

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Science of Computer Programming 78.11 (2013): 2282-2291

DOI: http://dx.doi.org/10.1016/j.scico.2012.07.020

Copyright: © 2013 Elsevier B.V. All rights reserved

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1016/j.scico.2012.07.020

Bridging the Gap between Information Architecture Analysis and Software Engineering in

Interactive Web Application Development

Luis A. Rojas and José A. Macías (*)

Escuela Politécnica Superior, Universidad Autónoma de Madrid

Tomás y Valiente 11, 28049 Madrid, España

Tel. +34 914976241, Fax. +34 914972235

luisalberto.rojas@estudiante.uam.es, j.macias@uam.es

(*) Corresponding Author

Abstract

Web development teams comprise non-computer experts working on the conceptual modeling

of non-functional aspects in software applications. Later on, such conceptual information is

processed by analysts and software engineers to face the technical phases of the software

project. However, this information transfer is often difficult to automate since the information

processed by the different professionals involves different abstraction levels, as well as

important cost and effort that need to be considered. The main aim of this research is to

minimize these problems by increasing automation and interoperability in the development of

interactive web applications. To take up this challenge, we have created and evaluated a tool

that aims at bridging the gap between the conceptual definitions of web contents – i.e., the

information architecture, and the UML elements for analysis and design required by software

engineers, connecting functional and non-functional information to achieve the rest of technical

activities during the software development process.

Keywords: Human-Computer Interaction, Information Architecture, End-User Development,

Software Engineering.

1. Introduction

Information architecture (IA) is a recent paradigm that has been gradually introduced in most

web development projects today. IA is defined as the science of structuring, organizing and

managing information, where the usability plays an important role in the solutions created [1]. IA

is directly involved in the development of website, mobile devices, vending machine and

electronic games interfaces, to cite a few. Its main objective is to facilitate the processing and

assimilation of information, as well as the understanding of tasks performed by users in a

defined information space [2]. The way people interact with digital information environments is

directly influenced by the information architecture [3].

The information architect is person in charge of the IA. S/he works in the early phases of

interactive web application development, attempting to connect the conceptual knowledge

supplied by users and the technical information (i.e., analysis and design) needed by software

engineers responsible for implementing the final web application. However, it is very common

that the roles of information architect and software engineer rarely match, as the information

architect may have a non-technical profile more oriented to conceptual task or ergonomics. This

makes it necessary to ensure some degree of interoperability and alignment between the output

generated by the information architect and the input that the software engineer needs. If this

flow of information can be done in an automatic way, time and effort can be drastically reduced

in the software project, allowing each expert to concentrate on the task according to her/his

knowledge, and so minimizing the time of the information transfer between both kinds of

professionals [4].

The aim of this paper is to overcome this problem and bridge the gap between the tasks

performed by the information architect and the ones achieved by the software engineer. To

carry out this task, we propose a CASE (Computer Aided Software Engineering) tool called

InterArch [5] (Interoperable Information Architecture), which allows experts in the problem

domain to focus on content analysis and navigation while the tool automatically generates UML

classes for software engineers, implicitly supplying elements in the solution domain.

Specifically, our research is based on the following objectives:

 Generate analysis and design information for analysts and software engineers from the

conceptual representations of contents early created by the information architect.

 Build an easy-to-use CASE tool for the information architect that enables to

automatically generate analysis and design information for analysts and software

engineers from the conceptual descriptions created by the information architect, and so

bridging the gap between the initial project activities, in the problem domain, and the

technical development activities, in the solution domain.

 Evaluate the usability of this tool by means of a user experiment, in order to obtain initial

feedback for improvement through an iterative and incremental end-user-centered

development process.

This paper is structured as follows. Section 2 introduces the related work. Section 3 presents

our approach in detail. Section 4 describes the transformation rules used in our approach.

Section 5 provides a use case to show the functioning of our tool in detail. Section 6 reports on

an evaluation with real users to measure the usability of our approach. Finally, Section 7

discusses conclusions and future work.

