

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews 42.6 (2012): 1365 – 1373

DOI: http://dx.doi.org/10.1109/TSMCC.2012.2187052

Copyright: © 2012 IEEE

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1109/TSMCC.2012.2187052

 1



Abstract— The use of RDF-based ontologies as knowledge

repositories has become increasingly popular in the last few years.

The semantic web has rapidly spread, appearing as a new

challenge for knowledge sharing and automatic processing.

However, the reality is that the power of the semantic web is still

barely used. This is mostly due to the fact that the semantic web is

a powerful but complex technology that most end-users cannot

afford to use for their common problem-solving activities. This

has probably made the semantic web to stay in the background of

interactive technologies, unlike other new end-user-oriented

paradigms (e.g., the so-called Web 2.0 and later approaches) that

have very much increased along these years. Nevertheless, the

semantic web can be considered as a highly valuable paradigm

that has not been conveniently exploited yet. In this paper, we

propose a semantic environment to exploit semantic interaction

by end-users in order to help them access semantic information

easily. We follow a Programming by Demonstration approach,

where the user navigates and modifies HTML presentation of

data and the system automatically infers changes to the

underlying semantic models. Furthermore, we provide an

evaluation of the interaction, including the most important results

obtained for the proposed approach.

Index Terms—Human Computer Interaction, User Centered

Design, User Interfaces, Semantic Web.

I. INTRODUCTION

EB browsers have become a common platform for

navigating through different data repositories along the

distributed space of knowledge. Most of interaction today is

carried out through web applications rather than desktop

software. This fact has led to change the way users

traditionally interact with software artifacts in many respects.

In general, the web has brought a new paradigm of interaction,

reducing the gap between the human's cognitive conception of

task and its computational representation. This change is

related to the considerable progress made over the last few

years, where computer applications include much more

sophisticated user interfaces that encourages user interaction to

Manuscript received September 20, 2011; revised December 29, 2011;

accepted February 1, 2012. This research has been supported by the UAM

and the Madrid Research Council, project ID: CCG10-UAM/TIC-5772, and

also by the Spanish Ministry of Science and Technology, project ID:

TIN2011-24139

José A. Macías is with the Computer Science Department, Universidad

Autónoma de Madrid. Cantoblanco, Madrid 28049, Spain (phone: +34 91

4976241; fax: +34 91 4972235; e-mail: j.macias@uam.es).

be one of the most important concerns in the design of today’s

software artifacts. Consequently, the new computing today is

the shift from machine-centered automation to user-centered

services, tools and information access, which is provoking

traditional computing to change from what computers can do

to what people can do with computers [1].

Related to web research, one of the most important

breakthroughs over the last decade has been the Semantic

Web, where the main idea is to have semantically-related

representations of knowledge rather than static stand-alone

information all over the web. This supports explicit

expressiveness in representing and relating domain

information by using semantic information comprising

ontologies and RDF-data referring to them. However,

Semantic Web technologies have principally focused on

providing rigorous accuracy and mathematical coherence to

the different standards, and the process of creating ontologies

usually demands ontology-language specialists in order to

create real semantic designs. Despite the efforts to build

graphical tools (e.g., Protégé or Swoop) that assist experts in

the process to create ontologies, this task cannot be yet

realized in an intuitive way, and it remains as an interesting

challenge to Human-Computer Interaction (HCI) research.

In particular, one of the main problems that avoid end-users

to properly exploit the Semantic Web is the complexity that

semantics implicitly have. Although end-users can be regarded

as potential content creators, the Semantic Web is out of the

scope for this kind of users due to the inherent difficulties in

dealing with the underlying technology [2]. This fact turns

collaborative end-user-oriented semantic applications into a

real need today. Even web designers could benefit, when

designing rich web user interfaces, from more robust domain

models provided by the semantic web. However, most of the

web designers are not expert on semantic-web languages, and

usually they cannot afford to learn specific programming skills

that are not directly related to their common problem-solving

activities. It is worth mentioning that being a domain expert

does not necessarily imply to be a programming expert [3].

Considering the above arguments, the implicit complexity of

managing semantics can be considered as one of the main

drawbacks of the semantic web that make it to decrease in

popularity, also being commercially unsupported and overtook

by new cutting-edge technologies and services comprising a

real end-user-intended paradigm – e.g., the Web 2.0 (and later)

based applications. This new end-user trend has made the

Enhancing Interaction Design

on the Semantic Web: A Case Study

José Antonio Macías Iglesias

W

 2

Semantic Web paradigm to slightly stay in the background, the

industry and academy paying more attention to interactive

proposals that provide feasible capabilities in knowledge

sharing, collaboration and autonomy in managing services.

Since Web 2.0 technology can be meant as an end-user

oriented approach, this also enabled non-expert users to take

part in this technology in a more effective way.

However, and compared to the Semantic Web, the Web 2.0

approach also have some notable drawbacks that make this

paradigm unable to be meant as the interactive panacea. On the

one hand, it generally lacks expressive capabilities to deal with

meta-languages and set up structural relationships. On the

other hand, it also lacks capabilities to easily represent

semantic information and carry out more efficient inference

processes on the information. This implies that, although the

Web 2.0 paradigm has gathered programmatic functionality

[4] and collaboration intended for the final user, the Semantic

Web outweighs the specification of more expressive user

interfaces for data managing, also enhancing the possibility to

specify, model and design interfaces through a convenient

model-based process [5].

