
Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Interacting with Computers 20.1 (2008): 29-47

DOI: http://dx.doi.org/10.1016/j.intcom.2007.07.007

Copyright: © 2008 Elsevier B.V. All rights reserved

El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1016/j.intcom.2007.07.007

 1

Customization of Web Applications through an Intelligent

Environment Exploiting Logical Interface Descriptions

José A. Macías
1
, Fabio Paternò

ISTI-CNR

Via G. Moruzzi 1

56124 Pisa, Italy

{Jose.Macias, Fabio.Paterno}@isti.cnr.it

Abstract

Customization of Web-based applications is often considered a designer skill rather than

an end-user need. However, there is an ongoing shift to end-user-centred technology,

and even users with poor or no skill in Web-based languages may feel the need to

customize Web applications according to their preferences. Although Web authoring

environments have an increasing number of features, the challenge of providing end-

users with the ability to easily customize entire Web applications still remains unsolved.

In this paper, we propose an intelligent approach to customizing Web-based

applications. Customizations rules are automatically inferred by the system from

changes that users supply as examples. They remain as long-term knowledge that can be

applied to support future interactions, thus minimizing the amount of authoring that

end-users need to do for this purpose. In order to better understand the implications of

the user’s modifications, they are analysed using the logical descriptions of the

corresponding Web pages.

Keywords

Human-Computer Interaction; End-User Development; Intelligent User Interfaces;

Programming by Example; Model-Based User Interfaces; Web-based Nomadic

Applications.

1. Introduction

As software products grow in terms of expressivity, there is also a growing need to

allow people to customize, configure and also create their own software artefacts in

order to accomplish their daily tasks properly. This is important, for example, for

professionals such as engineers, scientists and freelance professionals having concrete

domain skills but lacking programming abilities. Further support is needed in order to

provide non-programmer professionals with easy-to-use mechanisms to customize

software artefacts, avoiding the need for them to learn programming and specification

languages that are usually deemed to be irrelevant to their daily work. In our view,

customization can be regarded as the modification of interactive software in order to

better match the user preferences.

Generally, the explicit customization of software applications is considered a

cumbersome task that most non-computer-skilled end-users cannot afford. The

1
 Permanent Address: EPS, Universidad Autónoma de Madrid. Ctra. de Colmenar, Km. 11. 28049

Madrid, Spain. E-mail: j.macias@uam.es

 2

complexity of programming and specification languages discourages users even from

attempting software customization. Although most applications do not provide much

support for customization, some of them allow users to adapt partial aspects of the

application to their own needs by selecting predefined options. However, this is clearly

not enough. Desktop applications are usually complex and implemented in structured

programming languages. This has traditionally made it difficult to provide easy-to-

customize end-user approaches for them. Thus, the few existing approaches to this

respect have been mainly focused on some domain-dependent support. Further, the

traditional desktop customization process cannot be applied straightforward to Web

environments, since they are based on an underlying specific mark-up language (i.e.

XHTML). On the other hand, XHTML is easier to access and manipulate and enables

the possibility of end-user development, in which users can customize their

applications. However, customization of interactive Web applications still requires

considerable skill in programming and Web technology. Some preliminary studies

indicate that these limitations in end-user Web development activities are not due to

lack of interest but rather to the difficulties inherent in interactive Web development

(Rode et al., 2006). Commercial Web development tools already offer support for high-

level functionality, but most of these tools are not aimed at non-programmers.

Providing users with real customization facilities is not yet as widespread as one would

expect. Most existing approaches provide little support to end-users, and the ease of

customization of commercial applications leaves much to be desired. However, some

researchers have devoted considerable effort to bring design closer to users. This

involves End-User Development (EUD) research (Lieberman et al., 2006), where the

main concern is to enable users to easily modify and create software artefacts.

Programming by Example (Cypher, 1993; Lieberman, 2001) is one of the more relevant

approaches in EUD, which aims at obtaining a satisfactory trade-off between ease-of-

specification and expressiveness. Programming by Example has the potential to allow

users to customize their applications. Rather than writing a program in a programming

language to automate a task, users simply demonstrate how to perform it.

Our research is aimed at leveraging these problems by providing automatic mechanisms

to allow customization tasks easily. Therefore, the main problem we address here is

how to provide intelligent automatic support for customising Web applications even for

non-computer-skilled end-users. To face such a challenge, we leverage Model-Based

User Interfaces Design (MBUID) approaches (Paternò, 1999) combined with

customization techniques (Macías and Castells, 2004). The overall goal is natural

development (Berti et al., 2006), which implies that people should be able to create or

modify applications by working through familiar and immediately understandable

representations to express relevant concepts. In this respect, our main contribution

exploits Model-Based User Interface Design (Szekely, 1996) and End-User

Development research, combining them by means of an intelligent environment that can

infer meaningful information from the user’s modifications. Our approach is based on

an expert system where the knowledge is built up progressively, increasing in every

user session (i.e. evolutionary approach). According to the MBUID paradigm, we

consider the different conceptual levels in which a user interface can be specified. We

obtain a logical user interface description (UID), which provides a description of the

main conceptual elements associated with the user interface without considering

implementation details, from the reverse engineering transformation of XHTML pages.

Automatically, our intelligent environment compares the logical description of the

modified page with the original ones, reasoning about such changes by means of rules.

 3

Therefore, the user only has to provide the system with examples of what s/he desires to

modify, and the system identifies customization rules automatically by analyzing the

user changes. To this end, our intelligent rule-based system exploits JESS, the Rule

Engine for Java Platforms (JESS, 2006). Jess includes an enhanced version of the Rete

algorithm (Forgy, 1982), an efficient pattern matching algorithm for implementing

production rule systems. We use the Rete algorithm together with information regarding

the page context in which the user change occurred, in order to reduce the implicit

ambiguity in drawing inference from similar user changes. The possible page contexts

are identified by analyzing the abstract descriptions of the corresponding pages. They

are used to identify different user changes in similar situations, and so obtain more

general domain-independent customization rules (Macías and Castells, 2005).

This paper is structured as follows. After the related work in Section 2, we describe the

general approach proposed. Section 4 provides further detail and describes how the

intelligent mechanism is structured. Next, we explain the process of extracting

meaningful information from user customizations. Section 6 reports on a user test that

has been carried out to provide empirical feedback on the approach proposed. The test

results are useful to understand the feasibility of reducing the complexity of Web

application customization. Lastly, Section 7 draws some conclusions and provides

indications for future work.

2. Related Work

Traditionally, Programming by Example (PBE) research has adopted rule-based

systems mostly due to the execution speed and simplicity they provide, compared with

other complex machine-learning algorithms that often have a high error rate and low

generalization in real-time interaction with users.

Some early PBE systems used rules to infer user intentions. For instance, Eager (Cyper,

1993) uses LISP implemented rules to complete specific repetitive tasks on behalf of the

user. Eager is considered a predictive interface since it detects two consecutive

occurrences of a repetitive task in a sequence of user actions. Eager automatically infers

patterns by observing user actions. Typically, the actions that Eager infers are mostly

based on textual operations that users carry out on the Apple-Macintosh HyperCard

application. By contrast, in our system users are not monitored during the interaction,

and we provide them with the freedom to use any authoring environment to modify

Web applications. Moreover, in addition to syntactic changes our system also deals with

semantics corresponding to changes in the logical structure (i.e. relations, grouping,

hierarchical, navigational and other changes) that can be generalized from session to

session, as the system is responsible for distinguishing between pending and permanent

customization preferences in any Web application.

Inference Bear (Frank et al., 1995) is another PBE system that infers design choices

from user-generated snapshots. Inference Bear generates a custom user interface by

observing the behaviour of the interface designer. Like Eager, Inference Bear is based

on a specific application- i.e. a graphical design tool that makes it possible to infer

geometrical relationships from user actions. In our approach, we provide more general

inference by supporting both semantic and syntactic changes, independently of the

authoring tool used. We mean for semantic changes those that modify the logical

structure of the user interface or the tasks supported by the interactive application. User

preferences are captured by our system and they can be used later on to obtain further

 4

information about customization that will be updated and refined in an evolutionary

way from session to session.

Some early Myers’s tools such as Peridot (Myers, 1998) supported a rule-based

approach. Peridot is more oriented to supporting user interface design. It uses about fifty

hand-coded Interlisp-D rules to infer the graphical layout of the objects from the

examples. The system allows the interface designer to draw a picture of what the user

interface should look like using a special drawing package. This way, the system infers

user interface groupings, geometrical dependences and spatial relationships, taking also

into account the user’s input. This type of system is able to generalize only limited

forms of behaviours. Additionally, it is mostly focused on static knowledge and can be

considered domain-dependent. By contrast, our system proposes a dynamic knowledge

approach together with an application-independent intelligent environment, in which a

complete rule structure is proposed in order to consider different kinds of conceptual

knowledge that can be updated from time to time through an evolutionary approach.

