities have been proposed in the last decades (Jain et al., 2008). These

can be based on physical and behavioral traits depending on their nature. Physical traits are

related to anatomical properties of an individual, and include fingerprint, face, iris and hand

geometry among others. Behavioral traits refer to how an individual performs an action, and

include voice, signature and gait among the most typical. Some examples of popular biometric

traits are presented in Fig. 1.2.

Biometric modalities can be further classified by other measures such as the following:

Universality, which states if every person has this biometric.

4



1.2 Signature Verification

Iris Face Voice

Signature Hand shape Fingerprint

Figure 1.2: Examples of biometric traits.

Distinctiveness, related to the discriminative power between different individuals of a bio-

metric modality.

Permanence, which is higher if the traits are invariant along periods of time.

Collectability, which refers to how easy is to acquire the biometric trait.

Performance, related to the speed, or accuracy of systems based on a given biometric.

Acceptability, related to the social perception of the biometric modality.

Circumvention, which refers to the resilience against attacks to security systems based on

the biometric.

Other criteria that may be of interest for practical implementation are costs and exception

handling, which refers to the case where a manual matching process is required when people

cannot interact with the system for any reason. A comparison between some popular biometrics

based on the aforementioned measures is presented in Table 1.1. As can be seen, no specific

biometric outperforms the rest of them on every category. Consequently, the choice of a modality

will depend on the application it is intended to be used for.

1.2. Signature Verification

Signatures have been used since centuries to validate documents and transactions. There-

fore, signature is one of the most socially accepted among all biometric traits. In the last

few decades, digitizing devices have made possible to perform machine-based signature verifica-

tion, which has been an intense research field among the biometric and handwriting recognition

5
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Table 1.1: Qualitative comparison of popular biometric modalities. H, M and L denote High, Medium,
and Low respectively. Adapted from (Jain et al., 2004).
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Signature M L L H M H M

Voice M L L M L H L

research communities. This can be corroborated by the variety of research works conducted

during the last decades (Fierrez and Ortega-Garcia, 2008; Impedovo and Pirlo, 2008; Impe-

dovo et al., 2012; Leclerc and Plamondon, 1994; Plamondon and Lorette, 1989; Plamondon

and Srihari, 2000) and the amount of competitions held in recent years (Blankers et al., 2009;

BMEC, 2007; Houmani et al., 2012, 2011; Liwicki et al., 2011; Malik et al., 2013; Yeung et al.,

2004). A number of signature-specific standards have also been published related to biometric

data management (ANSI-INCITS 395-2005, 2005; ISO/IEC 19794-11, 2005; ISO/IEC 19794-7,

2005). One of the main challenges in signature verification is related to the signature variability.

While signatures from the same user show considerable differences between different captures

(high intra-class variability), skilled forgers can perform signatures with high resemblance to

the user’s signature (low inter-class variability). Moreover, when a system is designed, only a

fraction of information about skilled forgeries can be obtained as forgers with unexpected skills

can appear at any time once the system has been deployed.

Two main classes of signature verification systems exist depending on the information ex-

tracted from the signature. Off-line systems use only the signature image, while on-line or

dynamic systems employ digitized time functions of the signature.

Off-line or static signature verification systems use static signature images, which may

have been scanned or acquired using a camera, to perform verification. The approaches taken

for off-line signature verification have been heterogeneous. Some authors focus on global features

using image or shape-oriented pattern recognition techniques (Sabourin, 1997) while others use

local features, relying on stroke, texture and structural information (Ammar et al., 1990; Guo

et al., 1997; Vargas et al., 2011). Some approaches combine both global and local features

(Fierrez-Aguilar et al., 2004; Huang and Yan, 1997).
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1.3 Applications of Signature Verification on Handheld Devices

On-line or dynamic systems use captured signature time-functions. These functions are

obtained using digitizer tablets or touchscreens (e.g. Tablet-PCs, smartphones, etc.), as illus-

trated in Fig. 1.1. Traditionally, dynamic systems have presented a better performance than

off-line systems as more levels of information than the signature static image are available (Pla-

mondon and Lorette, 1989). This is the approach considered in this Thesis, and will be described

in the following chapters.

1.3. Applications of Signature Verification on Handheld Devices

Touchscreen portable devices such as smartphones or tablets provide an appropriate com-

puting platform for signature verification (Martinez-Diaz et al., 2007b, 2009c; Vivaracho-Pascual

and Pascual-Gaspar, 2012). In fact, commercial devices already provide handwritten character

recognition as a text input alternative (Anquetil and Bouchereau, 2002; Ballagas et al., 2006).

Signature verification can be used for a wide range of applications. Among them, we cite

the following:

Payments in commercial environments: the signature is used to validate a payment that

is performed via wireless networks. This enables ubiquitous access to commercial trans-

actions. Currently, signatures are not always visually verified at the point of sale, so

automatic verification could provide higher security levels.

Legal transactions: legal documents or certificates are signed by the user adding additional

security as the signature is verified. This can be a convenient user validation scheme

for e-government applications. Using on-line signature verification, the protection against

repudiation of signed documents is even increased over traditional signature.

User login: the signature is used to login into a local or remote system as an access control

measure (e.g. bank account, personal records, etc.), instead of traditional methods such

as PINs or passwords.

Customer validation: a customer is validated by its signature. A client that receives a service

or a delivery (e.g. a parcel) signs in a mobile device carried by the deliverer or service

provider to certify his conformity.

Paperless office: documents are electronically signed without printing them, providing verifi-

cation of the signatures and ubiquitous access to them. This allows business process and

workflow automation where signatures are needed.

A key advantage of signature verification with respect to other biometric traits in mobile

devices is that no additional hardware is needed for acquisition, as it is the case of fingerprint

sensors or cameras for fingerprint and face verification systems respectively. Consequently, no

extra costs exist and the system complexity does not increase.

7
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1.4. Challenges of Signature Verification on Handheld Devices

Designers of signature verification systems must face many challenges. As has been previously

stated, inter- and intra-variability represent two of the main difficulties when trying to reach a

good verification performance, specially in the case of skilled forgeries.

Handheld devices such as smartphones or tablets are affected by size and weight constraints

due to their portable nature. While processing units, memory chips and battery components

are nowadays experimenting higher levels of miniaturization and integration, the input (e.g.

keyboard, touchscreen) and output (e.g. display) parts must have reasonable dimensions in

order to keep their usability. Poor ergonomics and small input areas on handheld devices are

two key factors that increase the variability during the signing process. Moreover, the unfamiliar

signing surface may affect the signing process.

The touchscreen digitizing quality should also be taken into account. A typical digitizing

pen tablet is based on an electromagnetic principle. The tablet has an embedded wire grid

which acts as a transmitter. The pen (which is specifically designed for the tablet) acts as an

antenna, which resonates and emits a signal that is captured by the tablet, allowing to detect

its position with high accuracy. The tablet detects the pen movement even if it is not in contact

with the tablet surface (in a reasonable range of proximity). On the other hand, touchscreens

of stylus-oriented handheld devices are based on a resistive principle. Two separated conductive

layers are connected when the screen is pressed. The position of the contact point can be

accurately detected, but only when the surface is pressed. Capacitive touchscreens are also

present in most smartphones and tables. They detect conductive bodies in contact with them

and are also unable to detect pressure, although pressure can be estimated by the size of the

object in contact. Consequently pressure, pen-azimuth or other signals that have been reported

by some authors to increase the verification performance (Muramatsu and Matsumoto, 2007),

are not usually captured by touchscreens from handheld devices (although other works suggest

that these signals are not among the most discriminative (Houmani et al., 2009)). In addition,

the pen trajectory during pen-ups, which is invisible to forgers and provides discriminative

information (Sesa-Nogueras et al., 2012), is not available when using touchscreens for acquisition.

Irregular sampling rates and sampling errors, which are common in some mobile devices,

may worsen the verification performance and must be addressed during the preprocessing steps.

The interest in security on portable devices has raised in the last decade (Khokhar, 2006). Se-

curity is a critical concern while designing a signature verification platform as a breach could give

an attacker access to personal data or bank accounts. Gaining access to the matcher could allow

an attacker to perform software attacks such as brute force or hill-climbing attacks (Galbally

et al., 2007b). The user template must be appropriately secured and encrypted (Argones Rua

et al., 2012; Freire-Santos et al., 2006; Maiorana et al., 2008) as well as the communication

channels over which signature information may be transmitted.
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1.5. Graphical Passwords

Graphical passwords are a topic that has been the subject of active research as a replacement

of alphanumerical passwords (Biddle et al., 2012; Suo et al., 2005). The term “graphical pass-

word” refers to many different graphical authentication methods, which can be broadly classified

in three categories: 1) recall, 2) recognition, and 3) cued-recall passwords. Recall-based systems

assume that users remember a graphical password during authentication. Recognition systems

present graphical information to the user during authentication, from which the user has to

perform a selection matching a set of information previously memorized. Cued-recall systems

are a hybrid between the two aforementioned, providing graphical cues that help users recall the

previously learned password. An extensive survey of graphical password algorithms has been

compiled by Biddle et al. (2012).

In the present Dissertation we focus in doodle-based passwords, which are a subset of recall

graphical passwords. Individuals are authenticated by using a drawing or sketch, that is captured

on a touchscreen during enrollment and is used afterwards for verification. Due to their graphical

nature, they are in general easier to remember than classical alphanumerical passwords or PIN

codes composed of strings of characters and numbers (Renaud, 2009).

1.6. Motivation of the Thesis

A number of observations from the state of the art have motivated this Thesis.

First, although signature verification has been extensively studied in the literature, little

research has been carried out in the field of automatic signature verification on handheld devices.

This is seen by the author as one of the currently most natural areas of application of signature-

based authentication technology. Unfortunately, the lack of trajectory information during pen-

ups, among other limitations, challenges the applicability of traditional approaches usually tested

with databases captured with pen-tablets. We understand that the effects of mobility and

touchscreens as a capture device should be studied.

Second, the problem of dynamic signature verification has usually been analyzed using pre-

defined sets of features (Fierrez and Ortega-Garcia, 2007; Jain et al., 2002; Kholmatov and

Yanikoglu, 2005; Ly-Van et al., 2007), but little attention has been paid to analyzing which

specific features are the most discriminative. We have found that feature selection is critical

to improve verification performance which has been reflected, for example, in our contribution

to the BioSecure Signature Evaluation Campaign (BSEC) 2009 (BSEC, 2009; Houmani et al.,

2012). In that competition, the systems presented by the author reached the best performance

in a number of categories due to the process of feature selection that was carried out while

training our systems.

The third observation is that, in general, signature verification systems are designed and

tuned against skilled forgeries (the case where an attacker actively tries to reproduce the forged

signature) or against random forgeries (the case where an attacker provides a random signature

9
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but claims to be another user), but never both. We have found that, specially in Dynamic

Time Warping-based systems, random forgeries and skilled forgeries are completely different

problems and systems can be tuned to work specifically against each type of them and afterwards

combined. This leads to a better overall performance as also proven in our results in BSEC 2009.

The fourth observation is the lack of research regarding aging and template update in sig-

nature verification. It is not easy to find databases where a statistically significant group of

people have been captured over a sufficiently long period of time (Rawls and Ricanek, 2009).

Furthermore, the acquisition process of such a database should be carried out under almost

identical conditions (in terms of acquisition devices, level of control, supervision, etc.) so that

the differences in the system performance can be attributed to the elapse of time and not to the

variability produced by other external factors. In this context, for the definitive introduction of

this biometric technology in the security market, it is relevant to take into account the problem

of aging in practical biometric applications, and to implement strategies that compensate the

gradual drift of their performance so that their valid life period (in which they are competitive)

is increased.

The last observation is that user interaction with handheld devices is becoming increasingly

simplified, and the usage of signatures as a daily authentication means may be considered too

cumbersome by users. The usage of graphical passwords has been studied in the last decade (Bid-

dle et al., 2012), although the research contributions so far reveal that this field is far from mature

(compared to signature verification). As an example, no systematic study, with a reasonably

sized and publicly available database for experiments has been carried out, to the extent of our

knowledge, except the ones carried out by the author (Martinez-Diaz et al., 2013).

1.7. The Thesis and Main Contributions

The Thesis developed in this Dissertation can be stated as follows:

While being convenient and user friendly, signature and graphical password-based au-

thentication on handheld devices is negatively affected by lack of information, sample

quality and time variability. This can be partially overcome by the selection of appro-

priate features and combination of matching algorithms.

The main contributions of this work are:

Signature feature analysis. A thorough analysis of individual feature performance has been

carried out, both for global and local features and on signatures acquired using pen tablets

and handheld devices. We have found which individual features are the most robust and

which have very low discriminative potential (pen inclination and pressure among others).

We study the impact of the lack of trajectory information when the pen tip is not in

contact with the acquisition device surface (which happens when touchscreens are used for

10
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signature acquisitions), and we have found that the lack of pen-up trajectories negatively

affects verification performance.

Aging. We have analyzed the effects of biometric aging in signature verification using a

novel dataset (spanning 15 months) and studied a number of ways to compensate the

observed performance degradation.

Graphical passwords. We have acquired a new graphical password database and made it

publicly available. Algorithms for finger-drawn graphical passwords and simplified signa-

tures have been compared and features analysis has also been performed.

1.8. Outline of the Dissertation

The main objectives of this PhD Thesis are as follows: 1) reviewing and studying the problem

of automatic signature verification on handheld devices, focusing on matching algorithms and

feature selection; 2) analyzing the effects of aging on signature-based authentication; 3) applying

the lessons learned from signature verification to the problem of finger-drawn graphical password

authentication on handheld devices.

This Dissertation is structured according to a traditional complex type including background

theory, practical methods, and a number of independent experimental studies in which the

methods are applied (Paltridge, 2002). The chapter structure is as follows:

Chapter 1 introduces the topics addressed in this Thesis: signature verification and graph-

ical password-based authentication.

Chapter 2 summarizes the related works that have motivated this Thesis.

Chapter 3 describes the verification methods presented in this Thesis, including global and

local systems.

Chapter 4 studies the problem of signature verification on mobile devices compared to pen

tablets. The particular effects on signature features are analyzed.

Chapter 5 studies the effects of aging in handwritten signatures and possible countermea-

sures.

Chapter 6 introduces the DooDB Graphical Password Database, which is the first pub-

licly available database of finger-drawn graphical passwords. Quantitative and Qualitative

analysis of the database are performed and benchmark results are provided.

Chapter 7 studies the problem of graphical password-based authentication based on finger-

drawn doodles. A number of systems from the signature verification literature are consid-

ered and feature selection is performed in order to find the most suitable features.
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Figure 1.3: Dependencies among chapters.

Chapter 8 concludes this Dissertation. The main results are discussed and future research

areas are proposed.

The dependence between chapters is illustrated in Fig. 1.3. It is recommended to read this

Dissertation in consecutive order, although other alternate paths are shown.

If the reader has a background in Biometric Recognition (Jain et al., 2011), the experimental

chapters can be read independently.
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1.9. Detailed Research Contributions

A list of the research contributions of this PhD Thesis is provided in this section. Some

publications appear in several items of the list, they are referenced as citations after the first

appearance. Journal articles are highlighted in bold text.

LITERATURE REVIEWS.

1. Signature verification.

• M. Martinez-Diaz and J. Fierrez, ”Signature databases and evaluation”, Stan Z. Li (Eds.), Encyclopedia

of Biometrics, Springer Verlag, July 2009.

• M. Martinez-Diaz, J. Fierrez and S. Hangai, ”Signature features”, Stan Z. Li (Eds.), Encyclopedia of

Biometrics, Springer Verlag, July 2009.

• M. Martinez-Diaz, J. Fierrez and S. Hangai, ”Signature matching”, Stan Z. Li (Eds.), Encyclopedia of

Biometrics, Springer Verlag, July 2009.

• M. Martinez-Diaz, J. Fierrez and J. Ortega-Garcia, ”Automatic signature verification on handheld de-

vices”, S. Kurkovsky (Eds.), Multimodality in Mobile Computing and Mobile Devices: Methods for

Adaptable Usability, IGI Global, pp. 321-338, May 2009.

SIGNATURE VERIFICATION.

1. Experimental studies on the impact of mobility on signature verification.

• M. Martinez-Diaz, J. Fierrez, R. P. Krish, and J. Galbally. “Mobile signature verification:

feature robustness and performance comparison”, IET Biometrics, Vol. 3, n. 4, pp. 267-

277, December 2014.

• R. P. Krish, J. Fierrez, J. Galbally, and M. Martinez-Diaz. “Dynamic signature verification on smart
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Salamanca, Spain, May 2013.
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bas, D. Muramatsu, B. Yanikoglu, A. Kholmatov, M. Martinez-Diaz, J. Fierrez, J. Ortega-

Garcia, J. R. Alcobé, J. Fabregas, M. Faundez-Zanuy, J. Pascual-Gaspar, V. Cardeñoso-

Payo, and C. Vivaracho-Pascual. “BioSecure signature evaluation campaign (BSEC2009):

evaluating online signature algorithms depending on the quality of signatures”, Pattern

Recognition, Vol. 45, n. 3, pp. 993-1003, March 2012.

• M. Martinez-Diaz, J. Fierrez, J. Galbally, and J. Ortega-Garcia. “Towards mobile authentication using

dynamic signature verification: useful features and performance evaluation”, in Proc. Intl. Conf. on

Pattern Recognition, ICPR, Tampa, USA, December 2008.

• M. Martinez-Diaz, J. Fierrez, and J. Ortega-Garcia. “Incorporating signature verification on handheld

devices with user-dependent Hidden Markov Models”, in Proc. International Conference on Frontiers

in Handwriting Recognition, ICFHR, Montreal, Canada, August 2008.

• M. Martinez-Diaz, J. Fierrez, J. Galbally, F. Alonso-Fernandez and J. Ortega-Garcia, “Signature verifi-

cation on handheld devices”, in Proc. MADRINET Workshop, pp. 87-95, Salamanca, Spain, November

2007.
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2. Development of a top-performing algorithm in the BioSecure Signature Evaluation

Campaign 2009.

• Houmani et al. (2012)

3. Signature dynamics analysis and signature quality.

• J. Galbally, R. Plamondon, J. Fierrez and M. Martinez-Diaz. “Quality analysis of dynamic signature

based on the Sigma-Lognormal model”, in Proc. IAPR Intl. Conf. on Document Analysis and Recog-

nition, ICDAR, pp. 633-637, Beijing, China, September 2011.

• J. Galbally, R. Plamondon, J. Fierrez, C. O’Reilly, M. Martinez-Diaz and J. Ortega-Garcia, “Kinematical

analysis of synthetic dynamic signatures using the Sigma-Lognormal model”, in IAPR Proc. Intl. Conf.

on Frontiers of Handwriting Recognition, ICFHR, pp. 113-118, Calcutta, India, November 2010.

4. User-specific model adaptation.

• Martinez-Diaz et al. (2008b)

• M. Martinez-Diaz, J. Fierrez and J. Ortega-Garcia, “Universal background models for dynamic signature

verification”, in Proc. IEEE Conference on Biometrics: Theory, Applications and Systems, BTAS, pp.

1-6, Washington DC, USA, September 2007.

5. Analysis of the impact of aging on signature verification.

• J. Galbally, M. Martinez-Diaz, and J. Fierrez. “Aging in biometrics: an experimental

analysis on on-line signature”, PLOS ONE, Vol. 8, n. 7, pp. e69897, July 2013.

• J. Galbally, M. Martinez-Diaz and J. Fierrez, “Ageing in biometrics: a case study in on-line signature”,

Michael Fairhurst (Ed.), chapter in Age Factors in Biometric Processing, IET, pp. 117-132, 2013.

GRAPHICAL PASSWORDS

1. Novel datasets.

• M. Martinez-Diaz, J. Fierrez, and J. Galbally. “The DooDB graphical password database:

data analysis and benchmark results”, IEEE Access, Vol. 1, pp. 596-605, September 2013.

2. Novel methods for graphical password authentication based on doodles.

• M. Martinez-Diaz, C. Martin-Diaz, J. Galbally, and J. Fierrez. “A comparative evaluation of finger-

drawn graphical password verification methods”, in IAPR Proc. Intl. Conf. on Frontiers of Handwriting
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Contributions so far related to the problem developed in this Thesis but not presented in

this Dissertation include:

SYNTHETIC SIGNATURE GENERATION
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• J. Galbally, J. Fierrez, M. Martinez-Diaz and J. Ortega-Garcia. “Improving the enrollment in dynamic
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ATTACKS TO BIOMETRIC SYSTEMS
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Chapter 2

Related Works and State of the Art

In this chapter, a summary of the research in dynamic signature verification, biometric

aging, and graphical passwords is provided, presenting related works and available resources.

2.1. Dynamic Signature Verification

2.1.1. Architecture of a Signature Verification System

Dynamic signature verification systems generally share a common architecture. The typical

building blocks of an automatic signature verification system are represented in Fig. 2.1. As

illustrated, the following steps are performed in most cases (Fierrez and Ortega-Garcia, 2008):

1. Data Acquisition: Signature signals are captured from the pen tip using a digitizing

tablet or touchscreen. The signature trajectory is sampled and stored as a discrete-time

series. While some digitizing tablets provide pressure or pen orientation information,

these signals are not commonly available on touchscreens. The sampling rate is usually

equal to or above 100 Hz (although lower rates have also been studied (Martinez-Diaz

et al., 2007a)). This is a reasonable rate, since it has been observed that the maximum

frequencies of the signature time functions are approximately of 20 - 30 Hz (Plamondon

and Lorette, 1989). Alternative acquisition techniques have also been studied. Acquisition

with a video camera has been proposed by (Munich and Perona, 2003; Muramatsu et al.,

2009), as well as using purpose-specific pens which capture the pen dynamics (Martens

and Claesen, 1997; Wang et al., 2010). Some examples of different acquisition conditions

are illustrated in Figure 2.2.

After data acquisition, preprocessing steps are commonly performed. These include noise

filtering, resampling, or interpolation of missing samples.

2. Feature Extraction: Two main approaches have been followed in this step (Martinez-

Diaz et al., 2009a): feature-based systems extract global features (e.g. signature duration,

number of pen-ups, average velocity) from the signature in order to obtain a holistic
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Figure 2.1: Typical architecture of a signature verification system.

feature vector (Lee et al., 1996; Sae-Bae and Memon, 2014). On the other hand, function-

based systems use the signature time functions (e.g. position, pressure) for verification.

Traditionally, function-based approaches have yielded better results than feature-based

ones (Fierrez-Aguilar et al., 2005a; Kholmatov and Yanikoglu, 2005; Ly-Van et al., 2007).

3. Enrollment: In model-based systems a statistical client model is computed using a

training set of genuine signatures which is used for future comparisons in the matching

step (Nanni and Lumini, 2005; Richiardi and Drygajlo, 2003). Reference-based systems

store the features of each signature provided on the training set as templates. In the

matching process the input signature is compared with each reference signature (Lei and

Govindaraju, 2005).

4. Similarity Computation: This step involves pre-alignment if necessary and a matching

process, which returns a matching score (Martinez-Diaz et al., 2009b). In feature-based

systems, statistical techniques like Mahalanobis distance, Parzen Windows or Neural Net-

works are used for matching (Nelson et al., 1994). Function-based systems use other

techniques like Hidden Markov Models - HMM (Dolfing et al., 1998; Fierrez et al., 2007b;

Ly-Van et al., 2007), Dynamic Time Warping - DTW (Kholmatov and Yanikoglu, 2005;

Martens and Claesen, 1997; Sato and Kogure, 1982), correlation (Parizeau and Plamon-

don, 1990), and structural descriptors (Bovino et al., 2003; Huang and Yan, 2003; Parizeau

and Plamondon, 1990) to compare signature models.

5. Score Normalization: The matching score may be normalized to a given range. Score

normalization is critical when combining scores from multiple classifiers or in multi-biometric

systems (Ross et al., 2006). More sophisticated techniques like target-dependent score

normalization can lead to an improved system performance (Fierrez-Aguilar et al., 2005b;

Martinez-Diaz et al., 2007c).

An input signature will be considered to belong to the claimed user if its matching score

exceeds a given threshold.

2.1.2. Feature-based Systems

Feature-based systems, also known as global systems, have been extensively studied (Fierrez-

Aguilar et al., 2005a; Guru and Prakash, 2009; Lee et al., 1996; Lei and Govindaraju, 2005;

Richiardi et al., 2005; Sae-Bae and Memon, 2014). In these systems, a holistic vector is formed
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(a) (b) (c)

Figure 2.2: (a) PDA signature capture process (corresponding to the BIOSECURE DS3 - Mobile Sce-
nario dataset). (b) Pen tablet capture process (corresponding to the BIOSECURE DS2 - Access Control
Scenario dataset). (c) Signature capture process on a mobile device.

by features extracted from the whole signature, such as duration, average speed, number of

pen-ups, etc. Despite the large amount of different global feature sets that have been pro-

posed (a maximum of 100 features are considered by Fierrez-Aguilar et al. (2005a)), the usually

low amount of available training data motivates the usage of feature selection techniques to

reduce the feature vector size (due to the curse of dimensionality). Several feature selection

techniques have been proposed (see Sect. 2.6), being the Sequential Forward Feature Selection

(SFFS) (Pudil et al., 1994) one of the best performing methods reported (Jain and Zongker,

1997). The matching phase is usually performed with statistical classifiers such as Gaussian

Mixture Models (Martinez-Diaz et al., 2007c), Parzen Windows (Martinez-Diaz et al., 2007c),

majority voting (Lee et al., 1996), or distance measures such as Mahalanobis distance (Galbally

et al., 2007b), Manhattan distance (Sae-Bae and Memon, 2014), etc.

2.1.3. Function-based Systems

Function-based systems are also known as local systems. Among these, signature verification

systems using Dynamic Time Warping (DTW) (Kholmatov and Yanikoglu, 2005; Martens and

Claesen, 1997; Sato and Kogure, 1982), Gaussian Mixture Models (Richiardi and Drygajlo,

2003), and Hidden Markov Models (HMM) (Dolfing et al., 1998; Fierrez et al., 2007b; Ly-Van

et al., 2007; Yang et al., 1995) are among the most popular approaches in signature verification.

In these systems, the captured time functions (e.g. pen coordinates, pressure, etc.) are used to

model each user signature. Additionally, the use of pen orientation features such as azimuth or

altitude has been reported to provide good results (Muramatsu and Matsumoto, 2007), although

it has been discussed by other authors (Houmani et al., 2009; Lei and Govindaraju, 2005).

Multi-algorithm approaches have been studied for different biometric traits such as finger-

print (Fronthaler et al., 2008) and speech (Rodriguez-Liñares et al., 2003) and can also be applied

to signature verification. The combination of the feature- and function-based approaches has

been reported to provide better performance than the individual systems (Fierrez-Aguilar et al.,
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2005a).

2.1.3.1. Gaussian Mixture Models and Hidden Markov Models

Gaussian Mixture Models are popular among the speech recognition literature, and

have also been used for signature verification (Richiardi and Drygajlo, 2003). They model a

statistical distribution as a linear combination of d-dimensional Gaussian probability density

functions (pdf):

p (x |λC ) =

N
∑

i=1

ωipi (x) (2.1)

where

pi(x) =
1

(2π)d/2 |Σi|1/2
exp

{

−1

2
(x− µi)

T Σ−1
i (x− µi)

}

.

In order to be a valid pdf, the weights must satisfy
∑N

i=1 ωi = 1. The parameters to be

estimated are then {ωi,µi,Σi} , i = 1, ..., N , where N is the number of Gaussian components,

that has to be specified. The covariance matrices are generally chosen to be diagonal, as full

matrices do not usually provide an advantage in the model approximation (Reynolds et al.,

2000). For a given user C, the model parameters {ωi,µi,Σi} , i = 1, ..., N are estimated from

a training set of signatures using the Expectation Maximization (EM) algorithm (Duda et al.,

2001).

