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Using All Data to Generate Decision Tree
Ensembles

Gonzalo Mart́ınez-Mũnoz and Alberto Súarez

Abstract— The present work develops a new method to gener-
ate ensembles of classifiers that uses all available data to construct
every individual classifier. The base algorithm, presented in [1],
builds a decision tree in an iterative manner: The training data is
divided into two subsets. In each iteration, one subset is used to
grow the decision tree, starting from the decision tree produced
by the previous iteration. This fully grown tree is then pruned
by using the other subset. The roles of the data subsets are
interchanged in every iteration. This process converges to a final
tree that is stable with respect to the combined growing and
pruning steps. To generate a variety of classifiers for the ensemble
we randomly create the subsets needed by the iterative tree
construction algorithm. The method exhibits good performance
in several standard datasets at a low computational cost.

Index Terms— Patern recognition, classification ensembles,
bagging, decision trees.

I. I NTRODUCTION

T HE development of ensembles of classifiers is a topic
of great activity in the field of supervised learning

[2]–[9]. This flurry of activity has been spurred by the
performance improvements that can be obtained using this
simple technique. An ensemble of classifiers categorizes new
examples by pooling the decisions made by its components.
The individual decisions of the base classifiers are combined
by either weighted or unweighted voting to obtain the final
decision of the ensemble. An ensemble can be much more
accurate than any of the classifiers of which it is composed [6].
Obviously, this accuracy improvement can only be achieved if
the single classifiers are sufficiently diverse: Pooling together
the results of identical classifiers would not lead to any
improvement; in fact the ensemble would always produce
the same classification as a single classifier. The key point
when creating ensembles is to use the available data to obtain
classifiers with uncorrelated errors [6].

Several techniques have been proposed to achieve this goal
[6]:

1) Manipulating the input features: This technique deletes
features of the input data before constructing every indi-
vidual classifiers. The selection of the features to delete
should be done very carefully as the final performance
of the ensemble could be seriously affected.

2) Manipulating the output targets [10], [11]: Every indi-
vidual classifier is built using a different random class re-
labeling. This method generates a new 2 class problem
from the original problem by assigning half of the
original labels to a new A class and the other half of
the labels to a new B class. Then, the classifiers are
trained on these new problems. This method has the
limitation that can be only used with problems having
many classes.

3) Injecting randomness: This technique introduces a cer-
tain degree of randomness into the base learning al-
gorithm in such a way that two executions with the
same data produce two different classifiers. The learning
algorithm performance is reduced to obtain a diversity of
classifiers that can be combined into an ensemble. One
example of this technique is choosing randomly between
the k best tests that can be made in a decision tree node
[12].

4) Subsampling the training examples by generating differ-
ent views of the data to build every individual classifier.
Methods as boosting [9], bagging [4] and wagging [2]
fall into this group of techniques. Bagging [4], one of
the most widespread methods, constructs each individual
classifier using a random sample ofN training exam-
ples drawn with replacement from the originalN -sized
training set (bootstrap sample). Each sample contains on
average 63.2% of the original training set and the rest
of the sample are repeated examples.

In general, all these techniques deteriorate the performance of
the single classifiers for the sake of obtaining a diversity of
classifiers that, when used as a committee, perform better than
the single classifiers.

This paper presents an ensemble generation method that
does not reduce the efficiency of the base algorithm. It is based
on the intrinsic variability of the Iterative Growing and Pruning
Algorithm (IGPA), a tree construction method designed by
Gelfand et al. [1]. IGPA generates decision trees by dividing
the training data in two disjoint groups of approximately
equal size and class distribution. IGPA uses iteratively one
data group to grow the tree and the other one to prune
it, interchanging the roles of the groups on each iteration.
This algorithm has the property that different subdivisions of
the data may generate different trees, even though the same
original training data is being used. This fact, together with
the good performance of the individual classifier should lead
to an improvement in the efficiency of the ensemble.

