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ABSTRACT 

Reuse-based design has emerged as one of the most important methodologies for integrated circuit design, with reusable 
Intellectual Property (IP) cores enabling the optimization of company resources due to reduced development time and 
costs. This is of special interest in the Field-Programmable Logic (FPL) domain, which mainly relies on automatic 
synthesis tools. However, this design methodology has brought to light the intellectual property protection (IPP) of those 
modules, with most forms of protection in the EDA industry being difficult to translate to this domain. However, IP core 
watermarking has emerged as a tool for IP core protection. Although watermarks may be inserted at different levels of 
the design flow, watermarking Hardware Description Language (HDL) descriptions has been proved to be a robust and 
secure option. In this paper, a new framework for the protection of μP cores is presented. The protection scheme is 
derived from the IPP@HDL procedure and it has been adapted to the singularities of μP cores, overcoming the problems 
for the digital signature extraction in such systems. Additionally, the feature of hardware activation has been introduced, 
allowing the distribution of μP cores  in a “demo” mode and a later activation that can be easily performed by the 
customer executing a simple program. Application examples show that the additional hardware introduced for protection 
and/or activation has no effect over the performance, and showing an assumable area increase. 
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1. INTRODUCTION 
The new design strategies based in the reuse of IP-cores1 enables the optimization of company resources due to reduced 
development time and costs, especially when implementing highly complex systems. This is of special interest in the 
Field-Programmable Logic (FPL) domain. However, this design methodology introduces risks concerning the 
intellectual property protection (IPP) of those cores, with most forms of protection in the EDA industry being difficult to 
translate to this domain. Nowadays, IP core watermarking2,3,4 has emerged as a tool for IP core protection. Although 
watermarks may be inserted at different levels of the design flow, watermarking Hardware Description Language (HDL) 
descriptions5,6 has been proved to be a robust and secure option. The embedding of a watermark at this design level 
provides the most tampering resistant schemes since the signature is embedded in preliminary stages, and it is dragged 
through the whole design flow6. In this sense, IPP@HDL6 procedure provides a protection framework for IP cores by 
spreading a digital signature at the HDL design level through memory structures or combinational logic included in the 
design. 

In this design environment, microprocessor and microcontroller cores are widely used and are, in most cases, the basis to 
implement complex systems. The protection of these cores has become a priority for the developers. Although 
IPP@HDL can be applied directly to protect microprocessor (µP) based designs, some issues related to extracting the 
digital signature must be considered:  

- In µP-based systems, the data bus is not always part of the I/O connections and it can be difficult to introduce 
the sequence to initiate the watermark extraction. The RESET pin can be an option to overcome this drawback.  
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- The data output of the microprocessor is usually connected to an I/O controller, making difficult the verification 
of the digital signature because the absence of direct access to output pins.  

These considerations and the high number of IP cores including microprocessors and microcontrollers justify the 
development of an extension of IPP@HDL suitable for the protection of such systems. This paper presents a 
modification of IPP@HDL for µP based systems, maintaining the features of low area impact and non-relevant overhead 
for the protected system. The method, named µIPP@HDL, presents the same structure than IPP@HDL, providing robust 
watermarking protection, an easy and non-destructive procedure for signature extraction and adds the new feature of 
“Hardware Activation” that allows the distribution of “demo” versions of protected cores. 

 

2. PROTECTION USING WATERMARKING STRATEGIES 
The protection of IP cores using watermarking involves two processes: watermark embedding and watermark extraction. 
The watermark may contain information about ownership or user identity. The watermark has to be nearly invisible to 
human and machine inspection and must not interfere with the design’s functionality. In this field, several digital 
watermarking techniques have been proposed with different contributions, each categorized according to watermark 
application levels as follows:  

- Physical level watermarks. A basic idea is to store the watermark in some of the unused configurable logic 
blocks (CLB) of the FPGA. This watermarking technique, in combination with “tiling” algorithms, is used in7. 
In this approach, the design is divided into a set of tiles with different logic block configurations. Signature 
embedding by means of time constrains8 consists of specifying timing constraints in paths different from the 
“critical path”. All of these techniques, as well as those proposed in4,9,10, embed watermarks at the physical 
level. 

- High level watermarks. The protection at high design levels6,11,12,13 introduces great difficulties to remove the 
watermark, since the signatures is embedded in preliminary stages, being dragged through the whole design 
flow. In addition, the watermark could be embedded as a functional part of the design6.  

