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Using All Data to Generate Decision Tree
Ensembles

Gonzalo Marnez-Muioz and Alberto Sarez

Abstract— The present work develops a new method to gener-
ate ensembles of classifiers that uses all available data to consttuc
every individual classifier. The base algorithm, presented in [1],
builds a decision tree in an iterative manner: The training data is
divided into two subsets. In each iteration, one subset is used to
grow the decision tree, starting from the decision tree produced
by the previous iteration. This fully grown tree is then pruned
by using the other subset. The roles of the data subsets are
interchanged in every iteration. This process converges to a final
tree that is stable with respect to the combined growing and
pruning steps. To generate a variety of classifiers for the ensen
we randomly create the subsets needed by the iterative tree
construction algorithm. The method exhibits good performance
in several standard datasets at a low computational cost.

Index Terms— Patern recognition, classification ensembles,
bagging, decision trees.

I. INTRODUCTION

HE development of ensembles of classifiers is a topic

of great activity in the field of supervised learning
[2]-[9]. This flurry of activity has been spurred by the

3) Injecting randomness: This technique introduces a cer-
tain degree of randomness into the base learning al-
gorithm in such a way that two executions with the
same data produce two different classifiers. The learning
algorithm performance is reduced to obtain a diversity of
classifiers that can be combined into an ensemble. One
example of this technique is choosing randomly between
the k best tests that can be made in a decision tree node
[12].

4) Subsampling the training examples by generating differ-
ent views of the data to build every individual classifier.
Methods as boosting [9], bagging [4] and wagging [2]
fall into this group of techniques. Bagging [4], one of
the most widespread methods, constructs each individual
classifier using a random sample df training exam-
ples drawn with replacement from the originsitsized
training set (bootstrap sample). Each sample contains on
average 63.2% of the original training set and the rest
of the sample are repeated examples.

performance improvements that can be obtained using thisgeneral, all these techniques deteriorate the perfocmah
simple technique. An ensemble of classifiers categorizes nghe single classifiers for the sake of obtaining a diversity o
examples by pooling the decisions made by its componengfassifiers that, when used as a committee, perform beter th
The individual decisions of the base classifiers are contbing,e single classifiers.

by either weighted or unweighted voting to obtain the final This paper presents an ensemble generation method that
decision of the ensemble. An ensemble can be much mefges not reduce the efficiency of the base algorithm. It isdbas
accurate than any of the classifiers of which it is composgd [@n the intrinsic variability of the Iterative Growing anduming
Obviously, this accuracy improvement can only be achietedA|gorithm (IGPA), a tree construction method designed by

the single classifiers are sufficiently diverse: Poolingetbgr

Gelfand et al. [1]. IGPA generates decision trees by digdin

Fhe results Of-identical classifiers would not lead to ar‘y]e training data in two d|SJO|nt groups of approximateiy
improvement; in fact the ensemble would always produggual size and class distribution. IGPA uses iterativelg on
the same classification as a single classifier. The key polta group to grow the tree and the other one to prune
when Creat|ng ensembles is to use the available data tCﬂObﬁﬁl interchanging the roles of the groups on each iteration.

classifiers with uncorrelated errors [6].

This algorithm has the property that different subdivisiar

Several techniques have been proposed to achieve this gaal data may generate different trees, even though the same

[6]:

original training data is being used. This fact, togethethwi

1) Manipulating the input features: This technique delet@ge good performance of the individual classifier shouldilea
features of the inpUt data before ConStrUCting every |nCi:b an improvement in the efﬁciency of the ensemble.

vidual classifiers. The selection of the features to delete
should be done very carefully as the final performance

of the ensemble could be seriously affected.

II. LEARNING ALGORITHM

2) Manipulating the output targets [10], [11]: Every indi/A- Base algorithm

vidual classifier is built using a different random class re- The base classifier in the ensemble is a decision tree built by
labeling. This method generates a new 2 class problapplying the Iterative Growing and Pruning Algorithm (IGPA
from the original problem by assigning half of thel]. The input of the learning algorithm is the set of traigin
original labels to a new A class and the other half adata, which consists of a collection 8%,..;,, labeled examples
the labels to a new B class. Then, the classifiers afe= {(zn, yn), n = 1,2, ..., Ntrain }. Each training example
trained on these new problems. This method has tke,,, y,,) is characterized by the feature vectey, and the
limitation that can be only used with problems havinglass labely,,. The goal is to predict the class lahgehiven a

many classes.