Our system can be considered domain-independent since it is able to process any

application written with XHTML. Indeed, the semantic structure is extracted and

processed independently of the content type.

More recently, AgentSheets (Repenning and Ioannidou, 2006) is an example of a

commercial EUD approach for building intelligent interfaces. AgentSheets is a

simulation environment that allows users to create advance simulation scenarios by

defining intelligent agents and behaviour separately. AgentSheets combines PBE with

graphical rewrite rules into an end-user programming paradigm. Graphical rewrite rules

are powerful languages to express the concept of change in a visual representation. Like

AgentSheets, our approach applies semantic rules for dealing with high-level behaviour.

As pointed out by the AgentSheets’ authors, a first step toward creating more usable and

reusable rewrite rules is to move from syntactic rewrite rules to semantic ones,

including semantic meta-information. The lack of semantics not only makes reuse

difficult, but also involves significant problems for building new behaviours from

scratch, reducing dramatically the scalability of a PBE approach as well. In this respect,

in our approach we consider different levels of knowledge and behaviour. We

accomplish this by dividing rules and facts into different conceptual levels that help to

automatically achieve in-depth analysis and accurately infer the user’s preferences

through an evolutionary approach, in which the knowledge increases proportionally

with the number of user sessions considered.

The use of semantic knowledge has been a main concern in building intelligent

inference systems. Lieberman’s work on Common Sense Reasoning (Lieberman et al.,

2004) provides some evidence by using high-level knowledge bases to carry out

automatic reasoning. In that work, mostly related to natural language-based interaction,

the system tries to infer meaningful user definitions by using natural language

(Lieberman and Liu, 2006). The authors assume that syntactical definitions are vague

and imprecise, and so they need to be disambiguated using a semantic layer in the form

of an ontology to obtain high-level information. In our approach, we deal with logical

user interface descriptions to infer more specific user preferences. We reduce the

ambiguity in analysing user changes by using both a more accurate inference algorithm

and semantic knowledge extracted from the modified Web-based interface.

Another related work is DESK (Macías et al., 2006), which uses domain knowledge for

characterizing changes from a dynamically generated interface, also making minimal

assumptions about the end-user’s skills on programming and specification languages.

DESK uses the PEGASUS specification based on domain ontologies in order to specify

 5

explicit knowledge of both presentation and domain information separately. DESK is

based on a client-server architecture that comprises two different applications. The

client side is a front-end what-you-see-is-what-you-get (WYSIWYG) authoring tool,

whereas the server side is a back-end application that infers and carries out the changes

the user makes to the Web interface. DESK’s front-end tracks and records information

about the user’s actions by building up a XML monitoring model. This information is

sent to the back-end application, which in turn processes the monitoring model and

applies different heuristics by using domain knowledge. DESK deals with modifications

in the HTML code that are later processed to obtain meaningful information by means

of fixed heuristics. Our approach improves DESK’s mechanisms by identifying

customization rules automatically, comparing logical descriptions of the original and

modified interfaces and with no need to have a specific authoring client application.

This allows our environment to achieve domain independence. The logical user

interface descriptions are specified in TERESA XML (Berti et al., 2004). We exploit the

information provided by the logical interface description to obtain semantic

information. Besides, the knowledge management is improved by defining different

levels of knowledge that are applied to better characterize customizations and update the

expert system for future inference.

More recently, Chickenfoot (Bolin et al., 2005) provides a programming environment

embedded in the Firefox Web browser for automation and customization of Web pages.

Our approach differs from it in many respects: it is not linked to any particular Web

browser and, since we manage the customization rules at the server side, we can support

customization even when different client devices (and browser) are used to access the

same Web application. Additionally, in Chickenfoot the user is requested to introduce

script code, whereas in our system we avoid users to program any code as changes to

Web pages are made by WYSWYG tools and are automatically detected and processed

by our system independently of the specific authoring tool used.

3. Our Approach

Our environment aims to support Web interfaces for different platforms in order to

allow users to access the application using one device from a set of different existing

platforms (desktop computer, mobile, PDA). At any time, the user can provide the

system with examples obtained by modifying the generated Web pages with any

authoring environment. Reverse engineering techniques are applied in order to obtain

logical descriptions of the modified Web pages, which are useful to analyse high-level

information about the user’s modifications.

 6

Web

Server

Internet

Mobile PDA Desktop / End-User

GUI

Changes Made

by End-User

Modified

Pages

Page

Generation
Modified

Pages

Transform Comparison

Inference

End-User Profile,

Include Preferences and

Major Characterizations

Modified

Pages
Modified

UID

Previous

UID

Web

Server

InternetInternet

Mobile PDA Desktop / End-User

GUI

Changes Made

by End-User

Modified

Pages

Page

Generation
Modified

Pages

Transform Comparison

Inference

End-User Profile,

Include Preferences and

Major Characterizations

Modified

Pages
Modified

UID

Previous

UID

Figure 1. Framework for inferring user preferences in customizing nomadic Web-based

applications.

In particular, our approach supports the following steps (see Figure 1):

1) The end-user navigates through a desktop Web application and, at some

point, s/he decides to modify something by using standard WYSIWYG Web

authoring tools such as Microsoft FrontPage, Macromedia Dreamweaver and

so on, where users can make sample changes in order to provide indications

of their preferences. Such changes comprise deletion, addition, insertion,

substitution, presentation-element re-arrangement, style-effect application,

property changes, and so on.

2) Once the user has finished the changes, s/he sends the modified pages to the

server, by using a specific Web application in which s/he first needs to login

(see Figure 8).

3) The server receives the Web page and then starts the inference process to

identify the user’s preferences.

a. First, the server transforms the modified page into a logical

description stored in a XML file, using the reverse mechanism

developed by our group (Bandelloni et al., 2007). The file contains

the user interface specification of the page (i.e. UID on top-right

corner of Figure 1), in terms of language-independent elements.

b. Then, the system compares the logical description corresponding to

the modified page with the logical description of the previously

generated page.

c. During the comparison process, the system generates high-level

information to feed the expert system and identify general user

preferences. This intelligent mechanism will be explained in detail

later on.

 7

d. At the end of the process, the system builds an End-User Profile

taking into account all this high-level information inferred, as well as

other previously generated, and containing customization

preferences.

4) The End-User Profile is then used to regenerate the Web pages, taking into

account the user’s preferences. The system stores an End-User Profile for

each user and platform.

The End-User Profile must also contain the logical specification of the page modified

by user. The information included in the Profile will be updated every time the user

sends a modified Web page to the server. Thus, the End-User Profile is updated with

new inference information and the interface logical descriptions are updated

accordingly.

The most relevant information in the End-User Profile is the set of user interface

customization rules. Such rules are inferred from the comparison of the logical

descriptions and aim to reflect the knowledge acquired by the system from analysis of

the user’s changes. Later on, the rules are used in the generation of the Web pages,

customizing the Web presentation and navigation depending on the inferred

preferences. All this explicit knowledge can be modelled by means of a knowledge base

(i.e. an expert system) containing facts and sets of rules to be applied when new

information about user modifications is identified.

<operator id="Grouping_1_33">

<grouping>

<fieldset/>

<position value="column"/>

</grouping>

</operator>

<first_expression>

<interactor id="showText_1_52">

<only_output>

<textual>

…

<operator id="Grouping_1_33">

<grouping>

<fieldset/>

<position value="column"/>

</grouping>

</operator>

<first_expression>

<interactor id="showText_1_52">

<only_output>

<textual>

…

Modified

HTML Pages
Modified UID Original UIDReverse

Engineering

Process

Comparison and

Knowledge

Extraction Process

New Knowledge

Facts {

Interactor ID=1 has changed its position

Interactor ID=2 has been removed

…

}

Expert Knowledge

Base
End-User

Profile

Rules + Facts

<operator id="Grouping_1_33">

<grouping>

<fieldset/>

<position value="column"/>

</grouping>

</operator>

<first_expression>

<interactor id="showText_1_52">

<only_output>

<textual>

…

<operator id="Grouping_1_33">

<grouping>

<fieldset/>

<position value="column"/>

</grouping>

</operator>

<first_expression>

<interactor id="showText_1_52">

<only_output>

<textual>

…

<operator id="Grouping_1_33">

<grouping>

<fieldset/>

<position value="column"/>

</grouping>

</operator>

<first_expression>

<interactor id="showText_1_52">

<only_output>

<textual>

…

<operator id="Grouping_1_33">

<grouping>

<fieldset/>

<position value="column"/>

</grouping>

</operator>

<first_expression>

<interactor id="showText_1_52">

<only_output>

<textual>

…

Modified

HTML Pages
Modified UID Original UIDReverse

Engineering

Process

Comparison and

Knowledge

Extraction Process

New Knowledge

Facts {

Interactor ID=1 has changed its position

Interactor ID=2 has been removed

…

}

Expert Knowledge

Base
End-User

Profile

Rules + Facts

Figure 2. The process of knowledge extraction from the user changes.