An interesting HCI approach intended to bring together rich

end-user interaction and semantic capabilities is the conceptual

modeling of the user interface, which consists in splitting up

responsibilities between domain expert and programmers to

obtain a real trade-off between expressiveness and easy-of-use

in interacting with semantic information [6]. The Model-Based

User Interface Design (MBUID) paradigm [7][8] is an attempt

to carry through such a trade-off. The implicit idea behind

MBUID is to separate the conceptual level of a user interface,

which leads consequently to the explicit specification of

different aspects of the interface itself, such as domain

knowledge, presentation, dialog and behavior. In this sense,

the Semantic Web fits very well the commented interactive

paradigm, since ontologies and RDF can be considered as

domain information, as long as templates and other

presentation elements can be seem as specific skins for domain

data representation. This facility is somehow provided by wiki

environments, although the interactive capabilities of most

wikis – i.e., visualize and manipulate semantics, are still rather

low [9].

II. EXPLOITING SEMANTICS BY END-USERS

The use of RDF semantics provides an efficient way to

model different aspects of web user interfaces. Conceptual

models allow for complex relationships that can be formally

defined. Such a conceptualization can be used to codify high-

level semantic paths for automatic web-based interface

generation, further characterization and reverse-engineering

purposes [10].

We have previous experience in exploiting semantics to

specify knowledge for building data models (domain models)

used together with application or presentation models. Such a

fact has informed our approach towards specifying complex

knowledge focused on the interface’s domain and presentation

models, as well as working with XML-based languages that

better fulfill our assumptions about knowledge distribution and

sharing. More precisely, we work on combining RDF with

Model-Based User Interface (MBUI) techniques, which

emerged as a solution claiming to overcome several difficulties

in automating the process of generating interfaces (e.g.

redundancy, lack of encapsulation and reusability).

All in all, semantics are not enough to provide an efficient

solution in order for end-users/domain expert to deal with

daily problem-solving activities. We must thought of end-users

as non-expert people, who do not have to have specific skills

on programming or semantics. In this respect, a new approach

arises in order to face the problem of easily accessing and

managing complex information by non-expert users, namely

End-User Development (EUD) [11][12]. EUD is focused on a

user-centered approach, and can be thought of as a set of

activities and techniques that allow people (including non-

professional) to create or modify software artifacts or complex

data. It has been demonstrated that End-User Development

techniques reduce the gentle slope of complexity and make

easy the way the user accomplishes tasks by means of

computers. Programming by Example [13][14] is one of the

more flourishing approaches concerning EUD, which aims at

obtaining a satisfactory trade-off between ease-of-specification

and expressiveness. Programming by Example has the

potential to allow users to customize their applications and

manage semantics. Rather than writing a program in a

programming language or dealing with abstract specifications

(e.g., ontologies or RDF-based code), users simply

demonstrate how to perform actions and the system automates

the whole process, inferring patterns that will be applied next

time to similar behavior, generating code automatically when

necessary.

EUD techniques can be applied to MBUID in order to

relieve the user from having to deal with semantics and

abstract languages. To carry out this challenge, it is necessary

to provide with low-level abstract design environments such as

WYSIWYG approaches that provide end-users with a real

representation of data. The goal is to provide users with

environments where they can easily manipulate the interface’s

objects rather than using complex visual or specification

languages. This makes it possible to have a more accurately

conceptualization of what the user is attempting to do at every

step [6].

III. A PROPOSED ENVIRONMENT FOR END-USERS TO EASILY

DEAL WITH RDF SEMANTICS

Our research is mainly focused on applying MBUID and

EUD techniques to the semantic web, empowering end-users

to manage semantics without the necessity of using semantic-

web languages (i.e., RDF) or abstract specifications (i.e.,

ontologies). Instead, there is an explicit separation of

responsibilities: while ontology expert can add semantic

knowledge using a specific tool (called PERSEUS), template

developers can create presentation to render the knowledge

 3

(using PEGASUS), allowing end-users to easily deal with the

rendered semantic data using a WYSIWYG authoring tool

(called DESK). The whole environment is principally intended

to get a real trade-off between expressiveness and easy-of-use.

This way, non-expert users can access the semantic

information by manipulating the rendered data, and the system

infers what data have been manipulated and automatically

applies the changes to the RDF and the domain ontologies

(i.e., following an automatic reserve-engineering mechanism).

Domain
Model

PEGASUS

PERSEUS

Presentation
Model

Ontology Expert

Design Expert

Web User Interface

End-User

RDF

Templates

Generation
Process

Interaction

Fig. 1. Semantic environment made up of different tools: PERSEUS,

PEGASUS and DESK.

In a nutshell, our EUD environment is made up of the

following tools (see Figure 1):

• PEGASUS (Presentation modeling Environment for the

Generation of ontology-Aware context-Sensitive web User

interfaceS) [15][16] is a domain-independent system that helps

to create a dynamic front-end for ontology-driven knowledge-

based applications on the web. PEGASUS is based on a MBUI

approach, and it supports the definition of made-to-measure

ontologies for the description of domain knowledge. The

MBUI mechanisms ensure domain independence by splitting

up knowledge and presentation. This way, the system is

capable of generating web pages on the fly by selecting

domain objects and assembling them into HTML documents in

response to the user’s requests for concrete knowledge units.

• PERSEUS (Presentation ontology buildER for cuStom

lEarning sUpport Systems) [10] is an interactive form-driven

tool for the automatic generation of RDF-based files that

contain domain information processed by PEGASUS. Using

PERSEUS, the ontology designer can create custom domain-

model designs by specifying the hierarchical structure of the

ontology. This way, the authors are requested to create

different classes and relate them one another by defining

dependencies in terms of parent classes and semantic relations.