During the enrollment phase one model is created for each user, which is later used for

matching. In addition, a world model λC̄ is created, which models the whole set of users. World

models, also known as Universal Background Models (Reynolds et al., 2000) are trained using

data from a large group of users, as explained in the corresponding experiments.

The match score, given a test vector x and a target user statistical model λC , can be

computed as a ratio of the likelihood that the test vector x is produced by the model λC and

the likelihood that the test vector has been produced by any other user, which is modeled by

the world model λC̄ .

So, following the previous notation, a match score s is obtained as follows:

s = log p (x |λC )− log p (x |λC̄ ) . (2.2)

Hidden Markov Models (HMM) have also been widely used by the speech recognition

community (Rabiner, 1989) as well as in many handwriting recognition applications (Dolfing,

1998). Several approaches using HMMs for dynamic signature verification have been proposed

in the last years (Argones Rua and Alba Castro, 2012; Dolfing et al., 1998; Fierrez et al., 2007b;

Ly-Van et al., 2007; Muramatsu and Matsumoto, 2003; Yang et al., 1995). An HMM represents

a double stochastic process, governed by an underlying Markov chain, with a finite number of

states and random function set that generate symbols or observations each of which is associated

with one state (Yang et al., 1995). Observations are modeled with GMMs in most speech and
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Figure 2.3: Graphical representation of a left-to-right N -state HMM, with M -component GMMs repre-
senting observations and no skips between states.

handwriting recognition applications. GMMs can, in fact, be considered single-state HMMs.

The basic structure of an HMM using GMMs to model observations is defined by the following

elements:

Number of hidden states N .

Number of Gaussian Mixtures per state M .

Probability transition matrix A = {aij}, which contains the probabilities of transitioning

from one state to another or staying on the same state.

In Fig. 2.3, an example of a possible HMM configuration is shown. Hidden Markov Models

are usually trained in two steps. First, state transition probabilities and observation statistical

models are estimated using a Maximum Likelihood algorithm. After this, a re-estimation step

is carried out using the Baum-Welch algorithm. A detailed description of the training process

is given by Rabiner (1989).

Within HMM-based dynamic signature verification, regional and local approaches have been

proposed. In regional approaches, the extracted time functions are further segmented and con-

verted into a sequence of feature vectors or observations, each one representing regional prop-

erties of the signature signal (Dolfing et al., 1998; Kashi et al., 1997; Yang et al., 1995). Some

examples of segmentation boundaries are null vertical velocity points (Dolfing et al., 1998) or

changes in the quantized trajectory direction (Yang et al., 1995). On the other hand, local

approaches directly use the time functions as observation sequences for the signature model-

ing (Argones Rua and Alba Castro, 2012; Fierrez et al., 2007b; Ly-Van et al., 2007; Richiardi

and Drygajlo, 2003).

Finding a reliable and robust model structure for dynamic signature verification is not a

trivial task. While too simple HMMs may not allow to model properly the user signatures,

too complex models may not be able to model future realizations due to over-fitting. On the

other hand, as simple models have less parameters to be estimated, their estimation may be more

robust than for complex models. Two main parameters are commonly considered while selecting
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an optimal model structure: the number of states and the number of Gaussian mixtures per

state (Fierrez et al., 2007b). Most of the proposed systems consider a left-to-right configuration

without skips between states, also known as Bakis topology, as illustrated in Fig. 2.3.

2.1.3.2. Dynamic Time Warping

Dynamic Time Warping (DTW) is an application of Dynamic Programming to the problem

of matching time sequences. Yasuhara and Oka (1977) were the first to report its suitability for

dynamic signature verification, by using the algorithm to match time functions extracted from

digitized signature signals. Their approach was an adaptation of the original algorithm proposed

by Sakoe and Chiba (1978) in the field of speech recognition. The goal of DTW is to find an

elastic match among samples of a pair of sequences X and Y that minimize a given distance

measure. The algorithm may be defined as follows (Sakoe and Chiba, 1978). Let’s define two

sequences

X = x1,x2, ...,xi, ...,xI

Y = y1,y2, ...,yj , ...,yJ

(2.3)

and a distance measure as

d(i, j) = ‖xi − yj‖ (2.4)

between sequence samples. A warping path can be defined as

C = c1, c2, ..., ck, ..., cK (2.5)

where each ck represents a correspondence (i, j) between samples of X and Y. The initial

condition of the algorithm is set to

g1 = g(1, 1) = d(1, 1) · w(1) (2.6)

where gk represents the accumulated distance after k steps and w(k) is a weighting factor that

must be defined. For each iteration, gk is computed as

gk = g(i, j) = min
ck−1

[gk−1 + d(ck) · w(k)] (2.7)

until the I’th and J ’th sample of both sequences respectively is reached. The resulting normal-

ized distance is

D(X,Y) =
gK

∑K
k=1w(k)

(2.8)

where
∑

w(k) compensates the effect of the length of the sequences.

The weighting factors wk are defined in order to restrict which correspondences among

samples of both sequences are allowed. In Fig. 2.4.a, a possible definition of wk is depicted, and
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Figure 2.4: (a) Optimal warping path between two sequences obtained with DTW and Point-to-point
distances are represented with different shades of gray, lighter shades representing shorter distances and
darker shades representing longer distances. (b) Example of point-to-point correspondences between two
genuine signatures obtained using DTW.

an example of a warping path between two sequences is given. In this case, only three transitions

are allowed in the computation of gk. Consequently, Eq. (2.7) becomes

gk = g(i, j) = min







g(i, j − 1) + d(i, j)

g(i − 1, j − 1) + d(i, j)

g(i − 1, j) + d(i, j)






(2.9)

which is one of the most common implementations found in the literature. In Fig. 2.4.b, an

example of point correspondences between two signatures is depicted to visually show the results

of the elastic alignment.

The algorithm has been further refined for signature verification by many authors (Faundez-

Zanuy, 2007; Kholmatov and Yanikoglu, 2005; Martens and Claesen, 1997; Sato and Kogure,

1982). Moreover, the implementation by Kholmatov and Yanikoglu (2005) won the Signature

Verification Competition 2004 (Yeung et al., 2004) and most systems in the BioSecure Signa-

ture Evaluation Campaign 2009 (BSEC 2009) used DTW for matching (Houmani et al., 2012).

Although the DTW algorithm has been replaced by more powerful ones such as HMMs or

SVMs for speech applications, it remains as a highly effective tool for signature verification as

it is best suited for small amounts of training data, which is the common case in signature

verification (Pascual-Gaspar et al., 2009).

2.1.4. Signature Verification on Handheld Devices

As has been stated before, there is a limited research literature related to dynamic signature

verification on handheld devices. Most research-oriented signature databases have been acquired

with a pen tablet (Martinez-Diaz and Fierrez, 2009).

Regarding large publicly available datasets, the only existing one is the BioSecure Multimodal
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Database (BMDB) (Ortega-Garcia et al., 2010) which contains, among other biometric traits,

two signature datasets from the same set of donors. One dataset was captured with a pen tablet

(DS2 dataset) and another with a PDA (DS3 dataset), as described in Sect. 2.4. In Fig. 2.2, the

capture conditions of both datasets are shown.

In 2007, the BioSecure Multimodal Evaluation was held, where verification algorithms from

several European research institutions were compared using the PDA dataset (BMEC, 2007).

It was found that error rates were notably higher than in previous competitions, such as SVC

2004 (Yeung et al., 2004), where signatures had been captured on a pen tablet. In 2009, the

BioSecure Signature Evaluation Campaign was aimed towards comparing the verification per-

formance between the handheld scenario and the pen tablet scenario (Houmani et al., 2012).

Two different tasks were reported. In Task 1, a direct comparison of verification performance

using a pen tablet vs. a PDA for signature acquisition was carried out, with signatures from

the BMDB database. Task 2 studied the verification performance variation with respect to

the information content in signatures (Houmani et al., 2008). Results of Task 1 showed that

the participating signature verification algorithms had a significant lower performance against

skilled forgeries when signatures were captured on a PDA compared to a pen tablet. On the

other hand, verification performance against random forgeries was less negatively affected in the

PDA scenario.

A number of works have focused on analyzing the effects on signatures and verification

performance when they are captured on handheld devices. It has been found that features

extracted from signatures acquired with different devices present statistical distributions that

might be significantly different (Elliot, 2004). These statistical differences between features from

different devices may affect device inter-operability and may also result in large verification

performance differences among sensors. In Alonso-Fernandez et al. (2005), the authors compare

the error rates of two systems when signatures are captured with two different tablet-PCs. It is

shown that the performance depends on the sampling quality of the device used for enrolment.

In Simsons et al. (2011), the effects of constraining the available signing space are studied,

although not specifically for handheld devices. The authors show that the lack of space affects

signature complexity, may cause hesitation marks, and reduce fluency, among other factors.

Blanco-Gonzalo et al. (2013b) have carried out an usability analysis of signature verification

on mobile devices. The effects of ergonomics, different kinds of stylus and user position are

evaluated. A notable variation in the verification performance is reported depending on the user

position among other factors.

Signatures captured with a pen tablet and a handheld device have also been compared from

the point of view of their entropy, or information content. In Houmani et al. (2008) a client-

entropy measure is defined, and it is shown that signatures captured with a PDA have a higher

entropy than those captured with a pen tablet. The entropy measure defined in that work

increases in general with signature variability and graphical simplicity. Higher verification error

rates for signatures with higher entropy are reported.

The performance of a signature verification system using different handheld devices has been
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analyzed by Blanco-Gonzalo et al. (2013a). Signatures produced with a stylus and the fingertip

were used in the experiments. It was found that verification using signatures drawn with the

fingertip was comparable to signatures captured with a stylus.

2.2. Signature Aging

There are different works where the aging of human biometric traits has been studied from

a medical point of view (Coleman and Grover, 2006; Drempt et al., 2011; Morgan et al., 1994;

Mueller, 1997), to help in the early diagnosis of diseases (O’Reilly and Plamondon, 2012), or even

for its forensic implications (Albert et al., 2007; Walton, 1997). However, not many studies can

be found where aging is analyzed from a pure biometrical perspective (two surveys of these works

were recently published by Lanitis (2010) and Scheidat et al. (2011)). Furthermore, almost all of

these aging biometric works are related to the face modality, but, to the best of our knowledge,

none of them have been focused on the study of the signature trait.

Among these face-related contributions, there are works dealing with different aspects of

aging, for instance, its effect on the performance of face verification systems (Ling et al., 2007;

Ramanathan and Chellappa, 2006), methodologies for the synthetic simulation of age (Lanitis,

2008; Lanitis et al., 2002), approaches for the compensation and modeling of the aging effect (Suo

et al., 2007), automatic age estimation methods (Geng et al., 2007; Kwon and Lobo, 1999; Lanitis

et al., 2004), or descriptions of long-term facial databases (Rawls and Ricanek, 2009). All this

interest in the study of the effect of time on face recognition, led in 2004 to the creation of

a research group specialized in the analysis of the different factors related to face aging (Face

Aging Group, 2004).

Outside the face trait, Modi et al. studied the correlation between the quality of fingerprint

samples and the age of the users that produced them, and its impact on the final performance

of fingerprint recognition systems (Modi and Elliott, 2006; Modi et al., 2007). In the same

direction as the fingerprint works by Modi et al., several studies have analyzed the degree of

the signing/drawing skill of people belonging to different age groups, their ability to repeat

certain valuable recognition features and their vulnerability to eventual imitators (Erbilek and

Farihurst, 2012; Faundez-Zanuy et al., 2012; Guest, 2006; Ketcham et al., 2003). Although all

these works study an interesting issue related to aging, they are not equivalent to the analysis

carried out in the present work, as they do not track individuals over a significant period of their

life, but they are focused on establishing a relationship between a certain group of people (e.g.,

the elderly, youngsters) and a given characteristic (fingerprint quality or signing skill) of their

biometric samples (e.g., the elderly-bad quality-poor skill, youngsters-good quality-high skill).

Once the consistent-performance time interval for a given recognition system has been set,

an analysis of the best approach to overcome the effect of aging should also be carried out.

Among the different palliative methods that have been proposed in the literature, the ones

that have received more attention from researchers and industry are automatic template update

strategies (Carls, 2009; Rattani et al., 2009). These schemes use some type of target function
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(e.g., quality measure, similarity score) to automatically select from the most recent biometric

samples given by the user to access the system, those which are most suited to be used to

recompute (update) the subject’s enrolment template. In this field, different fully unsupervised

or semiautomatic approaches have been proposed for the fingerprint trait (Lumini and Nanni,

2006; Uludag et al., 2004), for face-based systems (Rattani et al., 2008), signature (Kato et al.,

2006), or even in multimodal biometric applications (Roli et al., 2007). Other strategies that try

to minimize the effect of aging, are age invariant features (Guest, 2006) and the compensation

of age changes (Park et al., 2010).

In addition to the aforementioned works, several authors have also addressed aging-related

problems (such as age estimation or age modeling), generally using relatively short-term data,

in biometric traits such as the handwriting (Scheidat et al., 2012), the voice (Dobry et al., 2011;

Hasan et al., 2012), or even the gait (Veres et al., 2005).

Although it cannot be strictly considered as aging, several works have analyzed the short term

variability of signatures using samples captured in the same session (intra-session variability,

within minutes), or in different sessions (inter-session variability, within days/weeks) of a regular

acquisition campaign (Galbally et al., 2009b; Guest, 2006; Houmani et al., 2009). In these cases,

the differences in the systems performance can be attributed more to the inherent variability

of the biometric samples (inter and intra-user short term variability) than to a real process of

aging, as the time interval between samples is in general too short (Doddington et al., 1998; Poh

et al., 2006).

2.3. Other Recent Research Topics Related to Signature Verifi-

cation

Although not directly related to the dynamic signature verification process, other contribu-

tions from the last years are worth noting.

Signature modeling has been studied by O’Reilly and Plamondon (2009). Signatures are

modeled as a plan or sequence of strokes executed by the neuromuscular system. Strokes are

represented by a Sigma-Lognormal model which models the pen-tip path as a sum of of lognormal

primitives. This model has proven to accurately model signatures.

Information content of signatures from an communications theory point of view (i.e. entropy)

has also been studied. In Houmani et al. (2008) a client-entropy measure is defined, and it is

shown that signatures captured with a PDA have a higher entropy than those captured with

a pen tablet. The entropy measure defined in that work increases in general with signature

variability and graphical simplicity. Signature complexity and feature stability has been also

studied in previous works (Brault and Plamondon, 1993; Huang and Yan, 2003).

Generation of synthetic signature samples has also been subject of research. Synthetic sig-

natures can be used for system training or for verification performance. A number of techniques

have been proposed (Galbally et al., 2012a,b; Plamondon et al., 2014; Rabasse et al., 2008).

As has been already stated, signature verification systems are exposed to security threats.
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While forgeries represent an example of direct attacks (i.e. when an attacker has direct access to

the acquisition device), indirect attacks have also been studied (when an attacker has access to

an internal part of the system, such as the matching module). Brute force attacks using synthetic

signatures have been studied by Galbally et al. (2007b) as well as hill-climbing attacks (Galbally

et al., 2009a).

2.4. Dynamic Signature Databases

Publicly available databases make possible for the research community to perform an objec-

tive comparison of verification algorithms. Until the last decade, much research had been carried

out using private databases, as no large public ones were available. This does not allow reli-

able performance comparisons of different algorithms, which may have been tuned to a specific

database. Moreover, the usage of small datasets reduces the statistical relevance of experiments.

Privacy and legal issues have also played a relevant role in the lack of public signature datasets.

The variation of signatures among different cultures must also be taken into account. As an

example, in Europe signatures are usually formed by a fast writing followed by a flourish while

in North America they usually correspond to the signers name with no flourish. On the other

hand, signatures in Asia are commonly formed by Asian characters, which are composed of a

larger number of short strokes compared to European or North American signatures.

While some authors have made public the databases used for their research (e.g. Munich

and Perona (2003)), most current dynamic signature databases are collected by the joint effort

of different research institutions. A summary of the most relevant publicly databases is provided

in Table 2.1. In this Section, a brief description of these databases, in chronological order, is

provided.

Table 2.1: Summary of the most popular on-line signature databases. The symbols x, y, p, θ, γ denote
pen position horizontal coordinate, vertical coordinate, pen pressure, azimuth and altitude respectively.

Name Device Users Sessions
Signatures per user

Signals
Interval between

Genuine Forgeries sessions

PHILIPS Pen tablet 51 3 to 5 30 up to 70 x, y, p, θ, γ 1 week approx.
BIOMET Pen tablet 84 3 15 up to 12 x, y, p, θ, γ 3 to 5 months
MCYT Pen tablet 330 1 25 25 x, y, p, θ, γ -
SVC2004 Task 1 Pen tablet 40 2 20 20 x, y min. 1 week
SVC2004 Task 2 Pen tablet 40 2 20 20 x, y, p, θ, γ min. 1 week
SUSIG Blind Subcorpus Pen tablet 100 1 8 or 10 10 x, y, p -
SUSIG Visual Subcorpus Pen tablet 100 2 20 10 x, y, p 1 week approx.
MyIDea Pen tablet ca. 100 3 18 18 x, y, p, θ, γ days to months
BioSecurID Pen tablet 400 4 16 16 x, y, p, θ, γ 1 month approx.
BioSecure DS2 Pen tablet ca. 650 2 30 20 x, y, p, θ, γ 1 month approx.
BioSecure DS3 PDA ca. 650 2 30 20 x, y, p, θ, γ 1 month approx.

PHILIPS Database. Signatures from 51 users were captured using a digitizing tablet at

a sampling rate of 200 Hz (Dolfing et al., 1998). The following signals were captured: pen-

coordinates, pen-pressure, and the pen-tilt, which is composed by the two angles resulting from
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(b)(a) (c)

Figure 2.5: Examples of signatures for a particular subject of the PHILIPS Database. (a) Genuine
signatures, (b) over-the-shoulder forgeries, and (c) home improved forgeries. (Adapted from Dolfing
et al. (1998).)

the projection of the pen in the (x, z) and (y, z) planes.

Each user contributed 30 genuine signatures, leading to 1530 genuine signatures. Three types

of forgeries are present in the database: 1470 over-the-shoulder forgeries, 1530 home-improved

and 240 professional forgeries. Over-the-shoulder forgeries were produced by letting the forger

observe the signing process. Home-improved forgeries were produced by giving to the forgers the

signature static image and letting them to practice at home (see Fig. 2.5). Finally, professional

forgeries were performed by forensic document examiners.

MCYT Signature Subcorpus. The MCYT bimodal database is comprised of signatures

and fingerprints from 330 individuals (Ortega-Garcia et al., 2003). Signatures were acquired

using a WACOM Intuos A6 tablet with a sampling frequency of 100 Hz. The capture area

was divided in frames for acquisition of 37.5 mm (width) × 17.5 mm (height). The following

time sequences are captured: position coordinates, pressure, azimuth angle and altitude angle.

Example signatures and their associated functions are shown in Fig. 2.6.

There are 25 genuine signatures and 25 forgeries per user. Signatures were captured in

groups of 5. First, 5 genuine signatures, then 5 skilled forgeries from another user, repeating

this until 25 signatures from each type were performed. Each user provided 5 forgeries for the 5

previous users in the database. As the user is forced to concentrate on different tasks between

each group of genuine signatures, the variability between groups is expected to be higher than

the one within the same group.

BIOMET Signature Subcorpus. This signature subcorpus is part of the BIOMET multi-

modal database (Garcia-Salicetti et al., 2003). The signatures were captured using a WACOM

Intuos2 A6 Pen-tablet and an ink pen with a sampling rate of 100 Hz. The pen coordinates,

pen-pressure, azimuth and altitude signals were captured. The database contains data from 84

users, with 15 genuine signatures and 12 forgeries per user. Signatures were captured in two
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Figure 2.6: MCYT example signatures and associated functions for two different subjects. One genuine
signature (left) and two forgeries (right columns) are presented for each user. (Adapted from Fierrez
et al. (2007b).)

sessions separated by 5 months. In the first session, 5 genuine signatures and 6 forgeries were

acquired. The remaining 10 genuine signatures and 6 forgeries were captured in the second

session. Forgeries were performed by 4 different users (3 forgeries each). This database contains

2201 signatures, since not all users have complete data: 8 genuine signatures and 54 forgeries

are missing.

SVC 2004 Database. Two development databases were released prior to the Signature Ver-

ification Competition (SVC) 2004 (Yeung et al., 2004). They were captured using a WACOM

digitizing tablet and a Grip Pen. Due to privacy issues, users were advised to use invented sig-

natures instead of genuine ones. The two databases differ in the available data, and correspond

to the two tasks defined in the competition. One contains only coordinate information while the

other provides also pressure and pen orientation signals. Each database contains 40 users, with

20 genuine signatures and 20 forgeries per user acquired in two sessions. Both Occidental and

Asian signatures are present in the databases. Examples of signatures from this database are

shown in Fig. 2.7.

SUSIG Database. The SUSIG database consists of two sets, one captured using a pen-tablet

without visual feedback (Blind subcorpus) and the other using a pen-tablet with an LCD display

(Visual subcorpus) (Kholmatov and Yanikoglu, 2008). There are 100 users per database, but

these do not coincide, as the Visual subcorpus was captured 4 years after the Blind one. For the

Blind subcorpus, a WACOM Graphire2 pen tablet was used. The Visual subcorpus was acquired

using an Interlink Electronics ePad-ink tablet, with a pressure-sensitive LCD. In both subcorpus,

the pen coordinates and the pen pressure signals were captured, using a sampling frequency of

100 Hz. While performing forgeries, users had prior visual input of the signing process on a

separate screen or on the LCD display for the Blind and Visual subcorpus respectively.

For the Blind subcorpus, 8 or 10 genuine signatures were captured in a single session. The

users also provided 10 forgeries from another randomly selected user. Two sessions were per-

formed in the Visual subcorpus. During each one, users provided 10 genuine signatures and 5

forgeries.
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Figure 2.7: SVC 2004 example signatures and associated functions extracted by the pen tablet. For a
particular subject, two genuine signatures (left columns) and two forgeries (right columns) are presented.
(Adapted from Fierrez et al. (2007b).)

MYIDEA CHASM set 1. This signature set is a subset oh the MyIDea multimodal bio-

metric database (Dumas et al., 2005). A WACOM Intuos2 A4 graphic tablet was used at a

sampling rate of 100 Hz. Pen position, pressure and azimuth and altitude were captured. This

dataset has the particularity that the user must read loud what he is writing, allowing what the

authors call CHASM (Combined Handwriting and Speech Modalities). This corpus consists on

ca. 70 users. Signatures were captured in 3 sessions. During each session, each user produced 6

genuine signatures and 6 forgeries, with visual access to the images of the target signatures.

BiosecurID Multimodal Database. This database was collected by 6 different Spanish

research institutions (Fierrez et al., 2010). It includes the following biometric traits: speech,

iris, face, signature, handwriting, fingerprints, hand and keystroke. The data was captured in 4

sessions, distributed in a 4 month time span. The user population was specifically selected in

order to contain a uniform distribution of users from different ages and genders. Non-biometric

data was also stored, such as age, gender, handedness, vision aids and manual worker (if the

user has eroded fingerprints). This allows studying specific demographic groups.

The signature pen-position, pressure, azimuth and altitude signals were acquired using a

Wacom Intuos3 A4 digitizer at 100 Hz. During each session, 2 signatures were captured at the

beginning and 2 at the end, leading to 16 genuine signatures per user. Each user performed 1

forgery per session of signatures from other 3 users in the database. The skill level of the forgeries

is increased by showing to the forger more information of the target signature incrementally.

In the first session, forgers have only visual access to one genuine signature, more data (i.e.

signature dynamics) is shown in further sessions and forgers are let more time to train. Off-line
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signature data is also available, since signatures were captured using an inking pen.

BioSecure Signature Subcorpus DS2 - Access Control Scenario. This database was

captured under the BioSecure Network of Excellence (Biosecure, 2004; Ortega-Garcia et al.,

2010). It is part of the BioSecure multimodal database (Data Set 2) and consists of 667 users.

It was acquired at seven different sites in Europe. Acquisition was carried out using a WA-

COM Intuos3 A6 digitizer at 100 Hz following a procedure similar to the one conducted in

MCYT (Ortega-Garcia et al., 2003). The pen coordinates, pressure, azimuth and altitude sig-

nals are available.

Signatures were captured in two sessions and in blocks of 5. During each session, users were

asked to perform 3 sets of 5 genuine signatures, and 5 forgeries between each set. Each user

performed 5 forgeries for the previous 4 users in the database. The users had visual access to the

dynamics of the signing process of the signatures they had to forge. Thus, 30 genuine signatures

and 20 forgeries are available for each user. An example of the signature capture process of this

database including the paper template that was used is depicted in Fig. 2.2.(b).

BioSecure Signature Subcorpus DS3 - Mobile Scenario. The BioSecure Signature Sub-

corpus DS3 was acquired under the same framework than the Access Control Scenario but on a

mobile scenario (BMEC, 2007). It was acquired in 8 different sites in Europe (Alonso-Fernandez

et al., 2008; Ortega-Garcia et al., 2010). It is the first multi-session database captured on a

PDA. An HP iPAQ hx2790 with a sampling frequency of 100 Hz was used as capture device.

Only the pen coordinates and time stamps are available. Users were asked to sign while standing

and holding the PDA in one hand. This was done to emulate realistic operating conditions. The

acquisition protocol was the same than for the Access Control Scenario Signature Subcorpus,

in which signature data was captured using a pen tablet. An average of two months was left

between each session. Forgeries for each user are performed by 4 different users (5 forgeries

each) in a “worst case” scenario, where each forger has access to the dynamics of the genuine

signature in the PDA screen and a tracker tool allowing to see the original strokes. An example

of the capture process of this database can be seen in Fig. 2.2.(a). Examples of signatures from

the BioSecure Signature subcorpora DS2 and DS3 are presented in Fig. 2.8. Signatures cap-

tured with the PDA present missing samples (i.e. sampling errors) due to the PDA touchscreen

acquisition process.

2.5. Graphical Password-based Authentication

The term “graphical password” refers to a user authentication method where pictorial infor-

mation is used for validation, instead of an alphanumerical password. This method poses many

challenges, such as memorability (which refers to the easiness to be remembered), usability, and

security, since graphical passwords may tend to be visually simple and easily copied by third

parties (Biddle et al., 2012).
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Figure 2.8: Examples of signatures and associated signals from the BioSecure Multimodal Database DS2
and DS3 signature subcorpora captured using a pen tablet (top) and a PDA (bottom), respectively.

Graphical passwords can be broadly classified in three categories: 1) recall, 2) recognition,

and 3) cued-recall passwords. In recall-based systems users have to remember a graphical

password and provide it during authentication. In recognition systems, graphical information

is presented to the user during authentication from which the user has to perform a selection

that matches a set of information previously memorized. Cued-recall systems combine the two

aforementioned methods, providing graphical cues that help users recall the previously learned

password.

In the present work we focus in doodle-based passwords, which fall in the category of recall

graphical passwords. Individuals are authenticated by using a drawing or sketch, which is

captured on a touchscreen during enrollment and is used afterwards for verification. Due to

their graphical nature, they are in general easier to remember than classical alphanumerical
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2.5 Graphical Password-based Authentication

passwords or PIN codes composed of strings of characters and numbers (Renaud, 2009).

An extensive survey of graphical password authentication algorithms has been compiled

by Biddle et al. (2012).

2.5.1. Recall-based Graphical Password Verification

A wide range of approaches for recall-based graphical password authentication have been

reported in the literature. Several aspects have been studied such as resilience to forgeries, mem-

orability (i.e. the easiness to remember), user acceptance, error rates, and time to enroll (Biddle

et al., 2012). The most relevant methods are surveyed in this section, and summarized in

Table 2.2.