The intelligent approach is implemented by using an ad-hoc expert system, where the

knowledge can be suitably modelled and where the inference takes place efficiently.

More specifically, we are mostly interested in production systems to implement a

pattern recognition approach by means of rule languages. Such languages provide a

framework able to deal with facts and rules, as well as the capability to populate the

knowledge base with new information from time to time (evolutionary approach).

In our approach, the facts represent the information coming from the user’s

modifications. This information is extracted by comparing the logical interface

 8

descriptions of the modified and the original page (see Figure 2). The rules are ad-hoc

conditions used to extract information from the facts, that is, from the changes the user

makes to the presentation and from other high-level information available in the expert

knowledge base. Since all the user information is stored in a user model (the user

profile), the rules will reflect not only the user’s changes but information about the

platform (Desktop, Mobile, and so on). This evolutionary approach, which continuously

produces and modifies facts, aids the system to refine the user’s preferences and extracts

accurate information as interaction evolves.

In order to improve precision and accuracy in the inference process, we use Rete as an

efficient pattern matching algorithm for implementing rule-based (expert) systems. It

was originally designed by Forgy at Carnegie Mellon University. A Rete-based expert

system builds a network of nodes, where each node (except the root) corresponds to a

pattern occurring on the left-hand-side of a rule. Each node has a memory of facts,

which satisfy that pattern. As new facts are added or modified, they propagate along the

network, causing nodes to be annotated when that fact matches that pattern. When a fact

or combination of facts satisfies all patterns of a given rule, a leaf node is reached and

the corresponding rule is triggered. The Rete algorithm is designed to sacrifice memory

for increased speed.

4. User Interface Modelling and Intelligent Processing

In our approach, we want to identify the user’s preferences from the changes that s/he

made to the Web pages. Furthermore, we want our environment to be able to take into

account previous changes. Therefore, the idea was to develop an intelligent system

capable of detecting changes through the analysis of the logical user interface

specifications in TERESA XML (Berti et al., 2004). In this specification language, a

user interface can be described at different abstraction levels. In particular, we

considered the abstract and concrete levels. The abstract label is a logical description of

the user interface independent of the platform. We mean for platform a group of devices

that have similar interaction resources (i.e. desktop, PDA, mobile, etc.). By contrast, the

concrete level is a platform-dependent description of a user interface, so it is a

refinement for a specific platform. For example, at the abstract level we can have the

specification of a selection object (without any indication whether the selection is

performed in a graphical, vocal or gestural modality). A corresponding concrete element

for the graphical platform would be a list or a radio-button or a pull-down menu, which

are examples of objects that support selection in a graphical device. In both cases, the

user interface is composed of interactors and composition operators indicating how to

structure their composition.

While at the abstract level the various interactors are described with no reference to any

particular interaction modality, at the concrete level the characterisation of each

interactor depends on the type of platform and media available, with a number of

attributes that define more concretely its appearance and behaviour. Examples of

interactors at the abstract level are Description, Navigator, Text, Single Selection, etc.,

whereas examples of interactors at the concrete level are Image, Link, Text Field, Radio

Button, List, etc.. There are different one to many relationships between interactors at

the abstract and the concrete level (e.g. a navigator can be a text link, an image link, or a

button), which indicate how an abstract interaction can be supported in a given platform

at the concrete level.

 9

The composition operators provide useful information in terms of how interactors are

put together, the relation among them and the associated communication goal. At the

abstract level, there are four different composition operators:

o Grouping: Indicates a set of interface elements logically connected to

each other

o Ordering: Some kind of ordering among a set of elements can be

highlighted

o Hierarchy: Different levels of importance can be defined among a set of

elements

o Relation: Highlights a one-to-many relation among some elements, one

element has some effects on a set of elements

By contrast, the concrete level indicates how each composition operator can be

supported, for example a grouping can be obtained through a Fieldset (a rectangle

including the grouped elements), or lining up the composed elements, and so on.

Abstract Elements

(Composition Operators and

Interactors)

Concrete Elements

Concrete Grouping Composition

Operators and Concrete Interactors

<Form>

<Image>

<Text>

<FieldSet>

<TextField>

<TextField>

<TextField>

<TextField>

<TextField>

<ListBox>

<CheckBox>

<RadioButton>

<TextArea>

<Button>

<FieldSet>

<RadioButton>

<ListBox>

<FieldSet>

<ResetButton>

<Button>

Web Presentation Generated

Abstract Elements

(Composition Operators and

Interactors)

Concrete Elements

Concrete Grouping Composition

Operators and Concrete Interactors

<Form>

<Image>

<Text>

<FieldSet>

<TextField>

<TextField>

<TextField>

<TextField>

<TextField>

<ListBox>

<CheckBox>

<RadioButton>

<TextArea>

<Button>

<FieldSet>

<RadioButton>

<ListBox>

<FieldSet>

<ResetButton>

<Button>

Web Presentation Generated

Figure 3. Mappings between Web-page components and concrete and abstract elements

that are extracted from a Web page.

Figure 3 shows an example of a generated Web form and the structure of its

corresponding abstract and concrete specifications. The concrete information is

represented by concrete interactors (such as Textfield, Button and so on) and concrete

composition operators (such as Form and FieldSet). It is worth looking at the mappings

between abstract elements (on the left) and page components. The abstract elements

provide the intelligent environment with the conceptual description of the interface

design. This information consists of the types of composition operators (such as

Relation, Grouping,) and different kinds of interactors (such as Description, Text Edit,

Single Selection and so on). This knowledge is useful for identifying presentation

contexts when changes to a Web page are analysed.

Modifications affecting the concrete level provide syntactical knowledge, while those

that have effects on the abstract level provide semantic knowledge because they imply

changes to the actual purpose of the interface elements. We consider both kinds of

modifications in order to construct a knowledge structure to feed the expert system with

 10

suitable facts and activate expert rules to produce user customizations efficiently.

Additionally, we also want to consider both syntactic and semantic customization rules

that may be fired more than once for different changes applied in the same page context.

Semantic customization rules are used to deal with changes concerning interactors and

composition operators at the abstract level. By contrast, syntactic customization rules

are related to user preferences associated with user modifications that have an effect

only on the concrete specification (e.g. changes concerning font size, colour, and other

syntactical preferences). The knowledge obtained will be applied the next time that the

application server generates the corresponding pages.

This conceptual separation helps to identify different kinds of rules as well as to build

the knowledge progressively, according to the kind of fact that is produced and

managed. In addition to rules, different sets of facts are generated at every level. In this

sense, the relations among the different levels of knowledge can be represented as in

Figure 4.

Base Knowledge

Syntactic Rules

Semantic Rules

Expert Rules

FBK
FBK

FSy
FSyFS

FS

FE
FE

FBK
FBK

FBK
FBK

Base Knowledge

Syntactic Rules

Semantic Rules

Expert Rules

FBK
FBKFBK
FBKFBK
FBK

FSy
FSyFSy
FSyFS

FSFS
FSFS
FS

FE
FEFE
FEFE
FE

FBK
FBKFBK
FBKFBK
FBK

FBK
FBKFBK
FBKFBK
FBK

Figure 4. The four levels of our knowledge structure.

Regarding Figure 4, it is worth noting that there are dependences between the facts

generated by each rule and the rules that process such facts. As we can see, base

knowledge facts (FBK) are processed by each kind of rule, whereas syntactic facts (FSy)

are generated by the syntactic rules and processed only by the semantic ones. In

contrast, the semantic facts (FS) are generated by the semantic rules and processed by

the expert ones. Moreover, expert rules generate expert facts (FE) that reflect the

meaningful information in terms of customization rules for future use. All the facts

generated, as well as the rules, will remain as base-knowledge facts to be taken into

account in later sessions.

The following steps are considered in defining the knowledge:

1) Defining base knowledge containing basic definition about user, platform and

the previous knowledge inferred. This is the information that always remains in

the expert system and is updated from session to session.

2) Defining syntactic knowledge that contains facts and rules triggered by

syntactic modifications to presentation elements such as concrete interactors (for

instance, in a graphical desktop system concrete interactors can be Radio

Buttons, List Boxes, Textual Links, Buttons, Input Texts and so on) and

concrete composition operators. The concrete composition operators implement

the abstract operators (grouping, hierarchy, ordering and relation) through

constructs such as Fieldset, Unordered List, Ordered List, Table, Form, and so

on. An example of syntactical modification is when the value of an attribute of a

 11

concrete interactor or a concrete composition operator is changed (e.g. when its

colour, alignment, justification and so on are changed).