• DESK (Dynamic web documents by Example using

Semantic Knowledge) [6][10] is an authoring tool supporting

the customization of dynamically generated web pages in an

environment that looks like an HTML editor. DESK is the

client-side complement of the dynamic web page generation

system, PEGASUS, which generates HTML pages. DESK

helps end-user to modify the internal presentation model by

editing the HTML pages generated by PEGASUS, avoiding

non-expert users to deal with the PEGASUS modeling

language. DESK is based on a Programming By Example

(PBE) approach, where the system infers changes that affect

whole classes of knowledge from user’s actions on the

presentation of a specific unit. DESK is able to identify

domain values, fragments, and presentation constructs in the

HTML code, from which it infers meaningful transformations.

To carry out such a task, DESK observes the user’s activity

and, at the same time, it generates a monitoring model

containing user actions together with its context for

characterizing each action conveniently. Such information is

sent to the DESK’s server-side component, which processes

the monitoring model, infers changes, generates suitable

feedback and sends it back to the user. In a last step, DESK

applies the inferred changes to the PEGASUS’s underlying

models.

Our semantic web based environment provides a natural

way of interaction, mostly based on end-users with low or no

skills on semantic web technologies but making use of

semantics to enhancing the way they deal with daily problem-

solving activities.

IV. CASE STUDY

As a brief use case to demonstrate the functionality of our

end-user semantic environment, let us suppose that we want to

build knowledge to codify artworks for a museum web

application. To carry out this task, first it is necessary to create

the semantics (domain model) to code the domain knowledge

information. Normally, this information is built up by domain

(ontology) experts, as stated in previous sections.

In our system, the domain model (or domain ontology) is

represented through an ad-hoc ontological RDF-like language,

which is made up of domain classes and objects. Domain

classes consist of a set of classes that suits the nature of a

specific domain sketching the particular vision of a specific

author on the domain. On the other hand, domain objects

comprise object instances from the domain classes.

The domain model can be created by experts using the

PERSEUS tool to better integrate the design cycle, or even by

using other external ontology authoring tools that generate

XML (such as Protégé). For instance, Figure 2 depicts new

subclasses such as Painter or Artwork that inherit (dotted

lines) from other existing abstract ones such as

KnowledgeItem, Topic or Fragment

Domain classes can be defined with a high degree of

freedom. Classes can be very generic or intended to reflect

fine-grained concepts according to the designer’s idea.

Ontologies can include terms for subject information (e.g., a

theorem has a statement and a proof), pedagogical information

(e.g., lessons have levels of difficulty), and run-time state

information (e.g., whether a concept is known by the user).

This knowledge is captured by defining attributes for classes

and relations between them. Two predefined root classes are

 4

provided for ontology designers: Topic and Fragment.

Topics and Fragments are different in such a way that the

former are presented to the end-user in a separate page, while

fragments can be inserted in a page together with other

fragments and links to topics. A predefined subclass of

Fragment, namely AtomicFragment, is also provided. It

consists of HTML code, either in the form of a literal string, or

as a URL from which HTML contents are to be retrieved. In

addition to domain ontology, simpler data structures are

defined by the designer to describe user profiles, platform

characteristics, and other aspects considered relevant for

adaptive presentation.

Fig. 2. Creation of semantic domain information.

Specific knowledge (domain objects) is constructed by

creating instances of ontology classes and setting relations

between instances, building semantic networks of topic and

fragment subclasses, where multimedia contents are included

as atomic fragments. For instance, the following example

shows a simplified version of an object of class Painter that

represents knowledge about Vicent van Gogh:

<Painter id="vanGogh" name="Vincent van Gogh"

 birth="1853" death="1890"

nationality="Dutch">

 <school>

 <ArtisticStyle ref="postimpressionism"/>

 </school>

 <picture>

 <AtomicFragment url="vangogh-pict.jpg"/>

 </picture>

 <shortIntro>

 <AtomicFragment> Generally considered

the greatest Dutch painter after Rembrandt, he

powerfully influenced the current of

Expressionism in modern art. His work is

characterized by the striking colour, coarse

brushwork, and contoured forms. Among his

masterpieces are numerous self-portraitsand

the well-known The Starry Night (1889).

 </AtomicFragment>

 </shortIntro>

 <biography>

 <AtomicFragment url="vangogh-bio.html"/>

 </biography>

 <works>

 <Artwork ref="starrynight"/>

 <Artwork ref="sunflowers1"/>

 <Artwork ref="irises"/>

 </works>

</Painter>

Attributes like name and birth identify domain object

properties, whereas school, picture, shortIntro,

biography and works are relationships with other domain

objects (the ref attribute indicates referenced object IDs).

Literal fragments can be inserted inline as XML elements (like

shortIntro), or stored in external files (URLs) that are

referenced in the code (like picture and biography).

In parallel with the creation of the domain model, web

designers can create presentation templates (presentation

model) to render the semantic information. Domain and

presentation models are then processed by PEGASUS system

in order to build HTML pages intended for end-users to

navigate through. Presentations are defined by creating a

template for each class of the ontology. Templates are defined

using a textual language based on JavaServer PagesTM that

allows the presentation designer to insert Java expressions

(between <%= and %>) and control statements (between <%

and %>) into HTML code. A template defines what parts

(attributes and relations) of a topic must be included in its

presentation, their visual appearance and layout. For instance,

a simple template for the class Painter can be defined as

follows:

<center>

<h2> <%= name %> </h2>

(<%= nationality %>, <%= birth %> - <%= death

%>)

</center>

<center><table>

<tr><td valign="top" rowspan="5"> <%= picture

%> </td>

<td valign="top"> <%= shortIntro %> </td></tr>

<tr><td> <%= biography %> </td></tr>

<tr><td> <%= works %> </td></tr>

<tr><td> <%= school %> </td></tr>

</table></center>

Fig. 3. Web page rendered by PEGASUS depicting the domain object

vanGogh.