II. L EARNING ALGORITHM

A. Base algorithm

The base classifier in the ensemble is a decision tree built by
applying the Iterative Growing and Pruning Algorithm (IGPA)
[1]. The input of the learning algorithm is the set of training
data, which consists of a collection ofNtrain labeled examples
L = {(xn, yn), n = 1, 2, ..., Ntrain}. Each training example
(xn, yn) is characterized by the feature vectorxn and the
class labelyn. The goal is to predict the class labely given a
feature vectorx using the knowledge contained in the training
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data setL. To construct an IGPA classification tree, the training
set L is randomly divided into two subsets,L(1) and L(2),
of approximately equal size and class distribution. Then, the
algorithm makes use of one subset to fully grow the tree and of
the other one to prune it. The growing and pruning sequence is
repeated with the roles of the subsets reversed at each iteration:
first, a treeT0 is grown usingL(1). Then, the fully-grown tree
T0 is reduced to its optimal sizeT ∗

0 with respect to subset
L(2) using a pruning procedure that returns the pruned tree
with the smallest resubstitution error for a given data set (in
this iterationL(2)). Once the first pruning is completed, the
roles of the data subsets are interchanged and a new treeT1

is generated by growing new leaves off the terminal nodes of
T ∗
0 using theL(2) subset. ThenT1 is pruned to its optimal

size with respect toL(1). In the successive iterations the roles
of the growing and pruning subsets are interchanged until two
consecutive pruned trees are of equal size. It can be proved
that this sequence converges [1].

The details of the growing and pruning phases are:
1) Tree growing phase:For the tree growing phase the

CART algorithm is used [13]. This algorithm generates a
tree in a recursive way. Starting from a terminal node,t,
that corresponds to a region of the attribute spaceU(t), two
children nodes are created by means of a boolean test on
the attributes. This test divides the original region,U(t), into
two disjoint regions,U(tR) andU(tL) ( corresponding to the
children nodestR and tL), such thatU(t) ≡ U(tR)

⋃
U(tL)

and∅ ≡ U(tR)
⋂

U(tL). The recursive process continues, by
splitting the regions defined by the nodestR and tL, until
some stopping criteria is fulfilled.

The two main points in the growing phase are: (1) how to
chose the splits and (2) when to stop the recursive process. In
the CART algorithm the growing phase stops when any of the
following conditions is fulfilled for a terminal nodet:

1) All the training examples falling in the regionU(t)
belong to the same class.

2) The number of training examples falling in the region
U(t) is less or equal than a parametrically specified
minimum.

3) There is no split such that there are at least 1 example
falling in U(tR) and inU(tL).

Next, we look at the problem of selecting the split at each
node. The main point here is to find the split that better
separates the different classes. In the CART algorithm this
is done by measuring the value of an impurity function after
and before the split,s, and by choosing the split that maximize
this variation:

∆i(s, t) = i(t)− (i(tL)pL + i(tR)pR)

wherepL andpR are the fraction of the examples falling in
U(t) that go to the regions defined byU(tR) andU(tL) re-
spectively. As impurity function CART uses the Gini criterion
given by:

i(t) =
∑

i6=j

p(i|t)p(j|t)

wherep(i|t) is the fraction of data in nodet that belongs
to classi.

2) Tree pruning phase:For the pruning phase we use
a simple and fast algorithm proposed in [1]. This pruning
method works in a bottom-up manner, i.e. each node of the
tree is processed only after its children have been processed.
The tree branch grown form inner nodeti is pruned only if
the error of the pruned tree is lower or equal to the error of the
unpruned tree. The true error is estimated as the resubstitution
error on a dataset that is independent of the data used to grow
the decision tree.