2. Related work

There is a great variety of tools for the creation of diagrams representing the information

architecture [6], and also for analyzing and evaluating the information architecture in websites

[7]. These tools correspond to desktop and online software applications commonly used by

information professionals to draw blueprints and create wireframes and content models, such as

Axure, Visio Professional, OmniGraffle, Denim, ConceptDrawPro, SmartDraw, Pencil Project,

MockFlow, iPlotz, Pidoco, Lovely Chart, Mockingbird and Lumzy, to cite a few. These tools

include libraries comprising graphical elements for web prototyping, which enables managing

and publishing information elements as well as incorporating new graphical components.

Commonly, some of these tools include annotations, footnotes facilities, collaborative authoring

and dynamic prototyping.

Other approaches address non-functional requirements representation like informal architecture

documentation, UML diagrams, and Architecture Description Languages (ADLs). These tools

provide abstraction from implementation details, as well as data structures and relationships

between different components [8]. Although these approaches present some drawbacks in

connecting architectural descriptions and implementations, this has been solved in [9] by

presenting an ADL-based solution that supports the modeling of system architectures at

different levels of abstraction, linking architectural concepts to different technologies, immediate

conflict detection, and continuous synchronization of both architecture and implementation.

However, none of the approaches included in [9] concrete explicit relationships between IA

content models and UML class diagrams, or even mechanisms to represent non-functional

information and transform it into UML descriptions to be exploited in the software project.

On the other hand, online tools are becoming more popular than desktop stand-alone versions,

due to their availability and free-of-charge facility. However, online tools often result less

expressive and complete than desktop versions. On the other hand, most common tools

experiment difficulties in connecting the output generated by the information architect and the

input needed by the software engineer. This problem has been traditionally addressed by

generating different graphical formats and HTML code to interchange information. However, this

solution does not consider issues related to semantic analysis included in IA diagrams, and it

lacks interoperability among different professionals working together, making it difficult to

manage and share the knowledge generated by different tools and professionals in the software

project.

3. Proposed solution

Generally, it is difficult to identify the operational limits of the information architecture,

sometimes requiring the use of different tools and standards. However, it is possible to

summarize the most common products that the information architect creates to carry out the

analysis of the information architecture in interactive web application. Those are blueprints,

wireframes, content models and controlled vocabularies [1, 2]. These products provide

important knowledge regarding the analysis, organization, managing and structuring of

information for the professionals involved in the development of web projects. However, for all

these products, content models are particularly transcendental for analysts and software

engineers, as they represent non-functional aspect of the web application and are susceptible of

being automatically processed to generate content classes and object diagrams that will define

the software application in the solution domain. In fact, our approach is focused on these core

elements for automating the output of the IA analysis.

This way, we have designed a CASE tool called InterArch that is based on two essential

principles. First, since the information architect usually has a non-technical profile, more

oriented to information design and organization, InterArch allows the information architect to

concentrate on conceptual analysis tasks in the problem domain. Second, based on the initial

analysis carried out by the information architect, InterArch automatically generates UML

diagrams for analysts and software engineers, identifying elements that have a direct

correspondence with class diagrams and content objects used by software professionals. In

order for the information to be processed by any common CASE tool and provide continuity for

other activities in the software development lifecycle, content information is generated in a

textual and transportable XML format.

3.1 Architectural design of the proposed solution

InterArch comprises of a set of processes that are responsible for the management and

transformation of models in a visual environment intended for the information architect. As

shown in figure 1, these processes include: the visual modeling of the conceptual elements

required by the information professionals, the transformation of the visual model into an

intermediate model, and the generation of technical information in form of transportable UML

diagrams. These processes are designed to take the input from the visual diagrams created by

the information architect and generate UML diagrams for the analyst and software engineer as

an output.