Dynamic presentation constructs are generated from simple

descriptions at a high level of abstraction. In the example

above, to include information about important works of art in a

painter’s page, the web designer only needs to refer to the

works relation for the displayed object (shown in bold). The

system automatically takes care of deciding whether to insert

the corresponding works into the generated page, to generate a

link for each one, or a single link for all of them, which style

and/or visual effects are applied in the latter cases, and how all

 5

the pieces are laid out. In doing so, the system analyzes

whether the relation is simple or multivalued, the class of the

involved topics or fragments, their state, and other conditions,

if any, stated by the designer. The right panel in Figure 3

shows the web page generated by PEGASUS using this

presentation template for the “vanGogh” domain unit

described before. This knowledge unit can be visualized as

part of a more complete ontology intended to make up an art

repository for the museum application (left panel in Figure 3).

Once the presentation has been generated, end-users can

modify the contents, style and structure by using DESK, the

WYSIWYG authoring tool. The PEGASUS domain model is

conveniently used by DESK in order to (a) identify pieces of

domain contents in the web page, (b) establish relations

between such pieces of knowledge, (c) select one (or more) of

the involved knowledge items as the root domain object

behind the web page, from which all other objects are referred,

and (d) detect iteration patterns when the user lays out data

over structured displays (e.g., records in a table).

(dutch,

<H1><U>

<BLOCKQUOTE>

<H2> Selected
Works

Dutch

Domain Model

Class_name=“Painter”

ID=“vanGogh”

Attribute_name=“name”

Class_name=“Painter”

ID=“vanGogh”

Attribute_name=“Nationality”

Class_name=“Painter”

ID=“vanGogh”

Relation_name=“Works”

Changes made
by user using
DESK

Domain
Objects

PEGASUS

Fig. 4. Detecting correspondences between HTML page blocks and domain

objects with DESK.

For instance, let us consider a web page like the one shown

at the upper-right corner in Figure 4, where information about

Vincent van Gogh is presented in a different layout. DESK is

able to find that this page is displaying attributes (name,

birth, short biography) and relations (works,

school) of the instance Painter. If the user adds text,

changes the style or the position of a piece in the document

(e.g., the thumbnail image at the lower-right corner), DESK

finds a description of this piece that relates it to the main

object (vanGogh) in terms of the vocabulary defined by the

application domain ontology (e.g. “the small-image attribute of

the last element in the selected-works relation of the object

with ID vanGogh”). This information is used by DESK to

modify the presentation model for class Painter so that the

change is permanent for all objects of that class. The

vanGogh instance acts as an example for the user to see and

change, in terms of how a painter presentation looks like.

The process of generation and interaction with knowledge is

supported by a combination of forward and reverse

engineering achieved by PEGASUS and DESK, respectively.

On the one hand, PEGASUS performs the forward engineering

process by generating web pages on the fly from a semantic

network of ontology instances (the application

data/knowledge). This process is carried out when the user

implicitly requests viewing domain objects. These requests are

internally generated from the navigational interaction of the

user with an application supported by PEGASUS. To generate

(and present) a concrete object, PEGASUS finds its class and

applies the presentation model associated to the class to

generate a web page where selected pieces of the object are

displayed. On the other hand, DESK follows the inverse path:

it processes the web page and locates the source of page

fragments in the domain model, as well as the part of the

presentation model that defines how the fragment was

presented. This backward transition from syntactic blocks to

semantic ones can be seen as a reverse engineering approach

(see Figure 5), where the main concern is to support an

automatic generation process from semantic and presentation

models, as well as to provide end-users with an easy

mechanisms to modify HTML content that will be

transformed, later on, into semantic changes to the underlying

models again.

Presentation
Model

Underlying Models

Automatic
Generation
Process

End-User

Changes to
Models

Model-Based Approach (PEGASUS)

Forward Engineering

Reverse Engineering (DESK)

Domain
Model

Changes to
Web User Interface

Web User Interface

Fig. 5. Forward and reverse engineering processes followed by the semantic

environment.

To carry through a successful reverse-engineering approach,

efficient semantic information has to be provided in order to

recover maximal information about the changes performed by

the user [10]. To this end, it is important to find a specification

that better fits these semantic requirements and allow for

relationships between syntactic changes and semantic models.

It is therefore necessary to set an explicit separation between

contents and presentation, with the aim of avoiding missing

information in the final generation step. This facility is

automatically supported by our system throughout the forward

and reverse engineering processes.

V. EVALUATION AND DISCUSSION

To have a real perception about our system, we carried out a

user experiment, mostly focused on the interactive part of our

system (DESK tool) and intended to observe the degree of

 6

satisfaction experienced by end-users while navigating and

managing semantic contents by means of the rendered HTML

documents. The main aim was to have some indicators about

the user’s satisfaction and clues to improve our system further.

The experiment consisted in suggesting a task for end-users to

achieve in our system and, in turn, studying the results and

comparing them with the cognitive load in carrying out the

task. Also, by using the Retrospective Testing [17], a user-

centered testing technique that records the whole interaction

between the end-user and the tool, all the interaction process

was recorded on audio and video. This way, the execution of

the tasks performed by users can be studied and analyzed in

detail to extract further information about the interaction. The

aforementioned technique included the Thinking Aloud

protocol [18], which allows analyzing audio data of users

during the interactive sessions, with the purpose of obtaining

information about their thoughts, feelings and opinions while

interacting with the system. This allows observing behavior

patterns and/or phrases that may provide clues about the user’s

satisfaction while interacting with our tool.