3) Defining semantic knowledge for dealing with semantic information by taking

into account the syntactic information already created. The semantic level

considers changes in the abstract (platform-independent) elements called

interactors and composition operators. For instance, it identifies when an

interactor is moved from a composition operator to another, or when it is deleted

or removed, or also when the number of interactors in one possible composition

(ordering, hierarchy relation or grouping) is changed. The semantic level also

concerns presentation contexts, that is, high-level descriptions of the elements

(and their relations) surrounding a change made in the graphical interface.

Presentation contexts allow the creation of expert rules based on contextual

information that can be applied more than once.

4) Defining expert rules for dealing with further semantic aspects and detecting

user preferences. Expert rules utilize all the underlying information available in

the expert system, and they can be regarded as the top (semantic) layer by which

high-level preferences can be finally inferred. These rules can be hand-coded by

experts to define both syntactic and semantic customization rules that will be

deployed using the underlying knowledge available in order to further

characterize user changes (e.g. when a same user has changed the navigational

structure or the layout, or several users have made similar modifications). This

can be inferred in a domain-independent way by analyzing the knowledge

available in the expert system from previous sessions.

Knowledge is built up progressively from the lowest levels to the highest ones. The

knowledge constructed at the lowest levels is basically composed of syntactic

information automatically generated by the system. This information is inferred by

comparing the concrete user interface specifications before and after the user’s changes,

and is related to the elements the user implicitly manipulates when modifying a

presentation. The system provides mechanisms to analyze user modifications and

identify to what knowledge level they belong. For instance, when the user attempts to

modify a form, s/he might decide to replace a Radio Button with a Selection List. This

change will be considered as a syntactic one, since both interactors are under the same

abstract category: single selection interactor, which identifies its main semantic effect.

However, if the user decides to replace a Radio Button with a CheckBox, then a

semantic change occurs, since Radio Button belongs to the single selection interactor

abstract category and CheckBox to multiple selection interactor. In this case, even the

task supported by the application changes because of such a user change.

In addition, for each user change the system extracts the corresponding presentation

context, which is based on the abstract specification of the interface. This allows the

definition of more general rules that can be associated with similar, though not exact,

user modifications.

5. Inferring Meaningful Information from User Modifications

Expert Rules deal with information about user preferences from one session to another,

taking into account the existing facts generated by the previous expert-knowledge

layers. If these rules are often fired, then the customization rules corresponding to the

user’s design preferences can be detected. Therefore, we can distinguish two different

 12

kinds of rule activations in our system: those pending and the permanent ones. Pending

customization rules are identified whenever the system detects a probable user attempt

to customize an element or a group of elements in the presentation, whereas permanent

customization rules correspond to pending rules that have been identified more than

twice in the same context. This mechanism allows us to differentiate occasional user

modifications from explicit and repetitive preferences. Permanent customizations will

drive the customization of the application in future accesses, and they can be turned on

and off by end-users using the NOTORIOUS environment (see Section 6.2).

Each customization rule (both pending and permanent) is associated with a reference

context, which is useful to identify whether user changes are substantially similar.

When a change is made to a page, the system analyses the page structure and the

elements surrounding the change to define its context. Then, it checks whether there is a

similarity with any of the presentation contexts of the identified customization rules.

The contextual presentation information is processed in two stages. The first stage

extracts syntactic context from the comparison of the concrete interface specifications

of the original and the modified page. The second stage operates at the semantic level,

processing syntactic context and relating it to knowledge concerning abstract elements,

with the aim of obtaining meaningful information that could be deployed to apply more

general rules in similar contexts. This way, when differences are found through

comparison of the concrete interface specifications, this new knowledge is added to the

expert system in terms of facts (as explained in Figure 2), together with the syntactic

context in which such changes take place. The location of the modifications is extracted

from the concrete specification, which provides sufficient detail to accurately identify

the objects surrounding a user’s change.

Figure 5 depicts how syntactic context is identified from a user’s change to the Web

form in Figure 3. Such change consists of moving both the Reset and Submit buttons to

the upper part of the form, between the page title and the personal data input fields. This

change could be due to the fact that the user prefers such buttons to appear above the

other form elements.

 13

Abstract Elements (Original) Abstract Elements (Modified)

Form (1) {

Image (1)

Text (1)

FieldSet (1) {

Button (1) /*Reset*/

Button (2) /*Submit*/

}

FieldSet (2) {…}

FieldSet (3) {…}

}

Form (1) {

Image (1)

Text (1)

FieldSet (1) {…}

FieldSet (2) {…}

FieldSet (3) {

Button (1) /*Reset */

Button (2) /*Submit*/

}

}

Comparison and Knowledge

Extraction Process

New Knowledge:

Fact + Syntactic

Contextual

Information

Fact {

FieldSet (3) has change its position

Context {

From Form (1) => FieldSet (3)

To Form (1) => FieldSet (1)

Contents {Button(1), Button (2))}

Above {FieldSet(2),FieldSet(1), Text(1), Image(1)}

Below {null}

}

}

Expert Knowledge

Base

Rules + Facts

Concrete Elements

Concrete Elements

Abstract Elements (Original) Abstract Elements (Modified)

Form (1) {

Image (1)

Text (1)

FieldSet (1) {

Button (1) /*Reset*/

Button (2) /*Submit*/

}

FieldSet (2) {…}

FieldSet (3) {…}

}

Form (1) {

Image (1)

Text (1)

FieldSet (1) {…}

FieldSet (2) {…}

FieldSet (3) {

Button (1) /*Reset */

Button (2) /*Submit*/

}

}

Comparison and Knowledge

Extraction Process

New Knowledge:

Fact + Syntactic

Contextual

Information

Fact {

FieldSet (3) has change its position

Context {

From Form (1) => FieldSet (3)

To Form (1) => FieldSet (1)

Contents {Button(1), Button (2))}

Above {FieldSet(2),FieldSet(1), Text(1), Image(1)}

Below {null}

}

}

Expert Knowledge

Base

Rules + Facts

Concrete Elements

Concrete Elements

Figure 5. The process of building knowledge from detected user changes. The relations

among the abstract and concrete elements of the interface involved in the user

modifications are shown.

Figure 5 shows the structure of the logical specification of the original and the modified

XHTML pages obtained by the reverse engineering tool developed in our group. The

rectangles denote the modifications to the Reset and Submit buttons, involving moving

the buttons originally contained in FieldSet3 into FieldSet1. This change can be

regarded as a single one, since it involves a grouping of concrete interactors (in this case

composed through a Fieldset element). Then, the system extracts information about the

change and also about the syntactic context from the concrete presentation, identifying

where the change has been performed.

In our system, all rules and facts are coded in LISP. In the paper, for the sake of

readability, we provide a pseudo-code representation. In the example, the syntactic

knowledge is updated by a syntactic rule fired whenever a Fieldset changes, associating

the change to a specific user and platform and updating the existing information stored

in our expert system:

Rule {

 If change(FieldSet)

 Then update(FieldSet, to, from, contains, above, below, user,

 platform)

}

While facts are automatically generated by the system, rules have to be defined by the

expert system designer. However, the rules notation is flexible enough to allow for

general specification based on logical interface descriptions, so they may fire for a great

 14

deal of different elements and situations by defining them only once. In this example,

the information that the system updates by means of the previous rule is:

Assert {

 FieldSet(3) has changed its position

 Context {

 From Form(1) => FieldSet(3) 1

 To Form(1) => FieldSet(1) 2

 Contents {Button(1), Button(2)} 3

 Above {FieldSet(2), FieldSet(1), Text(1), Image(1)} 4

 Below {null} 5

 }

 (user (user_name)) 6

 (platform (platform_name)) 7

}

This information refers mainly to the fact that a Fieldset has changed its position for a

given user and platform, reflecting (1) which concrete composition operator is involved

in the change (a FieldSet in a Form), (2) what concrete composition operators it has

been changed to. Likewise, the fact indicates also the elements (3) inside the Fieldset:

Button(1) which is the Reset button and Button(2) which is the Submit button,

(4) the list of the concrete interactors positioned above before the change, (5) the list of

the concrete interactors positioned below before the change (in this case there was

nothing below), and finally the user (6) and the platform (7) involved in this change.

Semantic knowledge is also generated to reflect the presentation context of the change.