The main idea behind these architectural components is enabling the information architect to

work on the visual modeling in a transparent way, but also incorporating a powerful

interpretation layer that recognizes the different correlations between the IA diagrams and the

UML classes required by software engineers. The transformation of visual model is based on a

set of relationship and association rules that are applied to the conceptual model produced by

the information architect, generating a set of UML diagrams in a transportable XML format

called XMI.

Fig. 1. Architectural details of the InterArch CASE tool

The visual modeling of the conceptual IA elements is the first process shown in figure 1 (from

left to right), which is carried out using the main user interface of InterArch. Such interface is the

main working environment for the information architect, and it is composed of different toolbars

used to draw and manage diagrams on a functional environment. Figure 2 shows this user

interface, where the main sections are labeled with capital letters (A, B and C). This process

allows the information architect to develop the different diagrams for the information

architecture. The second process shown in figure 1 is the transformation of the visual model that

includes identifying each of the visual elements produced by the information architect for

composing, later on, the UML diagrams used by analysts and software engineers. This is

accomplished through the association and relationship rules that are applied to the visual

elements individually or in groups. This process allows the relationship recognition between

information architecture diagrams and UML class elements (classes, operations, attributes,

associations, etc.)

Finally, the last process shown in figure 1 is the transportable generation of UML diagrams. This

process takes as input the relationships created in the aforementioned transformation step and

generates UML class diagrams in XMI format for software engineers. XMI provides a de facto

standard for serializing, editing and customizing UML diagrams by analysts and software

engineers, in order to be incorporated and reused in a software project. The goal is to carry on

the analysis and design phases in the project and combine these diagrams with the functional

part of the interactive web application by means of other CASE tools used during the rest of the

project’s technical development phases.

3.2 General description of the InterArch CASE tool

In general, InterArch allows manipulating, formatting and linking visual content elements for the

development of information architecture diagrams, which allows the information professional to

create and manage visual models for IA by means of the direct manipulation of visual elements.

Fig. 2. User interface of InterArch divided into three sections: A, B and C

Section C in figure 2 corresponds to the visual icons to draw diagrams, that is, graphical objects

for composing different visual elements and enriching the creation of diagrams by the

information architect. There are two main authoring elements for the visual modeling:

 Information elements for the visual conceptual modeling (first three rows of icons).

These elements enable manipulating and interpreting the content entities for the visual-

conceptual modeling of the IA. The information elements include different shapes and

visual styles. The main idea behind these elements is to allow the information architect

to define visual objects representing content entities that will be linked to others.

 Linking elements for creating associations and relationships between content items (last

two rows of icons). Linking elements also have different shape and visual styles, but the

purpose is similar – i.e., these elements enable the information architect to create

relationships between different content elements and define a proper hierarchy from

them.

This classification of the visual elements plays an important role in the activation of

transformation rules to subsequently accomplish an adequate generation of UML class diagram.

Section B in figure 2 depicts the main working environment for manipulating and linking visual

elements. In the example depicted in figure 2, relationships between content elements, which

describe the structure and prices of each product in on-line shop, are shown. The manipulation

styles allow handling elements collectively in the diagram, creating visual element properties

and linking content elements in hierarchical way on the working environment.

Some of the manipulation styles supported by InterArch are the following:

 Connecting information elements. This is achieved by dragging the source element and

dropping it onto the destination one. This automatically generates a link between both

information elements.

 Grouping information elements. Elements can be grouped and manipulated as a block.

This is achieved through the selection of various visual elements together.

Visual elements have inheritance properties that can be exploited in the workspace. This lets

the user create new information elements inheriting features from the source visual element

selected.

Section A in figure 2 shows formatting and editing options, which allow the manipulation of

elements in the working environment. The most important functionality in this part is the one for

saving diagrams to disk. Specifically, the option “UML diagram FILE (.xmi) transforms the

content model developed by the information architect into UML class diagrams in XMI format.

This option starts up the processing of the IA model and applies the corresponding

transformation rules, as will be described bellow.