feature vectorr using the knowledge contained in the training



data sef_. To construct an IGPA classification tree, the training wherep(i|t) is the fraction of data in node that belongs
set L is randomly divided into two subset,(") and L(®), to classi.
of approximately equal size and class distribution. Thée, t 2) Tree pruning phase:For the pruning phase we use
algorithm makes use of one subset to fully grow the tree andafsimple and fast algorithm proposed in [1]. This pruning
the other one to prune it. The growing and pruning sequencengthod works in a bottom-up manner, i.e. each node of the
repeated with the roles of the subsets reversed at eactidtera tree is processed only after its children have been prodesse
first, a treeT, is grown usingL(!). Then, the fully-grown tree The tree branch grown form inner nodgis pruned only if
Tp is reduced to its optimal siz&; with respect to subset the error of the pruned tree is lower or equal to the error ef th
L) using a pruning procedure that returns the pruned traapruned tree. The true error is estimated as the resutixstitu
with the smallest resubstitution error for a given data 8et (error on a dataset that is independent of the data used to grow
this iteration L(?)). Once the first pruning is completed, thehe decision tree.
roles of the data subsets are interchanged and a newitree
is generated by growing new leaves off the terminal nodes of .
T using theL® subset. Therf} is pruned to its optimal B- Ensemble algorithm
size with respect td.(1). In the successive iterations the roles The efficiency of bagging in reducing the generalization
of the growing and pruning subsets are interchanged until twrror seems to be high when the base classifier has low
consecutive pruned trees are of equal size. It can be provgds and exhibits large variability [3]. The IGPA procedure
that this sequence converges [1]. is unstable with respect to how the training examples are
The details of the growing and pruning phases are: grouped. Therefore, the desired variability can be obthine
1) Tree growing phase:For the tree growing phase thelGPA by random grouping of the data. This mechanism can
CART algorithm is used [13]. This algorithm generates mot be exploited in other tree construction algorithms,hsuc
tree in a recursive way. Starting from a terminal node, as CART and C4.5 [14], which are not affected by the way
that corresponds to a region of the attribute spé¢e), two training data is ordered or grouped. Ensemble methods using
children nodes are created by means of a boolean test@h5 or CART as base algorithms induce variability in the
the attributes. This test divides the original regiéf(¢), into classifiers by introducing a perturbation that is extringic
two disjoint regionsl/(tg) andU (t1,) ( corresponding to the the data (a bootstrap resampling in bagging, an adaptive or
children nodegr andt.), such thatU(¢t) = U(tg) | JU(tr) random weighting in boosting and wagging, respectively, a
and( = U(tg) (U(tL). The recursive process continues, byandomization of outputs [10], etc.). This perturbatiomeye
splitting the regions defined by the nodgs and ¢y, until ally deteriorates the performance of the individual cligess.
some stopping criteria is fulfilled. In this work, we take advantage of the aforementioned
The two main points in the growing phase are: (1) how timstability and obtain a diversity of classification treeg b
chose the splits and (2) when to stop the recursive processrunning the IGP algorithm with different random subdivisso
the CART algorithm the growing phase stops when any of thoé the training data into the two subsef$’), L. In this

following conditions is fulfilled for a terminal node manner, the variability in the classifiers in IGPA-ensembie
1) All the training examples falling in the regiot(t) intrinsic to the tree construction algorithm and not imgbge
belong to the same class. an ad-hocmanner. Furthermore variability is not achieved at

2) The number of training examples falling in the regiofe expense of decreasing the performance of the individual
U(t) is less or equal than a parametrically specifiedecision trees.
minimum.
3) There is no split such that there are at least 1 example I1l. EMPIRICAL RESULTS
falling in U(tg) and inU(tz).
Next, we look at the problem of selecting the split at eac&
node. The main point here is to find the split that bett
separates the different classes. In the CART algorithm t

In order to test the performance of the proposed ensemble
IGP trees, several real data sets from the UCI repository
55] are used: German Credit, Pima Indian Diabetes, Breast

) . i ) . ancer Wisconsin, and Sonar. To analyze the performance of
is done by measuring the value of an impurity function aftet

) . . N allGfe method as a function on the size of the training data we
3:2 S;:gtieot:_e split;, and by choosing the split that maX'mlzecarry out a more detailed study in the waveform dataset, a

synthetic data set proposed by [13]. In order to avoid sjpisrio
Ai(s,t) =i(t) — (i(tr)pr +i(tr)pR) effects, data sets with no missing values were chosen. Table
shows the characteristics of the selected data sets. Cdlumn
and 3 give the number of examples for training and testing
respectively. Column 4 shows the number of classes and
column 5 the number of attributes of the problem.