To carry through the user experiment, we required 20

persons partaking in the activity, all having heterogeneous

scientific backgrounds but no skills on ontologies and/or

semantic-web languages. The participants’ previous

experience was mainly limited to creating and modifying

simple HTML pages manually. However, all of them had some

experience in WYSIWYG web authoring and navigation,

which were the only skills required to carry out our

experiment. The participants were given a 10-minute general

introduction to the goal of the study, which principally

consisted in carrying out modifications to the example

presented in previous sections about the Painter class rendered

through a presentation object about Vicent van Gogh (Figure

3). This way, the task consisted in modifying the given page by

carrying out changes to page elements, independently of the

order, to obtain a final version. We measure the accuracy of

inference, the expressiveness and the freedom of design

provided by DESK, placing neither restriction nor order on the

way users carried out the customizations from the initial

design. This implies that different users could accomplish the

modifications by following different steps and thereby we

expect the system to respond in different ways. In this case, the

main objective of this was to get the maximum information

about the user’s opinion about the tool, as well as to

corroborate whether the changes applied to the underlying

models (throughout the reverse engineering process) can be

considered coherent enough.

Once the participants finished navigating and modifying the

presentation, users were asked to fill in a questionnaire based

on User Interface Satisfaction [19] and another based on

Perceived Usefulness and Ease of Use [20]. The questions in

both questionnaires were selected and customized to mainly

focus on DESK. Actually, in order to evaluate the user’s

satisfaction, we used a slightly modified version of the

previously commented test. The standard version includes 27

questions, but it was reduced to 25 due to overlaps with the

other test used. In general, both tests comprise an interesting

approach to evaluating web interfaces in the context of end-

user interaction. Since we initially had some experience in

dealing with these tests, we have customized some part of

them that can be considered useful for studying the user’s

satisfaction while interacting with web artefacts. Users were

also asked to answer a set of open questions about the general

perception of DESK, in order to obtain and identify additional

comments about strengths and weaknesses to improve the tool.

The analysis of the questionnaires revealed that most users

thought of DESK as a useful and easy-to-use authoring tool,

very similar to other static authoring tools they may have used,

but with an extra and powerful capability of authoring

dynamically generated web pages. In particular, in a Likert

scale including “Very High”, “High”, “Normal” and “Low”

scores, 85% of users perceived the ease of use and usefulness

of DESK between “Very High” and “High”. Also, the

satisfaction perceived by 90% of users was, considering the

same Likert scale, between “Very High” and “High”. In

addition, the open questions brought to light that users

considered DESK as a useful tool that can be applied to

common daily tasks; to cite a few: authoring personal agendas

and CVs, dealing with database-generated pages, managing

dynamic on-line courses and teaching information and

managing collaborative documents. According to the opinions

requested, there exist conclusive evidences that motivate the

increasing need to provide end-users with easy mechanisms for

dealing with dynamically generated semantic web contents in

real time.

In addition, the Thinking Aloud protocol used during the

experiment helped us obtain other valuable information such

as interaction styles including different types of customization

carried out by users. For instance, syntactic customization

greatly overcame the number of semantic ones (changing the

structure and/or relationships of contents). This is due to the

fact that syntactical aspects are easier to modify and have an

immediate impact on the user’s perception [3]. Concretely, this

fact reflects that most changes made by users were related to

syntactic modifications such as changing font style, size,

colour, text justification, and so on.

On the other hand, and concerning the inference process, we

internally evaluated that the hit rate shows 98% success in

inferring the users’ intentions through the reverse engineering

process, which implies that DESK carried out most changes

successfully when achieving the reverse-path analysis. The rest

of 2% errors were due to some ambiguities appearing when the

user’s intentions were inferred. These ambiguities will be

considered for future improvements on the system.

VI. RELATED WORK

In general, there is a small number of existing systems that

allow dealing with semantic information in form of syntactic

HTML-rendered code and provide facilities for the final user

to modify and navigate through. To introduce a few,

FORTUNATA [21] is a system based on the generation of

templates to represent visual elements of a domain ontology

that are published and accessed through HTTP channels. Users

can use this channel to access the semantics and the query

templates, as well as to choose the most appropriate one for

 7

their right visual representation. Related to the concept of

transformations, RHIZOMER [22] is a system intended for the

creation of Semantic Web applications. It manages RDF meta-

data (resources, properties and literals) and semantically

structures them in default contents (people, projects,

publications, etc.). This way, the system generates navigational

elements in a recursive way. Each meta-data fragment uses

XSLT transformations to carry out its own visual

representation. All in all, one of the main drawbacks

concerning these systems is the implicit difficulty they undergo

in order to face extensibility and re-modelling, since they lack

an explicit separation among presentation and contents. Also,

most of these systems are not explicitly focused on a EUD

approach, since users have to finally end up dealing with

ontologies in any case.

Other related systems are based on the idea of the Semantic

Web Browser. Two main groups can be considered, consisting

of browser and server centred approaches. Tabulator [23]

belongs to the former group. DISCO [24] and WATSON [25]

belong to the latter group. Browser-centred applications

experiment some security problems, only solved by reducing

the browser security level. Server-centred browsing does not

have this limitation because browsing is indeed done by the

server side. However, one common problem with semantic

web browser is that still there is a small number of web sites

that currently attach semantic annotations to their content since

there are no real applications that use them. Our system does

not include annotations in the presentation model, and it can

render ontologies easily and independently from presentation.