4. Transformation rules

InterArch includes an interpretation layer comprising a set of transformation rules that analyze

association and hierarchy relationships in the content models, developed by the information

architect, in order to be transformed into UML code. Transformation rules are divided into

Hierarchy and Configuration rules:

4.1 Hierarchy Rules

In order to have formal criteria to validate the automatic processing of content models, and the

further transformation into UML class diagrams, a set of rules has been defined. Hierarchy

Rules deal with structure and hierarchy of the content-model diagrams produced by the

information architect. Such rules have been inspired by the process model appearing in [10],

which proposes the transformation of non-functional content information, initially developed by

analysts, into classes that will be included later in the functional application classes for the

design of web applications, fostering the continuity in the design of non-functional elements that

takes place in early phases of the web development process. More specifically, our research

has formalized, improved, implemented and evaluated this previous approach by means of a

CASE tool, identifying the potential roles of information architect and software engineer, and

building a set of rules that allow relating content models developed by the information architect

and the UML classes required by analysts and software engineers. Additionally, our approach

incorporates new features such as generation of methods and the configuration of relationships

and rules to successfully generate UML class diagrams. These rules are applied to every

element in the content model to perform corresponding UML transformations. That is, the rules

consider the structure and hierarchy of content to create classes, attributes, operations and

associations in the resulting UML class diagrams.

Specifically, InterArch includes five main hierarchy rules that can be defined as follows:

R1: A content element containing other descendant elements is directly considered as a UML

class.

R2: A descendant content element is considered as an attribute, which is included in the class

elements from which it descends.

R3: The main element of the content model diagram will be the main class in the UML class

diagram.

R4: A descendant content element corresponding to a new class generates a direct association

with the element from which it descends.

R5: For each of the associations generated in the UML class diagram, three methods (get, set

and new) are created and included in the source class.

4.2 Configuration rules

Configuration rules are a set of specific properties concerning the level of visibility, access and

navigability in classes, attributes, methods and associations of the UML class diagrams. Unlike

hierarchy rules, configuration rules do not consider the structure of the content diagrams

produced by the information architect. By contrast, configuration rules deal with properties that

will affect the generation of UML class diagrams. Another difference with respect to hierarchy

rules is that configuration rules are principally focused on software engineers due to the

technical knowledge required for manipulating UML properties. This means that information

architects can use InterArch to carry out content modeling in the problem space, while software

engineers can use the configuration rule facility to configure the UML that better fits the design

requirements in the solution space.

Fig. 3. Configuration rules module of InterArch

Figure 3 shows the InterArch module for managing configuration rules. Also, the figure shows

the rules selected by default, which are grouped into class, attribute, method, and association

rules. These configuration rules corresponds to those proposed by the OMG [11] in order to

customize the schemas and documents produced using XMI as an interoperable textual XML-

based language for representing UML. The categories of configuration rules are the following:

 Class: This group provides options to configure the visibility (public, package, protected

and private) and the access type (active, abstract, leaf and root) for classes. It is

configured by default that class attributes have a public visibility and no defined access.

 Attribute: This group provides options to configure the visibility (public, package,

protected and private) and the access type (owner scope) for class attributes. By default,

attributes have a public visibility and no defined access.

 Association: This group involves the configuration of different features such as

navigability between classes, aggregation (aggregation, composite and none) and

access (root, leaf and abstract) for all UML relationships in the class diagram. By default,

associations are standard and have no defined access or specific navigation between

classes.

 Operation: This group provides configuration facilities for the visibility (public, package,

protected and private) and access (query, root, leaf, owner scope and abstract) for class

operations. By default, operations have public visibility and no defined access.

5. Use case

In order to show in detail how our CASE tool works, we provide a specific use case.

5.1 Task description for the use case

Let us suppose that the information architect desires to work on a content model representing

product information for an on-line shop. This information is depicted in figure 4, which

represents a medium-fidelity prototype – i.e., mock-up obtained in the requirements elicitation

phase with the sales manager. As shown, the mock-up contains information regarding name,

type, product number, technical description and marketing, as well as an image and video

describing the features of the product visually. The information architect would carry out the

conceptual modeling achieving the following tasks:

a) Segmentation: The first task is content segmentation using the mock-up provided in

figure 4. This task identifies different components and structures of information, obtaining the

composition and hierarchy of the different information elements contained in the mock-up.