This information will be generated by a specific rule, fired whenever a syntactic change

occurs and the modification is updated in the expert system:

Rule {

 If update(FieldSet)

 Then generate_presentation_context(FieldSet)

)

This rule calls a function (generate_presentation_context) that extracts

contextual information for the previously modelled syntactic change. One of the

principal concerns here is to transform syntactic information already inferred into

semantic information. To this end, the corresponding abstract elements are taken into

account. This way, by analysing the previous information about the syntactical change

on a Fieldset, the information that is finally generated by the previous function at the

semantic level can be represented by the following presentation context:

Presentation_Context {

 (Change_type (Movement))

 (from (Relation(FORM), Grouping(FIELDSET))

 (to (Relation(FORM), Grouping(FIELDSET))

 (Contents (Activator(SUBBUT), Navigator(RESBUT))

 (above (Grouping(FIELDSET), Grouping(FIELDSET), Text(TEXT),

Description(IMAGE))

 (below (null))

}

The presentation context is defined in terms of abstract elements that are taken from the

abstract description of the page considered. To this end, a key concern is to identify

interactors and composition interactors surrounding the change, as well as the relation

with the concrete elements for further disambiguation. The function

generate_presentation_context also detects (by using syntactic context)

what kind of change is performed (movement, deletion, insertion). In this case, the

 15

system has inferred a change that involves a movement from one grouping (the last one)

to another one (the first one). The abstract elements moved are an activator and a

navigator interactors, and the context (see above) is composed of different composition

operators and interactors. This elicited high-level information is useful for the expert

level to carry out generalizations that can be applied as customization rules more than

once. In general, the semantic level attempts to construct the suitable knowledge for

dealing with complex reasoning. In the example “the user seems to prefer the form

buttons appearing on the top” can be carried out. This knowledge can be constructed by

associating the contextual presentation information with the user change. In order to

detect whether a user change corresponds to a certain context, a similarity percentage is

calculated in the matching process. Thus, the semantic customization rules are

associated with the corresponding presentation contexts.

We have a general function called ContextMatching, which identifies when two

different presentation contexts are similar. Let PC1 and PC2 be two different

presentation context sets (a set is composed of various interface elements that define the

presentation context). ContextMatching(PC1,PC2) can be defined as:

%70
21

100*21

%70
21

100*21

)2,1(

PCPC

PCPC
iffalse

PCPC

PCPC
iftrue

PCPCchingContextMat

In a nutshell, this heuristic calculates the number of presentation context elements (such

as interactors, their positions and attributes) that show differences between one set

(PC2) and a reference set (PC1). To this end, a percentage ratio is calculated and

afterwards used as a comparative numerical value. We have determined that a 70% of

similarity is enough to consider that the current presentation context matches the

reference presentation one, which is associated with a customization rule. This is an

empirical threshold that we have estimated by analyzing different examples and cases of

use, and it has shown to work well in most of the cases that we have addressed. Initially,

we considered a 50% threshold, which was quite a risky percentage for a great deal of

the experiments we made.

Though it cannot be considered exhaustive, the matching operator provides a good

heuristic in order to obtain a useful numerical result for comparing different contexts

and identifying possible similarities.

Figure 6 shows an example, where two different presentation contexts (PCA and PCB)

are compared with a reference context (RC) which may be extracted from the

knowledge base; presentation contexts can be stored in the knowledge base as any other

knowledge and thus they can even be created by designers. The results from the

comparison are 91% coincidence for the first case and 82% for the second, which is

sufficient to state a similarity of contexts. The first example (on the left) is the example

of a previously presented form. The second example (on the right) is another

presentation containing a Web form with different object distribution. In this case, the

reference for comparison is a form-like context that can be represented by the logical

descriptions appearing inside the dotted-square (denoted by RC) in Figure 6. In

comparing both presentation contexts, a set is calculated. It represents the following

information:

}12|{ PCxPCxx

 16

This set contains the elements of PC2 that are not in PC1. In the example in Figure 6,

only one element differs significantly in the left Web form (Description(IMAGE))

and two in the right one (Description(IMAGE), Navigator(LINK)). This

way, the results of the matching process for PCA and PCB with respect to the reference

context RC is:

ContextMatching(RC,PCA) = true (91%)

ContextMatching(RC,PCB) = true (82%)

The results obtained for these presentation contexts (both above 80% of similarity)

imply that changes in moving buttons on the top of the form can be generalized and

applied to both contexts by the same expert rule.

PCA {

(Change_type (Movement))

(from (Relation(FORM), Grouping(FIELDSET))

(to (Relation(FORM), Grouping(FIELDSET))

(Contents (Activator(SUBBUT), Navigator(RESBUT))

(above (Grouping(FIELDSET), Grouping(FIELDSET),

Text(TEXT), Description(IMAGE))

(below ())

}

PCB {

(Change_type (Movement))

(from (Relation(FORM), Grouping(FIELDSET))

(to (Relation(FORM), Grouping(FIELDSET))

(Contents (Activator(SUBBUT), Navigator(RESBUT))

(above (Grouping(FIELDSET), Text(TEXT),

Description(IMAGE), Description(IMAGE))

(below (Navigator(LINK))

}

|RC PCA| = 10 Elements

|RC PCA| = 11 Elements
= 91%

= {Description(IMAGE)}

RC {

(Change_type (Movement))

(from (Relation(FORM), Grouping(FIELDSET))

(to (Relation(FORM), Grouping(FIELDSET))

(Contents (Activator(SUBBUT), Navigator(RESBUT))

(above (Grouping(FIELDSET),Text(TEXT))

(below ())

}

= {Description(IMAGE), Navigator(LINK)}

|RC PCB| = 09 Elements

|RC PCB| = 11 Elements

10·100

11

09·100

11
= 82%

PCA {

(Change_type (Movement))

(from (Relation(FORM), Grouping(FIELDSET))

(to (Relation(FORM), Grouping(FIELDSET))

(Contents (Activator(SUBBUT), Navigator(RESBUT))

(above (Grouping(FIELDSET), Grouping(FIELDSET),

Text(TEXT), Description(IMAGE))

(below ())

}

PCB {

(Change_type (Movement))

(from (Relation(FORM), Grouping(FIELDSET))

(to (Relation(FORM), Grouping(FIELDSET))

(Contents (Activator(SUBBUT), Navigator(RESBUT))

(above (Grouping(FIELDSET), Text(TEXT),

Description(IMAGE), Description(IMAGE))

(below (Navigator(LINK))

}

|RC PCA| = 10 Elements

|RC PCA| = 11 Elements
= 91%

= {Description(IMAGE)}

RC {

(Change_type (Movement))

(from (Relation(FORM), Grouping(FIELDSET))

(to (Relation(FORM), Grouping(FIELDSET))

(Contents (Activator(SUBBUT), Navigator(RESBUT))

(above (Grouping(FIELDSET),Text(TEXT))

(below ())

}

= {Description(IMAGE), Navigator(LINK)}

|RC PCB| = 09 Elements

|RC PCB| = 11 Elements

10·100

11

09·100

11
= 82%

Figure 6. Matching process for detecting presentation context similarities in two

different presentations. The contexts to compare (PCA and PCB) are showed, as well as

the process of identifying similarity.

All this knowledge can be used afterwards in order to define future semantic

customization rules. This way, if a semantic customization rule is fired by the expert

system a certain number of times (3 or more, in this case), this rule will be active

whenever a form is generated for this user and for the platform s/he is using for

navigating through the application. In order to apply the rule correctly, the contextual

presentation information will be considered.

This way the semantic customization rule can be specified as:

Semantic_Customization_Rule(element, current_context) {

If Change(element)

And

 17

 ContextMatching(reference_presentat_context,current_context)

 And

 This rule has been activated more than 2 times

Then

 Render_Form (element) /* element will be rendered first */

}

This customization rule drives the modifications of the Web pages for future access. It

is specified in the user profile and can be activated or deactivated by using the

NOTORIOUS application.

The advantage of using presentation context becomes evident when expert rules, as the

previously discussed, need to be defined. Since presentation contexts are constructed

from the first levels of the knowledge structure, semantic customization rules can be

defined using abstract and domain-independent concepts, mostly focusing on what the

rule is expected to do considering a concrete context:

IF ChangeN Occurs In ContextM

THEN Act like this: ...

Not all the expert rules need presentation context to be considered. Some syntactic

customization rules can be constructed using only syntactical information, dealing with

concrete interactors and concrete composition operators. They concern changes to

attributes such as font colour, font size, background colour and so on. These changes

will be modelled in the system as described above, but in this case, presentation context

is no longer needed. This way we can define flexible syntactic customization rules,

taking into account concrete user-interface information and syntactic context previously

generated by the system:

Syntactic_Customization_Rule(element) {

If Change(element)

 This rule has been activated more than 2 times

Then

 element will be considered for customizing future nomadic

 applications

}

6. User Evaluation and Discussion

In order to receive some empirical feedback for the method proposed, we have carried

out a user evaluation. Concretely, the principal objectives of the evaluation were:

- Test the system with real users.

- Evaluate the rules programmed and how they reacted.

- Analyse user interactions and detect meaningful customizations and expert rule

activations.

- Populate the expert system with new knowledge to be considered in future user

sessions.

In the test, we used an existing Web application generated by the TERESA tool (Mori et

al., 2004). The application consisted of several pages about The Marble Museum of

Carrara. We asked users to modify the museum application in order to express their

preferences, and then analyse the response from our intelligent environment.