The performance of the method is evaluated using CART-
based bagging as a reference. C4.5-based bagging could also
have been used. However, CART and C4.5 are very similar
i(t) =>_p(ilt)p(jlt) decision tree construction algorithms, and their accuriacy

i#j comparable in many empirical datasets [16]. Furthermore,

wherep;, andpg are the fraction of the examples falling in
U(t) that go to the regions defined Wy(tz) andU(¢y) re-
spectively. As impurity function CART uses the Gini critami
given by:



TABLE | Waveform

CHARACTERISTICS OF THE USED DATASETS ‘ ‘ ‘ igPAensemble ——
Dataset Train Test Classes Attribs
Waveform 300 5000 3 21
German Credit 600 400 2 24
Pima Indian Diabetes 500 268 2 8
Breast Cancer Wisconsin 500 199 2 9 i
Sonar 120 88 2 60

IGPA is based on the growing heuristics of the CART al- - - - - 4
gorithm, which makes CART-based bagging preferable as a Nambor ofclassfers
benchmark. Fig. 1.  Error evolution with respect the number of classifiss the

Two types of experiment were made: First we measure thvaveform data set.
performance of the algorithm with respect to the number of
classifiers: A collection of 101 classifiers are generated in
each run of the experiment; the results are then analyz&f@gsemble classification error over 50 executions (N=500 wit
sequentially in order to obtain the error values for thedbe standard deviation shown between parentheses. The last
classifiers grouped in ensembles whose size ranges from T@mn in Il gives the values of two-sided paired Student’s
101 classifiers. A second batch of experiments is designedi4@st. Statistically important differences are highteh (i.e.
analyze the dependency of performance on how many trainitegj values of the Student’s t-test under 0.05). Notice that,
examples are used. Additionally, we also report the errBiis case, the whole training set is being used to generate th
performance of the individual classifiers, CART and IGPACART tree. Therefore, the CART tree error rate is lower than
This last measure is used as a reference error for the ensemiflat of C' = 1 CART-bagging (see first column of Table IlI).
and to ascertain whether the ensembles of classifiers perfor Table Il shows that, except for the German data set, there are
better than the simple classifiers. Note that the error ofr@ large differences between both methods, although CART
CART tree is generally lower than that of a bagging ensembkees have slightly lower error performance in 4 out of the 5
with a single classifier. This is due to the fact that the CARTata sets.
tree is grown using all the elements in the training set, avhil Table Il presents the classification errors obtained with
the resampling process with replacement used to genemtedghsembles of decision trees that use univariate splits. The
decision trees in the ensemble selects on average only 63@¥&e sections of the table present the results for an erleemb
different instances of the original training set (the resthe of 1, 11 and 101 classifiers, respectively. Every section is
sample are repeated examples). This is not the case in didded into three columns: the first column displays theiltss
IGPA ensemble: Since the variability in the tree constarcti for the CART-based bagging algorithm. The second column
is intrinsic to the algorithm, both the individual tree arfet shows the results for the IGPA-ensemble obtained by rangoml
ensemble tree use the same amount of data. subdividing the training data into two groups of approxiefat

The protocol for the experiments is as follows: For eactgual size and equal class distribution. The third colunmvsh
dataset in Table | (i) N random training sets with sizethe p-values for the two-sided paired Student’s t-test.irhga
as specified in Table | are generated ; (ii) each algorithatatistically significant results are highlighteg € value <
is run N times, one for each training set. In this way th@.05).
different algorithms work under the same conditions and canEach experiment was run 50 times (N=50) for both algo-
be compared in a fair way. The two-sided paired Student®hms. The classification error reported is an average over
t-test is used to determine whether the differences in perféthese 50 executions, with the standard deviation aroursd thi
mance are statistically significant: The Student’s t-tégegy average displayed between parentheses in the table. The gen
the probability (p-value) of two populations having the samerated ensembles were analyzed sequentially to obtain the
mean. A p-value below 0.05 is normally considered as dcdassification errors for ensembles from 1 to 101 classifiers
statistically relevant difference [17]. Figures 1 to 5 show the error with respect to the number of
classifiers for the selected problems.

Table 11l shows that for all the data sets the proposed method
yields better or equivalent results to CART-based bagdimg.
fact, from the 5 analyzed data sets IGPA ensemble performs

TABLE I
AVERAGE ERROR IN% FOR THE INDIVIDUAL CLASSIFIERS. STANDARD
DEVIATION BETWEEN PARENTHESES

CART _ IGPA _ Paired ttest clearly better in the waveform, breast and German data sets
Waveform  30.1(2.0) 30.6(1.7) 0.31 ) ) . .
German  27.0(2.0) 28.3(2.1) 0.0061 and also in sonar though with a smaller difference. In theaPim
Pima 25.9(2.5) 2.63(2.5) 0.38 data set the results are equivalent for both algorithmsti#ero
Breast 5.90(1.8) 5.61(1.6) 0.35 ; ; ; in fi
Sonar 301(40) 305(5.2) s important fact is that, for data sets depicted in figures 1, 2

and 4, the improvement is accomplished using few classifiers

(C=11) and is maintained when adding more trees to the
Table Il displays the results for the CART and IGPAensemble.

