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Resumen

La presente tesis contiene resultados sobre andlisis armoénico diddico en distintos
contextos; proporcionando estimaciones a prior: para modelos diddicos de inte-
grales singulares. La exposiciéon de los resultados se divide en tres partes. En la
primera se caracterizan las medidas de Borel en R para las cuales la transformada
de Hilbert diddica asociada es de tipo débil (1,1). Sorprendentemente, la clase
de medidas obtenida contiene estrictamente a las medidas diddicamente doblantes
y estd contenida estrictamente en la clase de Borel. Se demuestra ademas que
la clase dual caracteriza el tipo débil (1,1) del adjunto de la transformada de
Hilbert diddica. La herramienta principal es una nueva descomposicién de Cal-
der6n-Zygmund vilida para medidas de Borel generales y de interés independi-
ente. Caracterizaciones andlogas del tipo débil (1,1) para operadores Haar shift
multidimensionales son obtenidas en términos de dos sistemas de Haar generaliza-
dos y no necesariamente cancelativos. Los paraproductos diddicos y sus adjuntos
figuran como casos particulares importantes. Por otro lado, es bien sabido que
operadores de Calderén-Zygmund con nicleos matriciales — incluso aquellos con
buenas propiedades de tamano y suavidad o cancelacién — carecen de estimaciones
en L, semiconmutativas para p # 2. En la segunda parte de la tesis se obtienen
estimaciones de tipo débil (1,1) de operadores perfectamente diddicos y, en general
para operadores Haar shift, en términos de una descomposicién fila/columna de la
funcién de partida. Se muestra también que operadores de Calderén-Zygmund gen-
erales satisfacen estimaciones de tipo H; — L1, que junto con estimaciones de tipo
Lo — BMO, implican estimaciones fila/columna en espacios L, semiconmutativos.
El enfoque presentado es aplicable a transformadas de martingala y paraproductos
con simbolos no conmutativos, para los que obtenemos estimaciones analogas. La
tercera parte estd dedicada a la generalizacién semiconmutativa de los resultados
obtenidos en la primera parte. Esto es, a la caracterizacién del tipo débil (1,1) de
operadores Haar shift definidos en términos de dos sistemas de Haar generalizados
adaptados a una medida de Borel y con simbolos conmutativos. Asi como en el
caso conmutativo, el principal recurso técnico es una version no conmutativa de la
descomposicién de Calderén-Zygmund introducida en la primera parte.






Abstract

This thesis is divided into three parts, each presenting results on dyadic harmonic
analysis in different settings. More specifically, it provides a priori estimates of
dyadic and singular integral operators in the non-doubling and semicommutative
frameworks. In Part I we characterize the locally finite Borel measures p on
R for which the associated dyadic Hilbert transform satisfy L'(u) — LY°°(u)
estimates. Surprisingly, the class of such measures is strictly bigger than the
standard class of dyadically doubling measures and strictly smaller than the whole
Borel class. We further show that a dual class characterizes the weak-type (1,1)
of the adjoint of the dyadic Hilbert transform. In higher dimensions, we provide a
complete characterization of the weak-type (1,1) of arbitrary Haar shift operators
— cancellative or not — written in terms of two generalized Haar systems, including
dyadic paraproducts. The main tool used in Part I is a new Calderén-Zygmund
decomposition valid for arbitrary Borel measures which is of independent interest.
On the other hand, it is well known that Calderén-Zygmund operators with
noncommuting kernels may fail to be L;,, bounded in semicommutative L,, spaces for
p # 2, even for kernels with good size and smoothness properties or having dyadic
cancellation properties. In Part IT we obtain weak-type (1, 1) estimates for perfect
dyadic Calderén-Zygmund operators associated to noncommuting kernels in terms
of a row/column decomposition of the input function. Analogous estimates are also
proved for arbitrary Haar shift operators. General Calderén-Zygmund operators
satisfy Hy — L1 type estimates. In conjunction with L., — BMO type estimates,
we get similar row/column L,, estimates. The approach here presented also applies
to martingale transforms and paraproducts with noncommuting symbols for which
we obtain analogous estimates. In Part III we obtain a complete characterization
of the weak-type (1,1) of commuting Haar shift operators in terms of generalized
Haar systems adapted to a Borel measure p in the semicommutative setting.
The main technical tool in our method is a noncommutative Calderén-Zygmund
decomposition that generalizes the Calderon-Zygmund decomposition used in the
first part.
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Prefacio

Las técnicas diddicas juegan actualmente un papel fundamental en andlisis
armonico. El origen del andlisis armonico diddico se remonta a los trabajos de
Hardy, Littlewood, Paley y Walsh entre otros. Algunos resultados en el drea
pueden ser contextualizados en la teoria de desigualdades de martingalas. Por
ejemplo, el maximal diadico y la funcién cuadrado diddica son casos particulares
del maximal de Doob y de la funcién cuadrado de Burkholder relativos a
filtraciones diddicas; siendo modelos relativamente simples del maximal de Hardy-
Littlewood y de funciones cuadrado. De manera andloga, las integrales singulares
— con la transformada de Hilbert como arquetipo — son modelizadas mediante
transformadas de martingala y paraproductos de martingala. Tales operadores son
representados en términos de operadores de diferencia de martingalas y esperanzas
condicionadas, por lo que potentes métodos probabilisticos pueden ser aplicados
al analisis de sus propiedades de acotacion. En el marco euclideo — y con
mayor generalidad en el contexto de martingalas relativas a filtraciones atomicas
— los operadores de diferencia de martingalas descomponen como una suma de
proyecciones de rango uno que son perfectamente localizadas, i.e., en proyecciones
de Haar. De esta manera, en el contexto euclideo, las transformadas de martingala
corresponden a operadores diagonales relativos al sistema de Haar. Este enfoque
puede ser extendido al considerar operadores compactos cuya representacién
matricial con respecto al sistema de Haar sea dispersa. Dichos operadores,
llamados operadores Haar shift, conforman una fuente rica de modelos de integrales
singulares.

La presente disertaciéon trata principalmente modelos didadicos y de Haar para
operadores y objetos cldsicos de andlisis armoénico. En particular, se estudiaran
las propiedades de acotacion de operadores Haar shift en distintos contextos. En
la siguiente seccion haremos un breve repaso de los conceptos basicos de andlisis
armonico diddico. En las secciones subsiguientes presentamos y discutimos los
resultados obtenidos durante el desarrollo de esta tesis.

Analisis armonico diadico clasico

En los ultimos anos, modelos diddicos han recibido una atencién considerable por la
comunidad matematica, debido principalmente a su utilidad en la resolucién de la
llamada conjetura As, que afirma que ciertos operadores satisfacen una estimacion

ix
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en L%(w) para todo peso w € As con constante que depende linealmente de la
caracteristica As de w. Técnicas de extrapolacion pueden luego ser empleadas
para obtener la dependencia 6ptima en la caracteristica A, para la estimacién en
LP(w) correspondiente. Este problema ha recibido una atencién creciente desde
su planteamiento por Buckley en [7] debido principalmente al trabajo de Astala,
Iwaniec y Saksman [1], en el cual demostraron que si el operador de Beurling-
Ahlfors satisface estimaciones 6ptimas en LP(w), se podrian entonces obtener
resultados de regularidad para soluciones de la ecuacién de Beltrami.

La solucion de la conjetura As para la funcién maximal fue obtenida por Buck-
ley en [7]. Wittwer probé la conjetura Ay para multiplicadores de Haar en una
dimension en [78]. La conjetura Az para el operador de Beurling-Ahlfors, la trans-
formada de Hilbert y las transformadas de Riesz fue demostrada por Petermichl
y Volberg en [65, 63, 64] (véase también [22]) mediante una representacién de
dichos operadores en términos de operadores Haar shift; obteniendo asi una res-
puesta positiva al problema propuesto en [1]. La conjetura para paraproductos fue
probada por Beznosova en [5] y por Cruz-Uribe, Martell y Pérez en [17] usando un
enfoque distinto. La solucion final de la conjetura Ay para operadores de Calderén-
Zygmund generales fue obtenida por Hytonen en [29]. Un ingrediente clave para la
demostracién final de la conjetura es que operadores de Calderén-Zygmund pueden
ser representados como una serie rapidamente convergente de operadores Haar shift
y paraproductos diddicos, resultado conocido como el teorema de representacion
de Hyténen. Este resultado estd estrechamente relacionado con el tratamiento de
Figiel [24] del teorema T'(1) y también con el trabajo de Beylkin, Coifman y Rokhlin
[4] y se basa en una descomposicién de operadores de Calderén-Zygmund obtenida
por Nazarov, Treil y Volberg en [57] para probar el teorema 7'(1) en espacios no
homogéneos. Sin embargo, el teorema de representaciéon de Hytonen difiere de las
descomposiciones obtenidas en [24, 4] en cuanto a que las series asociadas conver-
gen rapidamente tanto para operadores suaves como para operadores no suaves.
Dicha propiedad hace que el teorema de representacién de Hytonen sea un resul-
tado importante en si mismo, independientemente de su utilidad en la resolucién
de la conjetura As,.

Antes del novedoso trabajo de Petermichl en [62] los tinicos modelos diddicos
disponibles para integrales singulares eran los multiplicadores de Haar y los
paraproductos diddicos. En una dimensién estos operadores son de la siguiente
forma

Tof(x) = ar(f,hr)hi(z) v Tpf(z)=> (£l hr)hi(@).
Ie9 Ie9
Aqui, Z denota un cierto reticulo diddica en R, los simbolos a; son escalares
uniformemente acotados, p € BMOg, (f,hr) denota la forma [ f(2)h;(z)dx,
(f)r denota el promedio de f en I y hy es la funcién de Haar asociada a I € Z:
hr = m11/2(11 —1z7,).
Aqui, I_ y I, denotan los hijos diddicos izquierdo y derecho de I. Por supuesto, el
sistema de Haar {hs}7cs es un sistema ortonormal en L?(IR). Petermichl introdujo
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en [62] la transformada de Hilbert diddica, dada por la expresion

Hyf(x) =Y (f h)(hi_(x) = by, (2)).

Ie2

El hecho notable es que es posible recuperar la transformada de Hilbert prome-
diando Hy sobre reticulos diddicos aleatorios. Es gracias a este resultado que las
técnicas diddicas juegan actualmente un papel central en la teoria de estimaciones
con pesos, puesto que establece la pauta de “transferir” pruebas relativamente sen-
cillas del contexto diddico al continuo. Lacey, Petermichl y Reguera introdujeron
en [44] una clase de operadores a la cual pertenecen los multiplicadores de Haar
y la transformada de Hilbert diddica: los operadores Haar shift. Un operador de
Haar shift de complejidad (j, k) € Z2 es de la forma

ef(e) =Y Arf=> > ajr(f,h)hx(@),

S 1€9 Je2;(I)
KE.@k( )

donde Z;(I) denota la familia de los j-ésimos descendientes diadicos de I, es decir,
los elementos de la particion de I en subintervalos J € & de longitud ¢(J) =
2774(J). De esta manera, los multiplicadores de Haar y la transformada de Hilbert
diddica son operadores Haar shift de complejidad (0,0) y (0,1). Usualmente se

restringe la atencién a operadores cuyos simbolos a§ i satisfacen la normalizacién
.