 18

6.1 The example used

The Marble Museum of Carrara is a nomadic application. Different versions have been

generated for different platforms (mobile, PDA, voice, desktop) through a model-based

environment. Although our approach supports different platforms, we based our user

test on evaluating the desktop version of the application as the most common platform

used by end-users. On the other hand, the desktop platform allows end-users to carry

out more expressive modifications, which can provide useful information for

customization. The structure of the test Web site includes the typical navigation and

presentation structure of many Web pages. The museum site is a large application with

hundreds of pages, but during the test users needed to access only a part of it.

Figure 7 shows some screenshots of the museum application for a desktop platform.

These pages include a great variety of interface components that can be used to infer

syntactic and semantic changes and to automatically activate expert rules. Presentation

elements and their corresponding types are described in Table 1.

 Abstract Concrete

Interactors Descriptions

Navigators

Texts

Text and Numerical Edits

Single Selections

Activators

Images

Links and Buttons

Files

Text Fields

Radio Buttons and Lists

Reset Buttons

Composition Operators Groupings

Relations

FieldSets and Columns

Forms

Table 1. Abstract and concrete elements included in the desktop museum application

that are grouped into interactors and composition operators.

As indicated in previous sections, abstract and concrete elements are used to setup the

knowledge base and create facts and rules that react to user modifications. Such

different semantic levels are useful to distinguish between semantic and syntactical

changes.

 19

Figure 7. Some screenshots of the museum application used for the user evaluation.

Considering the application and, more concretely, the conceptual levels of the interface

elements depicted in Table 1, the expert system contained different kinds of expert rules

that can be divided into syntactic and semantic customization rules. In particular, the

expert rules specified for the user evaluation can be summarized as follows:

- Syntactic customization rules

o Concrete interactors

 Detecting text font colour and size preferences

 Detecting image attribute preferences

 Detecting background colour preferences

 Detecting button attribute preferences

 Detecting attribute preferences on links and graphical links

o Concrete composition operators

 Detecting form attribute preferences

 Detecting Fieldset attribute preferences

 Detecting column attribute preferences

- Semantic customization rules

o Interactors

 Detecting transformations of different kinds of interactors

 Detecting deletions of interactors inside a grouping

 Detecting insertion of interactors inside a grouping

o Composition operators

 Detecting transformation of different kinds of composition

operators

 Detecting movement of interactors from one composition

operator into another

 Detecting hierarchy preferences

 Detecting ordering preferences

 20

 Detecting navigational preferences

The expert system included a total of 14 syntactic customization rules and 10 semantic

ones that were activated according to the modifications achieved by end-users.

6.2 Experimental procedure

For this user test, we recruited 11 participants from our institute, all of them having

heterogeneous scientific backgrounds. Post-study interviews revealed that only 3

participants had strong Web programming experience. The rest of the participants’

experience was limited to navigating, creating and modifying simple Web pages by

using diverse Web authoring tools. Participants were 4 females and 7 males with ages

between 25 and 40.

The test was individually performed by each participant in her/his office. It consisted of

the following steps:

1) Initially, for about 5 minutes, each user received basic explanations on the

system, test goals and the task to accomplish - i.e. providing sample

modifications of the desktop version of the museum application in order to

indicate their preferences.

2) Then, each user was provided with the URL of the museum application. All

participants had unlimited time to navigate through the application and, using

the preferred authoring tool available on their computers, made modifications to

anything they thought it could be improved.

3) Next, each user uploaded the modified application pages using the

NOTORIOUS (Nomadic TailORIng On an end-User Server) environment. A

user profile for each user was previously created with the aim of recording the

activity and the customization rules inferred. NOTORIOUS is a specialized Web

environment through which the user can send modified (X)HTML pages and

also access his personal profile to see the changes and manipulate high-level

rules inferred by the system. To this end, the user must log in (see Figure 8,

screenshot 1). Next, the system presents the personal information and the rules

inferred (see Figure 8, screenshot 2). Internally, the back-end of NOTORIOUS

generates the UIDs of the original and the modified page, compares them,

provides the user with comprehensive feedback and populates the expert system

with suitable information about the user’s modifications.

4) Lastly, each user was requested to fill in a questionnaire based on the Perceived

Ease of Use (Davis, 1989).

After the user session, the system’s behaviour was analysed using the NOTORIOUS

activity logs. In addition, the results from the questionnaire were also processed to

compare the outcome of every user session with the user’s perception about the system.

 21

Login InformationLogin Information

Rules Inferred by

The System

(can be either turned

on or off by end-user)

Rules Inferred by

The System

(can be either turned

on or off by end-user)

End-User InformationEnd-User Information

Current Platform

(Desktop)

Current Platform

(Desktop)

Previous version of

the CUI

(before changes)

Previous version of

the CUI

(before changes)

New version of the

CUI

(after changes)

New version of the

CUI

(after changes)

HTML File

Uploading

HTML File

Uploading

Login InformationLogin Information

Rules Inferred by

The System

(can be either turned

on or off by end-user)

Rules Inferred by

The System

(can be either turned

on or off by end-user)

End-User InformationEnd-User Information

Current Platform

(Desktop)

Current Platform

(Desktop)

Previous version of

the CUI

(before changes)

Previous version of

the CUI

(before changes)

New version of the

CUI

(after changes)

New version of the

CUI

(after changes)

HTML File

Uploading

HTML File

Uploading

Figure 8. The NOTORIOUS user interface, which allow users to control rule activation,

upload new Web-page modifications and see the changes made.

6.3 Results and discussion

Since the test was carried out directly at the computer of each user, one interesting

aspect was to see what kind of navigation and Web authoring tools each user used to

navigate throughout the Web application and make modifications. Figure 10 shows the

percentage rate of (a) navigation and (b) authoring tools used during the test.

Navigation Tools Used

Microsoft

Internet

Explorer

45%

Mozilla

Firefox

55%

Authoring Tools Used

Macromedi

a

Dreamwea

ver

46%

Visual

Studio

9%

Microsoft

Word

9%

Front Page

18%

Windows

Noteblock

18%

Figure 9. Navigation (a) and authoring (b) tools used by every user to achieve the test.

During the test, users had freedom enough to utilize the tools they preferred.

Some measurements of the duration of the user sessions are presented in Table 2. As

shown, the average time was about 25 minutes. We initially estimated the individual

total time needed to carry out the modifications in about 30 minutes. In general, the time

taken by each user depended on the changes accomplished. While some users decided to

 22

make some in-depth changes affecting the navigational Web structure or moving

interactors from one page into another, others considered only some easy changes

concerning syntactic modifications to style, colours and so forth.

 Time in Minutes

Max 38

Min 16

Mean 25

Deviation 8

Table 2. Time spent by users in carrying out the test. Max, Min, Mean and Deviation

values are provided in order to have an idea of the time consumed.

During the test, different system outputs were also observed, and a detailed report was

additionally obtained from each user session. It was interesting to measure the number

of changes made by each user, as well as the response of the expert system in terms of

number of facts generated and the number of rules activated in response to the user’s

changes. Figure 10 presents the correlation between the number of changes, the facts

generated and the rules activated for each user. At first sight, it seems clear that the

more changes made the more facts and rules activated. However, this correlation is not

always as linear as one could expect, since it mostly depends on the complexity of the

changes performed. In the case of user #2, one can see that the number of changes is

lower with respect to other users, but the number of facts and rules activated is higher.

This is due to the fact that user #2 made a total of 9 changes but all involving complex

tasks, that is, moving interactors, changing the navigational structure of the page,

transforming composition operators and so on. This produced a high number of facts

that had to be specified in terms of syntactic information and semantic presentation

context. In addition, the rules that had to deal with such changes were even more

complex than trivial syntactic ones, so that a chain of rules was activated. By contrast,

users #8 and #11 carried out a high number of changes (23 and 26, respectively) that

generated a higher number of facts (57 and 72, respectively) created by the system, as

well as a high rate of rule activations (32 and 42, respectively). In these cases, most

changes were syntactical, so the response of the system was quite proportional to the

type and number of changes carried out by these users. In conclusion, it is possible to

affirm that the response of the system is linear as long as the user’s changes do not

involve complex structural changes. Anyway, this aspect does not affect our system’s

performance and throughput.

 23

Changes by Users, Rules Activated and Facts Created by the System

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

User #

A
c
ti

v
a
ti

o
n

s

Changes Made Rules Activated Facts Created

Figure 10. The system’s response to user changes. The number of changes, rules

activated and facts created is shown for each user.

The activations showed in Figure 10 represent the total rule activations during the user

sessions, which means that they include internal and permanent rule activations. Internal

rules are those automatically fired by the system as a consequence of fact and rule chain

activations and depend exclusively on the expert system. To have a clear idea about

what kind of rules have been activated, it can be useful to compare for each user the

number of both pending and permanent rule activations. Figure 11 shows such

information, where internal rule activations have been omitted and only the ratios of

pending and permanent expert rule activations have been considered. As explained in

previous sections, the permanent rules are those that have been triggered more than

twice, whereas the pending rules are those that have been identified at least once but

less than three times. As explained, expert rules involve both syntactic and semantic

customization rules. It is worth noting in Figure 10 that most expert rule activations

correspond to pending syntactic customization rules associated with syntactical

changes. These activations trigger permanent customization rules only when they are

fired more than twice. Additionally, there were activations of pending semantic

customization rules (for users #1 and #2, basically) that later were turned into

permanent preferences.