Recall-based authentication can be broadly divided in two main categories. Exact-match ap-

proaches assume that during authentication, a user produces exactly the same drawing provided

during enrolment (Jermyn et al., 1999; Tao and Adams, 2008). As a consequence, no biometric

information is used. On the other hand, elastic approaches allow some variability between enrol-

ment and authentication (Govindarajulu and Madhvanath, 2007; Varenhorst, 2004). Graphical

password authentication systems can be also divided into static and dynamic approaches. Static

or off-line systems use the doodle image for authentication, while dynamic or on-line systems

use time functions extracted from the doodle trajectory. Dynamic approaches have traditionally

reached better verification performances than static systems in the related field of signature

verification, since more levels of information are used for authentication.

One of the pioneering contributions in the field is the Draw-A-Secret system (DAS) (Jermyn

et al., 1999). The DAS system implements a rectangular 5× 5 cell grid where users trace their

graphical password. The cell sequence that the users follow is stored as a password. Users are

accepted by the system only if they follow the same sequence of cells. The BDAS (Background

Draw-a-Secret) was later proposed by Dunphy and Yan (2007), where a background image is

shown behind the cell grid. A higher complexity in the password choice and better memorability

were reported. The Pass-Go authentication scheme was proposed also as a variation of DAS

by Tao and Adams (2008). In that approach, the graphical password is defined by a sequence

of grid intersections instead of grid cells, overcoming the limitation of the DAS scheme, where

strokes too close to adjacent cell edges could be incorrectly assigned to multiple cells.

The term “passdoodle” was introduced by Goldberg et al. (2002). A passdoodle is a graphical

password composed of a free-form drawing. In that work, the memorability (i.e. the easiness to

remember) of doodles for user authentication is studied, as well as the user preference towards

alphanumeric passwords or doodles. However, it is a preliminary study carried out with doodles

traced on a sheet of paper. A passdoodle verification system is also proposed by Varenhorst

(2004). The stroke spatial distribution and the speed are used for verification.

A doodle authentication system which uses Dynamic Time Warping (DTW) for matching is

described by Govindarajulu and Madhvanath (2007). In that work, the trajectory coordinates

(x, y), as well as their first and second order derivatives are used as features to characterize

each doodle. Recognition performance results are provided using Tamil characters, instead of

33



2. RELATED WORKS AND STATE OF THE ART

T
a
b
le

2
.2
:
S
u
m
m
a
ry

o
f
rela

ted
gra

p
h
ica

l
pa
ssw

o
rd

a
u
th
en

tica
tio

n
w
o
rks,

fo
llo

w
in
g
ch
ro
n
o
logica

l
o
rd
er.

V
erifi

ca
tio

n
perfo

rm
a
n
ce

is
sh
o
w
n
if
a
va
ila

ble.
D
a
ta
ba
se

refers
to

th
e
n
u
m
ber

o
f
su
bjects

u
sed

in
th
e
experim

en
ts.

M
e
th

o
d

n
a
m

e
Y
e
a
r

F
e
a
tu

r
e
s

M
a
tc
h
in

g
m

e
th

o
d

D
y
n
a
m

ic
/
S
ta

tic
V
e
r
ifi

c
a
tio

n
p
e
r
fo
r
m

a
n
c
e

D
a
ta

b
a
se

D
A
S
J
erm

y
n
e
t
a
l.

1
9
9
9

G
rid

cell
seq

u
en

ce
E
x
a
ct

m
a
tch

S
ta
tic

N
/
A

N
/
A

P
a
ssd

o
o
d
le

G
o
ld
b
erg

e
t
a
l.

2
0
0
2

G
eo
m
etry

&
co
lo
r

V
isu

a
l
sim

ila
rity

S
ta
tic

N
/
A

N
/
A

P
a
ssd

o
o
d
le

V
a
ren

h
o
rst

2
0
0
4

G
eo
m
etry

&
sp

eed
M
u
ltip

le
m
ea
su

res
D
y
n
a
m
ic

9
8
.5
%

a
ccep

ta
n
ce

1
0

B
D
A
S
D
u
n
p
h
y
a
n
d
Y
a
n

2
0
0
7

G
rid

cell
seq

u
en

ce
E
x
a
ct

m
a
tch

S
ta
tic

N
/
A

N
/
A

P
a
ss-G

o
T
a
o
a
n
d
A
d
a
m
s

2
0
0
8

G
rid

in
tersectio

n
seq

u
en

ce
E
x
a
ct

m
a
tch

S
ta
tic

7
8
%

a
ccep

ta
n
ce

1
6
7

D
o
o
d
les

G
ov

in
d
a
ra

ju
lu

a
n
d
M
a
d
h
va

n
a
th

2
0
0
8

G
eo
m
etry,

sp
eed

,
a
ccelera

tio
n

D
y
n
a
m
ic

T
im

e
W
a
rp

in
g

D
y
n
a
m
ic

N
/
A

N
/
A

Y
A
G
P

G
a
o
e
t
a
l.

2
0
0
8

S
tro

k
e
o
rien

ta
tio

n
s

L
ev
en

sh
tein

d
ista

n
ce

S
ta
tic

9
4
%

a
ccep

ta
n
ce

1
8

S
A
S
O
ka

e
t
a
l.

2
0
0
8

E
d
g
e
o
rien

ta
tio

n
p
a
ttern

C
o
rrela

tio
n

S
ta
tic

1
%

E
E
R

(ra
n
d
o
m

fo
rg
eries)

8
7

P
a
ssS

h
a
p
es

W
eiss

a
n
d
L
u
ca

2
0
0
8

S
tro

k
e
o
rien

ta
tio

n
E
x
a
ct

m
a
tch

S
ta
tic

9
4
%

a
ccep

ta
n
ce

1
7

P
seu

d
o
-sig

n
a
tu
res

C
h
en

e
t
a
l.

2
0
0
8

B
io
m
etric

h
a
sh

H
a
sh

m
a
tch

in
g

S
ta
tic

1
%

E
E
R

(sk
illed

fo
rg
eries)

3
7

G
ra
p
h
ica

l
P
a
ssw

o
rd

Z
a
d
a
K
h
a
n
e
t
a
l.

2
0
1
1

P
red

efi
n
ed

sy
m
b
o
ls

E
x
a
ct

m
a
tch

S
ta
tic

N
/
A

N
/
A

M
u
lti-to

u
ch

S
a
e-B

a
e
e
t
a
l.

2
0
1
2

D
ista

n
ce

b
etw

een
p
o
in
ts

M
u
ltip

le
m
ea
su

res
D
y
n
a
m
ic

1
.5
8
%

E
E
R

(ra
n
d
o
m

fo
rg
eries)

3
4

P
a
ssw

o
rd

p
a
ttern

D
e
L
u
ca

e
t
a
l.

2
0
1
2

C
o
o
rd

in
a
tes,

p
ressu

re,
sp

eed
D
y
n
a
m
ic

T
im

e
W
a
rp

in
g

D
y
n
a
m
ic

7
7
%

a
ccu

ra
cy

3
1

L
o
ck

p
a
ttern

A
n
g
u
lo

a
n
d
W
a
estlu

n
d

2
0
1
2

T
im

in
g
-rela

ted
fea

tu
res

R
a
n
d
o
m

fo
rest

D
y
n
a
m
ic

1
0
.3
9
%

av
g
.
E
E
R

(ra
n
d
o
m

fo
rg
eries)

3
2

T
o
u
ch

a
ly
tics

F
ra
n
k
e
t
a
l.

2
0
1
3

3
0
fea

tu
res

k
-N

N
a
n
d
S
V
M

D
y
n
a
m
ic

3
%

E
E
R

(ra
n
d
o
m

fo
rg
eries)

4
1

G
E
A
T

S
h
a
h
za
d
e
t
a
l.

2
0
1
3
V
elo

city,
tim

e
a
n
d
a
ccelera

tio
n

S
V
M

D
y
n
a
m
ic

0
.7
%

av
g
.
E
E
R

(sk
illed

fo
rg
eries)

5
0

S
k
P
W

s
R
ig
g
a
n
e
t
a
l.

2
0
1
4

M
u
ltip

le
d
y
n
a
m
ic

fea
tu
res

S
K
S
a
n
d
F
réch
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2.5 Graphical Password-based Authentication

doodles. Gao et al. (2008) presented a static authentication method where free-form sketches

are stored as a sequence of cell relative positions. The Levenshtein distance is used to compute

distances between sequences. The Scribble-A-Secret (SAS) scheme was later proposed by Oka

et al. (2008). In that approach, the edge orientation patterns of the doodle static image are used

as features, hence no dynamic information is used for authentication. The PassShapes approach

considers graphical passwords composed as a sequence of straight strokes following eight possible

directions, at 45◦ angles (Weiss and Luca, 2008). Each stroke is encoded as one of eight different

characters, and thus a password is created.

A verification scheme based on predefined visual shapes was described by Chen et al. (2009).

The system presents a set of cues to the users, which are in general common shapes (e.g. squares,

triangles), which the users can follow to define their own free-form password. Cryptographic keys

are then generated from the passwords. Similarly, a graphical password verification system based

on a set of predefined symbols was proposed by Zada Khan et al. (2011). During enrollment,

the user first selects a set of predefined symbols (at least 3) and then draws them. The set of

symbols constitutes the user password. During authentication, the symbols must be drawn in

the same order and are then matched to the predefined templates. If the drawn set is the same

as the registered set, the user is validated. No experimental results are provided.

A multi-touch sketch-based authentication approach was described by Sae-Bae et al. (2014).

In that work, graphical passwords are composed of multi-touch sketches (i.e. drawn with several

fingers at the same time). Since the gesture used for authentication is produced with all the

fingers, information from the hand geometry is also captured. The GEAT scheme proposed

by Shahzad et al. (2013) allows user to draw a password composed of a set of ten predefined

simple gestures. Many of them are multi-touch gestures. Support Vector Machines (SVM) are

used for classification.

Frank et al. (2013) presented an authentication scheme based on continuous touchscreen

input, instead of specific gestures. SVMs and k-Nearest Neighbor (k-NN) classifiers are used.

A method based on the Simple K-Space (SKS) algorithm and Fréchet distance is proposed

by Riggan et al. (2014). In this particular approach, dynamic features from the fingertip tra-

jectory as well as the pen tip pressure are used. A usability survey is also carried out on the

database users (35 participants) showing, in general, willingness to accept the use of this type

of graphical passwords as an authentication means.

Two graphical password approaches have gained popularity in the industry during the last

years: the Pattern Lock found in Android OS portable devices and the Picture Password in

Windows 8 devices. The Pattern Lock method displays a square grid of 3 × 3 points on the

screen, and users trace a pattern between the points without repeating any of them. This

resembles a simplified version of the Pass-Go scheme. Other approaches that also use dynamic

information from the Pattern Lock drawing process have been proposed (Angulo and Waestlund,

2012; De Luca et al., 2012). In the Windows 8 Picture Password method a background picture

is shown, and users trace on it a password composed of circles, straight lines and points.

The heterogeneity of the existing approaches and lack of public datasets reveals that recall-
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based graphical password verification is a research field that is still not as established as other

closely related fields such as symbol recognition (Llados et al., 2002) or signature verifica-

tion (Fierrez and Ortega-Garcia, 2008).

In this PhD thesis, doodle-based graphical passwords are considered. The authentication

process is performed following the same approach than signature verification, as described in

Sect. 2.1.1.

2.5.2. Attacks to Graphical Password-based Systems

Several types of attacks against graphical password authentication systems have been studied

in the literature. Smudge attacks are those produced when an attacker follows the finger grease

path left by the user on the screen (Aviv et al., 2010). Shoulder-surfing attacks refer to the case

when the attacker has visual access to the password drawing process. Several techniques against

shoulder surfing attacks are proposed by Zakaria et al. (2011). The authors study how adding

fake strokes during the drawing process or removing strokes as they are drawn prevent against

forgers.

P. C. van Oorschot and Thorpe (2008) have studied dictionary attacks against DAS-like

systems. It was shown that users tend to select graphical passwords from a relatively small

subspace of cell combinations. Thus an attacker could be successfully accepted after a limited

number of random attempts from that particular graphical subspace.

2.6. Feature Selection

Due to the curse of dimensionality (Theodoridis and Koutroumbas, 2006), the performance

of a statistical classifier is degraded if the available training data is too small compared to

the number of dimensions of the feature vector (Jain and Zongker, 1997). This is usually

the case in signature verification, where the average length of a digitized signature is of a

few hundreds of samples and the available number of training signatures is relatively small (in

practical applications between 3 and 5). The amount of training signatures is mostly conditioned

by the willingness of the users to provide many samples during enrollment. Nevertheless, when

signatures are captured during only one unique session, their variability is small in general,

leading to a poorly trained model.

Feature selection techniques try to reduce the dimensionality of the feature vectors while

optimizing the verification accuracy. Their goal is to find the optimal combination of features

according to a given optimization criterion. Ideally, given a feature vector of F dimensions, all

the possible combinations from 1 to F features should be tested in order to find the optimal

combination. Unfortunately, this is not feasible due to the high amount of combinations that

have to be tested, which is
F
∑

i=1

(

F

i

)

.
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2.6 Feature Selection

A critical step when performing feature selection is the choice of the optimization criterion.

Two main alternatives can be taken: filter and wrapper methods (Theodoridis and Koutroumbas,

2006). In the former, the optimal feature subset is selected according to intrinsic properties of

the training data such as statistical properties. In the latter, the result of the classification

problem under consideration is used as the criterion to be optimized. A reasonable choice for

a signature verification system is a wrapper method in which the verification performance in

terms of the EER is set as the optimization criterion. Wrapper methods require in general more

computational resources, as the evaluation of the optimization criterion (e.g. the verification

decision) is commonly more complex than the computation of statistical properties of the training

data.

Feature selection has been applied to signature verification from several perspectives. Lee

et al. (1996) propose a method for global features which ranks the discriminative power of each

feature for each specific user, based on the distance between the user signatures and the rest of

users. They select as an optimal feature vector the one that contains the features that are most

commonly ranked among the most discriminative over all the users in the database. Fierrez-

Aguilar et al. (2005a) perform feature ranking based on their Mahalanobis distance between

signatures from different users. The optimal feature vector is then selected by iteratively adding

individual features in the order they were ranked and selecting the best performing vector in

terms of the system EER. Richiardi et al. (2005) propose a distance measure based on the

Fisher’s Discriminant Ratio and use it to perform Sequential Forward Floating Search Selection

(SFFS), which is summarized in this section. Galbally et al. (2007a) perform feature selection

by using Genetic Algorithms and setting the system EER as the optimization criterion. User-

specific feature selection approaches have been also proposed (Kim et al., 1995; Wijesoma et al.,

2000).

2.6.1. Feature Selection Algorithms

Several feature selection techniques have been proposed in the literature aimed towards re-

ducing the number of feature combinations that have to be tested. Unfortunately, all of them are

only able to find suboptimal solutions. A notable exception is the Branch and Bound algorithm,

which is however only applicable when the optimization criterion increases monotonically with

the feature subset size. While some of the algorithms are deterministic and always lead to the

same suboptimal solution, other algorithms may produce different suboptimal solutions in each

execution (Jain and Zongker, 1997). The most popular techniques are summarized next.

2.6.1.1. Scalar Feature Selection

Features are considered individually using this procedure. Each feature is ranked in terms of

its class separability using a predefined criterion C, such as the system EER or any distance mea-

sure. Then, the N top ranked features in terms of C are selected as the optimal N -dimensional

feature vector. This method has the advantage of being computationally simple. Nevertheless,
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it does not take into account the possible correlations among features. Some techniques to deal

with this problem have been proposed in the literature (Theodoridis and Koutroumbas, 2006).

This approach is taken by (Fierrez-Aguilar et al., 2005a).

2.6.1.2. Sequential Forward/Backward Selection

In Sequential Forward Selection, given F available features we start by selecting the most

discriminative feature xi. Then, all the possible combinations between this feature and any

other feature xf are computed and the best combination {xi, xj} is selected. The algorithm

continues by iteratively adding features in this manner until the desired feature vector size is

reached. The Sequential Backward Selection is similar to this approach but instead of starting

with a single feature it starts with all the F features and one feature is removed at a time.

2.6.1.3. Floating Search

Pudil et al. (1994) proposed a feature selection algorithm that overcomes some of the limita-

tions of the ones presented above. Namely, when a feature is selected by the previous methods

(or discarded, in the backward case), it can no longer be discarded (or selected, in the backward

case). This is known as the nesting effect. As with Sequential Selection, both a forward and

a backward approach exist. We focus on the forward method, referred to as Sequential For-

ward Floating Search (SFFS). The algorithm can be summarized as follows (Theodoridis and

Koutroumbas, 2006).

Let’s consider a set of F features, from which we wish to find the best performing subset

of N features, N ≤ F in terms of a given criterion C. Let Xn = {x1, x2, ..., xn} be the best

combination of n features and YF−n the set of remaining F − n features. In the algorithm, we

store the best sets of lower dimensions X1,X2, ...,Xn−1. The following steps are performed until

a loop with a stable set Xn is obtained.

1. Inclusion

Choose the element xn+1 from YF−n which, added to Xn produces the best value of the

optimization criterion C. Then, Xn+1 = {Xn, xn+1}.

2. Test

a) Find the feature xr that has the least negative (or most positive) effect on the criterion

C when it is removed from Xn+1.

b) If r = n+ 1, change n for n+ 1 and go to step 1.

c) If r 6= n + 1 and C(Xn+1 − {xr}) < C(Xn) go to step 1, that is, if removal of any

feature does not improve the criterion on the previously selected set Xn, no further

backward search is performed.

3. Exclusion
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2.7 Chapter Summary and Conclusions

a) Remove xr to get X ′
n = Xn+1 − {xr}.

b) Find the feature xs that has the least negative effect on the criterion C when it is

removed from X ′
n.

c) If C(X ′
n − {xs}) < C(Xn−1) then Xn = X ′

n and go to step 1, that is, if removal of

another feature does not improve the criterion on the previously selected set Xn, no

further backward search is performed.

d) Remove xs by putting X ′
n−1 = X ′

n − {xs} and n = n− 1.

e) Go to step 3.a.

Note that some specific conditions on the first steps have not been considered in order to

simplify the algorithm description. The backward algorithm is equivalent to the one explained

but removing instead of adding features.

Other algorithms for feature selection include Neural Networks and Genetic Algorithms (Gal-

bally et al., 2007a), although the latter produce variable suboptimal results among different

executions. Jain and Zongker (1997) performed an exhaustive comparison of several feature se-

lection algorithms and studied the impact of small training sets on them. The SFFS proved to

be highly effective, obtaining results close to the optimal set selected by the Branch and Bound

algorithm.

2.7. Chapter Summary and Conclusions

In this chapter, we presented the problem of Dynamic Signature Verification and also de-

scribed the closely related challenge of automatic verification of recall-based Graphical Pass-

words. The main verification algorithms from the state of the art were described. We also

presented the most popular publicly available databases. Related research areas were also pre-

sented as well as feature selection algorithms.
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Chapter 3

Proposed Verification Systems

In the present chapter, the automatic signature and doodle verification systems proposed

in this Thesis are described. Function-based (referred to as local) and feature-based systems

(referred to as global) are considered. The global and a local feature sets that are used are a

compendium of existing features from the literature, as will be explained in this chapter.

3.1. Pre-processing

The input coordinate sequence [x̂n, ŷn], n = 1, ..., I is sampled from the writing device (or

finger-tip) trajectory on a touchscreen, as well as the time interval t̂n between samples. The

trajectory coordinate sequence [x̂n, ŷn] is first re-sampled to interpolate missing samples (due to

sampling errors or pauses between strokes). Cubic splines are used for interpolation (Catmull

and Rom, 1974). The sequences are then normalized to have zero mean, resulting in [xn, yn].

In the experimental chapters where signatures are captured on a digitizing pen tablet, the

pen azimuth, altitude, and pressure are available, (see Fig. 1.1) and are also processed. This

will be explicitly mentioned where applicable. No sampling errors happen in those devices so

interpolation is not needed.

3.2. Global Verification System

This feature-based signature verification system extracts a set of 100 global features from

each signature [xn, yn] normalized coordinate sequence. The feature set was originally described

by Fierrez-Aguilar et al. (2005a) and is an extension of other sets presented in previous works

in the literature (Lee et al., 1996; Nelson and Kishon, 1991; Nelson et al., 1994). A complete

description of the feature set is given in Table 3.1. These 100 features can be divided in four

categories corresponding to the following magnitudes (the numbering is the same used by Fierrez-

Aguilar et al. (2005a)):

Time (25 features), related to signature duration, or timing of events such as pen-ups or
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3. PROPOSED VERIFICATION SYSTEMS

Table 3.1: Set of global features. Table adapted from Fierrez-Aguilar et al. (2005a). T denotes time
interval, t denotes time instant, N denotes number of events, and θ denotes angle. Note that some
symbols are defined in different features of the table (e.g. ∆ in feature 7 is defined in feature 15)

# Time related feature # Direction related feature
# Speed and Acceleration related feature # Geometry related feature

# Feature Description # Feature Description

1 signature total duration Ts 2 (pen-down duration Tw)/Ts

3 (1st t(vmax))/Tw 4 T (vx > 0)/Tw

5 T (vx < 0)/Tw 6 T (vy > 0)/Tw

7 T (vy < 0)/Tw 8 T (vx > 0|pen-up)/Tw

9 T (vx < 0|pen-up)/Tw 10 T (vy > 0|pen-up)/Tw

11 T (vx < y|pen-up)/Tw 12 T (1st pen-up)/Tw

13 T (2nd pen-up)/Tw 14 T (2nd pen-down)/Ts

15 T (3rd pen-down)/Ts 16 (1st t(vy,max))/Tw

17 (1st t(vy,min))/Tw 18 (1st t(vx,max))/Tw

19 (1st t(vx,min))/Tw 20
T ((dy/dt)/(dx/dt)>0)
T ((dy/dt)/(dx/dt)<0)

21 T (curvature > thresholdcurv)/Tw 22 (1st t(xmax))/Tw

23 (2nd t(xmax))/Tw 24 (3rd t(xmax))/Tw

25 (2nd t(ymax))/Tw 26 (3rd t(ymax))/Tw

27 (average velocity v̄)/vmax 28 N(vx = 0)
29 N(vy = 0) 30 v̄/vx,max

31 v̄/vy,max 32 (velocity rms v)/vmax

33 (centripetal acceleration rms ac)/amax 34 (tangential acceleration rms at)/amax

35 (acceleration rms a)/amax 36 (integrated abs. centr. acc. aIc)/amax

37 (velocity correlation vx,y)/v2max 38 standard deviation of vx
39 standard deviation of vy 40 standard deviation of ax
41 standard deviation of ay 42 average jerk ̄
43 ̄x 44 ̄y
45 jmax 46 jx,max

47 jy,max 48 jrms

49 t(jmax)/Tw 50 t(jx,max)/Tw

51 t(jy,max)/Tw 52 N(pen-ups)

53 N(sign changes of dx/dt and dy/dt) 54 T ((dx/dt)(dy/dt)>0)
T ((dx/dt)(dy/dt)<0)

55 θ(initial direction) 56 θ(1st to 2nd pen-down)
57 θ(1st pen-down to 1st pen-up) 58 θ(1st pen-down to 2nd pen-up)
59 θ(2nd pen-down to 2nd pen-up) 60 θ(before last pen-up)
61 θ(1st pen-down to last pen-up) 62 direction histogram s1
63 direction histogram s2 64 direction histogram s3
65 direction histogram s4 66 direction histogram s5
67 direction histogram s6 68 direction histogram s7
69 direction histogram s8 70 direction change histogram c2
71 direction change histogram c3 72 direction change histogram c4

73
Amin=(ymax−ymin)(xmax−xmin)

(∆x=
∑pen-downs

i=1
(xmax |i−xmin |i))∆y

74 (max distance between points)/Amin

75 (x1st pen-down − xmax)/∆x 76 (x1st pen-down − xmin)/∆x

77 (xlast pen-up − xmax)/∆x 78 (xlast pen-up − xmin)/∆x

79 (y1st pen-down − ymax)/∆y 80 (y1st pen-down − ymin)/∆y

81 (ylast pen-up − ymax)/∆y 82 (ylast pen-up − ymin)/∆y

83
(xmax−xmin)∆y

(ymax−ymin)∆x
84 (standard deviation of x)/∆x

85 (standard deviation of y)/∆y 86 (Tw v̄)/(ymax − ymin)
87 (Tw v̄)/(ymax − ymin) 88 (xmax − xmin)/xacquisition range

89 (ymax − ymin)/yacquisition range 90 (x̄− xmin)/x̄
91 spatial histogram t1 92 spatial histogram t2
93 spatial histogram t3 94 spatial histogram t4
95 N(local maxima in x) 96 (x2nd local max − x1st pen-down)/∆x

97 (x3rd local max − x1st pen-down)/∆x 98 N(local maxima in y)
99 (y2nd local max − y1st pen-down)/∆y 100 (y3rd local max − y1st pen-down)/∆y
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3.3 Local Signature Verification Systems

local maxima: 1, 13, 22, 32, 38, 40-42, 50, 52, 58-60, 62, 64, 68, 79, 81-82, 87-90, 94, 100.

Speed and Acceleration (25 features), from the first and second order time derivatives

of the position time functions, like average speed or maximum speed: 4-6, 9-11, 14, 23, 26,

29, 31, 33, 39, 44-45, 48, 69, 74, 76, 80, 83, 85, 91-92, 96.

Direction (18 features), extracted from the path trajectory like the starting direction or

mean direction between pen-ups: 34, 51, 56-57, 61, 63, 66, 71-73, 77-78, 84, 93, 95, 97-99.

Geometry (32 features), associated to the strokes or signature aspect-ratio: 2, 3, 7-8, 12,

15-21, 24-25, 27-28, 30, 35-37, 43, 46-47, 49, 53-55, 65, 67, 70, 75, 86.

In our implementation, features are normalized into the range (0, 1) using tanh-estimators (Jain

et al., 2005). A classifier based on a simplified version of the Mahalanobis distance has been

implemented, in order to compare an input signature with a claimed user model. This distance

measure has the advantage of being relatively simple to compute and generic enough to provide a

reasonable empirical estimate of the statistical class separability achieved by the feature vectors.

User models C = (µ,Σ) are created from a training set of genuine signatures, where µ and Σ

are the mean vector and covariance matrix obtained from the training signatures. A diagonal

covariance matrix is used, and values below a fixed threshold are replaced by the threshold

value. This is done to avoid obtaining a singular covariance matrix due to the limited number

of training samples in comparison to the problem dimensionality, and to simplify the implemen-

tation of this algorithm in handheld devices with limited processing power. The threshold value

is 0.00085 and has been heuristically obtained in preliminary experiments. Thus, the matching

score s is obtained as the inverse of the “simplified” Mahalanobis distance between the input

signature feature vector x and the claimed user model C:

s(x, C) =
(

(x− µ)T (Σ)−1 (x− µ)
)−1/2

. (3.1)

If the score s computed in 3.1 is above a specific threshold, the signature is considered as

genuine. On the contrary it is rejected by the system.

3.3. Local Signature Verification Systems

An HMM system, a GMM system and a DTW-based system have been implemented. In all

systems, the [xn, yn] normalized signals are used as an input to extract a set of discrete-time

functions that model each signature. When available, the [zn, γn, φn] pen pressure, pen azimuth

and pen altitude are also used. The features considered in this work are an extension from the

original set of functions described by Fierrez et al. (2007b). We have added features from other

contributions (Lei and Govindaraju, 2005; Ly-Van et al., 2007; Richiardi et al., 2005) based

on the reported results. In the original set, 7 functions were extracted from the raw signals,

from which the first and second order derivatives were computed, leading to a 21-dimensional
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3. PROPOSED VERIFICATION SYSTEMS

feature vector. Most second order derivatives have been discarded in this work as they proved

to have a very low contribution in the verification performance (as corroborated in Richiardi

et al. (2005)). In the present Dissertation, an extended set of 15 functions is proposed, plus 12

functions obtained from the first and second order derivatives of some of them. In Table 3.2

we present the resulting set of 27 functions. All features are normalized to have zero mean and

variance equal to 1.

Visual examples of the extracted functions can be seen in Fig. 3.1. This set assumes the

availability of pressure and pen-inclination information, although this is not the case for signa-

tures acquired on touchscreens. In that case, only 21 features can be extracted from the raw

signals.