Furthermore, our system is intended for end-users and can be

used in a secure way. On the other hand, some other systems

like Piggy Bank [26] requires advanced technical skills, so that

they are not designed for common users. Although Piggy Bank

is designed for Web browsing, it renders semantic data in a

fixed way (determined by Fresnel specifications). Other data

browsers, such as Sindice [27], provide facilities to find other

RDF documents on the Semantic Web that mention a

particular thing. This kind of service might help ensure that the

user experience is coherent — that is, that it includes all data

the user expects it to. However, ensuring that a particular view

of data is useful is another issue [9], since the presentation of

data is also an important issue mostly uncovered by existing

semantic systems.

Semantic Wiki-based applications, such as Shortipedia [28]

and Semantic Wikipedia [29], provide recent trends in the

creation and manipulation of knowledge, aiming to address

problems related to unstructured accumulated information of

conventional wikis. The main motivation is to make the

inherent structure of a wiki – given by the strong linking

between pages – accessible to machines beyond mere

navigation. The idea is to enable structural organization of

information resources with semantic association while

providing diverse customized facilities, such as semantic

search, multi-view filter, relevance-recommendation, etc. [30].

However, most of these applications have limited interaction

capabilities that reduce the end-user’s expressive abilities to

visualize and interact with the information, since end-users

have to deal with semantic query (sometimes using script-

based languages) and the item-relation structure based on the

domain model [31] rather than on a worked interactive

presentation model, forcing users to somehow manipulate the

ontologies or even the relations between sematic objects.

Therefore, the separation of ambits between information

(semantics) and presentation is not explicit in most cases,

requiring advance users to successfully exploit the facilities of

such systems. In addition, most of these systems do not

implement simple mechanisms to modify the relationships or

semantic contents from the user interface by using direct

object manipulation.

Similarly, Semantic Portal systems [32] provide facilities to

select, classify and access different information resources such

as sites, documents and data for diverse target audiences.

Some systems, such as OntoWeb [33], KAON [34] or

ODESeW [35] to cite a few, have been proposed to

automatically generate Semantic Portals from specific

ontologies. However, these systems mostly exploit direct

engineering processes (straight generation) rather than the

reverse path that would enable end-user to create or modify

semantic resources easily. Instead, most of these systems

require information managers or advanced users to carry out

authoring tasks. By contrast, our approach overcomes such

drawback by carrying out automatic reverse mechanisms that

allow reducing the cognitive load when creating or modifying

information sources.

There are also a great variety of commercial web-

development tools that provide some similar functionally to

deal with XML languages and render some specific pieces of

knowledge for web designs, including web-based languages

such as HTML, CSS, XSL, XML, JSP, ASP and so forth.

However, although these tools come with multiple tool bars

and debugging facilities, they are not intended for end-users.

That is to say, users have to act as skilled designers on web-

based languages if they desire to modify procedural, content

and presentation information, being subjected to the authoring

formalisms. Some studies [36] revealed that, although much

progress has been made by commercial web tools, most of the

end-user tools that they reviewed lacked not functionality but

ease of use. In general, the cognitive load in carrying out

editing tasks using such environments is very high, because

these commercial tools are mostly intended for professional

designers rather than end-users. In general, end-users might

just want to accomplish customization and easy changes to

concrete parts of contents, expressing a preference for

desktop-based tools that embrace drag-and-drop and copy-and-

paste metaphors, and offers wizards, examples and template

solutions. This implies reducing expressiveness in favour of

increasing ease of use, something that is barely visible in

existing commercial authoring tools today. In DESK, we

provide easy mechanisms for authoring contents directly

rendered from semantic information. This practically means

that users do not have to deal with programmatic

representations.

We followed a user-centred approach in order to provide

DESK with less functionality than commercial tools, this way

increasing its ease of use. On the other hand, DESK features

reverse engineering processes intended to fulfil end-user

 8

needs, modifying the underlying ontologies in PEGASUS and

traversing the reverse path automatically, with no user

intervention. Thus, end-users can easily customize and make

partial changes to semantically-rendered contents. This helps

users pay attention to syntactic changes in the WYSIWYG

environment, and so reducing the cognitive load by avoiding

specification languages and procedural information, which are

automatically addressed by the system.

VII. CONCLUSIONS

Traditional computation has changed over the last years.

Most computer-related technologies today are focused on end-

users and their problem-solving activities rather than machine

or process oriented concerns. This denotes an evolutionary

trend even for recent technologies including the Semantic

Web, which should be much closer to the final user, as well as

specifically oriented to provide possible solutions for everyday

computer users.

Our research is mainly focused on these concerns, bringing

the gap between end-users and sophisticated computer

technology in order to support practical solutions in both

directions. In this respect, our contribution is supported by

paradigms such as the Programming by Example and Model-

Based User Interface design. In our experience, PBE and

MBUI techniques can be combined together to relieve the user

from having to deal with cumbersome languages, abstract

specifications and complex development environments not

intended for end-users. Certainly, this implies some reduction

in the expressive power of the MBUI approach, since end-

users do not need to manipulate declarative specifications, but

rather to devote all their effort to dealing with rendered

semantic information to fulfil their expectations in content

customization. This motivated us to research on formal

mechanisms in order to implement authoring tools that help

users modify dynamic knowledge-based pages in order to deal

with their daily, non-programming-oriented, creative problem-

solving activities.

However, building dynamically-generated interfaces from

examples requires elaborate data characterizations when the

underlying domain knowledge has a complex structure, as it is

the case in many semantic-based web applications and

information systems. The usage of ontologies (i.e., explicit

descriptions) to organize and share knowledge in such systems

is becoming an increasingly popular approach. We propose to

exploit these explicit models of domain knowledge as a highly

valuable source of information for data characterization.