IPP@HDL6 protects digital systems by spreading the bits of a digital signature through memory structures or 
combinational logic included in the high-level description of the design. Thus, the signature is propagated through the 
whole design flow down to the physical implementation, independently of the target technology (ASIC, FPGA, etc.). 
This signature spreading does not require additional system resources. In addition, the proposed watermarking technique 
includes an easy and secure procedure6 for non-destructive signature extraction. This procedure requires some hardware 
to be included into the system, which will detect the petition for signature extraction and will perform this task, showing 
the signature bits as a data sequence at the output of the protected system. This watermarking technique makes the 
signature bits to be part of the original design, while the system itself extracts the signature bits when it is required to do 
so. This process is activated6 by feeding the system with a predetermined Signature Extraction Sequence (SES), which 
may be either manually selected or generated with an LFSR. Thus, the protected system includes minimum 
modifications in order to detect this SES and consequently extract the signature. Concretely, once the SES has been 
detected, the signature extraction additional logic addresses or applies proper input patterns to every module of the 
system where signature blocks have been embedded and/or hosted, instead of those being applied during normal 
operation of the hardware. This additional hardware has also to conveniently route the output of these modules to the 
circuit output6. In this way, the circuit keeps working following its normal operation but, during a few clock cycles, the 
system output consists of the digital signature bit blocks. The digital signature is then obtained grouping these signature 
bit blocks properly and is ready for whatever validation it is required. Recently, this watermarking scheme has been 
extended with the development of an automated tool for signature extraction14. 

Therefore, IPP@HDL can be applied to any digital system, with the assumption that it read data at the input pins and 
presents the results at a set of output pins. The SES is entered at the inputs of the system and the extracted digital 
signature is observed at the output pins. This scenario is slightly different in µP-based systems: generally, the input data 
for a µP are stored in memory and the results are also stored in memory. Accordingly, it is difficult to introduce the SES 
using the input pins of the system, and to recover the digital signature from any output pins. Thus, in the next section 
some modifications for the IPP@HDL are proposed in order to enable the IP protection of µP-based systems. 
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3. PROTECION OF µP CORES 
The underlying idea for adapting IPP@HDL to the protection of µP cores consists of introducing the SES by means of a 
byte sequence stored in memory, and recovering the extracted signature through the system’s memory. There are two 
main approaches to accomplish these objectives,  

- Introduce a signature co-processor: this implies the introduction of additional circuitry to scan the RAM 
memory in order to detect the SES, and then, proceed with the extraction of the signature, storing it in a 
reserved memory location. 

- Modify the µP, extending the instruction set in order to perform the signature extraction.  

These two alternatives are analyzed in the following.  

3.1 Signature co-processor 

In this approach, the SES is introduced into the memory using the standard peripherals provided by the system under 
protection, and the coprocessor scans the RAM memory in order to detect the SES. When SES is detected, the co-
processor interrupts the µP, perform the signature extraction and stores digital signature in a prefixed memory location. 
The main advantages of this approach are: 

- It can be applied to any µP, since the design is independent of the system under protection. 

- The coprocessor works in parallel with the µP, and the impact on performance is negligible. 

As drawbacks, the following issues stand out: 

- Profuse additional circuitry is required in order to scan the memory without collision problems, thus important 
impact on area may occur. 

- The coprocessor is an independent entity, so it is more vulnerable to attacks than if the protection is embedded 
into the µP.  

3.2 Extension of the instruction set 

The other approach considered consists of extending the instruction set of the µP taking advantage of unused opcodes. 
This method is in line with the protection scheme provided by IPP@HDL, because the protection is hosted inside the 
core. Thus, any attempt to modify or remove the signature will affect the correct functioning of the system, providing 
high invulnerability properties. The introduction of additional instructions must not have serious effects in performance, 
and the additional hardware needed for extraction is affordable. Regarding the drawbacks, this approach requires a 
specific design solution for every µP family under protection. However, it has not to be an obstacle if the changes to 
perform in the HDL code of the µP are not too complex.  

This approach has been the preferred to be implemented into µIPP@HDL. The flow diagram to introduce a digital 
signature in a µP core by extending the instruction set is presented in Fig. 1, and it can be summarized as follows:  

1) Generation of the digital signature. A hash cryptographic function, generally MD5 or SHA1, is applied to a 
public document containing the author of the core, the client, and the license agreement. This hash will be used 
as digital signature. 

2) Introduction of the digital signature. The digital signature is embedded into the core under protection by 
introducing new instructions in the µP. Unused opcodes are selected to perform this operation and these new 
instructions will be used to extract the signature.  

3) Extraction of the signature. When the signature needs to be extracted, the new instructions added to the 
instruction set of the µP have to be executed. Thus, a program needs to be stored into memory and run. This 
will be the SES in this protection scheme. The extracted signature is stored in memory locations specified in the 
extraction program. 