3.3.1. HMM System

The system implemented in this Thesis is an evolution of the one described by Fierrez

et al. (2007b). That system participated in the Signature Verification Competition 2004 (Yeung

et al., 2004), where it reached the first and second positions against random and skilled forgeries

respectively.

In our implementation, based on the HTK Toolkit (Young et al., 2009), an initial step is

added to the original HMM training scheme (Fierrez et al., 2007b), leading to the following

stages: i) the global mean and covariance of the training signatures is assigned to all the

mixtures, ii) k-means segmentation and Maximum Likelihood training is performed, iii) Baum-

Welch re-estimation is carried out. The first step allows to have a trainable model for step iii

(despite being inaccurate) in the case where step ii fails due to the large number of parameters

to be estimated, or other computational problems.

Similarity scores are computed as the log-likelihood of the signature (using the Viterbi al-

gorithm) divided by the total number of samples of the signature. No score alignment between

users is applied (Fierrez-Aguilar et al., 2005b).

In order to keep scores between a reasonable range, normalized scores s̃ between (0,1) are

obtained as

s̃ = exp (s(x, C)/30) , (3.2)

where x and C represent respectively the input signature to verify and the enrolled model of

the claimed identity.

The particular implementations used in the experiments (e.g. number of states or number

of Gaussian Mixtures) are described in each chapter, where applicable.

3.3.2. GMM System

The GMM system implemented in this Thesis follows the description given in Sect. 2.1.3.

The Netlab framework is used for its implementation (Nabney, 2002).
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3.3 Local Signature Verification Systems

Table 3.2: Extended set of local features. The upper dot notation (e.g. ẋn) indicates time derivative.
Features 3, 10, 15, 16, 17 and 18 are not available on touchscreens.

# Feature Description

1 x-coordinate xn

2 y-coordinate yn

3 Pen-pressure zn

4 Path-tangent angle θn = arctan(ẏn/ẋn)

5 Path velocity magnitude υn =
√
ẏn + ẋn

6 Log curvature radius ρn = log(1/κn) = log(υn/θ̇n), where κn is the
curvature of the position trajectory

7 Total acceleration magnitude an =
√

t2n + c2n =
√

υ̇2
n + υ2

nθ
2
n , where tn

and cn are respectively the tangential and cen-
tripetal acceleration components of the pen
motion.

8-14 First-order derivative of features 1-7 ẋn, ẏn, żn, θ̇n, υ̇n, ρ̇n, ȧn

15 Pen azimuth γn

16 Pen altitude φn

17-18 First-order derivative of features
15-16

γ̇n, φ̇n

19-20 Second-order derivative of features 1-2 ẍn, ÿn

21 Ratio of the minimum over the maxi-
mum speed over a window of 5 samples

υr
n = min {υn−4, ..., υn}/max {υn−4, ..., υn}

22-23 Angle of consecutive samples and first
order difference

αn = arctan(yn − yn−1/xn − xn−1)

α̇n

24 Sine sn = sin(αn)

25 Cosine cn = cos(αn)

26 Stroke length to width ratio over a win-
dow of 5 samples

r5n =

k=n∑

k=n−4

√
(xk−xk−1)2+(yk−yk−1)2

max{xn−4,...,xn}−min{xn−4,...,xn}

27 Stroke length to width ratio over a win-
dow of 7 samples

r7n =

k=n∑

k=n−6

√
(xk−xk−1)2+(yk−yk−1)2

max{xn−6,...,xn}−min{xn−6,...,xn}
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3. PROPOSED VERIFICATION SYSTEMS

F

Figure 3.1: Examples of functions from the 27-feature extended set defined in Table 3.2 for a genuine
signature (left) and a skilled forgery (right) of a particular subject from the BIOSECURE DS2 Database.
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3.3 Local Signature Verification Systems

Given a number of training samples, the model parameters {ωi,µi,Σi} i = 1, . . . , N are esti-

mated from a training set of doodles using the Expectation Maximization (EM) algorithm (Duda

et al., 2001). The initial data partition (i.e. clustering of data with respect to the Gaussian

components) is performed using the k-means algorithm.

In our work, the number of Gaussian components N is chosen to be 32 and diagonal covari-

ance matrices are used, instead of full matrices, due to the limited amount of available data,

the better performance reported by Richiardi and Drygajlo (2003) and preliminary experiments

which are omitted for the sake of clarity.

During the enrollment phase one model λC is created for each user, which is later used

for matching. In addition, a world GMM λC̄ is created, which models the whole set of users.

World models are trained using enrollment samples from a group of users, as explained in the

experiments.

Given a test vector x and a target user statistical model λC , the match score is computed

as the log-likelihood ratio:

s = log p (x |λC )− log p (x |λC̄ ) . (3.3)

GMM adaptation is a common procedure in speech-related applications (Reynolds et al.,

2000). This is not carried out in our implementation since we have observed in preliminary

experiments that it does not lead to a better performance.

3.3.3. DTW System

The Dynamic Time Warping System implemented in this work follows the description pro-

vided in Sect. 2.1.3.2. Thus, only three transitions are allowed and all weighing factors are equal

to 1. Consequently, following Eq. (2.7), gk is computed as follows:

gk = g(i, j) = min







g(i, j − 1) + d(i, j)

g(i − 1, j − 1) + d(i, j)

g(i − 1, j) + d(i, j)






(3.4)

The accumulated distance between the two sequences is computed as

D = g(I, J)/K (3.5)

where K is the length of the warping path. A normalized match score is obtained as s̃ = exp(−D).

Given a set of reference samples provided during the enrollment phase and a test signature

(or doodle), the scores between all the reference data and the test sample are computed and the

average is taken as the match score for that particular test sample.
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3. PROPOSED VERIFICATION SYSTEMS

3.4. Chapter Summary and Conclusions

In this chapter, we described the verification systems implemented in this Thesis and the

associated feature sets. Both global and feature sets encompass a notable amount of features

already proposed in the literature, plus new ones based on our experience and recent research.

The verification algorithms are aligned with the state of the art and have reached top positions

in signature verification competitions, namely SVC 2004 for the HMM algorithm (Yeung et al.,

2004) and BSEC 2009 for the DTW algorithm implementation (Houmani et al., 2012).
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Chapter 4

Mobile Signature Verification

The effects of mobile acquisition conditions in automatic signature verification are stud-

ied in this chapter. We focus on the impact of mobility and the usage of touchscreens on the

feature discriminative power of different types of features (local and global) compared to the

traditional pen tablet scenario. We use for that purpose discriminant analysis of individual

features and feature selection algorithms. As described in Chapter 2, signature verification on

mobile conditions is affected by a number of factors not present in the pen tablet acquisition

scenario. Users are forced to provide their signature on a constrained space, holding a device

with their own hands, and using an unfamiliar stylus. This may affect the discriminative power

of features. Moreover, since touchscreens do not capture the pen tip trajectory when it is not

in contact with the surface, information is lost compared to pen tablets.

We study the performance of state-of-the-art verification systems in both scenarios (pen

tablet and handheld device), using the feature sets and the global system and HMM local

system described in Chapter 3.

Two different databases are used in the experiments: (i) the BioSecure Multimodal Database

(BMDB), as a standard benchmark (Ortega-Garcia et al., 2010); (ii) a signature database cap-

tured specifically for this experimental work, using a state-of-the-art device (Samsung Galaxy

Note). The BMDB signature database has two subcorpora, one captured on a PDA and other

on a digitizing pen tablet. They correspond to the same users in both devices, allowing a fair

comparison between them. The reader may refer to Sect. 2.4 for a detailed description of the

BMDB database.

This chapter is structured as follows. First, the verification systems used in the experiments

are referenced in Sect. 4.1. The experimental protocol is described in Sect. 4.2. Results are

reported in Sect. 4.3. Conclusions are finally drawn in Sect. 4.4.

This chapter is based on the publications: (Martinez-Diaz et al., 2008a, 2014).
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4. MOBILE SIGNATURE VERIFICATION

4.1. Verification systems

Global Verification System. The global system described in Sect. 3.2 is used, as well as the

100-feature set.

Local Verification System. The local HMM system described in Sect. 3.3 is used in the

experiments, as well as the 27-feature set. Each user is modeled with a 2-state HMM with 32

Gaussian mixtures per state, following the implementation described by (Fierrez et al., 2007b)

that participated in the SVC 2004 competition (Yeung et al., 2004).

4.2. Databases and Experimental Protocol

4.2.1. Databases

Two databases are used in the experiments, the Biosecure Multimodal DataBase (BMDB),

acquired using a pen-tablet and a PDA (Ortega-Garcia et al., 2010), and a database captured

using a Samsung Galaxy Note device, referred to as SG-NOTE.

A subset of 120 users from the BMDB is used in this work 1. It contains 20 genuine signatures

and 20 skilled forgeries per user and acquisition device (PDA and pen tablet). Genuine signatures

were acquired in two different sessions separated by an average period of two months. The first

five signatures correspond to the initial session while the remaining 15 belong to the second

session. Signatures were captured with a PDA while the user was standing and holding the

device with one hand in the handheld scenario, whereas for the pen tablet case they were

acquired while the user was sitting, using a pen on a paper placed over the tablet (see Fig.2.2.a

and 2.2.b). This emulates real operating conditions.

In both devices, skilled forgeries for each user were performed by 4 different forgers (5

forgeries each) under “worst case” conditions: each forger had visual access to the dynamics of

the genuine signature using a tracker tool that allowed replaying the original strokes.

Only the x and y position signals and the sample timestamps are captured by the PDA,

while pressure (z) and pen orientation (θ, γ) signals are also acquired by the pen tablet. Pen

trajectories during pen-ups (when the pen tip is not in contact with the tablet surface) are

recorded by the pen tablet but are not available in the PDA dataset. It is found in the pen

tablet dataset that, for each genuine signature, an average of 18% of sampled points correspond

to pen-up trajectories (i.e. when the pen tip is not in contact with the tablet surface). A

histogram of the proportion of sample points during pen-ups compared to the total signature

samples is depicted in Fig. 4.1. In order to evaluate the effect of the lack of pressure and

inclination information and pen motion during pen-ups, a third signature dataset is artificially

created by removing the samples produced during pen-ups (i.e. having pressure values equal

to 0) in the pen tablet dataset. This set will be referred to as “Tablet interpolated pen-ups”.

1This subset corresponds to the “120 common DS2/DS3” signature dataset available in the BioSecure Foun-
dation web site: http://biosecure.it-sudparis.eu/AB/index.php?option=com_content&view=article&id=72
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Figure 4.1: Histogram of signatures classified by the proportion of sampled points during pen-up trajec-
tories vs. total signature sample points, computed on the pen tablet signature dataset.

Pen-up trajectories are interpolated in the PDA and in the tablet interpolated pen-ups dataset.

For the PDA subset, an additional preprocessing step is performed to interpolate erroneous

(missing) samples.

From each of the three BMDB subsets (i.e. PDA, Tablet, and Tablet interpolated pen-

ups), each one containing 120 users, signatures from the first 50 users are used for development

purposes (i.e. individual feature analysis and feature selection), while the remaining 70 are

left to validate the performance of the optimal feature vectors selected by the SFFS algorithm.

We will refer to the development datasets as BMDB-DEV50 and to the validation datasets as

BMDB-VAL70.

This setup follows the protocol of the BioSecure Signature Evaluation Campaign (Houmani

et al., 2012), where a subset of 50 users was released for algorithm tuning prior to the competi-

tion, which was later carried out using a different test dataset.

The SG-NOTE database1 is also used for performance validation, in addition to the BMDB-

VAL70 subset. This dataset was captured by the authors using a Samsung Galaxy Note mobile

phone and contains signatures from 25 users. The SG-NOTE database was captured in two

different sessions with an average gap of 5 days between them. In each session, signatures were

acquired in two blocks of 5 samples, with a short break between blocks. No skilled forgeries are

available in this database. Consequently, the database contains a total amount of 500 signatures

(25 users × 2 sessions × 10 signatures per session). See Fig. 2.2.c for an example signature

acquisition in SG-NOTE.

The five genuine signatures from the initial session are used for enrolment, both for the global

and local systems. Genuine user scores are computed using the remaining from the second

session (15 signatures in BMDB and 10 signatures in SG-NOTE). Random forgery scores (the

case where a forger uses his own signature claiming to be a different user) are obtained by

comparing the user model to one signature sample of all the remaining users. Skilled forgery

scores for the BMDB datasets are computed comparing the 20 available skilled forgeries per user

with his or her own model (trained with five signatures, as stated before).

1This database is available at the ATVS - Biometric Recognition Group web site: http://atvs.ii.uam.es
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Figure 4.2: Diagram of the experimental setup followed in this work. The global and local systems are
presented in Chapter 3. The experimental protocol and databases are described in Sect. 4.2. Results are
reported in Sect. 4.3.

4.2.2. Development and Validation Experiments

The experiments are structured as follows: first, a global and local individual feature analysis

is performed on signatures from the BMDB-DEV50 development dataset (Experiments 1 and 2).

Optimal feature combinations are then computed using the SFFS algorithm for feature selection

(Experiments 3 and 4). Finally, results are validated using the BMDB-VAL70 and SG-NOTE

datasets (Experiment 5).

The experimental approach that has been followed is depicted in Fig. 4.2.

Experiment 1: Global Feature Analysis. The discriminative power of global features can

be measured using the Fisher’s Discriminant Ratio (FDR) for each individual feature. The

FDR provides an intuitive measure of discriminative power, as it increases with the inter-class

variability and decreases with the intra-class variability. The FDR D for the i-th feature from

user C is computed as follows:

Di(C) =
(µGi − µFi)

2

σ2
Gi

+ σ2
Fi

(4.1)

where µ and σ are the average and standard deviation respectively of the genuine signature

sample set Gi and the forged sample set Fi. We use this measure in this work to compare the

discriminative power of each feature defined in Table 3.1 between the mobile and the pen tablet

scenario.

Experiment 2: Local Feature Analysis. Contrary to the case of global features, the appli-

cation of the FDR to compute the discriminative power of individual local features is impractical.

This is due to the fact that local features are time functions. As a consequence, the computation

of distances between average feature values as defined in the FDR does not represent a realistic

measure.

A distance-based discriminative measure using time functions is proposed in (Lei and Govin-

daraju, 2005) to overcome this limitation. In that work, a consistency value is described, which
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provides a similar measure to the FDR at least from an intuitive point of view, as it decreases

when genuine features are far apart among them and close to forgeries and viceversa. We use the

DTW algorithm to compute distances between the time functions, as in (Lei and Govindaraju,

2005). We modify the consistency value definition in order to make its notation similar to the

FDR and thus define the Distance Discriminant Ratio (DDR) R for the i-th feature of user C

as

Ri(C) =
(µDGi − µDFi)

2

σ2
DGi

+ σ2
DFi

, (4.2)

where DGi is the set of distances among the user genuine signatures and DFi is the set of

distances between the genuine signatures and forgeries. This measure assumes that for each

user the mean distance between genuine signatures and forgeries µDFi is higher than the mean

distance between genuine signatures µDGi , which has been tested to be true in the datasets

used for experiments. As can be seen, while not being mathematically equivalent to the FDR,

the DDR provides a comparable measure in terms of the feature discriminative power. Unlike

the FDR, this measure is not scale invariant. However, in our experiments local features are

normalized to have zero mean and variance equal to 1.

The median FDR and DDR are computed differently for random and skilled forgeries. In

the case of random forgeries, for each user, the FDR and DDR between the user samples and

the rest of the genuine signatures in the database are computed, while for skilled forgeries, the

FDR and DDR are computed between the genuine signatures and the available skilled forgeries

for each user.

Experiment 3: Feature Selection. In order to select the best performing feature combi-

nations, feature selection on the global 100-feature set and the local 27-feature set is carried

out using the Sequential Forward Floating Search (SFFS) algorithm, described in Chapter 2,

which is set to minimize the system Equal Error Rate (EER) on the BMDB-DEV50 development

dataset.

Experiment 4: Validation. Finally, the verification performance in terms of the Equal Error

Rate (EER) using the optimal feature vectors selected by the SFFS algorithm for each scenario

are compared on the two available validation sets (BMDB-VAL70 and SG-NOTE).

4.3. Results

4.3.1. Experiments 1 and 2: Individual Feature Analysis

From Fig. 4.3.a, we observe that the median FDR for each feature is similar in the pen tablet

and the PDA scenario when random forgeries are considered (left column). Nevertheless, the

FDR for pen tablet tends to be always higher or equal than the FDR for PDA. In the case

of skilled forgeries, the FDR is higher in most cases for pen tablet than PDA in the case of
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Figure 4.3: (a) Fisher’s Discriminant Ratio (FDR) of each global feature for random (left) and skilled
(right) forgeries. (b) Distance Discriminant Ratio (DDR) of each global feature for random (left) and
skilled (right) forgeries.
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Figure 4.4: System EER for each possible size of the optimal feature vector as selected by the SFFS
algorithm for the global (left) and local (right) system.

skilled forgeries (right column). This suggests that the verification performance in the PDA

scenario against skilled forgeries would be a priori lower than for pen tablet independently

from the classifier used. Interestingly, the FDR for the interpolated pen-ups tablet subset is in

general lower than the original subset, especially for skilled forgeries. This suggests that pen-up

trajectories are more resilient to forgeries (i.e. harder to imitate).

The DDR is in general higher for pen tablet than for PDA, independently of the availability

of pen-up trajectories (see Fig. 4.3.b). As for global features, when pen-up trajectories are

interpolated, the DDR is more negatively affected for skilled forgeries than for random forgeries.

In random forgeries, the most relevant difference is observed in the vertical coordinate feature y,

which is the one that best characterizes the shape of signatures. The first derivative of y has also

a notably higher DDR in the pen tablet scenario. This suggests a higher geometrical variability

in the PDA scenario. As can be seen, first and second x, y derivatives are more discriminative

when pen-ups are interpolated, which may reflect unstable motion during pen-ups. The path

velocity magnitude υ and its first derivative are also considerably more discriminative in the

pen tablet dataset. This suggests higher variability in the writing speed on the PDA, which can

be motivated by the unfamiliar signing surface (touchscreen) and device.

4.3.2. Experiments 3 and 4: Feature Selection

In Fig. 4.4 the evolution of the global and the local system EER using the optimal feature

vector, as selected by the SFFS algorithm, is depicted for each possible vector size. It can be

observed that while the behavior for the case of random forgeries is similar on both scenar-

ios (mobile and tablet), the optimal verification performance is significantly better for skilled

forgeries in the pen tablet scenario.

In the global system, the verification performance for pen tablet does not significantly vary

55



4. MOBILE SIGNATURE VERIFICATION

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

PDA Rd PDA Sk TAB Rd TAB Sk TAB-interp. Rd TAB-interp. Sk

Time

Speed & Acceleration

Direction

Geometry

Figure 4.5: Histogram of global feature types (Time, Speed & Acceleration, Direction, and Geometry)
selected by the SFFS algorithm on each optimization scenario using the BMDB-DEV50 subcorpus. Feature
vectors of 40 elements are considered. Rd denotes random forgeries, Sk skilled forgeries and “interp.”
refers to the interpolated pen-ups dataset.

when pen-up trajectories are interpolated. On the other hand, the EER increases notably in

the local system when pen-ups are interpolated. This corroborates the results from the indi-

vidual feature analysis, that is, trajectories during pen-ups provide considerable discriminative

information against skilled forgeries.

Experiment 3: Global Features As can be seen in Fig. 4.4.a, the optimal feature vectors

have an approximate size of 40 features. The specific features which conform the optimal 40-

feature vectors are shown in Table 4.1. The proportion of each feature type (Time, Speed &

Acceleration, Direction and Geometry, as described in Table. 4.1) in each optimization scenario

is represented in Fig. 4.5, considering feature vectors of 40 elements. As can be seen, Geometry

features have a higher relevance in the PDA dataset. On the contrary, Time and Speed &

Acceleration features are more relevant in pen-tablet feature vectors, specially against skilled

forgeries. Geometry features are in principle the easiest to forge, so their higher presence in

PDA feature vectors may lead to a lower verification performance.

Experiment 4: Local Features The optimal local feature combinations selected by the

SFFS algorithm for each optimization scenario are presented in Table 4.2.

Several remarks can be extracted from these results. First, neither pressure nor pen orientation-

related features are present in the pen tablet optimal feature vectors, suggesting that the lack of

them should not penalize the verification performance (contrary to the results presented by Mu-

ramatsu and Matsumoto (2007) and aligned with the findings of Houmani et al. (2009)). For

the two original datasets (PDA and pen tablet), three features are present in all vectors, namely

the x coordinate, the first derivative of the y coordinate and the cosine c of the trajectory angle

α.

These results also reveal that less features are needed for HMM-based signature verification

compared to the ones commonly considered in other works such as Fierrez et al. (2007b); Ly-Van

et al. (2007); Richiardi et al. (2005), at least under these experimental conditions. The absence

of pressure in the optimal feature vectors suggests that a pen tablet-based system does not have

a priori advantage over a handheld device due to the capture of pressure information per se.
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Table 4.1: Global feature set described in Chapter 3. The optimal 40-feature subsets, as described in
the Experimental Results (Sect. 4.3.2), are shown for each optimization scenario: “Ps” and “Pr” denote
PDA skilled and random forgeries, “Ts” and “Tr” pen tablet skilled and random forgeries and “Us” and
“Ur” refer to pen tablet with interpolated pen-ups against skilled and random forgeries respectively.

# Time related feature # Direction related feature
# Speed and Acceleration related feature # Geometry related feature

# Feature Description
Optimal features

# Feature Description
Optimal features

Ps Pr Tr Ts Ur Us Ps Pr Tr Ts Ur Us

1 signature total duration Ts X X X X X X 2 (pen-down duration Tw)/Ts

3 (1st t(vmax))/Tw 4 T (vx > 0)/Tw X X X X X

5 T (vx < 0)/Tw X 6 T (vy > 0)/Tw X

7 T (vy < 0)/Tw X 8 T (vx > 0|pen-up)/Tw

9 T (vx < 0|pen-up)/Tw X X 10 T (vy > 0|pen-up)/Tw X X

11 T (vx < y|pen-up)/Tw 12 T (1st pen-up)/Tw X X

13 T (2nd pen-up)/Tw X X 14 T (2nd pen-down)/Ts X X

15 T (3rd pen-down)/Ts X X X 16 (1st t(vy,max))/Tw X X X X

17 (1st t(vy,min))/Tw X X X X X 18 (1st t(vx,max))/Tw X X X

19 (1st t(vx,min))/Tw X X X X X 20 T ((dy/dt)/(dx/dt)>0)
T ((dy/dt)/(dx/dt)<0)

X X

21 T (curvature > thresholdcurv)/Tw 22 (1st t(xmax))/Tw X X

23 (2nd t(xmax))/Tw X X X 24 (3rd t(xmax))/Tw X

25 (2nd t(ymax))/Tw X X X 26 (3rd t(ymax))/Tw X X

27 (average velocity v̄)/vmax X X 28 N(vx = 0) X X X

29 N(vy = 0) X X X X X 30 v̄/vx,max X X X X X X

31 v̄/vy,max X 32 (velocity rms v)/vmax X X X X

33 (centripetal acceleration rms ac)/amax X X 34 (tangential acceleration rms at)/amax X X X X

35 (acceleration rms a)/amax X X 36 (integrated abs. centr. acc. aIc)/amax X X X X X

37 (velocity correlation vx,y)/v2max X X X X 38 standard deviation of vx X

39 standard deviation of vy X X X 40 standard deviation of ax
41 standard deviation of ay X X X X 42 average jerk ̄ X X

43 ̄x 44 ̄y
45 jmax X X X 46 jx,max X X

47 jy,max X X X 48 jrms X

49 t(jmax)/Tw X X 50 t(jx,max)/Tw X X X X X

51 t(jy,max)/Tw X X X X 52 N(pen-ups) X X X X X

53 N(sign changes of dx/dt and dy/dt) X X X X X X 54 T ((dx/dt)(dy/dt)>0)
T ((dx/dt)(dy/dt)<0)

55 θ(initial direction) X 56 θ(1st to 2nd pen-down) X X X X

57 θ(1st pen-down to 1st pen-up) X X 58 θ(1st pen-down to 2nd pen-up) X

59 θ(2nd pen-down to 2nd pen-up) X X X X 60 θ(before last pen-up) X X

61 θ(1st pen-down to last pen-up) X 62 direction histogram s1 X X X X

63 direction histogram s2 X X X X X 64 direction histogram s3
65 direction histogram s4 X X X X X 66 direction histogram s5 X X

67 direction histogram s6 68 direction histogram s7
69 direction histogram s8 X X 70 direction change histogram c2 X X

71 direction change histogram c3 X 72 direction change histogram c4 X

73
Amin=(ymax−ymin)(xmax−xmin)

(∆x=
∑pen-downs

i=1
(xmax |i−xmin |i))∆y

X X X 74 (max distance between points)/Amin

75 (x1st pen-down − xmax)/∆x X X X X 76 (x1st pen-down − xmin)/∆x X X X X

77 (xlast pen-up − xmax)/∆x X X 78 (xlast pen-up − xmin)/∆x X

79 (y1st pen-down − ymax)/∆y X X 80 (y1st pen-down − ymin)/∆y X X X X

81 (ylast pen-up − ymax)/∆y X X X X 82 (ylast pen-up − ymin)/∆y X

83
(xmax−xmin)∆y

(ymax−ymin)∆x
X X 84 (standard deviation of x)/∆x X X X

85 (standard deviation of y)/∆y X X 86 (Tw v̄)/(ymax − ymin) X X X

87 (Tw v̄)/(ymax − ymin) X X 88 (xmax − xmin)/xacquisition range X X X X

89 (ymax − ymin)/yacquisition range 90 (x̄− xmin)/x̄ X

91 spatial histogram t1 X X X 92 spatial histogram t2 X X X X

93 spatial histogram t3 X X 94 spatial histogram t4 X

95 N(local maxima in x) X X X X 96 (x2nd local max − x1st pen-down)/∆x X

97 (x3rd local max − x1st pen-down)/∆x X 98 N(local maxima in y) X X X X X

99 (y2nd local max − y1st pen-down)/∆y 100 (y3rd local max − y1st pen-down)/∆y X X X X
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4. MOBILE SIGNATURE VERIFICATION

Table 4.2: Local feature sets selected by the SFFS algorithm on the development datasets. “SK.” denotes
skilled forgeries and “RD.” random forgeries.

Optimization 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

scenario xn yn zn θn υn ρn an ẋn ẏn żn θ̇n υ̇n ρ̇n ȧn γn φn γ̇n φ̇n ẍn ÿn υr
n αn α̇n sn cn r5n r7n

SK.
PDA X X X X X X X

Pen tablet X X X X X X X X X

Pen tablet interp. X X X X X X X

RD.
PDA X X X X X X X X

Pen tablet X X X X X X

Pen tablet interp. X X X X X X X

Table 4.3: System performance in terms of EER on the BMDB-VAL70 validation set using global or
local features on both scenarios for random (rd) and skilled (sk) forgeries. The combined EER (EERc) is
also presented, as described in Sect. 4.3.3. Vectors of 40 features have been selected in every configuration
for the global system.

Optimization Global Local
scenario EERrd(%) EERsk(%) EERc(%) EERrd(%) EERsk(%) EERc(%)

SK.
PDA 7.2 16.3 9.7 6.0 17.5 9.1
Pen tablet 5.6 11.3 7.5 4.5 9.3 5.7
Pen tablet interp. 6.9 10.9 7.9 6.8 12.1 8.1

RD.
PDA 5.4 17.7 9.2 5.8 22.2 9.5
Pen tablet 6.7 13.0 8.6 3.8 11.1 7.1
Pen tablet interp. 6.7 10.9 7.7 5.8 15.3 8.9

The main disadvantage of a handheld device would be the lack of trajectories during pen-ups,

which penalizes verification performance.