All pending rules remain in the system as a basic knowledge that will be taken into

account for future customization. That is a key point for the system in order to infer

similar changes on similar context, which can be useful to detect the same changes on

different presentations. In essence, Figure 11 reflects that, although some semantic

customization rules have been activated as response to user actions, most user changes

concern syntactic modifications that in some cases are transformed into permanent

syntactic customizations later on.

 24

Pending and Permanent Expert Rule Activation

0% 20% 40% 60% 80% 100%

1

3

5

7

9

11

U
s

e
r

#

Pending Syntactic Customization Rules Permanent Syntactic Customization Rules

Pending Semantic Customization Rules Permanent Semantic Customization Rules

Figure 11. Expert rule activation ratio for each user in terms of pending and permanent

activations for both syntactic and semantic customization rules.

Syntactic Customization Rule Activation

0

2

4

6

8

10

12

B
ac

kg
ro

un
d C

ol
or

B
ac

kg
ro

un
d Im

ag
e

Fie
ld
se

t A
lig

nm
en

t

Fie
ld
se

t C
ol
or

G
ra

ph
ic
al
 L

in
k
A
lig

nm
en

t

Im
age

 J
ust

ifi
ca

tio
n

Im
age

 S
iz
e

S
in
gl
e

S
el
ec

tio
n

A
lig

nm
en

t

Tex
t C

olo
r

Tex
t H

elp
 A

dd
iti
on

Tex
t J

ust
ifi
ca

tio
n

Tex
t S

iz
e

Tex
t S

ty
le

Tex
tu

al
 C

on
te

nt
 M

odi
fic

at
io
n

A
c
ti

v
a
ti

o
n

s

Pending Activation Permanent Activation

Figure 12. Number of occurrences of each syntactic customization rule and the kind of

change carried out by users during the test for both pending and permanent rules.

Besides the rate of expert rule activations, we also measured the kinds of rules inferred

for each user. Figure 12 shows the number of instances (pending and permanent ones)

for each of the 14 syntactic customization rules. It is worth noting in Figure 12 that the

rules most often activated were those concerning “text size” and “text style”. These two

rules had a high rate of both pending and permanent instances. The number of

permanent activations for some syntactic customization rules such as “Fieldset colour”,

“text colour” and “text help addition” was higher than for the pending ones.

 25

Semantic Customization Rule Activation

0

1

2

3

4

5

6

7

8

G
ro

up
in
g A

dd
-o

n

G
ro

up
in
g M

ov
em

en
t

G
ro

up
in
g T

ra
ns

fo
rm

atio
n

In
te

ra
ct
or M

ove
m

ent

N
avi

ga
tio

nal
 P

re
fe
re

nc
e

P
ag

e
D
esc

rip
tio

n
D
el
etio

n

S
in
gl
e

S
el
ec

tio
n

E
le
m

en
t D

el
et

io
n

A
c
ti

v
a
ti

o
n

s

Pending Activation Permanent Activation

Figure 13. Number of activations of each semantic customization rule and the kind of

change carried out by users during the test for both pending and permanent rule

activation.

On the other hand, Figure 13 shows the activations for different semantic customization

rules, which are less than the syntactic ones. In this case, the higher rate corresponds to

the semantic customization rules concerning “grouping add-on”, used to detect when the

user decides to insert o create new interactors in a grouping of interactors. Grouping

transformations have also been detected by our system, in a lower rate. As shown in

Figure 13, only a couple of pending semantic customization rules has been turned into

permanent ones. As for the rest of the semantic customization rules, only pending

activations have been detected.

Generally speaking, the number of syntactic customization rules greatly overcomes the

number of semantic ones. This is due to the fact that syntactical aspects are easier to

modify and have an immediate impact on the user’s perception. Concretely, this fact

reflects that most changes made by users were related to syntactic modifications such as

changing font style, size, colour, text justification, and so on. Figure 14 shows that 80%

of activations corresponded to syntactic customization rules and only 20% to semantic

ones. As for the syntactic customization rule activations, 64% were considered pending

whereas only 36% were permanent. With respect to semantic customization rules, only

9% of activations were permanent and by contrast 91% were pending.

 26

Type of Expert Rule Activated

0

10

20

30

40

50

60

70

Activations

Pending Activation 58 21

Permanent Activation 32 2

Syntactic Customization Rules Semantic Customization Rules

Figure 14. Comparison of expert rules activated during the user test, showing both

permanent and pending activations over the total of rules activated.

The results obtained from the system for each user helped us evaluate what changes

were considered relevant as well as to detect meaningful preferences to populate the

expert system with domain-independent customizations. In addition to these outcomes,

the perception of the user was also considered in order to have feedback regarding the

ease of use of the environment. To this end, we requested each user to fill in a

questionnaire to evaluate the perceived ease of use of our system. The questionnaire

consisted of 6 questions targeted at evaluating the ease of use. The range of the answers

were from 1 to 7, that is, 1) Absolutely Disagree, 2) Disagree, 3) Not Very Agree, 4)

Indifferent, 5) Agree, 6) Very Agree, 7) Absolutely Agree and NA (No Answer).

Additionally, the questionnaire comprises a free-answer part where the user can freely

express other issues related to the system and the test.

Table 3 summarizes the result obtained for the evaluation of the perceived ease of use of

the system. In general terms, users found the explicit mechanisms simple in comparison

to the support that the system provides. Opinions extracted from the questionnaire

denoted how users perceived the implicit expressiveness in modifying a great deal of

Web pages using any authoring tool available and then easily uploading them into a

system that produces customizations automatically. Additionally, diverse opinions

collected from the free-answer part of the questionnaire revealed useful areas of

applications for the approach, suggesting the idea of applying the system to tedious

daily user tasks such as automatically modifying Web sites and blogs just making

minimal changes to a couple of pages. In this regard, end-users found useful the feature

by which the system obtains meaningful preferences that will be applied automatically

later on in the design of other similar applications.

 27

 Answer

Question

1 2 3 4 5 6 7 NA

Learning to operate the system

would be easy for me

0% 0% 0% 9% 27% 9% 55% 0%

I would find it easy to get the

system to do what I want it to do

0% 0% 0% 27% 0% 55% 18% 0%

My interaction with the system

would be clear and understandable

0% 0% 0% 10% 20% 30% 40% 0%

I would find the system to be

flexible to interact with

0% 0% 9% 0% 27% 27% 37% 0%

It would be easy for me to become

skilful at using the system

0% 0% 0% 9% 18% 36% 37% 0%

I would find the system easy to use 0% 0% 0% 9% 27% 27% 37% 0%

Table 3. The users’ perceived ease of use was analysed by taking into account the

questionnaire filled in after the experiment. Answers ranged from 1 (absolutely

disagree) to 7 (absolutely agree) and NA (no answer).

In essence, the results obtained from this questionnaire fulfil our expectations. They

provided us with positive empirical feedback indicating that it is possible to reduce the

complexity of customization and reach a trade-off between expressiveness and easy of

use in end-user development mechanisms.

7. Conclusions

Customization of software artefacts is everyday more a common practice carried out by

end-users in their daily activities (Klann, 2003). However, such practices require the

accomplishment of tasks that are too difficult complex for most end-users. This is

mainly due to the fact that authoring environments require manipulating programming

languages and abstract specifications, as it occurs when customizing interactive

applications.

An interesting study by Rode and Rosson (2003) revealed that although much progress

has been made by commercial development tools, most of the tools that they reviewed

did not lack functionality but rather ease of use. Rode and Rosson explored many

different paths, including extensions to development tools, finding the inflexibility in

controlling the users’ workflow as the main hindrance to adopting these approaches.

Currently, none of the commercial tools that they reviewed would work without major

problems for the non-professional Web developer.

Commercial applications generally lack support to carry out customization of Web

applications. Several researchers have sought to reduce the learning burden by creating

design environments that do not require users to program per se. Rather, they design by

instructing the machine to learn from examples (Lieberman, 2001) or by interacting

with graphical micro worlds representing real domains. Our approach follows such

guidelines and supports an easy mechanism based on Programming by Example

techniques, where the user provides the system with changes (example of what s/he

want to change) and the system generates customizations that will be applied

automatically to the pages available for future access, thus minimizing the amount of

authoring needed. Instead of enforcing end-users to make use of programming

languages and complex specifications, our system carries out Web customization

 28

automatically by extracting meaningful information from the user’s changes that will be

stored in a profile and used to support future sessions.