 

With this scheme it is possible to claim the authorship of µP cores, in the same way of IPP@HDL. Additionally, taking 
advantage of the programming possibilities offered by µPs, new features can be enabled. Concretely, introducing the 
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concept of hardware activation, it is feasible to distribute cores in “demo” mode for demonstration purposes and later 
“activate” the core to obtain full functionality. This interesting feature is also included in µIPP@HDL and provides a 
valuable tool for IP core developers to release their designs. The next section describes this issue.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  µP IP core Protection extending the instruction set. 

 

4. HARDWARE ACTIVATION 
The concept of hardware activation is based on the well known activation process of software applications15. However, 
some important differences in characteristics of software and hardware must bear in mind: 

- Software applications have not restrictions in size due to low cost of massive memory devices. In hardware 
systems, the area is a critical design factor.  

- Nowadays, all computers are connected to internet, so software applications can interact with the licenser to 
perform activation process. Hardware cores are not usually connected, thus activation has to be carried out by 
the client.  
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In this way, the proposed flow for the activation protection scheme is presented in Fig. 2 and explained below: 

1) Generation of the activation number. The activation code is generated and embedded into the core.  

2) Modification of the core. The µP core is modified in two ways:  

o New instructions are added to the µP core in order to detect the activation code. This task is carried out 
in a similar way than the digital signature introduction process above. 

o Some features of the µP core are disabled until the activation code is checked. The core remains in 
“demo” mode until the activation process is accomplished. The activation needs to be completed in 
every power-on of the system. Thus, the activation code must be included in the ROM or firmware of 
the system developed by the customer.   

3) Activation. The activation process is performed by executing new instructions added to the µP. These 
instructions take the bytes of the activation code and compare them with the internal values embedded into the 
core. If the code is correct, the system is activated and all functionalities of the µP are enabled. Otherwise, the 
µP remains in “demo” mode. 
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Fig. 2  µP hardware activation flow. 
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5. µIPP@HDL 
The µIPP@HDL protection framework combines the IP protection provided by embedding a digital signature using 
watermarking techniques, and the distribution of limited versions of the core with the possibility of an easy activation for 
full functionality. These aspects have been detailed in previous sections and are based in the extension of the instruction 
set of the microprocessor to host the signature, facilitate the signature extraction and perform hardware activation. As in 
IPP@HDL, the protection is introduced at the high-levels of description, being dragged through the entire design flow. 
For the designer, the main work resides in the modification of the instruction set state machine in order to introduce the 
new instructions. When this task is completed, the protection of an individual core is reduced to changing some 
parameters in an HDL file. In the next section, a detailed example shows a practical application to protect a Z8016 clone 
µP core, with Fig. 3 showing the general flow of µIPP@HDL. 
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Fig. 3  µIPP@HDL general flow diagram. 
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6. DESIGN EXAMPLE 
 
To illustrate the protection scheme offered by µIPP@HDL and evaluate the impact on performance and area due to the 
additional hardware, a design example has been developed using a Z80 clone core named T8017. The µP has been 
implemented on a Virtex 5 device by Xilinx, using ISE 10.1 tools. For the IP protection, a MD-5 digital signature was 
hosted by extending the instruction set of the targeted µP. Four new instructions were created, with opcodes ED20, 
ED21, ED22 and ED23. Table 1 shows the name, opcode and operations performed by these instructions. SIG1 extracts 
four 8-bit blocks (BL01, BL02, BL03 and BL04) of the signature, and stores them in consecutive memory addresses 
beginning by the one pointed by the HL register pair. SIG2, SIG3 and SIG4 operate in a similar way. Thus, the signature 
extraction can be performed by executing the program listed in Fig. 4(a). Fig. 5 shows the extraction process for the 
signature C2DA0F795D03238FBD72AB3051000F81 in a post place&route simulation for a Xilinx Virtex 5 device18 
(xc5vlx30-1ff676). In the figure the ‘C2’value in the data bus “d” can be observed when the content in address ‘0100’ is 
read (“a” signal), ‘DA’ in address ‘0101’ and so on.  
The hardware activation feature has been achieved introducing also four new instructions (to handle a 64-bit activation 
code), which compare the activation blocks addressed by the HL register pair with the embedded ones. The activation is 
completed only if all the activation instructions are executed and all comparisons are successful. Fig. 4(b) shows the 
activation program, and Fig. 6 shows a simulation of the activation process. The signal “activacion” has value ‘1’ when 
comparing activation blocks, and “activado” takes ‘1’ value at the end of the simulation because all the comparisons 
were successful. 
 