B. Ensemble algorithm

The efficiency of bagging in reducing the generalization
error seems to be high when the base classifier has low
bias and exhibits large variability [3]. The IGPA procedure
is unstable with respect to how the training examples are
grouped. Therefore, the desired variability can be obtained in
IGPA by random grouping of the data. This mechanism can
not be exploited in other tree construction algorithms, such
as CART and C4.5 [14], which are not affected by the way
training data is ordered or grouped. Ensemble methods using
C4.5 or CART as base algorithms induce variability in the
classifiers by introducing a perturbation that is extrinsicto
the data (a bootstrap resampling in bagging, an adaptive or
random weighting in boosting and wagging, respectively, a
randomization of outputs [10], etc.). This perturbation gener-
ally deteriorates the performance of the individual classifiers.

In this work, we take advantage of the aforementioned
instability and obtain a diversity of classification trees by
running the IGP algorithm with different random subdivisions
of the training data into the two subsetsL(1), L(2). In this
manner, the variability in the classifiers in IGPA-ensembles is
intrinsic to the tree construction algorithm and not imposed in
an ad-hocmanner. Furthermore variability is not achieved at
the expense of decreasing the performance of the individual
decision trees.

III. E MPIRICAL RESULTS

In order to test the performance of the proposed ensemble
of IGP trees, several real data sets from the UCI repository
[15] are used: German Credit, Pima Indian Diabetes, Breast
Cancer Wisconsin, and Sonar. To analyze the performance of
the method as a function on the size of the training data we
carry out a more detailed study in the waveform dataset, a
synthetic data set proposed by [13]. In order to avoid spurious
effects, data sets with no missing values were chosen. TableI
shows the characteristics of the selected data sets. Column2
and 3 give the number of examples for training and testing
respectively. Column 4 shows the number of classes and
column 5 the number of attributes of the problem.

The performance of the method is evaluated using CART-
based bagging as a reference. C4.5-based bagging could also
have been used. However, CART and C4.5 are very similar
decision tree construction algorithms, and their accuracyis
comparable in many empirical datasets [16]. Furthermore,
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TABLE I

CHARACTERISTICS OF THE USED DATASETS

Dataset Train Test Classes Attribs
Waveform 300 5000 3 21
German Credit 600 400 2 24
Pima Indian Diabetes 500 268 2 8
Breast Cancer Wisconsin 500 199 2 9
Sonar 120 88 2 60

IGPA is based on the growing heuristics of the CART al-
gorithm, which makes CART-based bagging preferable as a
benchmark.

Two types of experiment were made: First we measure the
performance of the algorithm with respect to the number of
classifiers: A collection of 101 classifiers are generated in
each run of the experiment; the results are then analyzed
sequentially in order to obtain the error values for these
classifiers grouped in ensembles whose size ranges from 1 to
101 classifiers. A second batch of experiments is designed to
analyze the dependency of performance on how many training
examples are used. Additionally, we also report the error
performance of the individual classifiers, CART and IGPA.
This last measure is used as a reference error for the ensembles
and to ascertain whether the ensembles of classifiers perform
better than the simple classifiers. Note that the error of a
CART tree is generally lower than that of a bagging ensemble
with a single classifier. This is due to the fact that the CART
tree is grown using all the elements in the training set, while
the resampling process with replacement used to generate the
decision trees in the ensemble selects on average only 63.2%
different instances of the original training set (the rest of the
sample are repeated examples). This is not the case in the
IGPA ensemble: Since the variability in the tree construction
is intrinsic to the algorithm, both the individual tree and the
ensemble tree use the same amount of data.

The protocol for the experiments is as follows: For each
dataset in Table I (i) N random training sets with sizes
as specified in Table I are generated ; (ii) each algorithm
is run N times, one for each training set. In this way the
different algorithms work under the same conditions and can
be compared in a fair way. The two-sided paired Student’s
t-test is used to determine whether the differences in perfor-
mance are statistically significant: The Student’s t-test gives
the probability (p-value) of two populations having the same
mean. A p-value below 0.05 is normally considered as a
statistically relevant difference [17].