We have presented a semantic environment for data

generation and manipulation that comprises three different

tools. PEGASUS is a flexible system for the dynamic

generation of semantic data in terms of custom domain

knowledge representations. Our approach allows the

specification of presentation independently from the

elaboration of contents, enhancing presentation consistency

and content reuse, and reducing the development cost. On the

other hand, PERSEUS allows ontology RDF experts and web

designers to create knowledge and presentation templates in

form of both domain and presentation models that will be

supplied to PEGASUS to render semantic presentations.

Additionally, DESK enables end-users to deal with complex

web content authoring. DESK includes Programming by

Example facilities, which implies that users only have to

provide the system with an example of what they wants to get

and the system infers the changes to underlying semantic

models automatically. DESK gets valuable information from

user actions. This information is processed together with

semantic domain knowledge in order to infer the knowledge

necessary to provide the user with assistance during the

authoring process. Changes are automatically performed in the

server side by using both domain and presentation knowledge

from PEGASUS. DESK attempts to infer maximal information

from existing semantic knowledge that is independent from the

application domain.

In order to corroborate our initial hypotheses, we have

carried out a user test obtaining notable results on user

satisfaction. This experiment demonstrated the hypothesis that

is possible to reduce the gentle slope of complexity by

supplying easy-to-use WYSIWYG user interfaces, but it has

also revealed some limitations on expressive power, due to the

fact that DESK is focused on concrete WYSIWYG

representations rather than abstract ones.

We plan to test our system with other similar case studies to

obtain findings about the applicability of the system in this

specific domain. So far, we have tested our system with

courses on Graph Algorithms, Object Oriented Programming,

Art History and Geography. On the other hand, we are

currently moving to W3C semantic web languages, instead of

using an ad-hoc RDF version, to improve reuse and

interoperability. We also plan to improve DESK to address

much more sophisticated cases of inference. The idea is to

obtain further findings that provide end-users with authoring

assistance. Besides, the results here obtained will be also

considered to carry out improvements.

REFERENCES

[1] B. Shneiderman, “Leonardo’s Laptop”. The MIT Press, 2003.

[2] D. Djuric and V. Devedzic, “Incorporating the Ontology Paradigm into

Software Engineering: Enhacing Domain-Driven Programing in

Clojure/Java”; IEEE Transactions on Systems, Man and Cybernetics –

Part C: Applications and Reviews, vol. 42, no. 1, 2012, pp. 3-14.

[3] J. A. Macías and F. Paternò, “Customization of Web Applications

through an Intelligent Environment Exploiting Logical Interface

Descriptions”. Interacting with Computers. Elsevier, vol. 20, no. 1,

2008, pp. 29-47.

[4] E. Vlist, D. Ayers, E. Bruchez,, J. Fawcett and Vernet, “A. Professional

Web 2.0 Programming”; Wrox Professional Guides. Wiley Publishing,

Inc., 2007.

[5] E. Chavarriaga and J. A. Macías, ”A Model-Driven Approach to

Building Modern Semantic-Web-Based User Interfaces”; Advances in

Engineering Software, vol. 40, no.12, 2009, pp. 1329-1334.

[6] J. A. Macías and P. Castells, “Dynamic Web Page Authoring by

Example Using Ontology-Based Domain Knowledge”; Proceedings of

the International Conference on Intelligent User Interfaces (IUI). Miami,

Florida, USA. January 2003, pp. 12-15.

[7] F. Paternò, “Model-Based Design and Evaluation of Interactive

Applications”. Springer Verlag, 2001.

[8] A. R. Puerta and J. Eisenstein, “Towards a General Computational

Framework for Model-Based Development Systems”; Proceedings of

the International Conference on Intelligent User Interfaces (IUI). ACM

Press, New York, 1999.

[9] T. Health, “How Will we Interact with the Web of Data?”; IEEE

Internet Computing, vol 8, 2008, pp. 88-91.

 9

[10] J. A. Macías, A. R. Puerta and P. Castells, “Model-Based User Interface

Reengineering”; HCI Related Papers of Interacción 2004. Jesús Lorés y

Raquel Navarro (eds.). Springer-Verlag, 2006, pp. 155-162.

[11] H. Lieberman, F. Paternò and V. Wulf, (eds), “End-User Development”;

Human Computer Interaction Series. Springer Verlag, 2006.

[12] EUD-NET. Network of Excellence on End-User Development. See

http://giove.cnuce.cnr.it/EUD-NET.

[13] A. Cypher, “Watch What I Do: Programming by Demonstration”; The

MIT Press, 1993.

[14] H. Lieberman, H., “Your Wish is my Command. Programming By

Example”; Morgan Kaufmann Publishers. Academic Press, USA, 2001.

[15] P. Castells and J. A. Macías, “An Adaptive Hypermedia Presentation

Modeling System for Custom Knowledge Representations”; Proceedings

of WebNet - World Conference on the WWW and Internet. Orlando,

Florida; October 23-27. Published by AAC, 2001, pp. 148-153.

[16] P. Castells and J. A. Macías, “Context-Sensitive User Interface Support

for Ontology-Based Web Applications”; Poster Session of the 1st.

International Semantic Web Conference (ISWC’02), Sardinia, Italia;

June 9-12th, 2002.

[17] J. Nielsen, J. “Usability Engineering”. Morgan Kaufmann Publishers,

San Francisco, 1993.

[18] M. Nørgaard and K. Hornbæk. “What do usability evaluators do in

practice?: an explorative study of think-aloud testing”; Proceedings of

the 6th conference on Designing Interactive systems. ACM, University

Park, PA, 2006, pp. 209-218.