1] < V]

J,K ’I| ’

lo que garantiza que II; 1. sea un operador contractivo en L? Yy que sus componentes
localizadas Aj sean contractivas en LP para 1 < p < oco. Si en la definicién
de operador Haar shift se permite también el uso de funciones caracteristicas
normalizadas en L? — i.e. |I|7'/?1; para I € 2 — como bloques constituyentes de
operadores diadicos, se obtiene la clase de operadores Haar shift no cancelativos,
una clase de operadores diddicos que incluye los paraproductos didadicos y los
paraproductos adjuntos

I f(x) = D (f ha)(p, hi) = 1r(z)

1€z e

como operadores de complejidad (0,0). Sin embargo, al considerar funciones
caracteristicas se pierde ortogonalidad por lo que la acotacién en L? es no trivial,
requiriendo de teoremas parecidos al teorema de encaje de Carleson. Por esta
razén la acotacién en L? de operadores Haar shift no cancelativos es por lo general
asumida.

Los operadores Haar shift no cancelativos también incluyen a la clase de
operadores dispersos positivos introducida por Lerner en [45], donde proporciona
una prueba alternativa y mas elemental de la conjetura As. Su demostraciéon se
basa en el notable hecho de que la norma de un operador de Calderén-Zygmund en
un reticulo de Banach es dominada por la norma de una combinacién de operadores
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dispersos positivos. Mas todavia, dicho control por operadores dispersos positivos
es puntual como se demuestra en [15, 43]. Los operadores dispersos positivos vienen
definidos por

SF@) = (foli(z)

1eS

donde IU) es el ancestro diddico j-ésimo de I y S C 2 denota una familia dispersa
de intervalos diddicos en el sentido que para todo I € S se tiene que

1
S

Jea (I)NS

Es facil ver que los operadores dispersos positivos son operadores Haar shift de
complejidad (j,0) con coeficientes dados por

|J|1/2

o =4 1117

0 de otro modo.

si IeS

El tipo débil (1,1) sin pesos de operadores Haar shift juega un papel esencial
en ambos métodos de prueba de la conjetura As — ya sea por aproximacién o
dominacién. Explicitamente se requiere que

Az e R |k f(2)] > A < Cll @),

donde la constate C s6lo depende de la complejidad (j, k) del operador de manera
lineal o incluso polinomial. Por supuesto, la acotaciéon en LP para 1 < p < o0
se obtiene como corolario usando los argumentos de interpolacién y dualidad. El
tipo débil (1,1) de operadores diddicos se obtiene utilizando la descomposicién de
Calder6n-Zygmund estdndar como en [17, 29, 44]. Repasemos brevemente esta
técnica. Dada f € L'(R) y A > 0, consideremos el conjunto de nivel

QA:{xeR:M@f(x) >>\}=UQ¢7

f)ry {Q:}i es la familia de
cubos diddicos maximales asociada a §2). Entonces f descompone como f = g+ b,

donde My denota el maximal diddico My f = supcqy(

donde g es conocida como la “parte buena” de f y b la “parte mala” y vienen dadas
por

g:flR\QA+Z<f>Qi1Qi y b:Z(f_<f>Qi)1Qi'

i

Si escribimos b; = (f — (f)@,)1q,, entonces tenemos que
o gl < Iflleiwy ¥ llgll e @) < 2.

o supp(bi) C Qi, o, bi(z)dz =0y 32, 1bill 1) < 2/ fllL1(w)-

En el anélisis del comportamiento de un operador Haar shift I11; , cerca de la escala
L', las estimaciones satisfechas por la parte buena permiten obtener constantes del
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orden de la norma de III; ; en L?. Las propiedades de localizacién y de media cero
de los términos b; y la estructura diddica de I11; ; y de sus componentes A; permiten
obtener estimaciones con constantes que dependen linealmente de la complejidad
(4,k), y de la norma de operador de A; en L'(R). De hecho, como se demuestra
en [30], la dependencia lineal en j es en realidad éptima.

El motivo principal de esta tesis es el contribuir a esta linea de investigacién
al proporcionar estimaciones de tipo débil (1,1) para operadores Haar shift en los
contextos de analisis arménico no doblante y analisis armoénico semiconmutativo.
Si bien las estimaciones obtenidas parecen no ser 6ptimas en su dependencia de la
complejidad del operador, nuestros resultados indican — e incluso caracterizan —
la estructura basica que los espacios ambiente deben satisfacer para que existan
estimaciones a priori de operadores diadicos.

Analisis armoénico diadico para medidas no doblantes

Consideremos una medida de Borel positiva i en R, es posible entonces definir un
sistema de Haar mediante las funciones

w_ L o con m(l) = P
M= vmiD) (u(f—) u<f+>)’ ="

formando un sistema ortonormal en L?(p). Podemos asi considerar una transfor-

mada de Hilbert diddica asociada al sistema {h}};cq:

Hy, f(x) = ) (f.07)(hf_(x) = B (2))

Ice

y examinar sus propiedades de acotacién, de las cuales la acotacion en L?(u) es
inmediata por ortogonalidad. La teoria estandar de Calderén-Zygmund puede ser
facilmente extendida a contextos en los que la medida subyacente es doblante.
Puesto que el operador en cuestion es diddico, la condiciéon sobre p puede
ser relajada a ser diddicamente doblante. FEn tal caso uno puede transcribir
literalmente la prueba clasica y obtener el tipo débil (1,1) de la transformada de
Hilbert diddica con respecto de . Una pregunta natural es determinar si existen
medidas p que no sean necesariamente diddicamente doblantes para las cuales H| %
mapea L' (y) continuamente en L1°(1).

La caracterizacién de las medidas para las cuales un determinado operador
es acotado es generalmente un problema dificil. Tal es el caso, por ejemplo,
de la acotacién en L? de la transformada de Cauchy y la clase de medidas
de crecimiento lineal obtenida por Tolsa en [75]. Este descubrimiento permiti6
la formulacién de teorias de Calderén-Zygmund no estandares — en las cuales
la medida subyacente p obedece una propiedad de crecimiento polinomial —
desarrolladas por Nazarov, Treil, Volberg y Tolsa y que podrian ser aplicadas
a la presente situacion. Sin embargo, la aplicaciéon de dichas teorias requeriria
anadir suposiciones, que serian probablemente innecesarias a posteriori, puesto
que estamos tratando con un operador didadico. Algunos operadores diddicos tienen
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buenas propiedades de acotacion incluso en contextos no doblantes. Por ejemplo,
el maximal diddico y la funcién cuadrado diddica son de tipo débil (1,1) para
cualquier medida de Borel p, como se demuestra en el marco de desigualdades de
martingalas en [20] y [10] respectivamente. Con esto en mente, uno podria suponer
que H é‘j es de tipo débil (1,1) para cualquier medida de Borel u, sea doblante, no
doblante o de crecimiento polinomial. Es natural plantearse el mismo problema
para otros operadores diddicos tales como el adjunto de la transformada de Hilbert
diadica, operadores Haar shift cancelativos, paraproductos diddicos, adjuntos de
paraproductos diddicos, o en general para operadores Haar shift no cancelativos.
Esto motiva el problema que tratamos en la Parte I de esta tesis:

Determinar la familia de medidas v para las cuales un operador diddico
es de tipo débil (1,1).

Como hemos mencionado, si la medida p es diddicamente doblante, uno puede
aplicar la teoria estandar de Calderén-Zygmund para probar que estos operadores
satisfacen estimaciones de tipo débil (1,1). De esta manera, es natural preguntarse
si la condicion doblante es en realidad necesaria o si es sélo conveniente. Como
mostraremos en la Parte I no existe una respuesta universal a tal cuestion: la clase
de medidas asociada a las propiedades de acotacién de cierto operador depende
fuertemente del operador considerado. Ilustremos esto con algunos ejemplos:

e Paraproductos diadicos y multiplicadores de Haar en dimension 1.
Veremos en los Teoremas 1.5, 1.11 y 4.8 que estos operadores son de tipo débil
(1,1) para cualquier medida de Borel localmente finita.

e La transformada de Hilbert diadica y su adjunto. En el Teorema 1.5
demostraremos que cada uno de estos operadores tiene asociada una clase
de medidas que dicta el tipo débil (1,1) del operador. En el Capitulo 3
construiremos medidas que pertenecen a cada una de estas clases, y mostraremos
que las clase asociada a la transformada de Hilbert diadica y aquella asociada a
su adjunto son distintas y que ninguna contiene a la otra. Mostraremos también
que la clase de medidas diddicamente doblantes estd contenida estrictamente en
la interseccién de estas dos clases.

e Adjuntos de paraproductos diddicos. En el Teorema 4.8 mostraremos que
el tipo débil (1, 1) de adjuntos de paraproductos diddicos implica que la medida
subyacente es doblante.

e Operadores Haar shift. Demostraremos caracterizaciones andlogas para
operadores de Haar shift cancelativos en el Teorema 1.11 y para operadores
Haar shift no cancelativos en el Teorema 4.3.

Asi, nuestros resultados principales de la Parte I presentan la caracterizacion
de las medidas para las cuales cualquiera de esos operadores es de tipo débil
(1,1). Cabe mencionar que las pruebas de estos resultados son relativamente
simples al tener una descomposiciéon de Calderén-Zygmund para medidas generales.
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En el Teorema 1.1 proponemos una nueva descomposiciéon de Calderén-Zygmund
valida en contextos no doblantes y de interés independiente, con una parte buena
modificada que continua siendo p-integrable para p > 1. Esta modificacion es
necesaria puesto que, en esta situacién, la parte buena de la descomposicion de
Calderén-Zygmund usual pierde esta propiedad debido a que el promedio de f
en un cubo diddico maximal no puede ser uniformemente controlado a menos
que la medida ambiente sea doblante o diddicamente doblante. Esta parte buena
modificada debe ser “balanceada” por una parte mala adicional que a su vez debe
ser controlada. Seamos més precisos. Dada f € L'(u) y A > 0, consideremos la
familia {Q;}; de cubos diddicos maximales — con respecto a la propiedad de que
el promedio de |f| en @ con respecto a p sea (|f|)g > A — asociados al conjunto
de nivel 2). Entonces podemos descomponer f como f =g+ b+ 3 donde

g(z) = f(z) Ip\q, (= +Z g, Lo,z

>Qj) 1Q]’($>a

Q)
Na,) (1o, (@) - IR (2)).

) = bi@) = D (f@)
) =2 Bi@) = > ({Ha,

Esta descomposicién es tal que

e g€ LP(u) para todo 1 < p < oo con

lgllzogey < Cp APHIFll 21y

° bzzjbj, con

supp(b;) C @, /R bi@) du(e) =0, S Ibsllrg < 201 g
J

° B:Zjﬁj, con

supp(8;) € Oy, / B(x) du(a ZHBJHU < 41 fllr

donde para cada j, denotamos por @j al padre diddico de Q);.

Comparemos esta descomposicién con la descomposicion de Calderén-Zygmund
clasica. Primeramente, perdemos la cota en L para la parte buena. Sin embargo,
esto no supone problema alguno, puesto que en la préctica tipicamente se utiliza
la estimacién en L? de g. Respecto a los términos malos, el término b tiene la
misma forma y propiedades que la parte mala clasica. Los términos constituyentes
de la parte mala adicional S estdn soportados en los cubos diddicos {@j }4, que no
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son disjuntos, pero sin embargo poseen cierta cancelacién. Esta descomposicién
de Calderén-Zygmund es la clave para obtener las estimaciones débiles (1,1) que
consideramos en la Parte I.