Results of the content segmentation allow the information architect to have the necessary

information to prepare the content model by using InterArch.

b) Content Modeling: This is carried out by using InterArch and considering the

information previously obtained during the segmentation, which generates a hierarchical

information diagram as depicted in figure 2 – section B, where the content object Component is

described by other five different content objects (Part Number, Part Name, Part Type,

Description and Price), in which Description and Price are compound data that are defined

according to the content objects that hierarchically descend from them. Once created, the

content model can be automatically transformed into UML diagrams by activating the

corresponding transformation rules. This step is completely transparent for the information

architect, and it is run by simply clicking on the corresponding menu option.

Fig. 4. Mock-up of a product for an on-line shop

5.2 Association and relationship rules to process visual elements

To generate the UML diagrams from the IA content model, the rules explained before are

applied. This is achieved by saving the content model to disk using the option "UML diagram

File (.xmi)". In this case, a main class is generated from the principal element (Component).

Also, the descendant elements generate the following classes: final elements and direct

descendants of the main element are transformed into attributes in class component. If these

elements are both descendant elements then they are transformed into new classes directly

related to the element component. If descendant elements generate attributes and they are

compound elements then new classes are recursively generated and related to the element

from which they descend. Applying this rule, a class component would be generated containing

five attributes: partNumber, partName, partType, description and price. Also, applying the rules,

element price, descending directly from the main element, and at the same time containing

descendant elements wholesale price and retail price, is transformed into a new class, and its

descendant elements wholeSale price and retail price in attributes for class price. Regarding

class methods, three methods are generated by default for each attribute that represents an

aggregate class (get, set and new).

c) Generation of XMI code

The execution of the rules automatically generates a UML class diagram in a XMI textual

format. The following code fragment represents the generated XMI code for the class

component, containing some of the related attributes, methods and relationships with the class

price, according to the previous example and the output diagram depicted in figure 5. This way,

the class component is represented by the tag <UML:Class>. Also, the attribute partNumber in

class component is represented by the tag <UML:Attribute>. Regarding class methods, the

method getDescription in class component is represented by the tag <UML:Operation>. All

these tags contain a unique identifier and the name of the tag.

As for the associations between classes in the XMI class diagram, they are represented by

<UML:Association>, along with <UML:AssociationEnd.participant> and <UML:AssociationEnd>

tags that allow specifying the association type (aggregation, composite and none) and the

classes involved in the association. Finally, all the tags defining classes, attributes, methods and

associations have specific properties that can be customized, as described before, by the

configuration rule module of InterArch.

<UML:Class xmi.id = 'x232' name = 'component'> <UML:Classifier.feature>

<UML:Attribute xmi.id = 'x232:87B' name = ' partNumber' visibility =

'public'></UML:Attribute>...

<UML:Operation xmi.id = 'x232:02C' name = 'getDescription' visibility =

'public'></UML:Operation>...

<UML:Class xmi.id = 'x235' name = 'price'>...

<UML:Association xmi.id='868'> <UML:Association.connection> <UML:AssociationEnd

xmi.id='889' aggregation='aggregate'>...

<UML:AssociationEnd.participant><UML:Class

xmi.idref='x232'/></UML:AssociationEnd.participant></UML:AssociationEnd><UML:Associati

onEnd xmi.id = '874' aggregation='none'><UML:AssociationEnd.participant><UML:Class

xmi.idref='x235'>...