4.3.3. Experiment 5: Validation

The verification performance (in terms of EER) on the BMDB-VAL70 validation set using the

optimal feature vectors in each scenario is shown in Table 4.3. As can be seen, global features

provide better results in general on mobile conditions, at least compared to an HMM-based

system. It can also be observed that when pen-up trajectories are not available, the performance

of the local system is significantly degraded against skilled forgeries. This corroborates the

reduction of the individual feature discriminative power (FDR and DDR) against skilled forgeries

observed in the individual feature analysis (Sect. 4.3.1).

It can also be observed in Table 4.3 that, comparing both optimization scenarios, when

the systems are optimized against random forgeries, there is a significant degradation in the

performance against skilled forgeries. On the contrary, the EER against random forgeries is

nearly not degraded (or even enhanced) when the systems are optimized against skilled forgeries.

A combined EER (EERc) is also presented in Table 4.3, where all available scores (genuine,

random forgeries and skilled forgeries) are used for its computation. This implies that, for each

user, 15 genuine user scores, 20 skilled forgery scores and 69 random forgery scores are used for
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4.3 Results

Table 4.4: System performance in terms of EER on the SG-NOTE set using global or local features on
both scenarios for random (rd) forgeries. Vectors of 40 features have been selected in every configuration
for the global system. “SK.” denotes skilled forgeries and “RD.” random forgeries.

Optimization Global Local
scenario EERrd(%) EERrd(%)

SK. 4.2 6.2
RD. 2.1 6.8

Table 4.5: System performance in terms of EER in the BSEC 2009 Signature Evaluation Campaign
both for random (rd) and skilled (sk) forgeries. Table data has been extracted from Houmani et al. (2012).

System ID
DS2 Pen tablet Dataset DS3 PDA Dataset
EERsk(%) EERrd(%) EERsk(%) EERrd(%)

UPM1 4.9 2.3 7.4 1.9
UPM2 4.4 1.9 8.2 2.0
SKU 2.9 1.6 7.9 1.3
ASU 3.8 2.7 31.6 30.6
VDU 2.2 1.0 6.6 1.7
SU 3.0 2.2 5.0 4.3
UAM-DTWr 4.2 0.5 12.2 0.6
UAM-DTWs 2.9 1.5 5.8 1.5
UAM-HMM 19.2 24.2 25.8 21.3
UAM-GLO 6.7 3.3 13.2 4.7
UAM-FUS 2.2 0.6 5.5 0.7
Reference 4.5 1.7 11.3 4.8

the (EERc) computation. It can be observed that in most cases the systems optimized against

skilled forgeries present a better overall performance under these experimental conditions.

In Table 4.4, the verification performance in terms of EER against random forgeries is shown

for the SG-NOTE validation dataset. As can be seen, the performance is similar than in the

BMDB database when the local system is used. On the contrary, the global system verification

performance is better than with the BMDB database.

Results of the BSEC 2009 Signature Evaluation Campaign (Houmani et al., 2012) Task 1,

are reported in Table 4.5. Performance in terms of EER of the eleven participating systems and

a reference system is shown. The BMDB signature corpus was used for the competition, which

contains 382 users. As can be seen performance is degraded on mobile conditions. The UAM-

GLO system is based on the global system presented in this work, and the UAM-HMM system is

based on the local system. Unfortunately, the UAM-HMM system had an implementation error

that led to a poor performance in the BSEC 2009 competition. The DTW systems presented by

the authors (UAM-DTWs and UAM-DTWr) reached top positions in many categories of BSEC

2009, and were based on the same local features and approach followed in this chapter, using a

DTW-based matcher. A detailed report of the results may be found in BSEC (2009).
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4.4. Chapter Summary and Conclusions

The effects on the feature discriminative power produced by the usage of handheld devices for

signature acquisition have been studied. It has been observed that mobile conditions negatively

affect feature discriminative power, specially when local features are considered, at least for

the HMM-based system used in the experiments, which is based on the one that reached top

positions in the SVC-2004 competition (Kholmatov and Yanikoglu, 2005).

The performance difference against skilled forgeries between the mobile and pen tablet

BMDB datasets may also be due to the different forgery acquisition protocols. On the mo-

bile scenario, forgers had access to an on-screen replay of the signature while the replay shown

was on a separate screen when using pen-tablet. Nevertheless, it has been clearly seen that

verification performance decreases when pen-up samples are not available, except for the case of

the global system and skilled forgeries. These results indicate that trajectories during pen-ups

contain relevant biometric information, corroborating the findings reported by Sesa-Nogueras

et al. (2012) in the field of handwriting recognition. The verification performance when using

global features presents a more robust behavior than the local approach based on discrete-time

functions against the lack of pen-up samples.

It has also been observed that the optimal feature set selected by the SFFS algorithm has

a similar performance on the SG-NOTE database in the case of local features, while it presents

lower error rates for the global system. The performance of the global system is better while

the local system has a similar performance. This corroborates the apparent robustness of global

features against degraded signature acquisition conditions, at least in this experimental setup.

At an individual feature level, it has also been observed that on handheld devices the feature

discriminative power is more negatively affected for skilled forgeries than for random forgeries.

The discriminative power on the mobile scenario is penalized by the lack of pen-up trajectories,

the unfamiliar screen surface where users must sign and the poor ergonomics of a handheld

device stylus. Features related to pen inclination and pen pressure, not available in this scenario,

have not proven to be among the most discriminant in the pen tablet setup, corroborating the

observations reported by Houmani et al. (2009).
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Chapter 5

Aging in Signature Verification

It has not been until recently that different European and national efforts have led to

the acquisition of compatible (regarding certain traits) multimodal databases with a relatively

large number of common users which have been captured in different sessions over a several year

time span. Some examples include the Biosec (Fierrez et al., 2007a), BiosecurID (Fierrez et al.,

2010) and BioSecure (Ortega-Garcia et al., 2010) projects. For the current Thesis, the signature

modality of the common subset of users in BiosecuriID and BioSecure has been used to generate

a new Long-Term dynamic signature dataset. This new dataset has been used to analyze the

effect of aging on three state-of-the-art on-line signature verification systems working on totally

different features and matchers. In addition to the study of the signature performance stability

over time, several template update strategies have also been explored in order to assess their

efficiency as a way to maintain the consistency of the system performance in the long-term.

Furthermore, several experiments regarding the changes suffered by signatures with time and

their most/least robust features have also been carried out.

This way, although some novelty may be found in the algorithms and techniques used in the

experiments, the most relevant contributions of the present chapter lie on: i) the presentation

of the first dataset where the signature of different subjects may be tracked over more than a

year; ii) the rigorous methodology followed to reach the experimental results, which may be

generalized in the future for similar aging studies focused on other biometric traits; iii) the

experimental findings and practical conclusions extracted from them, which help to shed some

light into the difficult problem of handwriting evolution over time.

The chapter is structured as follows. The on-line signature Long-Term DB used in the ex-

periments is presented in Sect. 5.1. The experimental protocol followed is described in Sect. 5.2,

while results are given in Sect. 5.3. Limitations of this study and open questions are discussed

in Sect. 5.4. Conclusions are finally summarized in Sect. 5.5.

The findings of this chapter have been published by the author with Galbally et al. (2013).
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SIGNATURE LONG-TERM DB (29 users, 46 samples/user, 6 sessions)

BID 1
4 samp.
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Figure 5.1: General time diagram of the different acquisition sessions that conform the Signature Long-
Term Database.

5.1. The On-Line Signature Long-Term Database

The dataset used in the experimental section of this work comprises the on-line signature data

of the 29 common users to the BiosecurID and the BioSecure databases. These two signature

subsets, which were acquired in a 15 month time span, present some unique features that make

them especially suited for the aging evaluation performed in the present work. A description of

the databases can be found in Sect. 2.4

The BiosecurID Signature Subset (Fierrez et al., 2010). As described in Sect. 2.4, it

comprises 16 genuine signatures and 12 skilled forgeries per user, captured in 4 separate

acquisition sessions (named here BID1, BID2, BID3 and BID4 ). A two month interval was

left between capture sessions, and signatures were acquired in a controlled and supervised

office-like scenario.

The BioSecure Signature Subset (Ortega-Garcia et al., 2010). This dataset was cap-

tured 6 months after the BiosecurID acquisition campaign had finished (the time sequence

of the two databases is shown in Fig. 5.1). As described in Sect. 2.4, it comprises 30

genuine signatures per user, and 20 skilled forgeries, distributed in two acquisition ses-

sions separated three months (named here Bure1 and Bure2 ). The 15 original samples

corresponding to each session were captured in three groups of 5 consecutive signatures

with an interval of around 15 minutes between groups (named here Bure11-12-13 and

Bure21-22-23, respectively). The signature dataset was designed to be fully compatible

with BiosecurID.

For the final dataset used in the present work, only the genuine signatures were considered.

This way, it comprises 1,334 signatures coming from the 29 common users of the two databases

with 46 samples per user (16 from BiosecurID, and the remaining 30 from BioSecure) which are

distributed in 6 sessions (BID1-2-3-4 and Bure1-2) according to the general time diagram shown

in Fig. 5.1.
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It constitutes the first signature dataset where we can track, over a 15 month time span (as

there are 6 almost uniformly distributed acquisition sessions in this interval), the signature of a

given user, and assess if that period of time is sufficient to detect a decrease in the verification

performance of signature-based biometric systems. Furthermore, as all the samples of the same

subject have been acquired under almost identical conditions we may discard external factors

as the cause of a possible degradation in the recognition rates.

All users in the database are Spanish, white Caucasian with higher level education, between

18 and 51 years of age. In particular, the age distribution of the subjects is: 24 donors between

18 and 25; 3 donors between 25 and 45; and 2 donors above 45 years old. The gender distribution

within the database is quite balanced with 11 women and 18 men.

It should also be noted that all the users included in the database may be considered as adults

in terms of writing. This means that their signature is a well learned sequence of movements

which may be considered as permanent and that has already gone through the transitional

learning period which usually happens in the youth. The effect of aging during the time in

which the signature has not yet been fully fixed may be different and would be the subject of

future work.

Some typical examples of the signatures that can be found in the different sessions comprised

in the Signature Long-Term DB are shown in Fig. 5.2. The Signature Long-Term DB is publicly

available for research purposes1.

5.2. Experimental Protocol

The experimental framework has been designed to evaluate the effect of aging on the per-

formance of signature-based systems and to assess the stability of signatures through time. In

particular, five different objectives are pursued in the experiments, which may be divided into

two main groups:

Signature recognition performance. On the one hand, i) to evaluate the loss of per-

formance of different competitive signature recognition systems as a consequence of the

changes suffered by the signature trait with time (i.e., aging); ii) to determine the depen-

dencies of this performance degradation (e.g., signature-dependent vs. user-dependent);

and iii) to assess the effectiveness of different template update approaches to compensate

this effect.

Signature evolution. On the other hand, iv) to determine which are the changes over

time that motivate the previously evaluated decrease in the signature recognition perfor-

mance; and v) to establish which are the most stable features in the signature trait.

In order to achieve these goals the experimental protocol includes two groups of tests which

are described in the next sections.

1Available at: http://atvs.ii.uam.es/databases.jsp
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 USER 1 USER 2 USER 3 USER 4 USER 5 

BID1

BID2

BID3

BID4

Bure11 

Bure12 

Bure13 

Bure21 

Bure22 

Bure23 

Figure 5.2: Typical samples that can be found in the Signature Long-Term DB. Each signature corre-
sponds to each of the acquisition sessions of five different users.
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5.2.1. Signature Recognition Performance Experiments

The first objective of this group of experiments is to evaluate the degree of aging that may be

observed in the recognition performance of signature-based systems. The results will also shed

some light on the user- and signature-dependency of aging, that is, if certain type of signatures

are more prone to worsen their performance in the long term, or if this only depends on the

signer (second objective).

The third objective of these tests is to analyze different template update approaches that

can help to reduce the performance deterioration that signature recognition systems suffer with

time.

In order to reach these goals, several sets of genuine matching scores (i.e., those computed

between samples of the same user and therefore affected by aging) are computed on the Signature

Long-Term DB simulating two different scenarios:

Aging experiments: Fixed template and varying test. In this case the user models

enrolled to the system are always computed using the same samples (i.e., those belonging

to the first session of the Signature Long-Term DB, BID1), while the test signatures are

taken from the following sessions (BID2-3-4 and Bure1-2).

Template update experiments: Varying template and fixed test. In this case the

test samples are always taken from session Bure13, while the enrolled models are updated

with signatures coming from different previous sessions (BID2-3-4 and Bure11-12).

Not all the systems working on a given trait may be necessarily affected in the same way by

aging. In order to account for possible differences, we have carried out this set of experiments

on three different competitive on-line signature verification systems using totally diverse feature

sets (feature- and function-based) and matchers (Mahalanobis distance, Hidden Markov Models,

and Dynamic Time Warping, presented in Chapter 3). A brief description of each of the three

systems is given next:

System A: function-based + HMM. An HMM system, as described in Chapter 3,

is used. A subset of 12 discrete-time signals are derived from the coordinate (x and y)

and pressure (p) functions, while no pen inclination signals are used as its utility for

automatic signature recognition is at least unclear (Martinez-Diaz et al., 2014). This

subset corresponds to the first 12 features described in Table 3.2. After some preprocessing

(position and rotation alignment) and the computation of the 12 functions, similarities are

computed using a 12-state left-to-right HMM with 4 Gaussian mixture components per

state, which is a common implementation in the literature (Dolfing et al., 1998; Ly-Van

et al., 2007).

System B: feature-based +Mahalanobis distance. This system models the signature

as a holistic multidimensional vector composed of 100 global features described in Table 3.1.
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5. AGING IN SIGNATURE VERIFICATION

Features #

Static 2,7,8,12,15-19,24,27-28,30,34-37,43,46,51,53-57,61,63,65-67,
70-73,75,77-78,84,86,93,95,97-99.

Dynamic 1,3-6,9-11,13-14,20-23,25-26,29,31-33,38-42,44-45,47-48,50,52,58-60,
62,64,68-69,74,76,79-83,85,87-92,94,96,100.

Table 5.1: Division of the feature set introduced in Table 3.1 according to the type of information they
contain.

The similarity scores are computed using the simplified Mahalanobis distance method

described in Sect. 3.2.

System C: function-based + DTW. The Dynamic Time Warping system described

in Sect. 3.3 is used. A set of 9 functions is extracted from the signatures, namely features

1, 2, 5, 9, 11, 12, 21 23 and 25 from Table 3.2. These functions correspond to the best

performing set of features against skilled forgeries on the training set of the BioSecure

Signature Evaluation Campaign 2009. It outperformed other systems based on HMMs

and global features (Houmani et al., 2012)

5.2.2. Signature Evolution Experiments

In this case, the aim of the experiments is to give some indication on whether there is a

common trend in the evolution through time of signatures coming from different users (objective

four), and if there are certain types of features (e.g., static vs dynamic) which are more stable

(objective five).

To reach these objectives, the Signature Long-Term DB is parameterized using the set of 100

features described in Table 3.1. This 100-feature set may be divided into two classes according

to the information contained by each of the parameters, namely: static or dynamic. All the

features assigned to each class are specified in Table 5.1 (the numbering criterion is the same

used in Table 3.1).

5.3. Results

The results obtained for the two sets of experiments described in Sect. 5.2 are presented in

the next sections.

5.3.1. Signature Recognition Performance Results

As already mentioned, aging may be defined as the loss of performance experimented by

biometric systems due to the transformations suffered by biometric traits in the long term.

With this in mind, the questions raised in this section are: Is aging present in the signature
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Aging Experiments
Enrollment Test

Exp. A BID1 (4 sig.) BID2 (4 sig.)

Exp. B BID1 (4 sig.) BID3 (4 sig.)

Exp. C BID1 (4 sig.) BID4 (4 sig.)

Exp. D BID1 (4 sig.) Bure1 (15 sig.)

Exp. E BID1 (4 sig.) Bure2 (15 sig.)

Table 5.2: Enrollment and test signatures used to compute the genuine scores in the aging experiments.

trait? To what extent? Are some users more prone to be affected by aging than others? How

can it be corrected?

In order to give an answer to these questions, several sets of genuine scores (i.e., those affected

by aging) are computed in order to evaluate the performance of signature recognition systems.

Before presenting the results, it is very important to notice that, given a fixed set of impostor

scores, the best possible performance results are reached when the genuine similarity score

distributions have a mean value as high as possible and a variance as low as possible. Therefore,

a worsening of the systems performance with time (i.e., aging) may be caused by two factors: i)

a decrease of the genuine distributions mean value, or ii) an increase of the genuine distributions

variance.

5.3.1.1. Objective 1: Aging analysis

As mentioned before, these experiments are aimed at estimating the impact of aging on

signature recognition systems. For this purpose, the enrolled models of the 29 users present

in the Signature Long-Term DB are trained using the 4 signatures corresponding to the first

session (BID1). Then, the sets of genuine and impostor scores are computed as follows:

Genuine scores are generated matching the models against the signatures of the following

5 sessions: BID2-3-4 and Bure1-2. This way, for each user 5 different sets of genuine scores

are computed: BID1 vs BID2, BID1 vs BID3, BID1 vs BID4, BID1 vs Bure1, and BID1

vs Bure2 (see Table 5.2).

On the other hand, the same set of impostor scores is used for all the experiments A-E

(i.e., we assume impostor signatures may come from any of the acquisition sessions as they

are not affected by aging). To compute the set of impostor scores one signature from each

session of the rest of the users is matched against the enrolled model of the subject at

hand, leading this way to a total of 29× 6× 28 = 4, 872 impostor scores.

As the impostor score distribution is fixed for all the scenarios, any changes observed in the

performance of signature recognition systems among experiments A-E will be caused by changes

in the genuine score distributions.
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5. AGING IN SIGNATURE VERIFICATION

Figure 5.3: Performance evolution of the three signature recognition systems considered in the experi-
ments. For the DTW-based system only two curves appear as for experiments A-C its EER is close to
zero. The EER for the three systems and for the different experiments are reported in Table 5.3.

The DET (Detection Error Trade-off) curves obtained with the aforementioned genuine and

impostor scores for the five scenarios (A-E) and for the three recognition systems are shown in

Fig. 5.3. A darker gray level corresponds to a better performance of the evaluated system. It

may be observed that, as the test signatures are more distant in time from those samples used

for enrollment, the performance of all the three systems drops. For completion, the Equal Error

Rate (EER) corresponding to the curves shown in Fig. 5.3 is given in Table 5.3.

In order to further analyze this performance loss, in Fig. 5.4 we show the evolution of the

genuine scores when the test signatures move away (in terms of time) from the model. The

distributions for each of the five sets of genuine scores are depicted on the right planes (in

vertical) with a darker gray representing a better performance. On the left planes we can

see the mean (circles) and variance (vertical lines) for each of the five distributions. Several

observations can be extracted from the results shown in Figs. 5.3 and 5.4:
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Aging Experiments - EER (%)
Exp. A Exp. B Exp. C Exp. D Exp. E

HMM-based 3.2 5.5 5.6 22.7 27.8

GF-based 1.0 2.0 4.2 4.9 5.0

DTW-based 0.0 0.0 0.0 0.1 0.5

Table 5.3: EER for the aging experiments defined in Table 5.2. The whole DET curves for these
experiments are shown in Fig. 5.3.

The performance of the three systems consistently decreases as the testing signatures move

away from the model (the DET curves in Fig. 5.3 are further away from the origin), which

means that the users discriminant power decreases with time or, in other words, that all

the three recognition approaches are affected by aging. The previous observation indicates

that this effect is not particular of a certain signature recognition technology, but that, as

expected, it is inherent to the signature trait itself.

Not all the systems are affected in the same way by the passing of time, that is, not all the

curves in Fig. 5.4 present the same decreasing slope. In particular, the system based on

DTW presents a decrease in the average genuine score between the first and the last test

set of signatures of 5.6%, compared to a 16.7% of the one based on global features and

a 21.8% for the HMM. Thus, we may conclude that the signature recognition technology

based on DTW is not only more accurate but also more robust to aging.

The effect of aging may also be observed in the worsening of the scores variance through

time, that is, the scores are not only lower but also more disperse. This way we can see how

the variance increases around 45% from experiment A to E for all the three technologies

tested.

Another important observation to be made from the results shown in Fig. 5.4 is that the

effect of aging on the signature trait is not negligible. There is a significant drift in the

genuine score distributions (from the first to the last signature test set) in a relatively

short period of time (15 months).

5.3.1.2. Objective 2: Aging user-dependency analysis

The sets of genuine scores generated in the previous experiments (Sect. 5.3.1.1) are used here

to determine if certain users are more prone to suffer from aging. For this purpose we compute

an Aging Coefficient (AC) defined as: AC = ∆µ · ∆σ, where ∆µ and ∆σ are respectively the

mean and variance relative variation between two sets of scores. This way both aging effects

(i.e., decrease of the genuine scores mean value and increase of the variance) are taken into

account in one metric, so that the higher the AC of a user, the more affected that subject’s

signature is by the elapse of time.

69



5. AGING IN SIGNATURE VERIFICATION

The AC is computed for all the users in the database between the genuine scores of exper-

iments A and E, which are the two score distributions more separated in time. In Fig. 5.5 the

AC is shown for all the subjects ordered according to their level of aging, from the lowest to

the highest, for all the three systems considered in the experiments. Please note that the least

affected user, the most affected user, or any of the users in between, do not necessarily have to

coincide (i.e., be the same signer) for all three systems. The three AC curves are shown on the

same figure for an easier visual comparison across systems.

The five most/least affected subjects by aging (i.e., those with respectively a higher/lower

AC) are shown in Table 5.4 for all the three systems tested. For completion, the individual

mean and variance variation indexes (i.e., ∆µ and ∆σ) are also given.

Different observations may be extracted from the results shown in Fig. 5.5 and Table 5.4:

As expected, not all the systems present the same AC values. The DTW-based system

has the lowest values (i.e., most consistent system over time), compared to the one based

on global features (GF-based) and the HMM. This is consistent with the results obtained

in Sect. 5.3.1.1 and confirms that the AC is a valid metric to evaluate the level of aging.

In all the three systems there is a very big difference (around 95% on average) between

the AC of the least and most affected users. Thus, even for the most robust technologies

(DTW), the degree of aging is very dependent on the signer.

In general the users tend to perform consistently well (3, 19) or badly (1, 17, 11) regardless

of the recognition system used. Furthermore, none of the top five users in a system (i.e.,

those least affected by aging) appear in the list of the worst five users of the other two

systems, and vice versa. This means that, as a general rule, a subject that despite of the

aging effect presents high recognition rates on a given system, will be very likely to be

consistently recognized if the system is changed.

Therefore, we may conclude that, although some technologies are more robust than others

to aging, the degree of deterioration of a subject’s signature depends mainly on the subject and

not on the recognition system being used.

Those subjects with the highest number of appearances in the AC rows of Table 5.4 (shown

in bold) are considered to be those with a more/less stable signature. The signatures of these

users are depicted in Fig. 5.6 where we can see that the complexity of the signature is not a

key factor in the level of aging. That is, complex signatures (i.e., long signatures, with the

written name and flourish) may be very affected by aging or, on the contrary, can also be very

stable through time. The same happens for short and simple signatures. In other words, these

initial results suggest that the degree of aging does not depend on the type of signature, but on

the signer. However, these findings regarding aging and signature complexity should be further

addressed on a specific database where signatures are classified into different complexity groups.
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Figure 5.4: Evolution through time of the mean (circles) and variance (vertical lines) of the genuine
score distributions (in vertical on the right) for the three systems considered in experiments A-E. A darker
gray level represents a better performance of the given system.
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Figure 5.5: Aging Coefficient (AC) from the least affected to the most affected user by aging in the
Signature Long-Term DB, for the three systems considered in the experiments. Please note that the least
affected user, the most affected user, or any of the users in between, do not necessarily have to coincide
(i.e., be the same signer) for all three systems. The three AC curves are shown on the same figure for an
easier visual comparison across systems.

Aging: user dependency
Most affected users Least affected users

∆µ 15, 17, 16, 22, 4 19, 27, 3, 9, 28
HMM ∆σ 17, 4, 5, 26, 12 28, 6, 1, 9, 3

AC 17, 4, 5, 22, 11 28, 3, 6, 27, 19

∆µ 16, 24, 11, 23 19, 21, 3, 2, 27
GF ∆σ 14, 1, 21, 6, 9 18, 12, 16, 17, 13

AC 1, 24, 7, 11, 21 18, 12, 21, 19, 3

∆µ 7, 16, 11, 1, 8 19, 13, 3, 14, 26
DTW ∆σ 11, 9, 16, 14, 2 19, 24, 26, 8, 29

AC 16, 11, 1, 18, 7 19, 13, 26, 3, 24

Table 5.4: Most and least affected users by aging in the Signature Long-Term DB according to the three
systems considered in the experiments. Users with the most appearances in the AC rows (in bold) are
depicted in Fig. 5.6.
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Figure 5.6: Most (left) and least (right) affected users by aging in the Signature Long-Term DB according
to Table 5.4.

5.3.1.3. Objective 3: Template update analysis

The results presented in Sects. 5.3.1.1 and 5.3.1.2 confirm the necessity to develop strategies

that can help to minimize the effect of aging, especially in those behavioral or learned traits,

such as the signature, which are more sensitive to time. Here, we analyze the efficiency of

different template update approaches varying the enrollment signatures used to compute the

users models and testing always with the same set of samples, as shown in Table 5.5. In

particular, the scenarios considered are:

Baseline result (Exp. F). This represents the scenario with no template update strategies

to correct aging. There is a 14 month difference between the enrolled model (BID1) and

the test set (Bure13).

Complete update (Exp. G). The first template update approach considered is to discard

the old enrollment samples (BID1) and replace them by new samples acquired very close

in time to the test set (Bure11).

Mixed update (Exp. H). In this case we do not discard the old samples but we update the

enrolled model with newly acquired samples (BID1+Bure11). Thus, in this scenario there

will be more available data to train the model than in the previous two cases (experiments
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Figure 5.7: Mean (circles) and variance (vertical lines) of the genuine score distributions (in vertical
on the right) for the 4 different template update strategies tested and for the three systems considered in
the experiments. A darker gray shade represents a better performance of the given system.
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Template Update Experiments
Enrollment Test

Exp. F (baseline) BID1 (4 sig.) Bure13

Exp. G (complete) Bure11 (4 sig.) Bure13

Exp. H (mixed) BID1 (4 sig.) + Bure11 (4 sig.) Bure13

Exp. I (complete) Bure11 (4 sig.) + Bure12 (4 sig.) Bure13

Table 5.5: Enrollment and test signatures used to compute the genuine scores in the template update
experiments.

F and G).

Complete update (Exp. I). Here, we consider the same amount of training data as in

experiment H, but all of it comes from recent acquisitions (Bure11+Bure12).

The results of the previously described setups for the three considered systems are shown

in Fig. 5.7. As in the case of the aging experiments the score distributions for each of the four

considered scenarios is shown on the right planes in vertical with a darker gray shade representing

a better performance of the given system. On the left plane we can see the evolution of the

mean (circles) and variance (vertical lines) of the score distributions. Although all the template

update strategies studied improve the performance with respect to the baseline experiment (in

all cases there is an increase of the mean value and a decrease of the variance), two different

behaviors may be observed in Fig. 5.7 depending on the signature recognition system considered:

HMM system. HMM-based systems heavily depend on the amount of training data avail-

able (Fierrez et al., 2007b). As a consequence, it is better to perform a mixed update

(i.e., do not discard the old samples, exp. H) so that the model is trained with as many

signatures as possible (8 signatures, in this particular case), instead of using few recent

samples (i.e., exp. G, where only 4 signatures are used for enrollment).

Global features and DTW systems. On the other hand, the systems based on DTW and

global features do not rely as much on the amount of enrollment data, but on the quality

of these data (Martinez-Diaz et al., 2009b). Therefore, the performance reached using 4

recently acquired samples (exp. G) is almost the same as the one obtained using 8 of

those signatures (exp. I). This means that, as can be seen in Fig. 5.7, in these cases it is

preferable to perform a complete update with the most recent samples (i.e., exp. G) than

to keep the old ones (i.e., exp. H) even if this means training the enrolled model with a

smaller number of signatures.