Confiamos en que los resultados presentados en la primera parte de esta tesis
son también validos para otros reticulos diddicos, en particular para filtraciones
diadicas en espacios geométricamente doblantes construidas a partir de los cubos
diddicos de Christ [11], o por medio de otras construcciones diddicas, como por
ejemplo la construida por David en [19]. Una pregunta interesante es si estos
resultados también son validos en los contextos tedricos de medida recientemente
estudiados por Treil [76]; Thiele, Treil y Volberg [74] y por Lacey [43].

Operadores de Calderén-Zygmund asociados a nitcleos
matriciales

Entendido en un sentido amplio, el andlisis armoénico semiconmutativo trata el
estudio de integrales singulares que actian sobre funciones que toman valores
matriciales o en algebras de operadores. Histéricamente la teoria matricial ha
formado parte de la teoria vectorial, que resulta ser un enfoque inadecuado para
proporcionar estimaciones de tipo débil (1,1) y en general para estimaciones
extremales — de tipo Hardy/BMO. Esto se debe principalmente a que la teoria
vectorial apenas considera la estructura algebraica de las funciones con valores
matriciales. La perspectiva adecuada para tratar estos problemas es ofrecida por
el andlisis no conmutativo, un area motivada por von Neumann al unificar las
formulaciones de Heisenberg y de Schrodinger de la mecanica cuantica. El quid
de esta teoria consiste en sustituir funciones por operadores en un espacio de
Hilbert; lo que en fisica se conoce como cuantizacion. El considerar operadores en
lugar de funciones conlleva un producto no conmutativo dado por la composicién
de operadores. Para nuestro objetivo particular, la cuantizacién de la teoria de
integracién y de la teoria LP conduce a reemplazar espacios L por dlgebras de
von Neumann, que son C*-dlgebras de operadores en un espacio de Hilbert que
contienen la identidad y son cerradas en la topologia débil-x. Asi, trazas juegan
el papel de integrales y proyecciones ortogonales el de funciones caracteristicas.
Asociados a un algebra de von Neumann M con traza 7, los espacios L,(M) no
conmutativos — en la teoria L, no conmutativa el pardmetro de escala se suele
indicar como subindice — son los espacios de operadores para los cuales la norma

Il = T ()1

1/2 ¢s el médulo de 2 y |z|P es definido por calculo

es finita. Aqui |z| = (z*z)
funcional para operadores positivos. Remitimos a [67, 53] y a algunas de sus
referencias para una exposiciéon mas detallada y precisa de la teoria de integracion
no conmutativa.

Por simplicidad, consideremos el algebra de funciones

Ap = {f ‘R — B(¢?) : f es fuertemente medible y esssup I1f(2)|lBee2y < oo},

z€R
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donde B(¢?) es el algebra de operadores acotados en el espacio de Hilbert ¢2. El
cierre débil-x Ap de A es un algebra de von Neumann isomorfa a Lo, (R)®B(¢2),
que por lo tanto es equipada con la traza 7(f) = [p Tr(f(x)) dz, donde Tr denota
la traza estandar en B(¢2) y el espacio L, no conmutativo asociado L,(B({?)) es
precisamente la p-clase de Schatten. Denotemos B(¢?) por M. Por lo mencionado
en la discusién inicial, el espacio L,(A) es el cierre del espacio generado por
funciones simples apropiadamente definidas. Para tales funciones tenemos que

(IfP) = /R Te(|f (2) P)de = /R IF@IE 0y do

De esto deducimos que para 1 < p < oo, el espacio L,(A) es isométricamente
isomorfo al espacio de Bochner clasico LP(R; L, (M)). Por supuesto, los resultados
que obtenemos son también ciertos para funciones que toman valores en algebras
de von Neumann arbitrarias, siempre que tengan una traza normal, semifinita y
fiel.

Cabe preguntarse si operadores de Haar shift que actien en funciones con
valores matriciales admiten estimaciones a priori en L,(A). En otras palabras

e f(x) =D Arf=>_ > ahx(f,h)hk(@)

Iew 1€9 Je,(I)
Kejk( )

si

es un operador acotado en L,(A). En la presente situacion (f, h J> denota la forma
fR r)dz, que tiene valores matriciales y los simbolos a Jk son escalares
umformemente acotados. Puesto que las p-clases de Schatten son espacios de
Banach con la propiedad UMD para 1 < p < oo, la acotacién en L, de operadores
Haar shift, como la de operadores de Calderén-Zygmund , es resuelta por la teoria
vectorial clasica desarrollada por Burkholder en [8, 9], Bourgain [6] y Figiel [24].
Puesto que la clase traza (i.e., la clase 1 de Schatten) no es UMD, la teoria vectorial
es insuficiente para proporcionar estimaciones de tipo débil (1, 1) adecuadas. Para
atajar dicho problema la estructura no conmutativa es esencial. El espacio L1 (.A)
débil es definido por medio de la cuasi-norma

11121y = sup AT({[f] > A}),
A>0

donde 7({|f| > A}) denota la traza de la proyeccién espectral de |f| asociada al
intervalo (A, 00). Con esto se define una funcién de distribucién no conmutativa
que comparte las propiedades de su contrapunto conmutativo, siendo esta la razén
por la que hemos elegido esta notacién. El espacio L o (A) asi construido satisface
las propiedades de interpolacion esperadas. Es necesario enfatizar que el espacio
de Boncher débil L (R; L;(M)) no es de utilidad para nuestros propésitos, pues
L1(M) no es UMD, razén por la cual incluso los multiplicadores de Haar pueden
ser no acotados. El mismo razonamiento descarta utilizar el espacio L' (R; M).

En [58] Parcet demostré el tipo débil (1, 1) apropiado para operadores de Calde-
ron-Zygmund que acttian en funciones con valores matriciales y de niicleos escalares,
es decir, que para tal operador T se tiene que

AT > A S Il
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uniformemente en A > 0. Su demostracién se basa en la aplicacién de una versiéon no
conmutativa de la descomposicion de Calderén-Zygmund clasica, que introdujo él
mismo adaptando la ingeniosa construccién que Cuculescu [18] utiliz6 para probar
la extensién no conmutativo del tipo débil (1, 1) del maximal de Doob; un resultado
de gran importancia en la teoria de martingalas no conmutativas. La construccién
de Cuculescu permite obtener una proyeccién ¢ y una familia de proyecciones
(pk)kez disjuntas a pares que corresponden al conjunto de nivel cldsico Qy y a
su descomposiciéon en cubos maximales:

g~R\Q)\ and pp~ {Qj es un cubo maximal de Q) yQ; € @k},

donde 7 denota la familia de cubos diddicos de longitud £(Q) = 27%. Ademas,
estas proyecciones cumplen que ), pp = 14 — ¢, donde 14 es la unidad de A.
La descomposicién de Calderén-Zygmund no conmutativa es obtenida emulando
la descomposicion clasica acorde a la interpretacion de estas proyecciones. Esto es
que f € L1(A) descompone como f = g + b, donde las partes buena y mala son
dadas por:
9= pifiip; vy b= nilf = fivi)ps;
i,j€Z i,jEZ

donde i V j = max(i,j) y fr denota la esperanza condicionada

fe=>_ (Hele.

QEDy,

Aqui (f)g denota la media de f en @ y es por tanto un operador. La no
conmutatividad en este contexto es explicita en esta descomposicion dada la
presencia de términos fuera de la diagonal, i.e., aquellos tales que ¢ # j. En efecto,
en el caso conmutativo los términos fuera de la diagonal desaparecen, puesto que
las proyecciones pi son disjuntas a pares. Los términos diagonales satisfacen las
mismas propiedades que las partes buena y mala de la descomposicién cléasica:

o lgallicay < I llzicay v ll9allLaa) < 2X

® ba =), ba;, donde los términos ba ; tienen media cero y satisfacen la estimacion
>oilloaillnycay < 201 f 2y a)-

Estas propiedades son utilizadas para obtener estimaciones de tipo débil para
los términos diagonales, procediendo tal como en el caso conmutativo. Por otro
lado, existen indicios de que los términos fuera de la diagonal no satisfacen las
estimaciones clasicas, contando tinicamente con estimaciones truncadas. Esto sin
embargo supone una dificultad sorteable en la practica, puesto que estimaciones de
tipo débil para los términos fuera de la diagonal son obtenidas mediante principios
de sesudo-localizacién en el caso de operadores de Calderén-Zygmund y por las
buenas propiedades de localizacién de los operadores diddicos. Antes de los
resultados obtenidos en [58], las tnicas estimaciones de tipo débil (1, 1) conocidas
en contextos no conmutativos eran las asociadas a transformadas de martingala
y funciones cuadrado de martingala obtenidas por Parcet y Randrianantoanina
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en [59] y por Randrianantoanina en [70, 71, 72|, ademds de las obtenidas en [69]
para la transformada de Hilbert no conmutativa asociada a algebras sub-diagonales
maximales y desigualdades de tipo débil para el maximal ergddico, demostradas
por Junge y Xu [39].

Los mismos métodos utilizados en [58] proporcionan estimaciones para ope-
radores Haar shift I11; ;, esta vez con constantes que dependen polinomialmente de
la complejidad (j, k). Cabria preguntarse si operadores Haar shift con simbolos
matriciales aiK € M satisfacen estimaciones andlogas. FEntre estos objetos,
los paraproductos con valores matriciales han atraido particular atenciéon. Para
empezar, la no conmutatividad nos fuerza a considerar distintos operadores
dependiendo si, por ejemplo, los simbolos multiplican por la izquierda o por la
derecha a las formas (f, hy) € M. Consideremos simbolos oy € M uniformemente
acotados. Asociados a estos, un par fila/columna de multiplicadores de Haar
pueden ser definidos mediante

Ti(f) = > _(frhryarhr,  Ts(f) = ar(f,hi)hr.

Qe Iey

Como veremos inmediatamente, es posible construir multiplicadores Haar
fila/columna que no sean de tipo débil (1,1) ni de tipo fuerte (p,p) para p # 2,
demostrando que en este tipo de cuestiones la naturaleza no conmutativa es pre-
dominante. En el caso de paraproductos con simbolos matriciales, tal y como
demostraron Katz en [41]; Nazarov, Pisier, Treil y Volberg en [56] y Mei [50], la
acotacion en Lo es violada incluso por paraproductos con simbolos razonablemente
elegidos. El contraejemplo que hemos mencionado para multiplicadores de Haar
es bien conocido en la teoria de martingalas no conmutativas y es el siguiente.
Sea A = L*°([0,1))®M, y consideremos el multiplicador columna asociado a los
simbolos a; = ey para I € Z_; — recordemos que e; ; denota la matriz cuya
unica entrada no nula es la (7, j). Entonces, si

n
=35 e
k=1 IE@k—l
encontramos que
Ifnllzyy = vy I Tefullny o = 1> [1fallz, )

para n lo suficientemente grande. Este problema motiva la cuestién principal que
abordamos en la Parte I1I:

s Existen subespacios o subconjuntos Ay/A. de Li(A) tales que f =
fr+ fe, donde f, € Ay y fo € Ac y que

T Ay = Lioo(A) y Te:Ae— Lioo(A)?