We populate the knowledge base using logical user interface descriptions that provide

domain-independent information, which can be applied to other applications. Often,

expert systems are traditionally used to work on concrete problems, since knowledge is

created considering information of a specific domain. We overcome such limitation

using different levels of knowledge, creating mappings between them and the

conceptual levels associated with the user interface (Puerta and Eisenstein, 1999). This

allows our intelligent environment to carry out inference at different levels of

abstraction (syntactic, semantic), activating rules and populating the expert system with

different knowledge depending on the changes that the user accomplishes.

We have carried out a first user test, which has provided us with useful information to

analyse the real behaviour of the intelligent system. For example, it was interesting to

observe that most of the users’ changes were syntactic, rather than semantic. However,

semantic rules imply deeper modifications of the application, in particular to the tasks

supported and how to accomplish them. Even if they may be less frequent than syntactic

modifications, they can be very important for end users whenever they do not feel that

the semantics of the application is satisfactory. Additionally, pending and permanent

rule activations helped us check the suitability of the knowledge structure proposed for

our intelligent approach, taking intro account the user’s changes and analysing the way

the system reacted to them. After the experiment, we informally presented the rules to

the users with the aim of corroborating whether the inferred knowledge corresponds to

their customization preferences or not. However, this knowledge was not applied to

other Web applications, although the information reported, together with the

questionnaire filled in by users, provided positive feedback regarding users’ expectation

and ease of use.

Although the intelligent mechanism here proposed is general enough for any kind of

platform, for this first user study only desktop applications were considered. Since

desktop computers are likely to be available at the user’s commonplace work places,

most end-users prefer desktop platforms to work and carry out authoring tasks. On the

other hand, desktop authoring allows users to carry out far more expressive

modifications that can provide further information regarding the authoring process.

Nevertheless, modifying a mobile or PDA Web application by our system is certainly

possible as long as there is an existing authoring tool to achieve such a task. The

procedure is quite the same, since the user only has to make the changes and then send

them to the server in order to be processed by our system. Modifying a mobile or PDA

Web application from a desktop navigator is also possible, but probably this is such a

less common task.

In our system, inferred information can be used to activate more general rules that can

be triggered when the same modifications occur for more than one user. For example, it

is possible to define general rules such as “If activation X is converted from pending

into permanent for at least N users, then this rule can be included in every user profile as

a general preference”. This information is easy to obtain by our approach, since the

expert system can be regarded as a database where new knowledge can be added and

queries can be executed in order to mine the desired information from the knowledge

stored. Additionally, other expert rules can be defined to detect problems concerning

page design. For instance, it is possible to specify rules for detecting whether a change

to a concrete element is carried out many times by different users, which could imply

that some design problem may exist.

 29

With regard to future work, we expect to improve the front-end part of our tool (i.e. our

user interface) further. So far, NOTORIOUS enables end-users to see changes and

switch on and off rule activation with the aim of being applied (or not) in future

sessions. However, pending rules are turned into permanent only by the system

whenever they have been detected at least three times depending on user modifications.

Users cannot control the inference directly. Instead, the system carries out the best

inference possible. A new improvement could consist of making rather interactive the

inference process with respect to the possibility of allowing users to explicitly control

rule transformations. Additionally, we plan to improve the system to detect more

sophisticated customization cases, using the information already available in our expert

system. This way, we expect to create general rules able to identify complex design

problems that can be fixed automatically. In addition, an interesting add-on would

consist in providing a specific tool for allowing users to easily author rules in our

knowledge base. We also plan to carry out more in-depth tests on other Web

applications by exploiting the previous inferred knowledge and including users

interacting with other platforms (PDA, mobile, etc.).

Acknowledgements

The work reported in this paper is supported by the European Training Network

ADVISES (Analysis Design and Validation of Interactive Safety-critical and Error-

tolerant Systems), funded through the European Commission. Project number EU

HPRN-CT-2002-00288.

References

R.Bandelloni, F. Paternò, C. Santoro, Reverse Engineering Cross-Modal User Interfaces for

Ubiquitous Environments, Proceedings EIS’07, Salamanca, LNCS Springer Verlag, March

2007.

Berti, S., Correani F., Paternò, F. and Santoro, C., (2004). The TERESA XML Language for the

Description of Interactive Systems at Multiple Abstraction Levels, Proceedings Workshop

on Developing User Interfaces with XML: Advances on User Interface Description

Languages, May 2004, pp.103-110.

Berti, S., Paternò, F. and Santoro, C. (2006). Natural Development of Nomadic Interfaces Based

on Conceptual Descriptions. Lieberman, H., Paternò, F., and Wulf, V. (eds): End-User

Development. Human Computer Interaction Series. Springer Verlag, pp 143-160.

Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R.C. "Automation and Customization

of Rendered Web Pages." ACM Conference on User Interface Software and Technology

(UIST), 2005, pp 163-172.

Cypher A. (1993). Watch What I Do: Programming by Demonstration. The MIT Press.

Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of

Information Technology. MIS Quarterly, Vol 13, No. 3 (Sep. 1989), pp. 319-340.

Forgy, C. (1982). Rete. A Fast Algorithm for the Many Pattern/Many Object Pattern Match

Problem. Artificial Intelligent, 19, pp. 17-37.

Frank, M., Sukariviya, P., and Foley, J. (1995). Inference Bear: Designing Interactive Interfaces

Through Before and After Snapshots. In Proc of the ACM Symposium on Designing

Interactive systems. Ann Arbor, Michigan, August 23-25, pages 167-175.

JESS (2006). The Rule Engine for the Java
TM

 Platform. Http://herzberg.ca.sandia.gov/jess/.

Klann, M. (2003). End-User Development Roadmap. In Proceedings of the End User

Development Workshop at CHI Conference. Ft. Lauderdale, Florida, USA. April 5-10.

 30

Lieberman, H. and Liu, H. (2006). Feasibility studies for Programming in natural Language.

Lieberman, H., Paternò, F., and Wulf, V. (eds): End-User Development. Human Computer

Interaction Series. Springer Verlag, pp 459-474.

Lieberman, H., Liu, H., Singh, P. And Barry Barbara (2004). Beating Common Sense into

Interactive Applications. Artificial Intelligence Magazine. Volume 25(4), pp. 63-76. Winter.

Lieberman, H., Paternò, F., and Wulf, V. (eds) (2006). End-User Development. Human

Computer Interaction Series. Springer Verlag.

Lieberman, H. (2001). Your Wish is my Command. Programming By Example. Morgan

Kaufmann Publishers. Academic Press, USA.

Macías, J.A., Puerta, A. and Castells, P. (2006). Model-Based User Interface Reengineering.

HCI Related Papers of Interacción 2004. Jesús Lorés y Raquel Navarro (eds.). Springer-

Verlag Volume, pp 155-162.

Macías, J.A., and Castells, P. (2005). Finding Iteration Patterns in Dynamic Web Page

Authoring. Proceedings of the EHCI-DSVIS. Tremsbüttle Castle, Hamburg, Germany. July

11-13. Rémi Bastide, Philippe Palanque and Jörg Roth (Eds.). Lecture Notes in Computer

Science, Volume 3425, pp 164 – 178. Springer-Verlag.

Macías, J.A. and Castells P. (2004). An EUD Approach for Making MBUI Practical.

Proceedings of the First International Workshop on Making model-based user interface

design practical. CADUI. Funchal, Madeira, Portugal. January 13.

Mori, G., Paternò, F. and Santoro, C. (2004). Design and Development of Multi-Device User

Interfaces through Multiple Logical Descriptions, IEEE Transactions on Software

Engineering, August 2004, Vol.30, N.8, pp.507-520, IEEE Press.

Myers, B.A. (1998). Creating User Interfaces by Demonstration. Academic Press, San Diego.

Paternò, F. (2001). Model-Based Design and Evaluation of Interactive Applications. Springer

Verlag.

Puerta, A.R.; Eisenstein, J. (1999). Towards a General Computational Framework for Model-

Based Development Systems. Proceedings of the International Conference on Intelligent

User Interfaces (IUI). ACM Press, New York.

Repenning, A. and Ioannidou, A. (2006). What Makes End-User Development tick? 13 Design

Guidelines. Lieberman, H., Paternò, F., and Wulf, V. (eds): End-User Development. Human

Computer Interaction Series. Springer Verlag, pp. 51-85.

Rode, J., Rosson, M.B. and Pérez, M.A. (2006). End-User Development of Web Applications.

Lieberman, H., Paternò, F., and Wulf, V. (eds): End-User Development. Human Computer

Interaction Series. Springer Verlag.

Rode, J. and Rosson, M.B. (2003). Programming at Runtime: Requirements & Paradigms for

nonprogrammer Web Application Development. IEEE 2003 Symposium on Human-Centric

computing Languages and Environments New York, pp. 23-30.

Szekely P. (1996) Retrospective and Challenges for Model-Based Interface Development. DSV-

IS 1996: pp.1-27