As could be expected, in all cases the best possible template update strategy is to use for

enrollment all the most recent samples available (i.e., exp. I). However, this may represent a

somewhat unrealistic scenario, as we are assuming that we have access to as many as 8 signatures
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captured in a time period very close to the test set. The amount of new collected data will rarely

comply with this condition.

5.3.2. Signature Evolution Results

The results presented in Sect. 5.3.1 clearly show that the effect of aging is patent in the

signature trait. The purpose of the present set of experiments is to further investigate the

causes of the deterioration in the performance of signature recognition systems.

From a human perspective, the changes experienced with age by certain biometric traits

are easily distinguished. For instance, we know that the face gradually loses its oval shape and

that the wrinkles and sun-stains make its texture less smooth (in fact, these characteristics are

successfully used for automatic age estimation purposes). However, what are the changes and

transformations, if any, undergone by signatures with age?

In order to shed some light on this difficult question, the aging-related issues raised in this

section are: How do signatures typically evolve over time? What type of transformations do

they suffer? Are some signature-defining features more stable over time than others?

5.3.2.1. Objective 4: Signature evolution analysis

In order to determine the way in which signatures typically evolve with time, five of the most

representative global features given in Table 3.1 have been analyzed for the whole Signature

Long-Term DB. Not all the features proposed in Table 3.1 have a direct physical meaning,

thus, the selected parameters have been those with an easy interpretation, namely: duration of

the signatures (parameter 1 in Table 3.1), number of maxima points in x (parameter 8) and y

(parameter 12), number of pen-ups (parameter 2) and the average speed (parameter 26).

These parameters have been averaged for all the users in the database in a sample by sample

basis. That is, in the end, for each of the features, a 46-dimensional vector is computed where

each element is the result of averaging the value of that parameter for the corresponding sample

(from 1 to 46) of all the users in the database. In that way, we can see the evolution of the

feature value from the first acquisition (month 0) to the last one (month 15). The results are

shown in Fig. 5.8.

We can observe that, regardless of the user, the general trend for the signatures is to become:

shorter, with fewer singular points and penups, and faster. That is, the results imply that

signatures tend to be simplified with time.

5.3.2.2. Objective 5: Parameter evolution analysis

In this case the goal is to determine which of the global features proposed in Table 3.1

are more stable through time and, on the contrary, which are those that suffer the largest

variations in the long term. For this purpose we use a Variation Coefficient (VC) analogue to

the Aging Coefficient (AC) computed in Sect. 5.3.1.2. This new Variation Coefficient is defined
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Figure 5.8: Evolution through time of the duration, maxima points in x, maxima points in y, number
of penups and speed of the signatures in the Signature Long-Term Database.
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as: VC = ∆µgf · ∆σgf , where ∆µgf and ∆σgf are respectively the mean and variance relative

variation of a certain global feature between two acquisition sessions.

Prior to compute the VC, the values of the global features are averaged for all the users

in the database on a sample by sample basis. That is, for each sample (1-46) we compute a

100-dimensional vector where each dimension is the mean value of that global feature for all the

users in the dataset. Then, in order to evaluate the degree of variation through time of each

global feature, the VC is computed between the samples of acquisition sessions BID1 and Bure2,

which are the two most distant in time.

In Fig. 5.9 we show the value of the Variation Coefficient from the least variable to the most

variable static and dynamic features. On the other hand, in Table 5.6 the 10 most and least

variable features are shown following the numbering criterion used in Table 3.1. The ‘S’ and

‘D’ stand for Static and Dynamic features respectively, according to the classification given in

Table 5.1.

In Table 5.6 we can see that 9 out of the total 10 most unstable features correspond to pa-

rameters measuring dynamic information. Furthermore, Fig. 5.9 shows how, in general, dynamic

features present a higher variability with time. From these results it may be concluded that the

static information of a signature (e.g., geometric, spatial, or angular) is more robust over time

than the dynamic data (e.g., velocity or acceleration). In other words, with time, signers tend

to be more consistent repeating the shape of their signature rather than the way in which this

shape is produced. These results are in line with the findings of previous related studies (Dixon

et al., 1993; Houmani et al., 2009; Walton, 1997).

5.4. Limitations of the Study and Open Questions

The main limitations of the present study are derived from the characteristics of the database

used in the experiments. It has been mentioned in the chapter that the On-Line Signature Long-

Term DB is unique regarding the number of subjects whose signature has been uniformly tracked

over more than a year. Nevertheless, although this was the best available possibility, it is still

limited both in terms of individuals (29) and time span considered (15 months).

The present work sets a first landmark in the understanding of aging in a behavioral bio-

metric. Its conclusions should be confirmed by further analysis and assessment on databases

comprising a big number of uniformly-acquired samples for a larger number of individuals (sev-

eral hundreds) and over a longer period of time (several years). However, we do believe that the

experimental protocol and posterior analysis carried out in the present work is general and may

serve as a baseline to be applied in future studies.

Therefore, the results, findings and conclusions presented in the article should be taken as a

first approximation to the challenging problem of assessing aging in the signature trait, but not

as conclusive and demonstrated facts. Furthermore, the study is also constrained to the type of

subjects present in the database: Spaniards white Caucasians, mostly between 20 and 25 years

of age, with a higher education degree (or pursuing it). For similar studies concerning other
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Figure 5.9: Variation Coefficient (VC) from the least variable to the most variable dynamic and static
features (see Table 5.1).

Most variable global features

∆µgf 33(D), 36(S), 47(D), 95(S), 66(S), 64(D), 31(D), 10(D), 76(D) ,85(D)
∆σgf 73(S), 86(S), 76(D), 19(S), 85(D), 13(D), 90(D), 77(S), 65(S), 28(S)

VC 33(D), 47(D), 76(D), 85(D), 10(D), 64(D), 31(D), 36(S), 9(D), 32(D)

Least variable global features

∆µgf 38(D), 59(D), 3(D), 17(S), 20(D), 7(S), 19(S), 40(D), 46(S), 60(D)
∆σgf 93(S), 72(S), 58(D), 45(D), 17(S), 97(S), 21(D), 62(D), 67(S), 54(S)

VC 17(S), 58(D), 38(D), 93(S), 59(D), 72(S), 3(D), 45(D), 97(S), 7(S)

Table 5.6: Most and least variable features over time. The numbering criterion is the same used
in Table 3.1. ‘S’ stands for Static and ‘D’ for Dynamic according to the classification established in
Table 5.1.
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sectors of the population, specific data should be acquired.

Accordingly, the present study should be understood as a valuable but limited start which

leaves different open questions to be addressed in similar future works. For instance:

Is 15 months a sufficiently long period of time to be in the presence of real “aging”?

Although all the results given in the present work point in that direction, as mentioned

above, this end should still be fully confirmed on a database acquired over a larger time

span.

What is the relationship (if any) between signature complexity and aging? In the current

work an initial approach to address this issue has been followed. However, more rigor-

ous studies should be carried out on databases where signatures have been grouped into

different complexity levels either by experts, different human observers, or some type of

objective measure.

Can the results presented here (using data acquired in laboratory conditions) be general-

ized to real world scenarios? For this type of study specific data from a real application

should be employed.

Are the signatures from men/women more prone to aging? A large gender-balanced

database may be used to study this issue.

Is the aging effect more pronounced in individuals with low writing skills? The current

study was carried out only taking into account subjects with higher education degrees.

5.5. Chapter Summary and Conclusions

We have conducted the first systematic study on the degradation of on-line signature with

time and how this aging effect may be compensated. For this purpose, we have introduced

the Signature Long-Term DB which contains the dynamic signature samples of the 29 common

users of the BiosecurID and the BioSecure databases. All the subjects were captured under very

similar conditions over a 15 month time span. The experiments, carried out using three totally

different state-of-the-art systems representing the most usual technologies in on-line signature

recognition, have proven that the aging effect is present in this trait even for time lapses of

several months. Several conclusions have been extracted throughout the work thanks to the

consistent and reproducible experimental protocol followed:

Aging in the signature trait is a user-dependent effect. This means that:

• In general, a user affected by aging perform badly regardless of the system being used

(this deterioration will be higher in those systems more sensitive to time).

• Complex and simple signatures can present the same amount of aging. Aging does

not seem to depend on the type of signature but on the signer.
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Not all signature recognition technologies are equally affected by aging. The one based on

DTW has demonstrated that it is not only the most accurate (Houmani et al., 2012), but

also the most robust against time.

Global features containing dynamic information are in general less stable with time than

those which comprise static information.

With time, signatures evolve towards a higher simplicity. They become: shorter, faster

and with fewer singular points and pen-ups.

Depending on the signature recognition system being used some template update strategies

are more efficient than others.

In summary, due to its very high user-dependency, the analysis and subsequent compensation

of aging in the signature trait should be done, ideally, on a user by user basis. Given a specific

signature recognition technology, different template update approaches should be adopted for

different users, depending on the performance degradation that each of the subjects present

with time. This is consistent with previous research works which also emphasize the strong user

dependencies found in signature recognition (Fierrez-Aguilar et al., 2005b; Jain et al., 2002).

In light of the experimental results obtained in the present work, a possible strategy to

detect the appearance of aging in the signature of a given individual would be to follow a

constant monitoring over time of the Aging Coefficient. A possible “aging detection” protocol

for a signature-based application would be:

1. Set a suitable AC threshold (i.e., δAC) for the given application depending on the amount

of aging allowed.

2. With every new genuine access attempt, estimate the mean and variance of the last known

N genuine access attempts and compare them to the mean and variance of the first N

attempts (i.e., attempts that were recorded when the individual first started using the

application).

3. Given the variation of the mean and variance between both sets of scores (new and old)

compute the AC.

4. If δAC is exceeded, apply a suitable template update strategy depending on the signature

recognition technology being used.

In this suggested protocol both δAC and N will depend on the type of application where

it is being implemented (e.g., high security, commercial, high convenience), and on the level of

restriction that will be imposed on aging. If only a small amount of aging is allowed a small

value of both variables should be selected. On the contrary, if the designer prefers to be quite

flexible with aging, larger values would be acceptable.
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In summary, the main contribution of this chapter is the theoretical and practical new

knowledge built in the fields of signature recognition and biometric aging, which may be directly

applied by researchers and companies for the future development of the biometric technology.
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Chapter 6

The DooDB Graphical Password

Database

It is well known that publicly available databases together with their associated evaluation

protocols make possible that researchers develop and objectively compare pattern recognition

algorithms on the same benchmark. Experiments carried out using private databases are usually

hard to replicate since database-specific effects, which cannot be reproduced by a third party,

may take place. Unfortunately, there is no such a public database in the field of doodle-based

graphical passwords, to the extent of our knowledge. Research on doodle verification has tra-

ditionally relied on private databases (Goldberg et al., 2002; Govindarajulu and Madhvanath,

2007; Jermyn et al., 1999; Oka et al., 2008; Sae-Bae et al., 2014). Moreover, in those works there

is no reference to forgeries, since only genuine doodles are considered.

The objective of this chapter is the presentation and analysis of DooDB, a doodle and pseudo-

signature database containing data from 100 users. Pseudo-signatures are doodles based on a

simplified version of the user signature, being thus composed of learned and natural movements.

The database has been captured on a handheld device under realistic conditions. It has two

main advantages compared to other databases used in the literature: two acquisition sessions

were performed, so inter-session variability effects can be analyzed, and skilled forgeries are

provided for each user. The DooDB database is publicly available from the ATVS - Biometric

Recognition Group website (http://atvs.ii.uam.es).

Another objective of this analysis is to obtain a baseline doodle verification performance that

can be used to compare this method with current well known authentication alternatives such as

signatures or with future doodle-based recognition algorithms. We also analyze the differences

in the verification performance between doodles and pseudo-signatures. Since pseudo-signatures

are simplified versions of real signatures, and thus composed of learned movements, it can be

hypothesized that they present a lower variability and a better verification performance. The

effects of inter-session variability are also studied.

The chapter is structured as follows. In Sect. 6.1 the database is described. Quantitative
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6. THE DOODB GRAPHICAL PASSWORD DATABASE

Figure 6.1: Doodle acquisition setup.

and qualitative properties of the database are analyzed in Sect. 6.2. Preliminary verification

experiments using the data from DooDB are reported in Sect. 6.3 and conclusions are finally

drawn in Sect. 6.4.

This chapter is based on the publications: (Martinez-Diaz et al., 2013, 2010a).

6.1. The DooDB Database

The DooDB database comprises two subcorpora, each one containing a different modality:

Subcorpus 1: Doodles. Participants were asked to draw with their fingertip a doodle

on a handheld device touchscreen that they would use as a graphical password on a regular

basis for authentication (e.g. instead of the PIN code). There were no restrictions regarding

duration or shape. In most cases, users invented their own doodle at the time of acquisition.

Subcorpus 2: Pseudo-signatures. Participants were also asked to draw with their

fingertip a simplified version of their signature, which they would also use as a graphical

password on a regular basis. This could be, for example, their initials or part of their

signature flourish. The main difference between doodles and this modality is that in this

case, the dynamic process to produce the drawing is in general composed of natural and

well trained movements.
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6.1 The DooDB Database

6.1.1. Acquisition Protocol

Acquisition was performed using an HTC Touch HD smartphone (see Fig. 6.1). The device

has a resistive touchscreen of 2×3.5 in (ca. 5×8.5 cm). The x and y coordinates of the fingertip

position are sampled at discrete time values t at 100Hz when the user presses the screen. The

coordinate values represent milli-inches, so xt values range between [0, 2000] (width) and yt

values between [0, 3500] (height). The time interval ∆t between consecutive samples is also

stored. However, the device has some sampling errors, such as lost samples or samples that

are not captured due to insufficient pressure. The device assigns [0,0] coordinate values to

the erroneous samples. To summarize, each drawing is stored as a sequence of discrete values

[xt, yt,∆t]. Some examples of doodles and pseudo-signatures are shown in Fig. 6.2.

The acquisition process was divided in two sessions, separated by an average period of two

weeks. This period was chosen in order to allow enough inter-session variability while trying

to avoid that users forgot their doodles. Participants were briefed in the first session about

the purpose of the acquisition. Each modality (doodles and pseudo-signatures) was explained

to them following the same instructions so that each user received the same information. The

donors were asked to draw with their fingertip on the handset screen holding it in their own

hand, simulating thus real operating conditions. They were allowed to practice their drawings

until they felt comfortable with them.

Forgeries have also been captured in this database. To perform forgeries, users had visual

access to the doodle or pseudo-signature they had to imitate. The acquisition software replayed

the strokes on the screen showing their dynamic properties (e.g. speed). This animation was

shown to users up to three times, and then they were allowed to train until they felt confident

with their forgery. The usage of the replay software makes possible to produce forgeries with a

notable degree of accuracy, as can be observed in Fig. 6.2.

During the two sessions, the same protocol was followed for each user and modality: 5 genuine

samples, then 5 forgeries, 5 genuine samples, followed by 5 forgeries and finally 5 genuine samples.

This separation in blocks of 5 signatures allows analyzing intra-session variability. Consequently,

at the end of the two sessions, each user had produced 30 genuine drawings (15 per session) and

20 forgeries. In the first session, user n produced forgeries for users n − 1 and n − 2, while in

the second, forgeries for users n− 3 and n− 4 were produced.

6.1.2. Demographics and Memorability

The 100 participants in the database present the following age distribution: 75 are less than

25 years old, 14 are between 25 and 40 years old, and 11 are older. The gender distribution is 44

women and 56 men. It was observed during the capturing process that participants not familiar

with touchscreen devices required a significant longer training time than the rest. This case was

more common in older participants.

A subset of 13 participants of this database have also participated in the BioSecure Mul-

timodal Database (BMDB) (Ortega-Garcia et al., 2010). In that database, on-line signatures
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Figure 6.2: (a) Example of doodles from the database, classified following the criteria explained in
Sect. 6.2. The doodle on the right is a forgery of the one on the left. (b) Example of pseudo-signatures
from the database. Genuine pseudo-signatures (left), forgeries (middle) and the corresponding handwritten
signature (right) from the BioSecure database (Ortega-Garcia et al., 2010).
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6.2 Database Analysis

were captured using both a pen-tablet and a PDA with a stylus. This overlap makes possible to

observe the evolution of signatures from a controlled scenario (signature with ink pen and paper

placed on a pen-tablet), towards more degraded conditions (signature on a PDA with a stylus)

and, finally, the most challenging case of pseudo-signature (simplified signature traced with the

fingertip). Some examples of genuine signatures and their corresponding pseudo-signatures from

the same user are shown in Fig. 6.2.b.

One of the critical issues in graphical passwords is memorability. During the second acquisi-

tion session, it was observed that approximately 90% of the participants remembered correctly

their pseudo-signature. On the other hand, nearly 40% of the participants had difficulties to

recall their doodle from the first session. Users could request to see the tracing process of their

own drawings from the first session. This was done by using the aforementioned functionality

designed to train forgers. The high percentage of users that requested help to recall their doodles

is related to the fact that they did not use them between sessions on a regular basis. In a real

scenario with more frequent use, memorability may certainly improve.

6.2. Database Analysis

6.2.1. Statistical Properties

Given the different nature of doodles and signatures it is expected that they present dif-

ferences in their properties such as their length or graphical complexity. A statistical analysis

of the properties from the two captured subcorpora has been performed. They have also been

compared with the ones from a BioSecure PDA Signature subcorpus of 120 users (also captured

by the ATVS - Biometric Recognition Group), allowing thus a comparison between handwrit-

ten signatures, finger-traced pseudo-signatures and doodles. The following properties have been

analyzed: graphical complexity (as the number of trajectory intersections), average speed and

duration.

In Fig. 6.3.a, the distribution of the number of intersections in the drawings is represented.

We observe that signatures present a considerably higher number of intersections, as expected.

The difference between doodles and pseudo-signatures is small in this case. A low amount of

intersections can be associated to low graphical complexity. This lower complexity indicates

that doodles and pseudo-signatures may be easier to forge.

The stroke average speed distributions are compared in Fig. 6.3.b1. As can be seen, doodles

are the “slowest” from the three datasets. The main cause for this may be that doodles are in

general newly invented drawings for the participants, while pseudo-signatures are (or at least

contain) previously learned movements. It can also be observed that pseudo-signatures are

on average also produced faster than signatures. This is a reasonable result, since the motor

process is different for the production of doodles and signatures. When producing a signature,

the writer moves the stylus with a combination of his fingers and wrist movements (i.e. the

1This graph is a corrected version from the one presented in Martinez-Diaz et al. (2010a), which had an
erroneous scaling for the signature duration histogram.
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Figure 6.3: Histograms normalized to [0,1] and box plots of (a) number of intersections, (b) average
drawing speed and (c) duration.

natural writing process), while in the case of finger-drawn sketches, the wrist is the main motor

element, as the finger used for drawing is kept almost fixed. This way, signatures are based on

more precise movements than doodles, and composed of small graphical elements compared to

pseudo-signatures, which are produced by faster movements and larger shapes.

In Fig. 6.3.c, the statistical distribution of the three sets in terms of their total duration is

represented. As can be seen, handwritten signatures tend to have a higher duration than the

finger-traced drawings. Moreover, signatures present a higher variability in terms of duration.

Doodles also tend to require more time than pseudo-signatures, which are in general composed

of initials or simplified signature flourish.

6.2.2. Variability Analysis

Three types of variability may increase the error rate of a verification system. Intra-user

variability reflects the difference between genuine samples of the same user. Inter-user variabil-

ity represents the variance between samples of different users. Last, inter-session variability is

related to the difference between samples of the same user over time. In general, verification per-

formance will be best if intra-user and inter-session variability are low and inter-user variability

is high.

An analysis of the three variability classes in DooDB is carried out in this section. A

simple DTW-based verification system trained with the 5 first samples from session 1 is im-

plemented (Martinez-Diaz et al., 2009b), using three pairs of features: the coordinate sequence

[x, y], the speed sequence, [x′, y′] and the acceleration sequence [x′′, y′′].

Skilled and random forgeries are considered. To compute skilled forgery scores, the 20

available forgeries per user are employed. Random forgeries represent the case where a user

claims to be a different one while providing his or her own doodle or pseudo-signature to the

system. Random forgery scores are obtained by comparing the user reference set to the first
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6.2 Database Analysis

genuine signature sample from each of the remaining users.

The verification performance for the three feature pairs is shown in Table 6.1 using separately

genuine samples from session 1 and from session 2 as test samples. In the case of Session 1, the

10 remaining samples are used for verification (since the first 5 are used for training), while for

session 2, all 15 samples are used for verification.

The score distributions of genuine samples from session 2, random forgeries and skilled

forgeries are represented for each modality and for each feature pair in Fig. 6.4. The Equal

Error Rates (EERs) of these systems are also shown in Table 6.1.

Several observations can be made from Fig. 6.4 and Table 6.1:

Intra-user Variability In Fig. 6.4, we observe that the genuine score distribution for doo-

dles presents a long tail towards low scores. This effect reflects the presence of users who vary

significantly the aspect or the dynamics (including stroke order) of their doodles. The highest

intra-user variability (i.e. the most spread genuine score distribution) is observed for the ac-

celeration features on doodles, which reflects the variation not only in the doodle aspect but

also in the dynamics between different sessions. This indicates that in general users concentrate

in reproducing the shape of their own doodles, but tend to vary the speed and acceleration of

their strokes. The effect is reduced with pseudo-signatures, since generally these are based on

better learned movements, and is clearly minimized for signatures, which are the best trained

passwords of the three categories.

Inter-user Variability Regarding random forgeries, it can be observed in Fig. 6.4 that ran-

dom forgery score distributions for doodles are shifted significantly towards lower scores, com-

pared to pseudo-signatures and signatures. This is especially visible for the [x, y] feature pair,

revealing a higher inter-user variability, at least in shape, for doodles. This is not reflected in a

lower EER in Table 6.1, since the tail towards lower scores for the genuine score distribution over-

laps with forgery scores. When skilled forgeries are considered, inter-user variability is inversely

related to the easiness of forging samples from another user. As can be seen in Fig. 6.4, there is a

high overlap between skilled forgeries scores and genuine user scores for doodles. Skilled forgery

scores decrease when dynamic features (speed and acceleration) are selected. However, since

genuine user scores also decrease for these features on doodles, the overlap does not decrease

significantly nor does the EER (for doodles). A predictable effect is that dynamic features such

as speed and acceleration provide a higher separation between genuine and skilled forgery scores

for signatures since they are harder to imitate, leading to lower EERs.

Inter-session Variability As expected, the error rates are higher in every case when genuine

samples from session 2 are used (see Table 6.1). We observe that the performance degradation

between sessions for doodles and pseudo-signatures is significantly higher than for signatures

both in relative and absolute terms. It is also worth noting that the verification performance

against random forgeries is in some cases better for doodles and pseudo-signatures than for
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6. THE DOODB GRAPHICAL PASSWORD DATABASE

Table 6.1: Verification performance in terms of EER (%) using samples from different sessions for
authentication. EERsk refers to the EER for skilled forgeries and EERrd for random forgeries.

Features Session
Doodles Pseudo-signatures Signatures

EERrd EERsk EERrd EERsk EERrd EERsk

[x, y] 1 2.7 28.0 3.5 28.6 3.2 23.9
[x′, y′] 1 3.4 26.7 1.6 23.9 2.1 18.0
[x′′, y′′] 1 4.5 28.1 2.2 19.8 2.8 13.8
[x, y] 2 7.6 36.4 5.0 34.5 4.6 27.0
[x′, y′] 2 6.3 33.9 3.8 29.7 3.2 21.5
[x′′, y′′] 2 7.3 34.1 4.3 25.0 4.0 17.8
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Figure 6.4: Score distributions for Doodles (left), pseudo-signatures (middle) and signatures (right)
using different feature pairs.
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signatures. This suggests a higher variability in size and shape between users, compared to

signatures. However, the higher error rates against skilled forgeries also reflects that pseudo-

signatures, and especially doodles are significantly easier to forge.

6.2.3. Learning Curve

The learning curve for the three modalities (doodles, pseudo-signatures and signatures) is

studied by analyzing the average genuine sample duration for each capture block during the

database acquisition. As described in Sect. 6.1.1, during the database acquisition process, users

were asked to draw genuine samples in blocks of 5, separated by the production of forgeries.

It can be hypothesized that if the average duration significantly decreases between different

blocks, the users are still not used to the acquisition method or they are still learning how to

produce their graphical password. The average duration for each modality among consecutive

blocks is represented in Fig. 6.5. The average duration between the first block and the last block

for the case of doodles has a 20% difference, while for pseudo-signatures and signatures there is

only a 10% difference.

These observations corroborate the fact that doodles were in general specifically created for

the experiments while pseudo-signatures are composed of well-learned movements.

6.2.4. Graphical and Qualitative Properties

When the whole doodle dataset is visually inspected, it can be seen that there are three

main types of doodles:

Abstract doodles, which cannot be directly interpreted as representing an object or idea.

Conceptual doodles, which represent an object or idea (e.g. a flower).
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Symbolic doodles, which are known and recognizable symbols, like currency or musical

notation.

Doodles that are abstract for an observer may be conceptual to another that is able to

interpret them. However, it seems reasonable to assume that abstract doodles may be more

resilient to forgers with visual access to them, since they are harder to remember (Renaud,

2009). The proportion of these three doodle types in the DooDB database is: 43 abstract, 37

conceptual, and 20 symbolic doodles, although this is based on a subjective evaluation. It has

also been observed some repetitions among the doodles provided by participants, specially for

common drawings. Some examples of repeated doodles are a flower symbol and a smiling face.

Examples of each type of doodle are shown in Fig. 6.2.

Regarding pseudo-signatures, a clear classification between different types cannot be estab-

lished. It is observed that most participants tend to produce a simplified version of the signature,

including flourish. However, approximately 20% of the participants have written their initials,

their name or a shortened version of their name without flourish.

6.3. Benchmark Results

In order to assess the authentication performance based on doodles and pseudo-signatures,

preliminary experiments have been carried out. A simple verification system, based on Dynamic

Time Warping (DTW) to compare the captured time sequences has been used, following the

algorithm as described in Martinez-Diaz et al. (2009b).

Two representative local feature sets from the state of the art are studied in this benchmark.

First, the one from the doodle authentication system proposed in Govindarajulu and Mad-

hvanath (2007). In that system, 6 local features are extracted from the doodle trajectory. These

are the coordinate sequence [x, y], and its first and second derivatives (speed and acceleration).

Thus, each doodle is described by the 6-dimensional sequence [x, y, x′, y′, x′′, y′′]. Matching is

performed using the DTW algorithm. We refer to this feature set as HP-LOCAL.

The other system is based on the one presented by the Biometric Recognition Group -

ATVS to the BioSecure Signature Evaluation Campaign BSEC 2009 (Houmani et al., 2012). In

particular, the system is the one based on DTW that was tuned to maximize its performance

against skilled forgeries, identified as system “DTWs” in Houmani et al. (2012). It was one of

the best performing systems in most evaluation scenarios against skilled forgeries. This feature

set is referred to as ATVS-BSEC. The system extracts the following 7 local features:

x-coordinate, x

Second-order derivative of x-coordinate, x′′

First-order derivative of y-coordinate, y′

Second-order derivative of y-coordinate, y′′
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Path velocity, υ =
√

(y′)2 + (x′)2

First-order derivative of path velocity, υ′

First-order derivative of the log curvature radius, ρ′, where ρ = log(υ/θ′) and θ =

arctan(y′/x′) is the curvature of the position trajectory.

6.3.1. Experimental Protocol

The experimental protocol follows the one described in Sect. 6.2.2, but only genuine signa-

tures from session 2 are used for authentication.

The whole sets of doodles and pseudo-signatures from the DooDB database are used for

the experiments. The first 5 genuine samples from the first session of each user are used for

enrollment as reference templates. The 15 genuine signatures of the second session are used to

compute genuine user scores, simulating thus real operating conditions, in which inter-session

variability affects the verification performance.