A pesar de que no hemos sido capaces de responder esta pregunta, hemos
encontrado resultados interesantes en esta direccion.
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e Operadores Haar shift con simbolos matriciales/no conmutativos. En
el Teorema 5.1 (i) veremos que para f € L;(A) existe una descomposicién
explicita f = f, + f. tal que

TS g fell 2y o ) + IS g fell 2y ooty < Chkll fllzy a)-

para operadores Haar shift fila/columna, incluyendo multiplicadores de Haar,
paraproductos y adjuntos de paraproductos.

e Transformadas de martingala y paraproductos de martingala. Adapta-
mos las técnicas utilizadas en la resolucién del punto anterior al contexto de mar-
tingalas no conmutativas, obteniendo resultados andlogos para transformadas de
martingala y paraproductos de martingala en el Teorema 5.3 (i), siempre que

sean definidos con respecto a una filtracién regular.

La descomposicién fila/columna f = f,+ f. obtenida en el Teorema 5.1 (i) viene
dada por truncaciones triangulares complementarias en términos de proyecciones
apropiadamente elegidas.  Estas proyecciones son obtenidas modificando la
construcciéon de Cuculescu con el fin de que las proyecciones asociadas a distintos
conjuntos de nivel sean comparables, propiedad trivialmente satisfecha por los
conjuntos de nivel clasicos. Las constantes que obtenemos en las estimaciones
del Teorema 5.1 (i) son de orden exponencial, Cjj ~ 2/. Los argumentos
clésicos utilizados para encontrar constantes de dependencia 6ptima (sea lineal
o polinomial) es obstruido por la presencia de truncaciones triangulares, que no
son acotadas en L; como; un resultado clésico de Kwapieni y Pelczyniski [42]. Esta
misma razén previene extender los argumentos utilizados a operadores de Calde-
ron-Zygmund genéricos, dejandolo como problema abierto.

Por otro lado, técnicas complementarias nos permiten obtener estimaciones
para operadores de Calderén-Zygmund genéricos con nucleos no conmutativos, es
decir, que para un par de operadores fila/columna formalmente dados por

Tof(z) ~ /R f@k(@,y)dy and Tof(x) ~ /R Kz, 9) f(y) dy,

asociadas a un nucleo k(z,y) € M, para = # y, que satisface las las condiciones
clasicas de tamafio y suavidad. Estas estimaciones son obtenidas utilizando la
teoria de espacios de Hardy fila/columna desarrollada por Mei [51], su versién en
el marco de la teoria de martingalas desarrollada por Pisier y Xu en [66] y la teoria
de interpolacién y dualidad asociada [32, 38, 55].

e Estimaciones H; — L;. En el Teorema 5.1 (i) obtenemos que un par
fila/columna (7},7.) mapea continuamente el espacio de Hardy fila/columna
en L1(A). Argumentos de interpolacién y dualidad proporcionan estimaciones
en L, obtenidas en el Teorema 5.2.

e Transformadas de martingala y paraproductos de martingala. Esti-
maciones en Hy y L, para transformadas de martingala y paraproductos con
simbolos no conmutativos asociados a filtraciones arbitrarias son obtenidas en el
Teorema 5.3 (ii).
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Analisis armonico diadico semiconmutativo no doblante

Es natural preguntarse si los resultados expuestos en la Parte I son también validos
en el contexto semiconmutativo de la Parte II. Es decir:

s Fs posible determinar la clase de medidas para las cuales un operador
diddico que actia sobre funciones con valores matriciales es de tipo
débil (1,1)¢

Tratamos esta cuestiéon en la Parte I1I de esta tesis. Para abordarla introducimos
una descomposicién de Calderén-Zygmund no conmutativa que es version cuan-
tizada de la descomposicién de Calderon-Zygmund del Teorema 1.1. Tal y como
en el caso de la descomposicién de Calderén-Zygmund obtenida en [58] — que es
valida para la medida de Lebesgue y para medidas doblantes — la descomposicién
que presentamos se fundamenta en una adaptacién de la construcciéon de Cuculescu
a esta situacion. En el Teorema 9.2 obtenemos la descomposicién f = g+ b + (3,
donde cada parte tiene un término diagonal y un término fuera de la diagonal
dados por

® g = ga + goft, donde

ga =aqfq+ Y  En_1 (orfupk)
k€EZ

gort = (la— @) fa+af(la—q) + Y Eivj1 (pifivips);
i#]

e b=">ba + bos, donde

ba =Y pelf = fdpe, Dot = Y _pi(f — fivy)ps;

keZ i#j

® = fa + Bosr, donde

Ba = Drlpeferk),  Bowr =Y Divj (pifivip;) -

keZ i£j

Como en la descomposicién [58], los términos diagonales satisfacen las siguientes
propiedades clasicas:

o lgallz ) < fllzicay ¥ llgallacay < CAMIfllL, a)-

e bao =) ,ba;, donde ba ; es de media ceroy ), ”bA,z’||L1(A) < 2Hf||L1(A)-

® Ba =2 Ba, con fBa; es de media cero y Y, [|Baill, a4y < 2l 1z a)-

En la préctica, los términos fuera de la diagonal son controlados por principios de
localizacion. Esta descomposicién de Calderén-Zygmund es nuestra herramienta

principal para resolver la cuestién inicial de la tercera parte de esta tesis:
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e Operadores Haar shift con simbolos conmutativos. El tipo débil (1,1) de
estos operadores es caracterizado de la misma manera que el caso conmutativo,
tal y como demostramos en el Teorema 9.4.

Dificultades considerables son anadidas al problema de obtener estimaciones débiles
a priori cuando se consideran operadores con simbolos no conmutativos. Los
métodos utilizados en el Teorema 5.1 () no son aplicables en esta situacién ni
siquiera para multiplicadores de Haar. Discutiremos estas dificultades al concluir
la Parte III, dejandolo como problema abierto.
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Preface

Dyadic techniques are nowadays fundamental in harmonic analysis. Their origin
dates back to Hardy, Littlewood, Paley and Walsh among others. In the context of
martingale inequalities, the dyadic maximal and square functions arise as particular
cases of Doob’s maximal function and Burkholder’s square function for martingales
associated to a dyadic filtration; furnishing relatively simple models of the Hardy-
Littlewood maximal function and of square functions. Similarly, singular integral
operators — with the Hilbert transform standing as a prominent example — have
been traditionally modeled by martingale transforms and martingale paraproducts.
These last operators can be written in terms of martingale differences and
conditional expectations, so that the full strength of probability methods applies
in the analysis of their boundedness properties. In the Euclidean setting — and
more generally in the atomic martingale setting — dyadic martingale differences
decompose as a sum of rank one perfectly localized projections, to wit, Haar
projections. Therefore, in the Euclidean setting martingale transforms are in fact
diagonal operators relative to the classical Haar system. In this spirit and somewhat
roughly, one may consider compact operators having a structured sparse matrix
representation relative to the Haar system. These operators are known as Haar shift
operators and provide a slightly more complex and yet fruitful model of singular
integral operators.

In this thesis we will be chiefly interested in dyadic and Haar analogues of the
classical objects in harmonic analysis and study their boundedness properties in
several settings. In the following section we will recall some basic background from
the classical theory. Right afterwards we will discuss the results obtained in this
thesis.

Classical dyadic harmonic analysis

In recent years dyadic operators have attracted a lot of attention related to the
so-called As-conjecture. This seeks to establish that some operators obey an
L?(w) estimate for every w € Ay with a constant that grows linearly in the
As-characteristic of w. Extrapolation techniques can then be used to obtain the
optimal dependence on the A,-characteristic for the corresponding LP(w) estimate.
This problem attracted increased attention after its introduction by Buckley in [7]
due to the work of Astala, Iwaniec and Saksman [1]. There they showed that if

XXV
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sharp weighted estimates were satisfied by the Beurling-Ahlfors operator, then one
could get regularity results for solutions of the Beltrami equation.

For the maximal function the As conjecture was proved by Buckley [7]. In
[78] Wittwer proved the Aj-conjecture for Haar multipliers in one dimension. The
Beurling-Ahlfors transform, the Hilbert transform and the Riesz transforms were
then considered by Petermichl and Volberg in [65, 63, 64] (see also [22]) thus giving
a positive answer to the question posed in [1]. The Ag-conjecture for these operators
was shown by representing them as averages of certain dyadic operators called Haar
shifts. Paraproducts were treated in [5], and with a different approach in [17]. The
final solution to the As-conjecture for general Calderén-Zygmund operators was
obtained by Hytoénen in his celebrated paper [29]. A key ingredient in the proof
of those results is that Calderén-Zygmund operators can be expanded as a rapidly
convergent series of Haar shift operators and dyadic paraproducts. This result in
its full generality is known as Hytdnen’s representation theorem. It is related to the
approach to the T'(1) theorem as treated by Figiel [24] and by Beylkin, Coifman
and Rokhlin in [4], and is based on a decomposition provided by Nazarov, Treil
and Volberg in [57] to tackle the T'(1) theorem in non-homogeneous spaces. It
differs however from the approaches in [24, 4] in that the associated expansions are
rapidly convergent for smooth and non-smooth operators, yielding another proof of
the T'(1) theorem. This property makes this representation an outstanding result
by itself.

Prior to the groundbreaking work of Petermichl in [62], martingale trans-
forms/Haar multipliers and martingale/dyadic paraproducts were the only avail-
able dyadic models for singular integral operators. In the one dimensional setting
these operators are of the form

Tof(x) = ar(f;hn)hi(z) and T, f(x) =Y (Filp,hr)hi(@).

Ie2 Ie2

Here 2 denotes some dyadic grid in R, «; are uniformly bounded scalars, p €
BMOg, (f,hr) denotes the pairing [ f(z)hi(z) dz, (f)r is the average of f over I
and Ay is the Haar function associated with I € Z:

1
hy = WOL - 1I+)’

where I_ and I are the left and right dyadic children of I. Obviously, the Haar
system is an orthonormal system on L?*(R). In [62] Petermichl introduced the
dyadic Hilbert transform given by

Hyf(x) =Y (f hr) (b (z) = hr,(2)).

Icy

The importance — and the name — of this operator comes from the fact that
the classical Hilbert transform can be obtained via averaging Hg over randomized
dyadic grids. This result settled the central réle dyadic models play in providing
sharp estimates for singular integral operators, by allowing to transfer the rather
simple proofs in the dyadic setting to the continuous setting. A larger class of
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operators of which Haar multipliers and the dyadic Hilbert transform are particular
instances was introduced by Lacey, Petermichl and Reguera in [44]. A Haar shift
operator of complexity (j, k) € ZQ has the form

Mf(e) =Y Arf=> Y. ahxlf,hi)hi(x),

1€ 1€9 Je7;(I)
KE_@k(I)

where 2;(I) denotes the family of j-dyadic descendants of I, i.e., the partition of I
into subintervals J € 2 of length ¢(.J) = 279¢(J). Haar multipliers and the dyadic
Hilbert transform arise as Haar shift operators of complexity (0,0) and (0,1). The
symbols ai i are usually subject to the normalization

_ VK]

} J,K‘— ’I‘ )

which ensures that the Haar shift operator IIl;j is contractive in L? and that
the components A are contractive in LP for 1 < p < oo. If in the definition of
Haar shift operators one allows L2-normalized indicator functions |I|~1/21; to stand
alongside Haar functions as building blocks, one then obtains non-cancellative Haar
shift operators; an even larger class that includes dyadic paraproducts and their

I07(0) = 206 o) .

s

adjoints,

as instances of complexity (0,0). However, orthogonality is lost and thus L?
boundedness becomes non-trivial, relying on Carleson embedding-type theorems.
Hence, for this extended class of dyadic operators L? boundedness is generally
assumed.