TABLE II

AVERAGE ERROR IN% FOR THE INDIVIDUAL CLASSIFIERS. STANDARD

DEVIATION BETWEEN PARENTHESES

CART IGPA Paired t-test
Waveform 30.1(2.0) 30.6(1.7) 0.31
German 27.0(2.0) 28.3(2.1) 0.0061
Pima 25.9(2.5) 2.63(2.5) 0.38
Breast 5.90(1.8) 5.61(1.6) 0.35
Sonar 30.1(4.0) 30.5(5.2) 0.65

Table II displays the results for the CART and IGPA
individual classifiers. Figures 1 to 6 present the mean of the
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Fig. 1. Error evolution with respect the number of classifiersfor the
Waveform data set.

ensemble classification error over 50 executions (N=50) with
the standard deviation shown between parentheses. The last
column in II gives the values of two-sided paired Student’s
t-test. Statistically important differences are highlighted (i.e.
for values of the Student’s t-test under 0.05). Notice that,in
this case, the whole training set is being used to generate the
CART tree. Therefore, the CART tree error rate is lower than
that ofC = 1 CART-bagging (see first column of Table III).

Table II shows that, except for the German data set, there are
no large differences between both methods, although CART
trees have slightly lower error performance in 4 out of the 5
data sets.

Table III presents the classification errors obtained with
ensembles of decision trees that use univariate splits. The
three sections of the table present the results for an ensemble
of 1, 11 and 101 classifiers, respectively. Every section is
divided into three columns: the first column displays the results
for the CART-based bagging algorithm. The second column
shows the results for the IGPA-ensemble obtained by randomly
subdividing the training data into two groups of approximately
equal size and equal class distribution. The third column shows
the p-values for the two-sided paired Student’s t-test. Again
statistically significant results are highlighted (p − value <

0.05).
Each experiment was run 50 times (N=50) for both algo-

rithms. The classification error reported is an average over
these 50 executions, with the standard deviation around this
average displayed between parentheses in the table. The gen-
erated ensembles were analyzed sequentially to obtain the
classification errors for ensembles from 1 to 101 classifiers.
Figures 1 to 5 show the error with respect to the number of
classifiers for the selected problems.

Table III shows that for all the data sets the proposed method
yields better or equivalent results to CART-based bagging.In
fact, from the 5 analyzed data sets IGPA ensemble performs
clearly better in the waveform, breast and German data sets
and also in sonar though with a smaller difference. In the Pima
data set the results are equivalent for both algorithms. Another
important fact is that, for data sets depicted in figures 1, 2
and 4, the improvement is accomplished using few classifiers
(C=11) and is maintained when adding more trees to the
ensemble.

This generally better performance of the proposed method
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TABLE III

AVERAGE ERROR IN% FOR ENSEMBLES OF1, 11AND 101 CLASSIFIERS. STANDARD DEVIATION BETWEEN PARENTHESES

C=1 C=11 C=101
CART IGPA Paired CART IGPA Paired CART IGPA Paired

Bagging ensemble t-test Bagging ensemble t-test Bagging ensemble t-test
Waveform 31.9(1.7) 30.6(1.7) 0.0043 23.8(2.1) 23.1(1.6) 0.0042 22.2(2.2) 21.4(1.9) 2.8E-7
German 28.5(1.9) 28.3(2.1) 0.64 26.3(1.6) 25.0(1.9) 6.6E-6 25.9(1.7) 24.4(1.7) 2.3E-12
Pima 26.6(2.3) 26.3(2.5) 0.50 25.1(2.2) 24.7(2.2) 0.088 24.9(1.9) 24.7(2.3) 0.33
Breast 6.78(2.2) 5.61(1.6) 3.6E-4 5.12(1.6) 4.53(1.4) 2.7E-3 4.65(1.4) 4.25(1.3) 1.6E-3
Sonar 32.0(4.9) 30.5(5.2) 0.14 27.1(4.5) 25.9(4.5) 0.046 26.1(4.1) 25.3(4.4) 0.023
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Fig. 2. Error evolution with respect the number of classifiersfor the German
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Indian Diabetes data set.
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Fig. 4. Error evolution with respect the number of classifiersfor the Breast
Cancer Wisconsin data set.
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Fig. 5. Error evolution with respect the number of classifiersfor the Sonar
data set.

over CART bagging could be due to the fact that, in the IGPA-
ensemble, every classifier is built making use of all training
data instead of an average of 62.3% of the data as bagging
does.