Random and skilled forgery scores are obtained following the same protocol described in

Sect. 6.2.2.

For each comparison against the 5 reference templates, an output score is generated by

averaging the inverse of the 5 DTW distances obtained.

6.3.2. Results

The verification performance in terms of Equal Error Rate (EER) is shown in Table 6.2 and

DET (Detection Error Tradeoff) curves for each dataset are represented in Figure 6.6. As can

be seen, the performance is higher (i.e. lower error) for pseudo-signatures compared to doodles

both for random and skilled forgeries.

Comparing Table 6.2 (which considers state-of-the-art feature sets) to the results shown

in Table 6.1 using only samples from session 2 (with simple feature pairs) for verification, we

can see that the performance is similar. This is an indication that the selected state-of-the-art

feature sets may not be totally adequate for doodles, and better performance may be achieved

by considering feature extraction adjusted to the doodle recognition problem. This is subject

to future work.

In Table 6.1 we also saw that the performance against skilled forgeries improved for pseudo-

signatures when dynamic properties (i.e. speed or acceleration) were used. This effect may

be due to the higher consistency in the drawing process of pseudo-signatures, since they are

composed in general of natural or learned movements. On the other hand, when doodles are

considered, the usage of speed or acceleration properties does not increase the performance in

the same proportion. This may be due to an increased variability in the drawing process. In

fact, it was observed during the doodle subset acquisition, that some users varied the stroke

order of their doodles even in the same session. This was not the case for pseudo-signatures.
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Table 6.2: Verification performance in terms of EER (%) using samples from session 2 for authentica-
tion. EERsk refers to the EER for skilled forgeries and EERrd for random forgeries.

Features
Doodles Pseudo-signatures Signatures

EERrd EERsk EERrd EERsk EERrd EERsk

HP-LOCAL 5.4 33.8 3.1 28.4 2.1 17.8
ATVS-BSEC 3.4 34.4 3.1 26.9 2.5 15.8
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Figure 6.6: DET plots for (a) doodles, (b) pseudo-signatures and (c) signatures.
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6.4. Chapter Summary and Conclusions

The DooDB database has been presented. This database comprises doodles and pseudo-

signatures from 100 users and skilled forgeries for all of them. The acquisition protocol has been

described and various data analyses have been performed. Benchmark verification experiments

have been carried out, revealing that one of the main challenges of doodle and pseudo-signature

verification may be the protection against forgeries.

We have also observed that there is a high intra-user variability in the production of doodles,

which negatively affects the verification performance. Unlike the case of signature verification,

where dynamic features such as acceleration of velocity clearly increase the verification accu-

racy (Fierrez and Ortega-Garcia, 2008), the variability found in doodles defies the utility of

dynamic features for doodle-based authentication. On the other hand, pseudo-signatures are

more stable and thus provide promising results. Users may produce doodles more naturally over

time, assuming a frequent usage, leading to an improvement in their verification performance

which would become closer to pseudo-signatures in the long term.

Based on the results, doodles and pseudo-signatures are seen as a potential lightweight

authentication method oriented to mobile devices. One of the main advantages of this kind

of graphical password is its convenience and the possibility of performing user authentication

without extra hardware unlike, for example, fingerprint authentication. As previously stated,

revocability is an advantage of doodles with respect to other biometric traits.
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Chapter 7

Free-form doodle verification

Graphical passwords have become popular due to the proliferation of touchscreen devices,

in particular smartphones and tablets. However, the prevalent approaches are based on simple

graphical passwords which can be easily remembered and reproduced by potential attackers.

This chapter focuses on free-form graphical passwords captured on touchscreen devices. Au-

thentication is based on features extracted from the dynamics of the doodle drawing process

(e.g. speed or acceleration). These features contain behavioral biometric information, which has

been successfully used for automatic user verification based on handwritten signatures (Fierrez

and Ortega-Garcia, 2008). As a consequence, a potential attacker would have to copy not only

what the user draws, but also how the user draws it. Unfortunately graphical passwords tend

to be much simpler than signatures and are not composed, in general, of previously learned or

heavily practiced movements. This can lead to a higher intra-user variability (i.e. variations

between samples produced by the same person) than in the case of signatures or may cause users

to forget part or the whole graphical password that they provided during enrolment. On the

other hand, while users may be concerned about their privacy when registering their signature

on an authentication system, doodles can be a potential solution to overcome this type of legal

and social issues. Doodles have also a high revocability compared to signatures.

In this chapter, we study the advantages, drawbacks and limits of user authentication based

on finger-drawn free-form doodles and authentication based on pseudo-signatures, which are

simplified versions of the signature drawn with the fingertip (see Fig. 7.1). To the extent of

our knowledge, this is the first exhaustive and systematic analysis of user authentication on

touchscreens based on free-form sketches, using a publicly available database. The recently

acquired DooDB Graphical Password Database, described in Chapter 6 is used for this pur-

pose (Martinez-Diaz et al., 2013). The contributions of this chapter can be summarized as

follows:

1. Two verification systems are proposed, one based on Gaussian Mixture Models (GMMs),

and another based on the Dynamic Time Warping (DTW), which are state-of-the-art

approaches for signature verification. We analyze the performance of these systems against
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Genuine samples Forgeries Genuine samples Forgeries

Doodles Pseudo-signatures

Figure 7.1: Examples of doodles and pseudo-signatures from the DooDB database (Martinez-Diaz et al.,
2013).

random forgeries (when attackers claim to be another user but use their own password)

and intentional forgeries (when attackers have visual access to the password being forged).

2. Feature selection is carried out in order to understand which features provide the highest

discriminative power for doodles and pseudo-signatures.

3. The impact of inter-session variability (i.e. the effects of time between enrolment and

authentication) is studied.

4. We study the impact of the number of available training samples during enrolment on the

verification performance.

5. An improved authentication system based on the best selected features and the fusion of

the two aforementioned matchers (GMM and DTW) is presented.

The chapter is structured as follows. In Sect. 7.1 the proposed verification systems are

described. Experiments and results are reported in Sect. 7.2, and conclusions are finally drawn

in Sect. 7.3.

Preliminary results of the work presented in this chapter were reported by the author

in Martinez-Diaz et al. (2010b).
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Figure 7.2: Main components of a Doodle Verification System.

7.1. Proposed Algorithms

In this section, the proposed Doodle Verification Systems are described. In both systems,

the input coordinate sequence [x̂n, ŷn] is sampled from the finger-tip trajectory on a touchscreen,

as well as the time interval t̂n between samples. A generic model of a doodle verification system

is shown in Fig. 7.2 (following the signature verification architecture described in Chapter 2).

7.1.1. Preprocessing and Feature Extraction

The trajectory coordinate sequence [x̂n, ŷn] i = 1, . . . , I is first resampled to interpolate

missing samples (due to sampling errors or pauses between strokes). Cubic splines are used for

interpolation. The sequences are then normalized to have zero mean, resulting in [xn, yn].

A set of 19 additional features are extracted from the [xn, yn] coordinate sequence. A de-

scription of the feature set can be found in Table 3.2. All features are normalized to have zero

mean and variance equal to 1. Thus, each doodle is described by a total amount of 21 time

functions.

7.1.2. Gaussian Mixture Model system

For each user u, the distribution of d features extracted from the fingertip motion is modeled

by a d-dimensional Gaussian Mixture Model λu, as described in Sect. 2.1.3.

In our work, the number of Gaussian components N is chosen to be 32, and diagonal covari-

ance matrices Σi are used, based on the benchmark results reported by Richiardi and Drygajlo

(2003), and preliminary experiments which are omitted for the sake of clarity. The model param-

eters {ωi,µi,Σi} i = 1, . . . , N are estimated from a training set of doodles using the Expectation

Maximization (EM) algorithm.

During the enrollment phase one model is created for each user, which is later used for

matching. In addition, a world GMM is created, which models the whole set of users. World

models are used during the matching phase and are trained using doodles from a separate group

of users, as explained in the experiments.

A graphical representation of a GMM is depicted in Figure 7.3.a. A GMM with 8 Gaussian

components (represented by circles of 2σ width) trained with the pair of features [xn, yn] of 5

user samples is shown.

The match score, given a test vector x and a target user statistical model λC , can be

computed as a ratio of the log-likelihood that the test vector x is produced by the model λC and
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Figure 7.3: (a) Representation of an 8-component GMM trained with the [xn, yn] features of 5 user
samples. The 2σ contour is depicted for each Gaussian component. (b) Representation of the point to
point correspondences between two doodles obtained using the DTW algorithm.

the log-likelihood that the test vector has been produced by any other user, which is modeled

by the world model λC̄ .

So, following the previous notation, a match score s is obtained as follows:

s = log p (x |λC )− log p (x |λC̄ ) . (7.1)

7.1.3. Dynamic Time Warping system

The DTW system described in Sect. 2.1.3 is used.

An example of a set of corresponding samples between two doodles from the same subject,

using the [xn, yn] functions is depicted in Fig. 7.3.b.

7.2. Experiments

7.2.1. Database and Experimental Protocol

The doodle and pseudo-signature sets from the DooDB database1 are used for the exper-

iments (Martinez-Diaz et al., 2013). As described in Chapter 6, the doodle dataset consists

of free-form doodles, while the pseudo-signature dataset is composed of simplified finger-drawn

signatures. Doodle and pseudo-signature examples are provided in Figure 7.1. A brief overview

of the database is given in this chapter for the sake of clarity.

The database was captured in an HTC Touch HD touchscreen mobile phone at a sampling

rate of 100Hz. Both datasets were produced by the same set of 100 users in two sessions,

separated by an average of 2 weeks. Users were requested to hold the handheld device in their

own hands while drawing. Participants were briefed to provide a graphical password that they

1Available at: http://atvs.ii.uam.es/databases.jsp
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would use as an authentication method and were left to train until they felt comfortable with the

capture method. For each password, the [x̂n, ŷn] coordinate sequence is captured, and the time

interval between each sample. The time interval is in general constant, except in the transitions

between consecutive strokes.

During each session, each user provided 15 genuine samples of each type (doodle and pseudo-

signature) and 10 forgeries. To increase the quality of forgeries, the system replayed the target

sample drawing process.

In the experiments, the first 50 users of the database are selected as the development set for

feature selection purposes, while the remaining users are left for validation. In the development

experiments, the GMMworld models are estimated using the genuine samples from the validation

set and vice-versa. Enrollment is done with the first 5 genuine samples from the first session

of each user. Unless stated otherwise, genuine scores are obtained with the 15 genuine doodles

from the second session, to take into account inter-session variability.

Two types of forgeries are considered. Skilled forgery scores are obtained using the 20

available forgeries per user. Random forgery scores are computed for each user by comparing

the user reference set (DTW system) or model (GMM system) to one sample from each of the

other users. Random forgeries represent the situation where a forger claims to be a different

user but provides his or her own doodle or pseudo-signature.

Throughout the next section, when results are presented, EERsk refers to the Equal Error

Rate (EER) for skilled forgeries and EERrd for random forgeries.

7.2.2. Experiment 1: Feature Selection

First, we analyze which are the most discriminative features for each verification system.

Feature selection on the local 21-feature set using the Sequential Forward Floating Search (SFFS)

algorithm is carried out (see Sect. 2.6.1). The algorithm, is used here to find a near-optimal

feature set that minimizes the system EER on the development datasets.

Feature selection is performed in 2 different scenarios for each dataset (doodles and pseudo-

signature):

PSEUDO-SK & DOODLE-SK: minimize the system EER against skilled forgeries.

PSEUDO-RD & DOODLE-RD: minimize the system EER against random forgeries.

In both scenarios, the 15 doodles and pseudo-signatures from the second session are used for

genuine score computation, while the first 5 signatures from Session 1 are used for enrollment.

Thus, inter-session variability is taken into account.

The best performing feature sets selected by the SFFS algorithm for each optimization

scenario are shown in Table 7.1, where several patterns can be observed. Feature ÿn (vertical

acceleration) is present in 7 of the 8 sets, and features ẏn (vertical speed) and ρ̇n (variation of

log curvature radius) are present in 6 of the 8 sets. This indicates that vertical dynamic features

may be more stable than horizontal features. However, it can also be observed that feature ẍ is
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present in the four GMM optimal feature sets. This implies that GMMs may be more robust to

users that change the usual left-to-right drawing order of their sketches. This last observation

is aligned with the fact that GMMs, contrary to DTW, do not consider the temporal order of

time series for matching.

The performance in terms of EER against random (EERrd) and skilled (EERsk) forgeries

using the optimal feature sets on the development and validation datasets is shown in Table 7.2.

The average of the user-specific EERs (referred to as aEER) is also reported. It is computed

by averaging the individual user EERs that are obtained with user-specific decision thresholds.

This represents the best EER that can be obtained if user scores are optimally normalized. As

can be seen, the verification performance on the development and on the validation set is similar

in general.

It can be observed that the GMM has a notably better verification performance against

skilled forgeries than the DTW system. On the other hand, the DTW system has a significantly

higher performance against random forgeries. The error rates against skilled forgeries are higher

for doodles, contrary to the case of random forgeries, where doodles have a better performance.

This may imply that pseudo-signatures are harder to imitate but are more similar between them

than doodles.

It can be seen in Table 7.2 that, for the GMM system, the EER for random and skilled

forgeries does not vary significantly independently of whether the system is optimized for either

of the two forgery types. This is not the case for the DTW system, where the EERs vary

significantly between the two optimization scenarios. This may reveal that for DTW-based

doodle authentication, different features are suitable for random and skilled forgeries respectively.

That behavior is corroborated by the results of the BSEC 2009 signature verification competition,

where DTW systems tuned separately for random or skilled forgeries reached top performances

against each kind of forgery (Houmani et al., 2012).

7.2.3. Experiment 2: Inter-session variability

Using the feature sets obtained in Experiment 1, we analyze the impact in the verification

performance of providing samples from the first session for authentication (instead of samples

from Session 2). Consequently, user models are trained with the first 5 samples from Session

1, and genuine scores are computed using the 10 remaining samples of Session 1. Results are

shown in Table 7.3. As can be seen, the EER improves significantly in all scenarios, compared

to the previous experiment (where the test samples were taken from the second session). This

reflects a high inter-session variability, which may be due to the limited training period that

users had while defining their own graphical password.

For the GMM system, the EER improvement is homogeneous in relative terms (around

35% − 45%), except in the case of doodle random forgeries. An improvement of nearly 70% in

the EER against random forgeries is observed (from 7,2% to 2,2% in the development subsets).

This corroborates that users may be failing to reproduce accurately their own doodle in Session 2.

Regarding the DTW system, the EER improvement against skilled forgeries is around
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Table 7.1: Feature sets selected by the SFFS algorithm on the development datasets.

System Scenario
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

xn yn θn υn ρn an ẋn ẏn θ̇n υn ρ̇n ȧn ẍn ÿn υr
n αn α̇n sn cn r5n r7n

GMM

PSEUDO-SK X X X X X X

DOODLE-SK X X X X X

PSEUDO-RD X X X X X X X X

DOODLE-RD X X X X X X

DTW

PSEUDO-SK X X X

DOODLE-SK X X X X

PSEUDO-RD X X X X X X

DOODLE-RD X X X X X X

Table 7.2: Verification performance in terms of EER and average individual EER (aEER) using the
feature sets selected by the SFFS algorithm (Table 7.1). Results on the development (left) and valida-
tion (right) datasets are shown. Enrollment with Session 1 (5 signatures) and testing with Session 2.
Data in (%).

System Scenario
Development subset Validation subset

EERsk EERrd aEERsk aEERrd EERsk EERrd aEERsk aEERrd

GMM

PSEUDO-SK 17.2 12.9 13.5 7.6 20.9 12.0 14.9 6.8
DOODLE-SK 24.3 9.2 18.5 4.9 23.0 7.9 17.8 4.1
PSEUDO-RD 18.6 9.5 14.8 4.8 23.1 12.9 17.2 6.4
DOODLE-RD 24.6 7.2 20.4 2.9 23.7 6.7 17.2 3.4

DTW

PSEUDO-SK 21.6 5.2 15.4 1.1 29.0 2.7 19.5 0.9
DOODLE-SK 31.9 4.1 24.8 0.9 33.0 5.2 29.0 1.3
PSEUDO-RD 29.1 2.0 23.2 0.7 33.6 1.3 21.0 0.4
DOODLE-RD 36.7 1.6 26.5 0.3 32.7 1.4 27.3 0.3

Table 7.3: Verification performance using samples from Session 1 both for enrollment and testing. The
feature sets described in Table 7.1 are considered. Data in (%).

System Scenario
Development subset Validation subset

EERsk EERrd aEERsk aEERrd EERsk EERrd aEERsk aEERrd

GMM

PSEUDO-SK 11.5 7.3 8.3 3.3 16.2 8.8 11.0 4.0
DOODLE-SK 15.5 5.1 10.7 2.1 14.4 3.6 10.4 1.5
PSEUDO-RD 12.4 5.9 8.2 3.3 16.4 7.5 12.5 3.2
DOODLE-RD 14.60 2.2 11.3 0.8 13.5 2.6 9.2 1.0

DTW

PSEUDO-SK 15.2 1.4 8.4 0.3 22.8 2.2 12.8 1.1
DOODLE-SK 25.2 1.2 15.6 0.1 26.1 3.3 17.5 1.1
PSEUDO-RD 20.2 0.6 10.8 0.0 27.0 0.8 15.3 0.2
DOODLE-RD 29.3 0.4 16.2 0.2 23.7 1.4 15.5 0.3
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Figure 7.4: Evolution of the EER in each scenario in terms of the number of training samples.

20%− 30% in relative terms, while against random forgeries is around 70% in most cases. This

reinforces the previous observations about a high inter-session variability. It is worth noting

that the DTW system reaches remarkably low EERs, below 1%, and average EERs near 0%.

7.2.4. Experiment 3: Training set size

The effect of the available number of samples during enrollment is also studied. Maintaining

the previously computed optimal feature sets, the EER is obtained on each scenario using from

1 to 15 samples from Session 1 for training. Samples from Session 2 are used for authentication.

In Fig. 7.4, the EER evolution with respect to the number of graphical samples used for

training is shown. As might be expected, the EER decreases in general when more training

samples are available. However, this is not the case for the DTW system against random

forgeries on both datasets. The EER does not vary significantly when additional samples are

available. In the rest of the cases, the EER starts to stabilize at 6-7 training samples.

7.2.5. Experiment 4: Fusion

Finally, the verification performance combining the best systems of Experiment 1 is studied

by applying score fusion. Thus, the GMM system optimized against skilled forgeries and the

DTW system optimized against random forgeries are combined and results are computed for

both datasets (doodles and pseudo-signatures)

A simple fusion scheme based on score weighted sum is used. This approach has shown a

remarkable performance over other techniques (Kittler et al., 1998). The fusion score is computed

as s = (1− k)sD + ksG, where sD and sG are the DTW and GMM system scores respectively

and k is the fusion weighting factor. The optimal value of k is estimated heuristically on the

development dataset and is equal to 0.5 on both datasets.

The verification performance of both resulting fused systems on the validation datasets is
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Figure 7.5: Verification performance applying score fusion.

shown in Fig. 7.5, represented by the DET plot and the corresponding EERs. As can be observed,

there is no significant performance increase on the pseudo-signature dataset. On the other hand,

combining both systems on the doodle dataset improves the performance of the GMM system

against skilled forgeries and random forgeries, due to the DTW system contribution.

7.3. Chapter Summary and Conclusions

Two different algorithms have been analyzed for the problem of free-form graphical password

verification, and the effects of feature selection, inter-session variability, and training set size

have been studied. It has been observed that vertical features tend to be more prevalent than

horizontal ones in the optimal feature sets, indicating a possible higher discriminative power.

It has also been noticed that, using DTW, different feature sets provide highly different

performances against random and skilled forgeries. This is aligned with the results of the DTW

systems presented by the author to the BSEC 2009 Signature Evaluation Campaign (Houmani

et al., 2012). It was found that, using DTW, systems could be optimized independently (using

feature selection) against random forgeries and for skilled forgeries. These systems could be

afterwards combined, via score fusion, and result in a very high performance against both types

of forgeries.

Session inter-variability has proven to cause a considerable negative impact in verification

performance, as already observed by Martinez-Diaz et al. (2013), probably due to users that

fail to reproduce correctly their own graphical passwords. Although the GMM systems may

overcome partially this issue (since they do not take into account the stroke order), verification

performance is still considerably degraded. It has also been found that the optimal enrollment

set size is around 7 samples, a bit higher than the common trend in the signature verification
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literature (5 samples) (Fierrez and Ortega-Garcia, 2008).

It has also been observed in the experimental results, that depending on the optimization

scenario (skilled or random forgeries) very different optimal feature sets are selected by the SFFS

algorithm. In addition, the GMM system has a better performance against skilled forgeries while

the DTW system has a better performance against random forgeries. This suggests that random

and skilled forgeries may be a different problem from a pattern recognition point of view. This

corroborates results already observed in the signature verification field, namely in the BioSecure

Signature Evaluation Campaign 2009 (Houmani et al., 2012), where verification systems from

many international research groups were compared. It was found that the best performing

systems against random and skilled forgeries were tuned for each scenario respectively, and

fusion of both systems provided an overall good performance in both scenarios. In our case,

score fusion has shown to provide better results than individual systems, especially in the case

of doodles.
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Chapter 8

Conclusions and Future Work

This Thesis has studied the problem of automatic user authentication on handheld devices

using signatures and gesture-based graphical passwords. The effects of aging on signature recog-

nition have also been analyzed. A summary of the state of the art on these topics has been first

presented and the verification systems used in this Thesis have been also described. The experi-

mental studies have analyzed the effects of mobility on signature features compared to traditional

capture conditions, the feasibility and performance of user authentication based on doodles, and

the influence of aging on the verification performance.

8.1. Conclusions

Chapter 1 outlines the basic principles and methods of biometric recognition, focusing on

signature-based authentication. The motivation of this Thesis and the specific contributions

are also described. The state of the art on related topics is reviewed in Chapter 2, covering

signature verification, graphical password-based authentication, feature selection and biometric

aging. In Chapter 3, the verification systems and feature sets used in the experimental body of

this Thesis are described.

The experimental contributions start in Chapter 4. The effects of mobile capture conditions

on signature verification performance are first studied. Signature datasets captured on mobile

conditions and on a traditional scenario (pen tablet) are used for the experiments. A local HMM

system and a global system are used for the experiments. It is found that the lack of trajectory

information during pen-ups (which happens on mobile conditions due to the use of touchscreens

for signature acquisition) negatively affects verification performance. This is specially remarkable

for the local system used in the experiment, compared to the global system. Thus, global features

appear to be more robust in mobile conditions, although it is well known that they usually

provide a worse verification performance than local features. The methodology followed in these

experiments (i.e. comprehensive set of features, feature subset selection, and robust matchers)

has led the author to remarkable success in the BioSecure Signature Evaluation Campaign,

ranking first in several tasks (BSEC, 2009; Houmani et al., 2012). The author also reached
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second position in the on-line category of the ICDAR 2009 Signature Verification Competition

(SigComp2009) (Blankers et al., 2009), following this methodology.

The effects of aging on signature verification are studied in Chapter 5. This is the first

systematic study on the degradation of on-line signature with time and how this aging effect

may be compensated. The experiments are carried out using three state-of-the-art systems

(HMM, DTW and distance-based). It has been observed that the aging effect is present in this

trait even for time lapses of several months. We have found that aging in the signature trait

is a user-dependent effect. A user affected by aging performs badly regardless of the system

being used. Not all signature recognition technologies have been found to be equally affected by

aging. The one based on DTW is the most robust to the passing of time. Regarding different

feature types, we observe that global features containing dynamic information are in general less

stable with time than those which comprise static information. We have also found that in the

datasets used in the experiments, signatures evolve towards a higher simplicity over time. They

become shorter, faster and with fewer singular points and pen-ups. Template update strategies

have been studied, in order to mitigate the effects of aging. Their efficiency has found to be

variable depending on the signature recognition system being used.

Research works such as the one presented here try to shed some light into the difficult

problem of biometric aging. Performing systematic studies of biometric systems sensitivity to

time is essential before effective strategies that minimize the impact of the detected effects can

be developed, so that the user acceptability of this rapidly emerging technology is improved.

This way, we believe that this work can be of great utility not only for researchers, but also

for developers and vendors in order to produce more secure and trustful applications based on

the signature trait, to better understand its strengths, and to be able to foresee the weaknesses

of this biometric modality. Furthermore, this type of study can also help to develop the ongoing

biometric standards and to better define the requirements that real applications should comply

with (ANSI-INCITS 395-2005, 2005; ISO/IEC 19794-11, 2005; ISO/IEC 19794-7, 2005).

In Chapter 6, the DooDB graphical password database has been presented. This database

contains doodles (free-form finger-drawn sketches) and pseudo-signatures, which are finger-

drawn and simplified versions of signatures. The acquisition protocol has been described and

various data analyse have been performed. Benchmark verification experiments have been con-

ducted, revealing that one of the main challenges of doodle and pseudo-signature verification

may be the protection against forgeries. A high intra-user variability in the production of doo-

dles has also been observed. On the other hand, pseudo-signatures are more stable and thus

provide promising results. Based on the results, doodles and pseudo-signatures are seen as a

potential lightweight authentication method oriented to mobile devices. One of the main ad-

vantages of this kind of graphical password is its convenience and the possibility of performing

user authentication without extra hardware unlike, for example, fingerprint authentication.

Chapter 7 studies the problem of graphical password-based user authentication using doodles.

The DooDB database, presented in Chapter 6, is used for that purpose. Two algorithms from the

signature verification state of the art are used: DTW and GMMs. A feature selection process is
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also carried out in order to study which features are most discriminative for graphical passwords.

It is found that vertical movement related features are more prevalent in the optimal features

sets. We have also observed that different feature sets work best against random or skilled

forgeries respectively. That is, random forgery or skilled forgery detection is a different problem

and may be approached using different classifiers (which can be afterwards combined). This

was also observed for the case of signature verification in the results of the BioSecure Signature

Evaluation Campaign (BSEC) 2009 (Houmani et al., 2012), where the algorithms developed by

the author reached top positions against random and skilled forgeries independently. It has also

been found that the optimal number of training features is slightly higher than in the case of

signature verification (7 vs. 5).

To summarize, the main contributions of this Thesis are:

The up-to-date survey on mobile signature verification, biometric aging and recall-based

graphical passwords.

The experimental analysis of which signature features are more robust on mobile conditions

and the evidence of performance degradation when pen-up trajectories are not captured.

The novel experimental setup to analyze the effects of biometric aging on signature veri-

fication.

Experimental evidence on the effect of aging in signature verification, and its compensation

through template update approaches.

The acquisition and analysis of the first publicly available finger-drawn graphical password

database, including also pseudo-signatures.

The experimental analysis of graphical password-based user authentication, showing that

using feature selection and score fusion, a promising verification performance can be ob-

tained.

8.2. Future Work

Based on the work presented in this Thesis, several research paths arise. The following ones

are considered of interest by the author:

This Thesis has focused on the problem of user authentication on mobile conditions, com-

pared to traditional desktop scenarios. There is however a need to analyze the impact of

device inter-operability, that is, the impact of acquiring biometric samples in a device that

is different than the one that has been used to train the user model (e.g. two different

brands of smartphones, or one smartphone and one pen tablet). Some research contri-

butions already addresses this challenging scenario (Alonso-Fernandez et al., 2005), but a

systematic study on inter-operability with a large and publicly available database is yet
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to be performed. Recent efforts are going in this line (Blanco-Gonzalo et al., 2013a; Vera

et al., 2015).

Regarding aging, this Thesis has shed some light on its effects in signature verification.

However, several questions arise. Is 15 months a sufficiently long period of time to be in

the presence of real “aging”? Although all the results given in the present work point in

that direction, this should still be fully confirmed on a database acquired over a larger

time span. Other factors, such as gender, or writing skills may also be of interest when

aging is considered. A recent reference in this regard is Fairhurst (2013).