On the other hand, non-cancellative Haar shift operators also include the class
of the so-called positive sparse operators introduced by Lerner in [45] to provide
an alternative and more elementary proof of the Ay conjecture. His proof rests
on the remarkable fact that the operator norm of Calderén-Zygmund operators
in a Banach lattice is dominated by the norm of a positive sparse operator.
Furthermore, this control by positive sparse operators can be proved to hold
pointwise [15, 43]. Positive sparse operators are defined by

Sf@) = {f)oli(x)
Tes

where I() is the j-dyadic ancestor of I and S C 2 is a sparse family of dyadic
cubes in the sense that for all I € S

S < gl
Je (I)NS
It is then easy to see that positive sparse operators are non-cancellative Haar shift
operators of complexity (j,0) with coefficients
’ J|1/2
o = |12

0 otherwise.

if IeS
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Essential to either, the approximation or domination approach, is that Haar
shift operators are of weak-type (1,1). Namely, that

Az e R: e f(2)] > M < Ol f [l

with C depending only on the complexity (j,k), ideally in a linear or even
polynomial way. Of course, as a by-product one obtains LP boundedness for
1 < p < o by standard interpolation and duality arguments. Weak-type (1,1)
estimates can be obtained by using the standard Calderén-Zygmund decomposition
(see for instance [17, 29, 44]). Let us overview this procedure. Given f € L'(R)
and A > 0, consider the level set

Q,\:{xeR:M@f(x) >)\}:UQZ».

fir

and {Q;}; is the associated disjoint collection of maximal dyadic intervals. Then

Here Mgy is the dyadic Hardy-Littlewood maximal function Mgy f = sup;cq(

f decomposes as f = g + b, where the good and bad parts are given by

9= flR\Q)\ + Z<f>Qi]‘Qi and b= Z(f — (el

i

Letting b; = (f — (f)q@,)1q,, we have
o [lgllziw) < [1fllorm) and (gl oo m) < 22

o supp(b;) C Qi, [, bi(x) dz =0 and 3=, [|bs[| L1 (m) < 2[|f 1|22 (w)-

The properties of this (non-linear) decomposition are crucial for the analysis of
classical operators, as it is the case for Haar shift operators. Indeed, the estimates
satisfied by the good part deliver constants of the same order of the L? operator
norm of IIT; ;. One then exploits (as done in [29]) the localization and mean zero
properties of the bad terms b;. The dyadic structure of IIl;; and of its localized
components A; permits to get constants depending linearly on the complexity
(4,k), and on the operator norm of A; on L}(R). In fact, as shown in [30], linear
dependence on j is actually sharp.

It is the leitmotif of this thesis to contribute to this line of research by
yielding analogous weak-type (1,1) estimates for Haar shift operators in the
generalized settings of semicommutative harmonic analysis and non-doubling
harmonic analysis. If not of optimal dependence on the complexity of the operator,
the weak-type (1, 1) estimates we obtain point out — and even characterize — the
basic structure the ambient spaces should have in order for a priori weak-type
(1,1) estimates to hold.

Dyadic harmonic analysis beyond doubling measures

Let us consider a Borel measure p in R. One can define a Haar system in a similar
manner by

_ I lr, . _N(I—)M(I )
=V (G i) e =M
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which is now orthonormal in L?(y). Hence, we may consider a dyadic Hilbert
transform relative to the Haar system {h/}1cq, viz.

HY f(x) =Y (f, by (B (x) — b (x))

Ice

and ask about its boundedness properties. The boundedness on L?(u) is again
automatic by orthogonality. The standard Calderén-Zygmund theory can be easily
extended to settings where the underlying measure is doubling. In the present
situation, since the operator is dyadic, one could even relax that condition and
assume that p is dyadically doubling. In such a case, we can almost copy verbatim
the standard proof and conclude the weak-type (1,1) (with respect to p) and
therefore obtain the same bounds as before. Suppose next that the measure pu is
not dyadically doubling, and we would like to find the class of measures u for which
H!, maps continuously L'(u) into L' (y).

Characterizing the class of measures for which a given operator is bounded is
in general a hard problem. For instance, that is the case for the L? boundedness of
the Cauchy integral operator in the plane and the class of linear growth measures
obtained by Tolsa [75]. This led to non-standard Calderén-Zygmund theories
(where p has some polynomial growth d la Nazarov-Treil-Volberg and Tolsa) that
one could try to apply in the present situation. This would probably require some
extra (and a posteriori unnecessary) assumptions on . On the other hand, let us
recall that H % is a dyadic operator. Sometimes dyadic operators behave well even
without assuming doubling: the dyadic Hardy-Littlewood maximal function and
the dyadic square function are of weak-type (1,1) for general Borel measures p,
see respectively [20] and [10]. In view of that, one could be tempted to conjecture
that H 5 is of weak-type (1, 1) for general measures p without assuming any further
doubling property (or polynomial growth). One could also ask the same questions
for some other dyadic operators: the adjoint of the dyadic Hilbert transform,
(cancellative) Haar shift operators, dyadic paraproducts or their adjoints or, more
in general, non-cancellative Haar shift operators. This motivates one of the main
questions we address in Part I:

Determine the family of measures u for which a given dyadic operator
(e.g., the dyadic Hilbert transform or its adjoint, a dyadic paraproduct
or its adjoint, a cancellative or non-cancellative Haar shift operator)
maps continuously L'(u) into LY (u).

We know already that if p is dyadically doubling these operators satisfy weak-
type estimates by a straightforward use of the standard Calderén-Zygmund theory.
Therefore, it is natural to wonder whether the doubling condition is necessary or
it is just convenient. As we will see in Part I there is no universal answer to that
question for all the previous operators: the class of measures depends heavily on
the operator in question. Let us illustrate this phenomenon with some examples:
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e Dyadic paraproducts and 1-dimensional Haar multipliers. We shall see
in Theorems 1.5, 1.11 and 4.8 that these operators are of weak-type (1,1) for
every locally finite Borel measure.

e The dyadic Hilbert transform and its adjoint. We shall prove in
Theorem 1.5 that each operator gives rise to a family of measures governing the
corresponding weak-type (1,1). In Chapter 3 we shall provide some examples of
measures, showing that the two classes (the one for the dyadic Hilbert transform
and the one for its adjoint) are different and none of them is contained in the
other. Further, the class of dyadically doubling measures is strictly contained in
the intersection of the two classes.

e Adjoints of dyadic paraproducts. We shall obtain in Theorem 4.8 that the
weak-type (1,1) of these operators leads naturally to the dyadically doubling
condition for u.

e Haar shift operators. Analogous characterizations for cancellative Haar shift
operators are obtained in Theorem 1.11 and in Theorem 4.3 for non-cancellative
Haar shift operators.

Beside these examples, our main results will answer the question above
providing a characterization of the measures for which any of the previous operators
is of weak-type (1,1). It should be pointed out that the proofs of such results
are relatively simple, once we have obtained the appropriate Calderén-Zygmund
decomposition valid for general measures. In Theorem 1.1 we propose a new Cal-
derén-Zygmund decomposition, interesting on its own right, with a new good part
which will be still higher integrable. We need to do this, since the usual “good
part” in the classical Calderén-Zygmund decomposition is no longer good in a
general situation: the L bound (or even any higher integrability) is ruined by
the fact that the average of f on a given maximal cube cannot be bounded unless
the measure is assumed to be doubling or dyadically doubling. This new good
part leads to an additional bad term that needs to be controlled. More precisely,
fixed A > 0, let {Q;}; be the corresponding family of maximal dyadic cubes of
the level set ) (maximal with respect to the property that the p average of |f| is
(|fl)o > A). Then we write f = g+ b+ 3 with

9(x) = f(x) Ip\, (z +Z fo, 1o (@

+ZwmmwM%%yx

CU):ij(ﬂ?) = Z(f(x)_<f>Qj)1Qj(x)v
= Z(<f>Q; _<

2= 3B = £a,) (10, - 21, @),

The decomposition is such that
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o gc LP(u) for every 1 < p < oo with
lgllzogey < Cp AP 1 F Il 3

o b=bj, with

supp(b;) C Q;, /ij(w) du() =0, > bl < 20l
J

® 5 = Zj ﬁja With

supp(8;) C Qj, /Rﬁj(w) du() =0, > 1Bl < 41F L
J

where, for each j, we write @j to denote the dyadic parent of @;.

Let us compare this with the classical Calderén-Zygmund decomposition. First,
we lose the L™ bound for the good part, however, for practical purposes this is
not a problem since in most of the cases one typically uses the L? estimate for g.
We now have two bad terms: the typical one b; and the new one 3, whose building
blocks are supported in the dyadic cubes {Qj}j, which are not pairwise disjoint,
but still possess some cancelation. This new Calderén-Zygmund decomposition is
key to obtaining the weak-type estimates for the Haar shift operators we consider.

We are confident that these results should also hold for other dyadic lattices
and, more in general, in the context of geometrically doubling metric spaces in
terms of Christ’s dyadic cubes [11], or some other dyadic constructions like that of
David in [19]. It is an interesting question whether these results also hold in the
general measure-theoretic setting of Lacey in [43] and of Thiele, Treil and Volberg
in [74] and Treil in [76].

Calderéon-Zygmund operators associated to
matrix-valued kernels

In a general sense, semicommutative harmonic analysis study of singular integrals
acting on matrix or operator-valued functions. Historically, the matrix-valued
theory has been treated part of the vector-valued theory. However, the vector-
valued setting offers a limited approach to prove adequate weak-type (1,1)
estimates. This is mostly due to the fact that vector-valued theory is oblivious
of the intrinsic algebraic structure of matrix-valued functions. A better suited
perspective is supplied by noncommutative analysis, a field motivated by von
Neumann after unifying Heisenberg and Schrodinger formulations of quantum
mechanics. The gist of this theory is to replace functions with operators on a
Hilbert space; this replacement entails a noncommutative multiplication given
by composition of operators. More specifically, the quantization of LP theory
translates the role of L™ spaces to von Neumann algebras, i.e., weak*-closed
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unital C*-algebras of operators on a Hilbert space. In this setting, traces hold
the place of integrals and orthogonal projections mirror characteristic functions.
Thus, associated to a von Neumann algebra M with trace 7, the noncommutative
L,(M) spaces — in noncommutative L, theory the scale parameter is traditionally
displayed as a subscript — are the spaces of operators for which the norm

I ) = T(l?)'P

is finite. Here |z| = (z*z)'/? is the modulus of = and |z|P is defined by functional
calculus of positive operators. A much more detailed and precise discussion is given
in [67, 53] and in references therein.