The file generated in XMI format is portable and can be used in any UML diagramming tool

supporting XMI – to cite a few: ArgoUML, StarUML, BOUML, VisualParadigm, Circa and Mia-

Generation, among others.

d) UML class diagram

Figure 5 depicts the final UML class diagram automatically generated by InterArch. The class

diagram consists of a root class component that contains five attributes: partNumber, partName,

partType, description and price. Methods created for this class, denoting relationships with

description and price classes, are getDescription, setDescription, newDescription, getPrice,

setPrice and newPrice. In turn, class description is directly related to video and photography

classes.

Additionally, it could be necessary for a specific design solution to concrete the cardinality in

relationships or composition relationships (strong aggregation). This is the case for classes

price and description, both related to class component, since it does not make sense that the

price exists without the component (i.e., does not make any sense that the part exists without

the whole). The type and level of dependence between relationships, as well as the cardinality

and navigability, can be modified by the analyst or software engineer by means of the

configuration rules explained before.

Fig. 5. UML class diagram obtained from the transformation of the IA content model

In general, the information created by InterArch can be adapted to more specific requirements,

importing the generated XMI files in other CASE tools. This helps take advantage of the

features provided by other tools for dealing with UML code, such as reverse engineering,

database integration and OCL constraints, among others.

In short, the implementation of the methodology focused on the conceptual modeling in the

problem domain, and the underlying transformation into a model closer to the solution domain,

helped us reach the first and second objective specified at the beginning of the paper. However,

it is also necessary to evaluate the tool to have an early idea of its usability. In the next section,

an experiment with real users is carried out to determine the degree of the user’s satisfaction

concerning the InterArch CASE tool.

6. User Experiment

In order to have some clues about the usability of InterArch, we have carried out an early

evaluation with real users.

6.1 Participants and resources

To evaluate the tool, 12 users were enrolled. They regularly work for IT companies as project

consultants specifically related to IA. They were 9 men and 3 women, aged between 24 and 43

(M = 32, SD = 8.062). In general, these users had previous knowledge about analysis,

documentation, structuring and categorization of website contents. All users had experience in

the use of similar tools oriented to content modeling, but they have never used InterArch before.

A retrospective analysis was used to obtain video recordings of the user experiment to further

analyze the information later on [12]. On the other hand, the thinking aloud protocol was also

used at the same time to observe the user while s/he interacts with the tool, so obtaining the

main behavior observed. This protocol consist in asking end-users to think aloud while they

interact with the system in order to understand how they see the tool, which makes it easier to

identify misconceptions and errors [12]. Both protocols helped measure and analyze user

interaction with the tool, showing different issues and facilitating the measure of time and the

analysis of events occurred during the interaction recorded in video sessions to be analyzed

later on in detail.

6.2 Experimental task description

The evaluation consisted in a controlled experiment comprising the following steps:

a) First, the different functionalities and features of the tool InterArch were shown to users. This

tutorial took an average of 7 minutes (SD = 142 seconds).

b) Next, users were asked to develop a content model about products for a second-hand on-line

shop. Specifically, users were given a medium-fidelity mock-up extracted from one of the

products included in the printed version of a second-hand magazine, and they were requested

to create the content model using InterArch. This process, including the aforementioned

segmentation stage, took in average less than 12 minutes (SD = 194 seconds). User interaction

was recorded by sessions in order to be further analyzed, using the protocols described before.

c) Finally, users were asked to complete a questionnaire to measure the usability perceived.

6.3 Questionnaire description

In order to measure the usability, and have a feedback about the user’s satisfaction, we utilized

the USE questionnaire [13], with some variations provided by the questionnaire of utility and

perceived ease of use by Davis [14] and the Purdue Usability Questionnaire [15]. The

questionnaire contained 31 closed questions divided into four groups to measure variables

related to utility (8), ease of use (10), ease of learning (6) and satisfaction (7) concerning

InterArch. These four variables correspond to the four dimensions for the estimation of the

perceived usability. A numerical scale ranging from 1 (lowest) to 10 (maximum) was used to

measure the answer to each question. Besides, we added four open questions in the

questionnaire to enable users to include any other issue, such as positive and negative aspects

concerning the tool.