Sketch-based graphical passwords are still a relatively novel field of research and still

represent a challenging authentication scenario. Future research using additional datasets

should be carried out, (like the set recently presented by Riggan et al. (2014)), taking into

account other usage profiles compared to the acquisition scenario of the DooDB database,

which was captured considering only a span of two weeks between sessions.

Inter-session variability has been found to be one of the main factors for performance

degradation, when doodles are used for authentication. Template update techniques (Di-

daci et al., 2014; Uludag et al., 2004) could help to alleviate this problem.

This Thesis has studied free-form graphical passwords produced on touchscreens. With the

proliferation of front cameras on smartphones and body motion capture technologies (such

as Microsoft KinectTM), in-air gestures should be studied as an authentication means. It

has also been found that users tend to prefer gestures than touchscreen interaction in some

scenarios (Parada-Loira et al., 2014). Some recent works in this field are (Lai et al., 2012;

Wu et al., 2014)

As we have seen, the acquisition scenario (e.g. smartphone, tablet) affects verification

performance. There is in general a trade-off between usability and performance. Some

recent works have studied the impact of usability and acquisition conditions on signature

verification (Blanco-Gonzalo et al., 2014, 2013b; Brockly et al., 2014). Future research

may be carried out in this area, in order to identify measurable usability features and

analyze their correlation with verification performance.

This work has relied on well-established matching techniques (HMM, GMM, DTW and

distance measures). Other complementary approaches that have gained popularity, such

as Support Vector Machines (SVM) (Ferrer et al., 2005), Deep Neural Networks and hybrid

HMM/Neural Network approaches (Dahl et al., 2012; Povey et al., 2011) should be explored

in order to identify other possible top performing verification algorithms.
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Apéndice A

Resumen Extendido de la Tesis

Verificación de Firma y Gráficos Manuscritos: Caracteŕısticas Discriminantes y

Nuevos Escenarios de Aplicación Biométrica

En la actualidad los sistemas de reconocimiento biométrico son una alternativa a métodos

tradicionales de autenticación, como contraseñas, llaves f́ısicas o electrónicas. La biometŕıa

permite validar la identidad de un usuario mediante la utilización de un rasgo anatómico (p.ej.

huella dactilar) o comportamental (p.ej. firma manuscrita) inherente a una persona (Jain et al.,

2008), y es algo habitual dentro del ámbito forense y judicial desde hace más de un siglo.

En comparación con los métodos clásicos comúnmente utilizados, como llaves o claves, los

rasgos biométricos no pueden, en general, ser prestados, robados o copiados. El usuario emplea

directamente su propia huella dactilar, retina, voz u otro rasgo para ser reconocido. Por otro

lado, esta clase de sistemas suele ser fácil de mantener y en general no requiere la intervención

de más agentes que el propio usuario para funcionar.

Los rasgos biométricos pueden clasificarse según varias caracteŕısticas (Jain et al., 2008).

Entre ellas cabe mencionar su unicidad, su distintividad o individualidad, su universalidad, su

facilidad de proceso y adquisición o su variabilidad con el tiempo. La firma manuscrita reúne

muchas de estas caracteŕısticas y es además uno de los medios más utilizados desde la antigüedad

para validar la autoŕıa de documentos escritos. Otra ventaja es la facilidad de captura electrónica

de la firma, especialmente tras la masiva proliferación de dispositivos con pantallas táctiles. Son

ejemplos de ello las tabletas, los teléfonos inteligentes (smartphones), los ordenadores portátiles,

y terminales de punto de venta con pantalla táctil.

El reconocimiento biométrico es un área de investigación madura, con libros de referen-

cia (Jain et al., 2008, 2011; Ratha and Govindaraju, 2008; Ross et al., 2006), conferencias es-

pećıficas en el área (ICB, 2015; IJCB, 2014; Vijaya-Kumar et al., 2010), revistas espećıficas (Fair-

hust, 2012), proyectos internacionales (BBfor2, 2010; Biosecure, 2004; Tabula Rasa, 2010), con-

sorcios dedicados al reconocimiento biométrico (BC, 2015; BI, 2015; EAB, 2015) y estándares

internacionales (ANSI/NIST, 2009; SC37, 2005). La investigación en firma manuscrita es además
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un área que, si bien está muy activa desde hace varias décadas (Plamondon and Lorette, 1989),

continúa suponiendo un problema para el que se siguen buscando soluciones. Prueba de ello es

el número de competiciones en firma manuscrita celebradas en los últimos años (Blankers et al.,

2009; BMEC, 2007; Houmani et al., 2012, 2011; Liwicki et al., 2011; Malik et al., 2013; Yeung

et al., 2004) y el alto volumen de publicaciones cient́ıficas en el área (Fierrez and Ortega-Garcia,

2008; Impedovo and Pirlo, 2008; Impedovo et al., 2012; Plamondon and Lorette, 1989).

Los dispositivos portátiles con pantalla táctil (smartphones, tabletas, etc.) están motivando

un cambio en cuanto a la interacción hombre-máquina. Permiten, por un lado la captura de

firmas en movilidad, y por otro una interacción basada en gestos trazados con los dedos sobre la

pantalla. La autenticación puede estar, de hecho, no solo basada en firma sino en un conjunto

diferente de trazos escogidos por el usuario (denominado password gráfico), o en una versión

simplificada de la firma. Se abre por tanto un nuevo escenario de aplicación, en donde estos

trazos, ya sean la firma completa trazada con el dedo o un conjunto de trazos, pueden ser

utilizados como rasgo biométrico.

A.1. Resumen y Conclusiones

Esta Tesis aborda la verificación de firma manuscrita centrándose en tres ejes principales,

la autenticación en dispositivos móviles, el efecto del paso del tiempo (conocido como biometric

aging) y un nuevo escenario de aplicación: la autenticación basada en gestos o firmas simplifi-

cadas realizadas con el dedo sobre una pantalla táctil.

A.1.1. Caṕıtulo 1: Introducción

En el Caṕıtulo 1 se presenta en primer lugar una introducción a la biometŕıa y en particular

el reconocimiento de firma manuscrita. Se explica adicionalmente la motivación de la Tesis y se

describen y detallan las contribuciones de la misma, proporcionando un listado de publicaciones

cient́ıficas del autor resultantes del trabajo de la Tesis, clasificadas por temática.

A.1.2. Caṕıtulo 2: Trabajos Relacionados y Estado del Arte

El Caṕıtulo 2 contiene una descripción del estado del arte en verificación automática firma

manuscrita, con especial atención a la autenticación en condiciones de movilidad, aśı como del

estado del arte en verificación de passwords gráficos y en el estudio de los efectos aging. Se

proporciona también una descripción de las bases de datos disponibles de firma manuscrita

on-line en la comunidad cient́ıfica y una revisión de algoritmos de selección de caracteŕısticas.
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A.1.3. Caṕıtulo 3: Sistemas de Verificación Propuestos

En el Caṕıtulo 3 se describen los sistemas de verificación utilizados en los experimentos

desarrollados a lo largo de la Tesis. Se emplean dos tipos de sistemas: locales y globales. El

sistema global está basado en la extracción de un vector de 100 parámetros globales de cada

firma (Tabla 3.1), las cuales han sido previamente muestreadas en una pantalla táctil o tableta

digitalizadora y normalizadas, y realiza el cálculo de similitud empleando la distancia de Maha-

lanobis. En cuanto a los sistemas locales, se han implementado tres sistemas diferentes, uno

basado en Modelos Ocultos de Markov (Hidden Markov Models, HMM), otro en Modelos de

Mezclas Gaussianas (Gaussian Mixture Models, GMM) y otro basado en el método de alinea-

miento elástico Dynamic Time Warping (DTW). En el caso de los sistemas locales, se extraen

un total de 27 funciones (Tabla 3.2) de cada firma, que suponen un compendio de las funciones

utilizadas en la literatura cient́ıfica en los últimos años.

A.1.4. Caṕıtulo 4: Verificación de Firma en Movilidad

Las contribuciones experimentales comienzan en el Caṕıtulo 4. En él se aborda el problema

de la verificación de firma manuscrita en dispositivos móviles. Se basa en las publicaciones

del autor (Martinez-Diaz et al., 2008a, 2014). En este caṕıtulo se utiliza la base de datos de

firmas BioSecure Multimodal Database (BMDB) (Ortega-Garcia et al., 2010) la cual contiene un

conjunto de firmas capturadas tanto en una tableta digitalizadora como en una PDA, del mismo

grupo de usuarios. El principal objetivo del caṕıtulo es evaluar cuáles son los efectos provocados

por la captura en condiciones de movilidad en el rendimiento de los sistemas de verificación de

firma. Es razonable suponer que la menor ergonomı́a de un dispositivo móvil comparado con

una tableta aśı como las condiciones de captura, en movimiento frente a en una superficie firme,

pueden afectar negativamente al proceso de verificación, incrementando las tasas de error. Se

observa además en la base de datos que, dado que las pantallas táctiles no capturan la trayectoria

del estilete cuando éste no está en contacto con la pantalla (al contrario que en el caso de las

tabletas digitalizadoras), se dejan de muestrear en promedio el 18% aproximadamente de la

trayectoria de las firmas. En el caṕıtulo se realiza un análisis del poder discriminante individual

de los vectores de caracteŕısticas locales y globales definidos en el Caṕıtulo 3. Este análisis

se realiza sobre 3 conjuntos de firmas, el capturado en la PDA, el capturado en la tableta

digitalizadora, y uno adicional que se crea a partir del capturado en tableta, eliminando los

puntos muestreados cuando el boĺıgrafo no está en contacto con la superficie e interpolándolos.

Para el análisis individual de los parámetros globales, se utiliza el Fisher’s Discriminant

Ratio (FDR), y se define una medida ad-hoc para los parámetros locales, que denominamos

Distance Discrimant Ratio (DDR), descrita en el Apartado 4.2. Se realiza también un análisis

del poder discriminante de combinaciones de parámetros. Para ello se realiza selección de ca-

racteŕısticas mediante el método Sequential Forward Floating Search (SFFS) (Theodoridis and

Koutroumbas, 2006), con el fin de encontrar cuáles son los conjuntos de caracteŕısticas que

proporcionan una menor tasa de error en cada escenario (móvil y tableta) y tipo de impostor
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(casual o intencionado). Se realiza selección de caracteŕısticas sobre los conjuntos de parámetros

globales y locales descritos en el Caṕıtulo 3 y empleando el sistema global basado en distancia

de Mahalanobis y el sistema local basado en HMMs.

En los resultados se observa que en general las caracteŕısticas tienen un un poder discrimi-

nante individual superior en el caso de la tableta con respecto a la PDA (véase Figura 4.3), y

que el hecho de interpolar las trayectorias cuando el boĺıgrafo no está en contacto con la su-

perficie (imitando lo que sucede en la PDA) también reduce el poder discriminante. Esto se

observa especialmente en el caso de las imitaciones intencionadas, por lo que cabe suponer que

las trayectorias del boĺıgrafo en el aire son más dif́ıciles de imitar.

En cuanto a la selección de caracteŕısticas, se observa que en general el número óptimo

de parámetros globales está en torno a 40, con respecto al total de 100 (véanse Figura 4.4 y

Tabla 4.1). Se observa además que los parámetros de naturaleza geométrica (relacionados con

caracteŕısticas geométricas de la firma) son los que prevalecen en los vectores óptimos (véase

Figura 4.5).

El tamaño de los vectores óptimos de parámetros locales oscila entre 6 y 9 caracteŕısticas

(véase Tabla 4.2). Se observan varios comportamientos en el caso de los parámetros locales.

En primer lugar, ninguna caracteŕıstica relacionada con presión u orientación del boĺıgrafo está

presente en los conjuntos óptimos de caracteŕısticas. Se entiende por tanto que su ausencia en

el caso de la PDA, dado que no es posible capturarlas en pantallas táctiles, no debeŕıa afectar

la tasa de error del sistema (al contrario que lo los resultados presentados por Muramatsu and

Matsumoto (2007) y alineado con las observaciones de Houmani et al. (2009)). Se observa

además que la coordenada x, la derivada de y, el coseno c y el ángulo de la trayectoria α

están presentes en la mayoŕıa de los vectores (estos parámetros están descritos en la Tabla 3.2).

Se observa también que el número de caracteŕısticas es menor al comúnmente empleado en la

literatura (Fierrez et al., 2007b; Ly-Van et al., 2007; Richiardi et al., 2005).

Finalmente se realizan experimentos de validación, sobre conjuntos de firmas diferentes a los

empleados para la selección de caracteŕısticas (véase el protocolo detallado en el Apartado 4.2).

El rendimiento de los sistemas en términos de Equal Error Rate (ERR) se muestra en la Ta-

bla 4.3. Se observa que el sistema global presenta en general un mejor rendimiento en el caso

de la PDA. Cuando se interpolan las trayectorias en el aire, la tasa de error se ve incremen-

tada, especialmente en el caso de imitaciones intencionadas. Se puede observar también que

cuando los sistemas se optimizan frente a imitaciones aleatorias, el rendimiento empeora nota-

blemente frente a imitaciones intencionadas. Al contrario, si se optimizan frente a imitaciones

intencionadas, el rendimiento frente a imitaciones aleatorias no empeora en gran medida.

La metodoloǵıa seguida en este caṕıtulo (conjunto inicial muy amplio de caracteŕısticas,

selección de caracteŕısticas y algoritmos robustos) ha permitido al autor obtener resultados

muy exitosos en la competición de firma manuscrita BioSecure Signature Evaluation Campaign,

alcanzando el primer puesto en varias categoŕıas (BSEC, 2009; Houmani et al., 2012). Obtuvo de

forma similar el segundo puesto en la categoŕıa on-line de la competición ICDAR 2009 Signature

Verification Competition (SigComp2009) (Blankers et al., 2009).
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A.1.5. Caṕıtulo 5: Aging en Firma Manuscrita

El Caṕıtulo 5 estudia los efectos del paso del tiempo (conocido como “aging”) en el rendi-

miento de los sistemas de verificación de firma manuscrita. Se basa en las publicación del autor

con Galbally et al. (2013). Supone la primera contribución cient́ıfica en la que se presenta un

conjunto de firmas capturadas durante un periodo superior a un año y se analizan los efectos del

aging sobre el mismo. Se propone una metodoloǵıa nueva para analizar los efectos del paso del

tiempo, que puede ser extrapolable a otros rasgos biométricos. Esta metodoloǵıa es utilizada

para extraer conclusiones acerca de los efectos del aging y cómo pueden ser mitigados.

La base de datos utilizada se denomina Signature Long-Term Database y contiene firmas de

29 usuarios comunes de las bases de datos BiosecurID (Fierrez et al., 2010) y BioSecure (Ortega-

Garcia et al., 2010). En total, el periodo de captura se extiende a lo largo de 15 meses. Los

detalles del protocolo de adquisición se muestran en la Figura 5.1.

En el apartado experimental, se analizan dos principales aspectos. En primer lugar cuál es

el impacto del aging en el rendimiento (en cuanto a tasas de error) de la verificación de firma

manuscrita, y en segundo lugar cuáles son los cambios espećıficos que experimentan las firmas

con el paso del tiempo, y qué parámetros son más estables. Se utilizan para los experimentos los

sistemas locales HMM, DTW y el sistema global basado en distancia de Mahalanobis descritos

en el Caṕıtulo 3.

En cuanto a los experimentos relacionados con el rendimiento de los sistemas, se observa que

las tasas de error (EER) se incrementan con el paso del tiempo, según las firmas de test han sido

capturadas más tarde con respecto a las capturadas en el registro de los usuarios. Este efecto

se observa en los tres sistemas de verificación empleados (véanse Figuras 5.3 y 5.3). El sistema

DTW es el más robusto ante el paso del tiempo. Se observa además que la varianza de las

puntuaciones de los sistemas de verificación aumenta con el paso del tiempo. Se analiza también

cómo afecta el aging a cada usuario de la base de datos individualmente (véanse Figura 5.5 y

Tabla 5.4), apreciándose que el aging afecta en medida muy diferente a cada usuario, existiendo

usuarios a los que les afecta en escasa medida y otros en gran medida. Finalmente, se analiza el

efecto de actualizar las plantillas de usuario con firmas más recientes, con respecto a las de test.

Se comprueba que cuanto más recientes son las firmas de entrenamiento, mejor es el rendimiento,

entre otras observaciones (véase Figura 5.7).

En relación a los experimentos acerca de los cambios que experimentan las firmas con el

tiempo, se analiza en primer lugar la evolución de los parámetros globales con el aging (véase

Figura 5.8). Se observa que en general, con el paso del tiempo, las firmas son más cortas, rápidas,

con menores puntos singulares y número de trazos. En definitiva, las firmas se simplifican con

el paso del tiempo. Se mide también cuál es el efecto del aging en los parámetros globales,

observándose que en general los parámetros relacionados con caracteŕısticas dinámicas son los

que más vaŕıan con el paso del tiempo, frente a los parámetros geométricos que son más robustos.

Este caṕıtulo trata por tanto de mostrar los efectos del aging en la firma manuscrita y cómo

pueden ser mitigados mediante la actualización de las plantillas de usuario. Se considera que
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este tipo de análisis puede ser de utilidad para la comunidad cient́ıfica y la industria, en la

medida que ayudan a desarrollar sistemas más robustos ante el paso del tiempo. Este tipo de

estudios pueden además ayudar a la definición de requerimientos para aplicaciones biométricas

reales en estándares como ANSI-INCITS 395-2005 (2005); ISO/IEC 19794-11 (2005); ISO/IEC

19794-7 (2005).

A.1.6. Caṕıtulo 6: DooDB, Base de Datos de Passwords Gráficos

El Caṕıtulo 6 describe la adquisición y caracteŕısticas de la base de datos DooDB, que

contiene passwords gráficos y firmas simplificadas trazados con el dedo sobre la pantalla táctil

de un dispositivo móvil. Está basado en las publicaciones (Martinez-Diaz et al., 2013, 2010a).

La base de datos DooDB es la primera base de datos disponible para la comunidad cient́ıfica

que contiene passwords gráficos capturados de forma sistemática. Contiene muestras de 100

usuarios, para cada una de las dos modalidades, capturadas en dos sesiones separadas por dos

semanas en promedio. Cada sesión se divide en 3 bloques de captura de 5 muestras por bloque.

En la Figura 6.2 se pueden observar algunas muestras de la base de datos. En primer lugar

se realiza un análisis estad́ıstico de las muestras capturadas, comparándolas con una base de

datos de firmas capturadas en una PDA (de la base de datos BioSecure). Se observa que en

general los passwords gráficos tienden a ser más sencillos gráficamente que las firmas y que

se trazan más rápido (véase Figura 6.3). Se analiza también la variabilidad de los passwords

gráficos y firmas simplificadas, observándose una mayor variabilidad de las muestras genuinas en

comparación a la firma manuscrita, aśı como una variación sensiblemente mayor con el paso del

tiempo entre sesiones de captura (véanse Figura 6.4 y Tabla 6.1). Para este análisis se emplea un

clasificador DTW y se analizan por separado la variabilidad de la secuencia de coordenadas [x, y],

su primera derivada (velocidad) y su segunda derivada (aceleración). La mayor variabilidad se

observa en la aceleración. Se puede apreciar también que las firmas simplificadas presentan

menor variabilidad que los passwords gráficos, probablemente porque están compuestas por

movimientos más practicados que los passwords. Se analiza también la curva de aprendizaje de

cada rasgo (passwords, firmas simplificadas y firmas tradicionales), comparando la duración en

promedio de las muertas a lo largo de cada bloque de captura. Se observa que en general la

duración va decreciendo con el tiempo, pero en mucha mayor medida en el caso de los passwords

que las firmas (véase Figura 6.5).

En el caṕıtulo también se lleva a cabo un análisis cualitativo de los passwords gráficos.

Se observan tres grandes tendencias: passwords abstractos, que no pueden ser interpretados;

passwords conceptuales, que representan un concepto reconocible y passwords simbólicos, que

representan un śımbolo o letra reconocible. En cuanto a las firmas simplificadas, un 80% de los

usuarios realizan una versión simplificada de su firma original, mientras que el resto emplean

sus iniciales o una versión acortada de su nombre. Por último, se realizan experimentos de

verificación a modo de benchmark, utilizando un sistema basado en DTW y los parámetros

globales del sistema con mejor rendimiento ante imitaciones intencionadas en la competición
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de firma manuscrita BSEC 2009 (Houmani et al., 2012). Se observa en general tasas de error

mayores al caso de firma manuscrita, especialmente en el caso de las imitaciones intencionadas.

A pesar de las mayores tasas de error, que pueden derivar en escenarios de aplicación diferentes

a la firma manuscrita, una de las principales ventajas observadas de este rasgo biométrico es la

usabilidad y facilidad de captura, que puede realizarse en cualquier smartphone o tableta del

mercado de forma intuitiva y sin elementos adicionales.

A.1.7. Caṕıtulo 7: Verificación de Passwords Gráficos

El Caṕıtulo 7 estudia el rendimiento de diferentes sistemas y conjuntos de caracteŕısticas

ante el problema de la verificación de passwords gráficos y firmas simplificadas trazadas con el

dedo. Para ello se emplea la base de datos DooDB descrita en el Caṕıtulo 6. Se proponen dos

sistemas de verificación basados en parámetros locales, utilizando GMMs y el algoritmo DTW.

Se analiza mediante selección de caracteŕısticas cuáles son los parámetros óptimos en diferentes

escenarios: passwords gráficos o firmas simplificadas e imitaciones aleatorias o intencionadas.

Se estudia también el impacto de la variabilidad inter-sesión, el impacto del número de firmas

de entrenamiento y se propone finalmente un sistema de verificación basado en fusión de los

sistemas GMM y DTW analizados.

En cuanto a la selección de caracteŕısticas, se aprecia que las caracteŕısticas relacionadas con

el movimiento vertical, especialmente la aceleración en la coordenada vertical, están presentes

en la mayoŕıa de los vectores óptimos, al contrario que los parámetros relacionados con el mo-

vimiento horizontal (véase Tabla 7.1). Se observa que el sistema GMM presenta en general un

rendimiento mejor ante imitaciones intencionadas, y al contrario en el caso de aleatorias, donde

el sistema DTW alcanza una tasa de error EER mucho menor (véase Tabla 7.2). En la Tabla 7.3

se muestra el rendimiento en términos de EER de los sistemas bajo estudio y los vectores de

caracteŕısticas previamente seleccionados cuando se utilizan muestras de test de la misma sesión

que las de entrenamiento (sesión 1). Se observa un rendimiento mucho mayor de los sistemas,

alcanzándose en algunos casos tasas de error cercanas a 0%. Esto da lugar a entender que existe

una muy alta variabilidad inter-sesión, probablemente debida a que los passwords gráficos en

general no están compuestos por movimientos muy practicados y naturales, como es el caso de

la firma manuscrita. En cuanto al número óptimo de muestras de entrenamiento, se comprueba

que se sitúa en torno a 6-7 muestras, al contrario que el caso general de firma que está en torno

a 5 muestras (Fierrez and Ortega-Garcia, 2008) (véase Figura 7.4). Por último, mediante la

fusión de ambos sistemas, se alcanza un rendimiento combinado frente a imitaciones aleatorias

e intencionadas mejor que los sistemas independientes.

A.1.8. Contribuciones de la Tesis

En resumen, las principales contribuciones de esta Tesis Doctoral son:

La revisión actualizada del estado del arte en verificación de firma manuscrita en condi-
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ciones de movilidad, el aging y el reconocimiento basado en passwords gráficos.

El análisis experimental de qué caracteŕısticas de la firma son más robustas en condiciones

móviles y la evidencia de la degradación del rendimiento si las trayectorias del boĺıgrafo o

estilete no se capturan cuando no está en contacto con la superficie.

Un nuevo protocolo experimental para analizar los efectos del aging sobre la firma como

rasgo biométrico.

La evidencia experimental del efecto del aging en la verificación de firmas, y su compen-

sación a través de métodos de actualización de plantillas.

La adquisición y el análisis de la primera base de datos disponible para la comunidad

cient́ıfica de passwords gráficos trazados con el dedo, incluyendo también firmas simplifi-

cadas.

El análisis experimental de la autenticación de usuario basada en passwords gráficos (y

firmas simplificadas), mostrando que si se lleva a cabo selección de caracteŕısticas y fusión

de clasificadores, se obtienen tasas de reconocimiento prometedoras.

A.2. Ĺıneas de Trabajo Futuro

En base al trabajo presentado en esta Tesis, surgen varias ĺıneas de trabajo futuro relacio-

nadas. Las siguientes ĺıneas de investigación son consideradas de interés por parte del autor:

Esta Tesis se ha centrado en el problema de la autenticación de usuarios en condiciones

de movilidad, en comparación con escenarios tradicionales basados en una tableta digita-

lizadora sobre un escritorio. Sin embargo, existe la necesidad de analizar el impacto de

la inter-operabilidad entre dispositivos, es decir, el impacto de la adquisición de muestras

biométricas en un dispositivo que es diferente de la que se utiliza para autenticar posterior-

mente al usuario (por ejemplo, dos diferentes marcas de smartphones, o un smartphone y

una tableta). Algunas contribuciones ya abordan este escenario (Alonso-Fernandez et al.,

2005) pero está todav́ıa por realizar un estudio sistemático sobre la inter-operabilidad con

una gran base de datos a disposición del público. Algunos trabajos recientes van en esta

ĺınea (Blanco-Gonzalo et al., 2013a; Vera et al., 2015).

En cuanto al aging, esta Tesis ha arrojado algo de luz sobre sus efectos en la verificación

de firmas. Sin embargo, surgen varias preguntas. ¿Es 15 meses un peŕıodo suficientemente

largo de tiempo para analizar los efectos del aging? Aunque los resultados obtenidos en

el presente trabajo apuntan en esa dirección, esto aún debe ser confirmado por completo

con una base de datos adquirida a lo largo de un lapso mayor de tiempo. Otros factores,

como el sexo, o las habilidades en la escritura pueden ser también de interés cuando se

considera el envejecimiento. Una referencia reciente en este sentido es Fairhurst (2013).
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Los passwords gráficos son todav́ıa un campo de investigación relativamente novedoso y

continúan representando un escenario de autenticación desafiante, en comparación con

otros rasgos biométricos. Debe llevarse a cabo más estudios con otras bases de datos

(como la base de datos presentada recientemente por Riggan et al. (2014)), teniendo en

cuenta otros perfiles de uso en comparación con el escenario de adquisición de la base

de datos DooDB, que fue capturada considerando sólo un lapso de dos semanas entre las

sesiones.

Se ha observado que la variabilidad inter-sesión es uno de los principales factores para el

aumento en las tasas de error en la autenticación en el caso de los passwords gráficos. Las

técnicas de actualización de plantillas de usuario (Didaci et al., 2014; Uludag et al., 2004)

podŕıan ayudar a mitigar este problema.

Como hemos visto, el escenario de adquisición (por ejemplo, smartphone, tableta) afecta a

la tasa de error en la autenticación. Hay en general un compromiso entre la facilidad de uso

y el rendimiento. Algunos trabajos recientes han estudiado el impacto de las condiciones

de usabilidad y de adquisición en la verficación de firma (Blanco-Gonzalo et al., 2014,

2013b; Brockly et al., 2014). Se puede llevar a cabo más investigación en este área, con

el fin de establecer caracteŕısticas de usabilidad medibles y analizar su correlación con las

tasas de error de los sistemas.

Esta Tesis se ha basado en técnicas de comparación de similitud (matching) bien estable-

cidas (HMM, GMM, DTW y medidas de distancia). Otros enfoques complementarios y

populares en los últimos años, tales como Support Vector Machines (SVM) (Ferrer et al.,

2005), redes neuronales profundas y modelos h́ıbridos HMM/red neuronal (Dahl et al.,

2012; Povey et al., 2011) debeŕıan ser explorados con el fin de identificar otros algoritmos

de verificación con buen rendimiento.
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