[19] J. P. Chin, V. A. Diehl and K. L. Norman, “Development of an

Instrument Measuring User Satisfaction of the Human-Computer

Interface”; Proceedings of ACM Conference on Human Factors in

Computing Systems, 1998, pp. 213-218.

[20] F. D. Davis, “Perceived Usefulness, Perceived Ease of Use, and User

Acceptance of Information Technology”; MIS Quarterly, vol 13 no. 3,

1989, pp. 319-340.

[21] M. Rico, O. Corcho, J. A. Macías and D. Camacho, “A Tool Suit to

Enable Web Designers, Web Application Developers and End-Users to

Handle Semantic Data”; International Journal on Semantic Web and

Information Systems. IGI Global, vol. 6 no. 3, 2010, pp. 38-60.

[22] R. García, J. M. Gimeno, F. Perdrix, R. Gil, M. Oliva, J. M. López, A.

Pascual, and M. Sendín, “Building a Usable and Accesible Semantic

Web Interaction Platform”; World Wide Web, vol. 13, no. 1-2, 2010,

pp. 143-167.

[23] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J.

Hollenbach, A. Lerer and D. Sheets, "Tabulator: Exploring and

Analyzing linked data on the Semantic Web"; Proceedings of The 3rd

International Semantic Web User Interaction Workshop (SWUI).

Athens, Georgia, USA, 2006.

[24] C. Bizer and T. Gau, “DISCO - Hyperdata Browser”; See

http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/.

[25] M. d’Aquin, M. Sabou, E. Motta, S. Angeletou, L. Gridinoc, V. Lopez,

and F. Zablith, “What can be done with the Semantic Web? An

overview of Watson-based applications”. Proceedings of the Fifth

Workshop on Semantic Web Applications and Perspectives, 15-17 Dec

Rome, Italy, 2008.

[26] D. Huynh, S. Mazzocchi and D. Karger, “Piggy bank: Experience the

semantic web inside your web browser”. LNCS. Proceedings of the

International Semantic Web Conference (ISWC) vol. 3729, 2005, pp.

413–430.

[27] G. Tummarello, R. Delbru, and E. Oren, “Sindice.com: Weaving the

Open Linked Data”; LNCS. Proceedings of the International Semantic

Web Conference (ISWC) vol. 4825, 2007, pp. 552–565.

[28] D. Vrandecic, V. Ratnakar, M. Krötzsch and Y. Gil, “Shortipedia:

Aggregating and Curating Semantic Web Data”; Journal of Web

Semantics, vol. 9 no. 3, 2011, pp. 334-338.

[29] M. Krötzsch, D. Vrandecic, M. Völkel, H. Haller and R. Studer,

“Semantic Wikipedia”; Journal of Web Semantics vol. 5, 2007, pp. 251-

261.

[30] Y. Li, M. Dong, and R. Huang, “Designing Collaborative E-Learning

Environments based upon Semantic Wiki: From Design Models to

Application Scenarios”; Educational Technology & Society, vol. 14, no.

4, 2011, pp. 49–63.

[31] R. Valencia-García, F. García-Sánchez, D. Castellanos-Nieves, and J. T.

Fernández-Breis, “OWLPath: An OWL Ontology-Guided Query

Editor”; IEEE Transactions on Systems, Man and Cybernetics – Part A:

Systems and Humans, vol. 41, no. 1, 2011, pp. 121-136.

[32] S. Staab J. Angele, “AI for the Web – Ontology-based Community Web

Portals”; 17th National Conference on Artificial Intelligence and 12th

Innovative Applications of Artificial Intelligence Conference (AAAI

2000/IAAI 2000), Menlo Park/CA, Cambridge/MA, AAAI Press/MIT

Press, 2000.

[33] P. Spyns, D. Oberle, R. Volz, J. Zheng, M. Jarrar, Y. Sure, R. Studer

and R. Meersman, “Ontoweb – a Semantic Web Community Portal”;

Fourth International Conference on Practical Aspects of Knowledge

Management (PAKM), 2–3 December, 2002, Vienna, Austria, 2002, pp.

189–200.

[34] G. Karvounarakis, V. Christophides, D. Plexousakis and S. Alexaki,

“Querying community web portals”; Technical report, Institute of

Computer Science, FORTH, Heraklion, Greece. 2000. See

http://www.ics.forth.gr/proj/isst/RDF/RQL/rql.pdf.

[35] O. Corcho. A. Gómez-Pérez, A. López-Cima, V. Lopez-Garcia and M.

C. Suárez-Figueroa, “ODESeW. Automatic Generation of Knowledge

Portals for Intranets and Extranets” 2nd International Semantic Web

Conference (ISWC2003), 20-23 October 2003, Sanibel Island, Florida,

USA.

[36] J. Rode, M. B. Rosson and M. A. Pérez, “End-User Development of

Web Applications”. Lieberman, H., Paternò, F., and Wulf, V. (eds):

End-User Development. Human Computer Interaction Series. Springer

Verlag, 2006.

José A. Macías received the M.S. and Ph.D. degree in computer science from

Madrid Technical University and Madrid Autónoma University, Spain, in

1999 and 2003, respectively.

 He is a Permanent Professor in the Computer Science Department at the

Madrid Autónoma University. His principal research area of interest is

Human-Computer Interaction (HCI) and educational-related issues.

 Dr. Macías is also part of different associations, such as AIPO (Spanish

HCI Association), where he participates in the steering committee as Vice-

President, and ACM-SIGCHI, where he participates as co-chair. He also

obtained outstanding academic awards such as the "Outstanding Paper

Award" conferred by IEEE Neural Networks Society.