We used the Cronbach’s alpha to measure the internal consistency of the questionnaire. This

indicator was calculated for the 31 closed questions in the questionnaire. The result shown a

reliability value of 95.18% (α = .9518), which indicates that the questionnaire had an excellent

internal consistency level as it exceeds 25.18% the threshold of acceptance.

6.4 Analysis and results

Figure 6 shows the results obtained from the analysis of the questionnaire, indicating the

average score obtained for each variable and an error bar corresponding to the standard

deviation (± σ); the overall mean (horizontal dotted line) is also represented. As shown, the

variable ease of learning obtained the highest average score (M = 8.3, SD = 1.23). The variable

ease of use obtained the second highest average, with a score of 7.95 (SD = 1.083). It is

followed by the variable utility, which obtained an average score of 7.5 (SD = 1.089). Finally, the

variable satisfaction obtained the lowest average, with a score of 7.41 (SD = 1.059).

Fig. 6. Average score for each variable measured from 1 to 10, including error bars (± σ) and a

dotted line representing the mean

The overall mean for the four variables (dotted line in figure 6) was 7.79 (SD = 1.14). In general,

all variables obtained scores over 74%, which can be considered as a good usability indicator of

the tool InterArch according to the user’s perception.

In addition, we also analyzed the sessions recorded by the aforementioned protocols, which

reported valuable information about how users utilized the tool. For example, although the

majority of users chose to use the functionality to select and drag on the content items

(inheritance), it was found that this feature implied some difficulties, as users needed several

attempts before successfully getting what they wanted to do. Also, we realized that users

achieved several steps to find some of the tool’s functionalities. This highlighted the necessity of

having more shortcuts. All in all, no important errors were found during the experimental

session. Furthermore, the results obtained will be used to improve the tool in the future so that it

responds more efficiently and in accordance to the user’s needs.

Also, the four open questions included in the questionnaire reported valuable information about

strengths and further improvements. On the one hand, users highlighted the following positive

aspects of InterArch: simplicity, ease of use, speed, intuition and similarity with other

environments. On the other hand, users observed areas of improvements in the toolbar used to

represent content elements, where more diversity was expected, also in element sizes and

mouse grouping operations. All these issues will be taken into account in the future to improve

InterArch.

6.5 Verification and validation

InterArch has been developed using an iterative and incremental prototype-oriented end-user-

centered development process. Main software requirements have been elicited from a

comparative analysis carried out with other similar tools, identifying drawbacks and areas of

improvement, as well as considering the opinion of the different stakeholders related to IA. In

addition, the theoretical formalism, comprising creation, interaction and transformation of visual

models, has been fully analyzed, designed and implemented by means of a CASE tool called

InterArch, This way, the research has been explicitly verified according to the early

requirements and objectives stated. Furthermore, InterArch has been evaluated to measure its

general usability according to the user’s perception. This provides an implicit validation of both

the research and the formalism conceived. On the other hand, information architects have been

considered as the potential users of InterArch, this is why the usability experiment has been

carried out with such users, obtaining acceptable feedback and results from the information

professionals overall. However, InterArch can be used by software engineers to customize the

UML code generated by the tool. In this sense, we have carried out some evaluations using

experts in software engineering to validate the output generated by InterArch. This validation

has been achieved by both manual inspection and using existing UML tools, such as ArgoUML,

StarUML, BOUML, VisualParadigm, Circa and Mia-Generation, that allow importing the UML

code generated by InterArch without major problems, ensuring also the compatibility and the

suitability of the UML generated by the tool, mainly intended for software engineers.

7. Conclusions and future work

In this paper, we have presented an approach consisting of a formalism to represent knowledge

from conceptual definitions of the IA, and also a mechanism to transform this knowledge into

analysis and design information to be processed by software engineers in order to develop

interactive web applications. This approach has been validated through the construction and

evaluation of a CASE tool called InterArch.