The connection to our setting is provided by the tensor product theory of von
Neumann algebras. For simplicity, let us consider the algebra of functions

Ap = {f : R — B(¢?) : f strongly measurable s.t. esssup 1f(@)llBe2) < oo},
z€eR

where B(£?) is the space of bounded operators on the sequence Hilbert space £2.
The weak*-operator closure A of Ap is a von Neumann algebra isomorphic to
Loo(R)®B(£?) and it is thus equipped with the trace 7(f) = [ Tr(f(z)) dz. Here
Tr is the standard trace on B(£?) and the associated noncommutative L, space
L,(B(£?)) corresponds to the Schatten p-class. Denote B(¢?) by M. By the above
discussion, the corresponding noncommutative L,(.A) space is then the closure of
appropriately chosen simple functions. For such functions we have that

) = [ DU = [N,

It thus deduced that for 1 < p < co the space L,(.A) is isometrically isomorphic
to the classical Bochner space LP(R; L,(M)). Of course, the results here discussed
are also valid for functions taking values on an arbitrary von Neumann algebra
with a n.s.f. trace.

One might then wonder if Haar shift operators acting on matrix-valued
functions admit a priori estimates in L,(A). In other words, whether

Of(e) =Y Arf = Y. ahxlf,hi)hi(x),

1€ 1€9 Je7;(I)
KE.@k(I)

acts boundedly on Ly(A). Here by (f,hs) we denote the pairing [ f(z)hs(z) dz,
which is matrix-valued and ai i are uniformly bounded scalars. Since Schatten
p-classes are UMD Banach spaces for 1 < p < oo, the question of L, boundedness
of Haar shift operators and Calderén-Zygmund operators is settled by the classical
vector-valued theory as developed by Burkholder in [8, 9], Bourgain [6] and Figiel
[24]. Tt is at the point of seeking a suitable weak-type estimate for p = 1 where
the vector-valued theory fails, since the Schatten 1-class is not UMD. To deal with
such questions the noncommutative structure becomes essential. Following the
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construction of noncommutative symmetric spaces (see [53]), a noncommutative
weak Lj(A) is defined via the quasi-norm

11121 ) = sup AT({[f] > A}).
A>0

Here 7({|f| > A}) denotes the trace of the spectral projection of |f| associated
to the interval (A, 00). This defines a noncommutative distribution function that
shares the same properties of its classical counterpart, hence the notation. The
resulting space L o (A) has the expected interpolation properties. We emphasize
that the weak Bochner space L1*°(R; Li(M)) is of no use for our purposes since
Li(M) is not a UMD space and thus even Haar multipliers may not be bounded.
The same reasoning rules out working with L1>°(R; M).

In [58] Parcet provided the adequate weak-type (1, 1) estimates for Calderén-
Zygmund operators with scalar or commuting kernels acting on matrix-valued
functions. Namely, he got that for such a Calderén-Zygmund operator T’

AT(ITFI > A1) S 1l ca

uniformly over A > 0. This is shown by constructing a noncommutative extension
of the Calderén-Zygmund decomposition. Essential to this result is the ingenious
construction of Cuculescu in [18] with which he rendered the analogue of the
weak-type (1,1) Doob’s maximal inequality in the intimately related field of
noncommutative martingale theory. Cuculescu’s construction enables to obtain
a projections ¢ and a family of pairwise disjoint projections (py)xez related to the
decomposition of classical level set €2y in the following way

g~R\Q\ and p; ~ {Q;jmaximal cube in Q) : Q; € Z},

and such that ), pp = 14 — ¢, with 14 being the unit in A. Here, 2}, denotes the
family of dyadic cubes of sidelength £(Q) = 27*. The noncommutative Calderén-
Zygmund decomposition is given in terms of these projections by f = g + b, where
the good and the bad parts are

9= pifip; and b= > pi(f — fiv;)ps,
i,jE7 i,j€Z
where i V j = max(i,j) and by fr we denote the conditional expectation
fe=>Y_ (Nale.
QEDy,

Here (f)q is the mean of f over @, hence an operator. In the form of this
decomposition the noncommutativity of this setting is explicit. Indeed, in a
commutative situation the disjointness of the projections p; reduces to the diagonal
case, namely that in which ¢ = j. The diagonal terms satisfy the same estimates
of the classical decomposition. Namely,

e [lgallz,a) < 1fllza) and llgallz. 4y < 22
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o bp = Zl bA,i7 with bAﬂ' of mean zero and Zz ||bA,iHL1(.A) < 2HfHL1(A)‘

These properties render weak-type estimates of the diagonal terms by proceeding
as with the classical Calderén-Zygmund decomposition. On the other hand,
the off-diagonal terms — those for which ¢ # j — seem to lack the above
classical estimates. In practice, the off-diagonal terms are dealt by using a
pseudo-localization principle and certain truncated estimates satisfied by the off-
diagonal terms. Prior to the remarkable developments in [58], beside of course
[18], weak-type (1,1) estimates in the noncommutative setting were only known
for noncommutative martingale transforms and square functions, as developed by
Parcet and Randrianantoanina [59] and by Randrianantoanina in [70, 71, 72]; in
[69] for the noncommutative Hilbert transform associated to maximal sub-diagonal
algebras and by Junge and Xu [39] in the context of maximal ergodic theorems.

The same methods Parcet used in [58] give the analogous estimate for a Haar
shift operator III;; with polynomial dependence on the complexity. One might
then ask about the boundedness properties of Haar shift operators with matrix-
valued symbols ozi x € M. Matrix-valued paraproducts are prominent examples
that have attracted some attention. Different operators arise depending on whether
the symbols act by right or left multiplication on each coefficient (f, h;) € M.
Consider for example Haar multipliers with uniformly bounded symbols af € M.
A pair of column/row operators are introduced by

To(f) =Y ar(f;hnhr,  Ta(f) =D (f hr)arhr.
€9 Qe

Even in the Lebesgue setting, Haar multipliers with noncommuting symbols may
lack weak-type (1,1) and strong (p,p) estimates for p # 2, highlighting the fact
that the noncommutative nature of the context predominates. In the case of dyadic
paraproducts, Lo boundedness fails even for reasonably chosen symbols as proved
by Katz in [41], by Nazarov, Pisier, Treil and Volberg [56] and Mei [50]. Let us
illustrate this by giving a classical counterexample coming from noncommutative
martingale theory. Let A = L*°([0,1))®M, and consider the column multiplier
with symbol ay = ey for I € Zp_;. If

fn = Z( > \H”%) €1,k
k=1 \I€P_,
it is easily seen that
1 fallzyay = v and ([ Tefalln, oay = 1> || fallzy )

for sufficiently large n. This motivates the problem that we intend address in Part
1, namely:

Does there exist subspaces or subsets Ay/Ac of Li(A) such that f =
fr+ fe for fr € Ay and f. € A and that

To: A — Liso(A) and Te: A — Lyoo(A)?
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Despite falling short to solve this question, we get interesting results in this
direction.

e Haar shift operators. In Theorem 5.1 (i) we shall see that for f € L;i(A)
there exist an explicit decomposition f = f, + f. such that

LS g fell 2o ) + IS g fell 2y oo a) < Chkll fllzy a)-

for row/column Haar shift operators including Haar multipliers, paraproducts
and their adjoints.

e Martingale multipliers and paraproducts. By extending the same tech-
niques to the noncommutative martingale setting in Theorem 5.3 (i) we shall
obtain analogous results for martingale difference operators and martingale para-
products with non commuting symbols for regular filtrations.

The decomposition f = f; + f. obtained above is given in terms of triangular
truncations relative to suitably chosen projections depending on f. More precisely,
the projections used are obtained by adapting Cuculescu’s construction so that
projections associated to different heights are comparable. In Theorem 5.1 (i) we
get constants of order Cj ), ~ 27 which seem far from being optimal. The classical
argument giving constants of linear or even polynomial order encounters a major
obstacle due to the presence of triangular truncations, which are not bounded in L
by the classical result of Kwapien and Pelczynski [42]. This is also the reason why
we did not succeed in extended the argument above to generic Calderén-Zygmund
operators, leaving it as an open problem.

On the other hand, by complementary techniques we are able to proof estimates
for generic noncommuting Calderén-Zygmund operators. That is, for a pair of
row/column operators given formally by

Tof(x) ~ /R f@k(@,y)dy and Tof(x) ~ /R Kz, y) f(y) dy,

with kernels such that k(z,y) € M for © # y satisfying standard size and
smoothness estimates. This is done by using the theory of row/column Hardy
spaces of Mei [51], its martingale analogues, developed earlier in [66] and the
associated interpolation and duality properties [32, 38, 55].

e Hardy space estimates. In Theorem 5.1 (ii) we will show that (7},7.) maps
continuously row/column Hardy spaces into Li(A). Interpolation and duality
arguments provide L, estimates in Theorem 5.2.

e Martingale multipliers and paraproducts. H; and L, estimates are ob-
tained for noncommuting martingale transforms and paraproducts for arbitrary
filtrations in Theorem 5.3 (4i).
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Non-doubling semicommutative dyadic harmonic
analysis

It is then natural to ask to what degree the results of Part I can be carried to the
semicommutative context of Part II. Namely,

Can one determine the class of measures for which a dyadic operator
acting on operator-valued functions is of weak-type (1,1)7

This question motivates Part III of this thesis. To answer it we introduce a
noncommutative Calderén-Zygmund decomposition that generalizes the Calderén-
Zygmund decomposition used in Part I. As the noncommutative Calderén-Zyg-
mund decomposition introduced in [58] — which is valid for the Lebesgue measure
— this decomposition relies in adapting Cuculescu’s construction to this setting.
We obtain in Theorem 9.2 that f = g 4+ b+ 8 with each term having a diagonal
and an off-diagonal part given by

® g = ga + goit, where

ga =afq+ Y  En_1 (prfupk)
kez,

9ot = (la— ) fa+ af la— @) + > Eivj1 (pifivips);
i#]

e b=0ba + by, where

ba =Y pk(f = fdpk, o = > pilf — fivj)ps;

keZ i#]
o 3= Ba + Bot, where

Ba =Y Di(prfipr);  Bot = Y Divj (pifivips) -

keZ i#]j

As in the decomposition obtained in [58], the diagonal terms satisfy the classical
properties

® [lgallz,cay < 1Nz, ) and lgallz,cay < CANf Iy a)-
[ ] bA = Zz bA,i: with bA,i of mean zero and Zz ”bA,iqu(.A) S 2HfHL1(.A)

e Ba =2 Ba, with Ba; of mean zero and 3, [|Baillz, (4) < 2l 1L, (4)-

In practice, the off-diagonal terms are controlled by localization principles. We use
this decomposition to answer the motivating question.

e Commuting Haar shift operators. The weak-type (1,1) of Haar shift
operators with commuting symbols is characterized as in the commutative non-
doubling setting as we shall see in Theorem 9.4.
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The consideration of noncommuting symbols introduces considerable additional
difficulties when trying to provide a priori weak-type estimates. The methods
of Theorem 5.1 (i) are not applicable to this setting even when considering Haar
multipliers. We discuss this at the end of Part III and leave it as an open problem.
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Part 1

Dyadic harmonic analysis
beyond doubling measures






Chapter 1

Introduction and main results

In this Part of the dissertation we study the boundedness behavior of dyadic
operators with respect to Borel measures that are not necessarily doubling. For
simplicity we will restrict ourselves to the Euclidean setting with the standard
dyadic grid 2 in R? Of course, our results should also hold for other dyadic
lattices and, more in general, in the context of geometrically doubling metric spaces
in terms of Christ’s dyadic cubes [11], or some other dyadic constructions [19, 31].
We will use the following notation, for every Q € 2, we let 2,(Q), k > 1, be
the family of dyadic subcubes of side-length 2% £(Q). We shall work with Borel
measures 4 such that pu(Q) < oo for every dyadic cube @ (equivalently, the u-
measure of every compact set is finite). To go beyond the well-known framework
of the Calderon-Zygmund theory for doubling measures, the first thing we do is to
develop a Calderén-Zygmund decomposition adapted to p and to the associated
dyadic maximal function

Mof(@) = s (Mg = sw o [ 17 dute).