We have also measured the variation of the classification
error with respect to the number of training examples in the
synthetic waveform data set [13]. Table IV shows the mean
error (averaged over 10 executions, with standard deviation
between parentheses) and mean number of leaves of the
generated trees for the IGPA-ensemble and for CART-bagging.
The last column shows the result of the p-value of the paired
Student’s t-test. As before, statistically significant results are
highlighted (p-value< 0.05). In each execution an ensemble
of 101 trees is generated using the same training data for both
algorithms. A graphical rendering of the results is presented
in Figure 6. Observe that, as the size of the training data
set increases, the error and tree size differences between both
algorithms increase as well. Again, this could be due to the
fact that our method uses the available data more efficiently.
Indeed the obtained trees are bigger in the IGPA-ensemble -
each tree is generated with the whole training set - and this
fact gives more predictive power to each single tree. This may
be the reason of the advantage of the IGPA-ensemble over
CART-bagging for this data set.

The presented method is faster and more efficient than
CART-based bagging (see Table V) . CART needs to build
auxiliary trees to obtain the pruning parameters by cross
validation (usually 10 trees) while the IGP algorithm builds
just one tree for each member of the ensemble. Additionally,
in the IGP algorithm the pruning and growing phases are only
performed with half of the data, which implies a reduction of
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TABLE IV

ERROR IN % AND TREE SIZE (NUMBER OF LEAVES) VARIATION WITH RESPECT TO THE TRAINING DATA SIZE FOR THE WAVEFORM DATA SET USING101

CLASSIFIERS. STANDARD DEVIATION BETWEEN PARENTHESES

Size CART-Bagging|T | IGPA-ensemble|T | Paired t-test
50 26.1 (2.0) 3.42 26.2 (2.8) 3.61 0.8288
100 24.2 (3.0) 4.64 24.0 (3.1) 5.13 0.6856
150 23.9 (2.7) 5.40 23.1 (2.1) 6.59 0.0320
200 23.9 (1.9) 6.30 23.0 (1.8) 8.05 0.0552
250 24.0 (2.9) 6.52 23.2 (2.6) 9.09 0.0302
300 22.6 (3.2) 7.90 21.9 (2.8) 11.0 0.0203
500 20.4 (1.0) 10.5 19.8 (0.8) 16.2 0.0422
750 21.4 (1.9) 12.6 20.1 (0.9) 21.7 0.0176
1000 20.3 (1.9) 15.5 18.6 (1.1) 28.3 0.0013
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Fig. 6. Error variation with respect to the training data size for the waveform
data set.

the computational cost. The IGP algorithm usually converges
after few iterations (in our experiments 2 or 3 iterations and
no more than 4 are sufficient to reach convergence).

TABLE V

MEAN EXECUTION TIME NEEDED TO BUILD 101-CLASSIFIERS ENSEMBLE

FOR THE WAVEFORM DATA SET USING300 TRAINING DATA

CART-bagging IGPA-ensemble
time(sec.) 538 59

IV. CONCLUSIONS

The IGPA-ensemble algorithm generates in a natural way a
diversity of classifiers without inserting spurious randomness
into the training data or in the learning procedure. Experiments
on standard UCI data sets illustrate that an ensemble of trees
constructed by randomizing the subsets used in the Iterative
Growing and Pruning algorithm exhibits some improvement
in classification error over tree ensembles constructed by
bagging. This means that, in the IGPA-ensemble, a good
diversity of classifiers is obtained although all the classifiers
are constructed using the same training examples.

Moreover, it is observed that, when increasing the size of
the training set, the improvement in the error rate given by
the IGPA-ensemble with respect to the CART-based bagging
is higher in the waveform synthetic data set. This improvement
of performance seems to be correlated with an increase of the
difference in size of the generated trees.
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