 

 
Fig. 4. (a) Z80 program for MD5 signature extraction (b) Z80 program for hardware activation 

 

Table 1. Instructions for signature extraction 

Opcode Name Function 
ED20 SIG1 (HL) ← BL01; HL←HL+1 

(HL) ← BL02; HL←HL+1 
(HL) ← BL03; HL←HL+1 
(HL) ← BL04; HL←HL+1 

ED21 SIG2 (HL) ← BL05; HL←HL+1 
(HL) ← BL06; HL←HL+1 
(HL) ← BL07; HL←HL+1 
(HL) ← BL08; HL←HL+1 

ED22 SIG3 (HL) ← BL09; HL←HL+1 
(HL) ← BL10; HL←HL+1 
(HL) ← BL11; HL←HL+1 
(HL) ← BL12; HL←HL+1 

ED23 SIG4 (HL) ← BL13; HL←HL+1 
(HL) ← BL14; HL←HL+1 
(HL) ← BL15; HL←HL+1 
(HL) ← BL16; HL←HL+1 

 

 

Opcode      Mnemonic            Comments 
 
21 00 01: LD HL,$0100 ; address for activation code 
36 A1:      LD(HL),$a1   ;  store the first activation block in memory 
23:  INC HL          ;  next address 
36B2        LD (HL),$b2   ;  store the second block 
….                    ;  complete the store of the 64-bit activation code 
ED30:     ACT1         ; check activation blocks BLA01 and BLA02 
ED31:     ACT2         ; check activation blocks BLA03 and BLA04 
ED32:     ACT3         ; check activation blocks BLA05 and BLA06 
ED33:     ACT4         ; check activation blocks BLA06 and BLA07 

   Opcode      Mnemonic            Comments 
 
    21 00 01: LD HL,$0100 ;   Memory address for 
extraction 
ED20:      SIG1              ; extraction of BL01 to BL04 blocks 
ED21:      SIG2              ; extraction of BL05 to BL08 blocks 
ED22:      SIG3              ; extraction of BL09 to BL12 blocks 
ED23:      SIG4              ; extraction of BL13 to BL16 blocks 
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Table 2. Instructions for activation 

Opcode Name Function 
ED30 ACT1 BLA01 ↔ (HL) ; HL←HL+1 

BLA02 ↔ (HL) ; HL←HL+1 
ED31 ACT2 BLA03 ↔ (HL) ; HL←HL+1 

BLA04 ↔ (HL) ; HL←HL+1  
ED32 ACT3 BLA05 ↔ (HL) ; HL←HL+1 

BLA06 ↔ (HL) ; HL←HL+1 
ED33 ACT4 BLA07 ↔ (HL) ; HL←HL+1 

BLA08 ↔ (HL) ; HL←HL+1 
 
 

Table 3 presents the synthesis results for four versions of the T80 core. The first line corresponds to the unmodified T80, 
the second one to a T80 with a 128-bit digital signature for IP protection, the third one is a T80 with activation 
capability: in “demo” mode the CALL instruction is disabled; when activated, the full instruction set is available. The 
fourth one includes all the features of µIPP@HDL, IP protection and hardware activation.  

Performance has been evaluated in terms of the maximum frequency, and the hardware introduced for signature 
extraction and hardware activation have no significative effects over this parameter. For area results, two parameters 
have been considered: the number of slice registers and the number of slice LUTS18. In both of them, assumable 
increments are required for the additional circuitry. 

 

Table 3. Synthesis Results 

µP Slice Registers Slice LUTs Max. Fec. 

T80  238 1412 104 Mhz 
T80 with MD5 
signature 249 1678 105 Mhz 

T80 with 64-bit 
activation 248 1577 106 Mhz 

T80 with MD5 
and 64-bit 
activation 

257 1628 107 Mhz 

 

 

 
Fig. 5  Digital signature extraction in a T80  protected core. 

 

 
Fig. 6. Activation process in a T80 with hardware activation feature. 

 
 
 
 

Proc. of SPIE Vol. 7703  77030L-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/22/2015 Terms of Use: http://spiedl.org/terms



7. CONCLUSIONS 
 

A new framework for the protection of µP cores has been presented. The protection scheme is derived from the 
IPP@HDL procedure and it has been adapted to the singularities of µP cores, overcoming the problems for digital 
signature extraction in such systems. Additionally, the feature of hardware activation has been introduced, allowing the 
distribution of µP cores in a “demo” mode and a later activation that can be easily performed by the customer by 
executing a simple program. A design example has been presented for a Z80 class core, showing that the additional 
hardware introduced for protection and/or activation has no effect over the performance, and showing an assumable area 
increase. 
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