TEQED TEQED (

Here we have used the notation (g)q for the y-average of g on @ and we set (g)g =0
if 1(Q) = 0. Asusual, if f € L'(u) and X > 0, we cover { Mgy f > A} by the maximal
dyadic cubes {Q;};. In the general setting that we are considering, such maximal
cubes exist (for every A > 0) if the p-measure of every d-dimensional quadrant is
infinity. Otherwise, maximal cubes exist for A large enough. For the sake of clarity
in exposition, in the following result we assume that each d-dimensional quadrant
has infinite p-measure. The general case will be addressed in Section 2.4 below.

One could try to use the standard Calderén-Zygmund decomposition, f = g+b
where g and b are respectively the “good” and “bad” parts. As usual, in each @Q;
the “good” part would agree with (f)q,. However, this good part would not be
bounded (or even higher integrable) and therefore this decomposition would be
of no use. Our new Calderén-Zygmund decomposition solves the problem with
the “good” part and adds a new “bad” part whose building blocks have vanishing
integrals and each of them is supported in @j, the dyadic parent of @);.

Theorem 1.1. Let p be a Borel measure on R satisfying that u(Q) < oo for
all Q € P and that each d-dimensional quadrant has infinite p-measure. Given

3
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an integrable function f € L'(u) and X\ > 0, consider the standard covering of
O\ = {Mgf > A} by mazimal dyadic cubes {Q;};. Then we can write f = g+b+f
with

9(x) = f(2) lga\q, (z +Z ) 1Qg

2) =Y biw) = Y (F@) - (he) 1o,(),

D) =8 = (o, - (Ng,) (1,@) - “(Qi) 15,@))-

Then, we have the following properties:

(a) The function g satisfies

91, < Co XN [Fll g for every 1< p < .

(b) The function b decomposes as b =73, b;, where

supp(s)) € Q. [ bi(o)du - Sl <20l

(¢) The function [ decomposes as f = Z - B;, where

supp(8;) < Q. / B;(x) dpu(a Zumm < A|fllp1 00

Theorem 1.1 is closely related to Gundy’s martingale decomposition [26] and
was obtained in the unpublished manuscript [49] (see also [16]). It is however
more flexible because the building blocks are the maximal cubes in place of the
martingale differences. This feature is crucial when considering Haar shift operators
allowing us to characterize their weak-type (1,1) for general Borel measures.

A baby model of the mentioned characterization —which will be illustrative
for the general statement— is given by the dyadic Hilbert transform in R and its
adjoint. To define this operator we first need to introduce some notation. First,
to simplify the exposition, let us assume that p(7) > 0 for every I € &, below we
will consider the general case. Given I € Z we write I_, I for the (left and right)
dyadic children of I, and, as before, T is the dyadic parent of I. We set

Let us first observe that the system H = {h;};cy is orthonormal. Additionally,

for every I € & we have

1
(1.3 I3y = 2/m(D). Il ~
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Therefore we obtain the following condition which will become meaningful later
(1.4) Sup”h[”Loo(u)”h[HLI(M) < oQ.

Ie
We define the dyadic Hilbert transform by

Hyf(z) =Y (f.h)(hi_(2) = by () = Y o(D){f, hp)hs (=),

Ie2 Iev

where o(I) =1if I = (f)_ and o(I) = —11if I = (f)+ Another toy model in the
1-dimensional setting is the adjoint of Hy which can be written as

Hyf(z) = Y o(D)(f hi)hy(=).
Iey

We are going to show that the increasing or decreasing properties of m
characterize the boundedness of Hg and H7,. This motivates the following
definition. We say that p is m-increasing if there exists 0 < C' < oo such that

m(I)<Cm(), Ie€2.
We say that p is m-decreasing if there exists 0 < C' < oo such that
m(I)<Cm(I), 1€9.

Finally, we say that u is m-equilibrated if p is both m-increasing and m-decreasing.

Let us note that if p is the Lebesgue measure, or in general any dyadically
doubling measure, we have that m(I) ~ p(I) and therefore u is m-equilibrated.
As we will show below, the converse is not true. In general, we observe that m(I)
is half the harmonic mean of the measures of the children of I and therefore,

i) = (G + u(}+)>_1 ) (m{u(})u(z)})

— min {u(I), u(11)} < p(I).

Thus, m gives quantitative information about the degeneracy of p over I:
m(I)/pu(I) < 1 implies that p mostly concentrates on only one child of I, and

m(I)/p(1) 21 gives that u(I_) ~ p(Ly) ~ p(l).
We are ready to state our next result which characterizes the measures for
which Hg and H7, are bounded for p # 2.

Theorem 1.5. Let pu be a Borel measure on R satisfying that 0 < u(I) < oo for
every I € 9.

(i) Hy : L' (p) — LY (u) if and only if p is m-increasing.

(1) H, - LY (p) — LY>°(u) if and only if u is m-decreasing.
Moreover, if 1 < p < 2 we have:
(1it) Hg : LP(u) — LP(w) if and only if u is m-increasing.
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(iv) HY, : LP(p) — LP(p) if and only if p is m-decreasing.
If 2 < p < 00, by duality, the previous equivalences remain true upon switching the
conditions on .
Furthermore, given two non-negative integers r, s, let I, s be a Haar shift of
complexity (r, s), that is,

1)y

(1.6) I, s f(z) = Z Z a§7K<f, hj)hi(x) with sup |a§7K| < 0.
1€9 Jea(I)
Ke,(1)

If p is m-equilibrated then 111, s is bounded from L*(u) to LY*°(pn) and from LP(u)
to LP(u) for every 1 < p < oo.

Let us observe that our assumption on the coefficients of the Haar shift operator
is not standard, below we shall explain why this is natural (see Theorem 1.11 and
the comment following it).

Let us observe that using the notation in the previous result Hy is a Haar
shift of complexity (0,1) whereas H, is a Haar shift of complexity (1,0). As noted
above, dyadically doubling measures are m-equilibrated. Therefore, in this case,
Hg, H7, and all 1-dimensional Haar shifts III,. s with arbitrary complexity are of
weak-type (1,1) and bounded on LP(u) for every 1 < p < oco. In Section 3.1 we
shall present examples of measures in R as follows:

e 1 is m-equilibrated, but p is neither dyadically doubling nor of polynomial
growth. Thus, we have an example of a measure that is out of the classical
theory for which the dyadic Hilbert transform, its adjoint and any Haar shift is
of weak-type (1,1) and bounded on LP(u) for every 1 < p < oc.

e 1 is m-increasing, but p is not m-decreasing, not dyadically doubling, not of
polynomial growth. Thus, Hy is of weak-type (1,1), bounded on LP(u) for
every 1 < p < 2 and unbounded on LP(u) for 2 < p < oo; HZ, is bounded on
LP(u) for 2 < p < 00, not of weak-type (1,1) and unbounded on LP(u) for every
l<p<2

e 1 is m-decreasing, but p is not m-increasing, not dyadically doubling, not of
polynomial growth. Thus, Hy is bounded on LP(u) for 2 < p < oo, not of
weak-type (1,1) and unbounded on LP(u) for every 1 < p < 2; H7, is of weak-
type (1,1), bounded on LP(u) for every 1 < p < 2 and unbounded on LP(u) for
2<p<oo.

e 1 is not m-decreasing, not m-increasing, not dyadically doubling, but p has
polynomial growth. Thus, this is an example of a measure d la Nazarov-Treil-
Volberg and Tolsa for which Hy and H}, are bounded on L?(p), unbounded on
LP(u) for 1 < p < oo, p # 2, and not of weak-type (1,1).

Our next goal is to extend the previous result to higher dimensions. In this case
we do not necessarily assume that the measures have full support. The building
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blocks, that is, the Haar functions are not in one-to-one correspondence to the
dyadic cubes: associated to every cube @ we expect to have at most 2¢ — 1 linearly
independent Haar functions. Moreover, there are different ways to construct a
Haar system (see Section 3.2 below). We next define the Haar systems that we are
going to use:

Definition 1.7. Let p be a Borel measure on R?, d > 1, satisfying that u(Q) < oo
for every Q € 2. We say that ® = {¢g}geca is a generalized Haar system in R? if
the following conditions hold:

(a) For every Q € Z, supp(¢g) C Q.

(b)) fQ, Qe Zand Q C Q, then ¢g is constant on @’

(¢) For every Q € 2, /Rd ¢o(x) du(z) = 0.

(d) For every Q € 7, either ||¢q|lp2(,) =1 or ¢ = 0.

Remark 1.8. The following comments pertain to the previous definition.

e Note that (b) implies that ¢q is constant on the dyadic children of Q. In
particular, ¢¢ is a simple function which takes at most 2¢ different values.

e Given a generalized Haar system ® = {¢g}gecy, we write Pg for the set of
dyadic cubes @ for which ¢g # 0. By assumption, we allow Zg to be a
proper subcollection of Z. Note that {¢g}gcy is an orthogonal system whereas
{¢q}Qe, is orthonormal.

Let us point out that we allow the measure p to vanish in some dyadic cubes. If
(@) = 0, we must have ¢g = 0 and therefore Q € 2\ Zs. If u(Q) = p(Q’) for
some child @' of @ (i.e., every brother of @’ has null y-measure) then ¢g = 0
and thus Q € 2\ Zg. Suppose now that @ € Zg (therefore u(Q) > 0), by
convention, we set ¢g = 0 in every dyadic child of @) with vanishing measure.

e Let us suppose that for every @ € Ys, ¢g takes exactly 2 different non-zero
values (call ® a 2-value generalized Haar system). In view of the previous remark,
¢q is “uniquely” determined modulo a multiplicative +1. That is, we can find
Eg, Eé C @, such that Ezg N Eé =0, Eég is comprised of dyadic children of @,
u(EéS) > (0 and

lp- lgs p(Eg)n(EY)
1.9 — Q Q ), ith S e el *
19 do =@ () iy ) v @ = RS
Then, for every () € Y we have
1

(1.10) 621G = 2vme(Q), Ioelz~o = "2ogy
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e In dimension 1, if we assume as before that p(I) > 0 for every I € 2, we then
have that ‘H defined above is a generalized Haar system in R with 2y = 2. The
previous remark and the fact every dyadic interval has two children say that H
is “unique” in the following sense: let ® be a generalized Haar system in R, then
¢r = £ hy for every I € Pg. Note that we can now allow the measure to vanish
on some dyadic intervals. In such a case we will have that ¢; = 0 for every
I € 9 for which p(I_) - u(Iy) = 0. Also, ¢; = £h; and mg(I) = m(I) for every
1€ Ps.