The main aim of InterArch is bridging the gap between high-level conceptual representations of

the IA and non-functional representation of software, providing analysis and design classes that

are necessary to implement interactive software in the solution domain. To carry out this task,

the tool automatically generates UML class diagrams from content-model definitions of

interactive websites, using XMI as intermediate language of representation that can also be

processed by other different CASE tools. This increases interoperability in integrating functional

and non-functional classes in the engineering process of interactive web application

development.

Results obtained in the early usability evaluation of the tool shown positive and acceptable

ratings about the user’s perception on utility, ease of use, ease of learning and satisfaction. In

addition, the sessions recorded through the retrospective analysis and thinking aloud protocols

allowed us to obtain more detail regarding the user interaction with the tool. Also, the open

questions included in the questionnaire reported valuable information to know the strengths and

areas of improvement for InterArch.

As future work, in addition to improve InterArch with the early results obtained, a promising line

would be incorporating semantic features in the tool – i.e., the inclusion of comments in the

content elements by the information professional. This would provide further semantic

information [16] for software engineers, so that more advanced constraints for the solution

domain would be automatically generated. Also, another interesting line to consider is modeling

explicit accessibility and usability properties in the early phases of the software project using

InterArch.

Acknowledgements. This work has been supported by the founded projects TIN2011-24139

and TIN2011-15009-E.

References

[1] E. Erlin, Y. Yunus, A. Rahman, The evolution of information architecture, ITSim 2008,

International Symposium on Information Technology, no. 4, pp. 1-6, 2008.

[2] P. Morville, L. Rosenfeld, Information architecture for the world wide web, O'Reilly Media”,

O'Reilly Media Inc., Third Edition, 2006.

[3] G. Elaine, Information interaction: providing a framework for information architecture, Journal

of the American Society for Information Science and Technology, vol. 53, no. 10, pp. 855-

862, 2002.

[4] J. Macías, Intelligent assistance in authoring dynamically generated web interfaces, World

Wide Web, vol. 11, no. 2, pp. 253-286, 2008.

[5] L. Rojas, J. Macías, End-user support for information architecture analysis in interactive web

applications, Interact 2011, LNCS Volume 6949, Springer NY, 515-518, 2011.

 [6] J. Garrett, A visual vocabulary for describing information architecture and interaction design,

www.jjg.net/ia/visvocab, 2002.

[7] C. Katsanos, N. Tselios, N. Avouris, AutoCardSorter: designing the information architecture

of a web site using latent semantic analysis, In proceeding of the twenty-sixth annual SIGCHI

conference on human factors in computing systems (CHI '08), ACM, New York, NY, USA, pp.

875-878, 2008.

[8] M. Babar, T. Dingsyr, P. Lago, H. Vliet, Software architecture knowledge management,

Springer, 2009.

[9] G. Buchgeher, R. Weinreich, Connecting architecture and implementation, OTM '09, On the

Move to Meaningful Internet Systems: OTM 2009 Workshops, Lecture Notes in Computer

Science, Volume 5872/2009, pp. 316-326, 2009.

[10] R. Pressman, Software engineering: a practitioner’s approach, McGraw-Hill, 2005.

[11] OMG, MOF 2.0/XMI mapping specification, http://www.omg.org/spec/XMI/2.1/PDF, 2005.

[12] J. Nielsen, Usability engineering, Morgan Kaufmann Publishers, 1993.

[13] A. Lund, Measuring usability with the USE questionnaire, Usability and User Experience

Special Interest Group, 8, 2001.

[14] F. Davis, Perceived usefulness, Perceived Ease of Use and User Acceptance of

Information Technology, MIS Quarterly, no. 13, pp. 319-340, 1989.

[15] H. Lin, A proposed index of usability: a method for comparing the relative usability of

different software systems, Behaviour and Information Technology, no. 16, pp. 267-278,

1997.

[16] E. Chavarriaga, J. Macías, A model-driven approach to building modern semantic web-
based user interfaces, Advances in Engineering Software, vol. 40, no. 12, pp. 1329-1334,
2009.