individual classifiers. Figures 1 to 6 present the mean of theThis generally better performance of the proposed method



TABLE Il
AVERAGE ERROR IN% FOR ENSEMBLES OFL, 11AND 101 CLASSIFIERS STANDARD DEVIATION BETWEEN PARENTHESES
C=1 C=11 C=101
CART IGPA Paired| CART IGPA Paired| CART IGPA Paired
Bagging ensemble t-test Bagging ensemble t-test Bagging ensemble  t-test
Waveform | 31.9(1.7) 30.6(1.7) 0.0043| 23.8(2.1) 23.1(1.6) 0.0042| 22.2(2.2) 21.4(1.9) 2.8E-7
German | 28.5(1.9) 28.3(2.1) 0.64| 26.3(1.6) 25.0(1.9) 6.6E-6| 25.9(1.7) 24.4(1.7) 2.3E-12
Pima 26.6(2.3) 26.3(2.5) 0.50| 25.1(2.2) 24.7(2.2) 0.089 24.9(1.9) 24.7(2.3) 0.33
Breast 6.78(2.2) 5.61(1.6) 3.6E-4| 5.12(1.6) 4.53(1.4) 2.7E-3| 4.65(1.4) 4.25(1.3) 1.6E-3
Sonar 32.0(4.9) 30.5(5.2) 0.14| 27.1(4.5) 25.9(4.5) 0.046 | 26.1(4.1) 25.3(4.4) 0.023

German Credit

IGPA ensemble
CART Bagging -------

L L L L L
20 40 60 80 100
Number of classifiers

Fig. 2. Error evolution with respect the number of classiffershe German

Credit data set.

Pima Indian Diabetes

0.265 [}

0.255 1|
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CART Bagging -~

0.245
0

Fig. 3.
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Fig. 4. Error evolution with respect the number of classiffersthe Breast
Cancer Wisconsin data set.

IGPA ensemble
CART Bagging

L
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Fig. 5.
data set.

Error evolution with respect the number of classiffersthe Sonar

over CART bagging could be due to the fact that, in the IGPA-
ensemble, every classifier is built making use of all trainin
data instead of an average of 62.3% of the data as bagging
does.

We have also measured the variation of the classification
error with respect to the number of training examples in the
synthetic waveform data set [13]. Table IV shows the mean
error (averaged over 10 executions, with standard dewiatio
between parentheses) and mean number of leaves of the
generated trees for the IGPA-ensemble and for CART-bagging
The last column shows the result of the p-value of the paired
Student’s t-test. As before, statistically significantules are
highlighted (p-value: 0.05). In each execution an ensemble
of 101 trees is generated using the same training data far bot
algorithms. A graphical rendering of the results is present
in Figure 6. Observe that, as the size of the training data
set increases, the error and tree size differences betwsthn b
algorithms increase as well. Again, this could be due to the
fact that our method uses the available data more efficiently
Indeed the obtained trees are bigger in the IGPA-ensemble -
each tree is generated with the whole training set - and this
fact gives more predictive power to each single tree. Thig ma
be the reason of the advantage of the IGPA-ensemble over
CART-bagging for this data set.

The presented method is faster and more efficient than
CART-based bagging (see Table V) . CART needs to build
auxiliary trees to obtain the pruning parameters by cross
validation (usually 10 trees) while the IGP algorithm baild
just one tree for each member of the ensemble. Additionally,
in the IGP algorithm the pruning and growing phases are only
performed with half of the data, which implies a reduction of



TABLE IV
ERROR IN % AND TREE SIZE (NUMBER OF LEAVES) VARIATION WITH RESPECT TO THE TRAINING DATA SIZE FOR THE WAVEEORM DATA SET USING101
CLASSIFIERS STANDARD DEVIATION BETWEEN PARENTHESES

Size CART-Bagging|7| IGPA-ensemble|T| Paired t-test

50 26.1 (2.0) 3.42 26.2 (2.8) 3.61 0.8288

100 24.2 (3.0) 4.64 240 (3.1) 5.13 0.6856

150 239 (2.7) 540 23.1(2.1) 6.59 0.0320

200 239 (1.9) 6.30 23.0(1.8) 8.05 0.0552

250 240 (29) 6.52 23.2(2.6) 9.09 0.0302

300 226(3.2) 790 219(28) 11.0 0.0203

500 204 (1.0) 105 19.8(0.8) 16.2 0.0422

750 214 (19) 126 20.1(0.9) 217 0.0176

1000 20.3(1.9) 155 186 (1.1) 283 0.0013
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