Our main result concerning general Haar shift operators characterizes the weak-
type (1,1) in terms of the measure p and the generalized Haar systems that define
the operator. In Section 4.1 we shall also consider non-cancellative Haar shift
operators where condition (¢) in Definition 1.7 is dropped for the Haar systems ®
and V. This will allow us to obtain similar results for dyadic paraproducts.

Theorem 1.11. Let pu be a Borel measure on R, d > 1, such that u(Q) < oo
for every Q € 9. Let ® = {¢g}gecgy and ¥ = {1g}gca be two generalized Haar
systems in R?. Given two non-negative integers r, s we set

E((I),\I/;T, 8) = Slé%{H¢R||L°°(,u)||¢SHL1(u) ‘Re @T(Q)Ng € @S(Q)}

Let 111, s be a Haar shift of complezity (r,s), that is,
ULof(x) =D Y afslfior)s(@)  with sup |af 4| < oo.

QEP Re2,(Q) Q.k,S
S€P2:(Q)
If 2(®,¥;r,8) < oo, then 1,5 maps continuously L'(pn) into LY*°(u), and by
interpolation 111, s is bounded on LP(p), 1 <p < 2.
Conversely, let 111, s be a Haar shift of complexity (r,s) satisfying the non-
degeneracy condition infg g s |O‘?2,S| > 0. If I, maps continuously L' (pn) into
LY () then Z(®,¥; 7, s) < oo.

Let us point out that in the Euclidean setting with the Lebesgue measure one
typically assumes that ]a%s\ < (IR|1S))Y?/|Q|. Our condition, with a general
measure, is less restrictive and more natural: having assumed the corresponding
condition with respect to u, Hy and H, would not be 1-dimensional Haar shift
operators unless p is dyadically doubling.

To illustrate the generality and the applicability of Theorem 1.11 we consider
some examples. Before doing that we need to introduce some notation. Let ® be
a generalized Haar system in R?, we say that ® is standard if

(1.12) sup [|¢Q |l n () 0@l Loo (u) < 0.
Qe

Note that we can restrict the supremum to Q € Zg. Also, if Q € YDg, Holder’s
inequality and (d) imply that each term in the supremum is bounded from below
by 1. Thus, ® being standard says that the previous quantity is bounded from
below and from above uniformly for every Q € Z3. Notice that in the language of
Theorem 1.11, ® being standard is equivalent to Z(®, ®;0,0) < co.
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Remark 1.13. If ® is a 2-value generalized Haar system, (1.10) implies that ®
is standard. Note that in R (since every dyadic interval has two children) every
generalized Haar system, including H introduced above, is of 2-value type and
therefore standard.

Example 1.14 (Haar multipliers). Let ® = {¢q}g be a generalized Haar system
in RY. We take the Haar shift operator of complexity (r,s) = (0, 0), usually referred
to as a Haar multiplier,

Moo f(z) = Y ag(f,0q)dq(z),  with suplag| < oo.

Qe Q
Then Z(®,P;0,0) < oo is equivalent to the fact that ® is standard. Therefore
Theorem 1.11 says that IIly( is of weak-type (1,1) provided & is standard. We
also have the converse for non-degenerate Haar shifts of complexity (0,0). As a
consequence of these we have the following characterization: “® is standard if and
only if all Haar multipliers are of weak-type (1,1)”. As observed above this can
be applied to any 2-value generalized Haar system in R?. In particular, for an
arbitrary measure in R such that pu(I) > 0 for every I € 2, all Haar multipliers of
the form

My of(z) = Z ar(f,hryh(x), with  sup |ag| < oo,

1€ I
are of weak-type (1,1). In higher dimensions, taking an arbitrary measure such
that u(Q) > 0 for every @ € 2, any Haar multiplier as above defined in terms of
a 2-value generalized Haar system in R? is of weak-type (1,1). We note that we
cannot remove the assumption that the system is 2-value: in Section 3.2 we shall
give an example of a generalized Haar system that is not standard and a Haar
multiplier that is not of weak-type (1,1). All these comments can be generalized
to measures without full support.

Example 1.15 (The dyadic Hilbert transform I). For simplicity, we first suppose
that pu(I) > 0 for every I € 2. The dyadic Hilbert transform in R can be seen
as the non-degenerate Haar shift Hy = I ; with O‘ili = F1. Theorem 1.11
says that Hg is of weak-type (1,1) if and only if Z(H,#H;0,1) < oo, which in
view of (1.3) is equivalent to the fact that p is m-increasing. For the adjoint of
the dyadic Hilbert transform HZ, = III;o with O‘fi,l = F1 and this is a non-
degenerate Haar shift. Again, Theorem 1.11 characterizes the weak-type (1,1) of
H7, in terms of Z(H,H;1,0) < oo, which this time rewrites into the property that
1 is m-decreasing.

Example 1.16 (The dyadic Hilbert transform II). We now consider the dyadic
Hilbert transform but with respect to measures that may vanish. Let ® be a
generalized Haar system in R and let Zg be as before. By the discussion above
we may suppose that ¢; = hy for every I € Zg. Then, the corresponding dyadic
Hilbert transform can be written as

Hoof =) (fon(er. —ér,) = >  oD){f,hphi,

1€ 1€99:1€ P4
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where o(I) = 1if I = (f)_ and o(I) = —1if I = (f)Jr As before we have that
Hg ¢ = Il is non-degenerate. Therefore its weak-type (1,1) is characterized in
terms of the finiteness of Z(®, ®;0,1). Thus, we obtain that

Hyg: L'p) — LY(u) <= mI) <Cm(I), I,T € Ps.

Note that the latter condition says that u is m-increasing on the family %4 (so
in particular the intervals with zero pu-measure or those with one child of zero
p-measure do not count).

For the adjoint of Hy ¢ we have

Hof(x) =Y o(D)(f, 61067 = Y o(D)(f,hr)h;

1€ 1€95:1€ 5

and we can analogously obtain
Hppg:L'(u) — LY(n) = m(I)<Cm(I), I,1€ Ds.

Example 1.17 (Haar Shifts in R). We start with the case u(I) > 0 for every
I € 9. Let us consider IIT = III, 5 as in (1.6), that is, a Haar shift operator of
complexity (r, s) defined in terms of the system H. By Theorem 1.11 we know that
E(H,H;r, s) < oo is sufficient (and necessary if we knew that III is non-degenerate)
for the weak-type (1,1). We can rewrite this condition as follows: m(K) < m(J)
for every I € 9, J € 2,(I), K € Z4(1). If i is m-equilibrated then m(J) ~ m(l)
and m(K) =~ m(I) for every I € 2, J € 2,(1), K € 94(I). All these and (1.4)
give at once Z(H,H;r,s) < oo for every r, s > 0. Thus, in dimension 1, the fact
w is m-equilibrated implies that every Haar shift operator is of weak-type (1,1).
We would like to recall that in Chapter 3 we shall construct measures that are m-
equilibrated but are neither dyadically doubling nor of polynomial growth. Thus,
Haar shift operators are a large family of (dyadic) Calderén-Zygmund operators
obeying a weak-type (1,1) bound with underlaying measures that do not satisfy
those classical conditions.

For measures vanishing in some cubes, Theorem 1.11 gives us a sufficient (and
often necessary) condition. However, it is not clear whether in such a case one
can write that condition in terms of p being m-equilibrated. We would need to
be able to compare m(K) and m(J) for K and J as before with the additional
condition that J, K € %g. Note that the fact that p is m-equilibrated gives
information about jumps of order 1 in the generations and it could happen that
we cannot “connect” J and K with “l-jumps” within Z3. Take for instance
I = [0, 1), J = [0,4), du(:r) = 1[071)U[274) (l‘) dZC, P = {h], h]} and IH270 = <f, h])hj.
Then Theorem 1.11 says that Iy is of weak-type (1,1) since Z(®,®;2,0) =
4 (m[0,4) - m[0,1))/? = 4//6 < co. However, o = {I,.J} and these two dyadic
intervals are 2-generation separated.

Example 1.18 (Haar Shifts in R? for 2-value generalized Haar systems). Let us
suppose that ® and ¥ are 2-value generalized Haar systems. Write Eg (resp. Fg)



Introduction and main results 11

for the sets associated with ¢g € Zp (resp. Yo € Zy), see (1.9). By (1.10) we
have that Z(®, ¥;r, s) < oo if an only if pu satisfies

_ mFHNES) - m(ER)n(ER)
(1.19) me(S) = Fs UFY) © w(Bg UEL)

= mo(R)

forevery Q € 2, R € 2,(Q), S € Z5(Q), R € P3 and S € Py. Therefore Theorem
1.11 says that III, , is of weak-type (1, 1) provided pu satisfies the condition (1.19).
The converse holds provided III, s is non-degenerated.

The organization of this Part of the dissertation is as follows. Chapter 2
contains the proof of our main results as listed in this Introduction. In Chapter 3
we shall present some examples of measures in R that are not dyadically doubling
(neither have polynomial growth) for which either the dyadic Hilbert transform,
its adjoint or both are of weak-type (1,1). In the higher dimensional case we
will review some constructions of Haar systems. We shall see that the obtained
characterization depends also on the Haar system that we work with. That is,
if we take a Haar shift operator (i.e., we fix the family of coefficients) and write
it with different Haar systems, the conditions on the measure for the weak-type
(1,1) depend on the chosen Haar system. Finally, in Chapter 4 we present some
further results including non-cancellative Haar shift operators and therefore dyadic
paraproducts, and some comments about the relationship between Haar shifts and
martingale transforms.






Chapter 2

Proofs of the main results

Before proving our main results and for later use, we observe that for any
measurable set £ C R? we have ||1g||p1ce() = |1ElL1(m = #(E). This easily
implies that if f is a simple function, then

(2.1) 1 flproe gy < 1f1lnrgny < #{f(@) 1 2 € R £l pros (-

2.1 A new Calderén-Zygmund decomposition

As pointed out before, we shall work with the standard dyadic filtration 2 =
Urez Zr in R<, but all our results hold for any other dyadic lattice. If k > 0 is a
nonnegative integer, we write Z;(Q) for the partition of @ into dyadic subcubes
of side-length 27%¢(Q) and Q™) for its k-th dyadic ancestor, i.e., the only cube of
side-length 28£(Q) that contains Q). The cubes in 2;(Q) are called dyadic children
of ( and @ = QW is the dyadic parent of Q.

By u we will denote any positive Borel measure on R? such that u(Q) < oo for
all Q € 2. Write £ for the class of such measures. Once p is fixed, we set for
Qe

1 i = 0 when =
Mo = 55 /Q f(@)dp(z)  with (f)o=0 when u(Q) = 0.

The dyadic maximal operator for u € % is then Mg f(r) = sup,cgea(|f]) -

Let us write R;-l, 1 < j < 2% for the d-dimensional quadrants in R%. It will
be convenient to consider temporarily the subclass %, of measures p € % such
that M(R?) = oo for all 1 < j < 2% We will prove our main results under the
assumption that u € %o and sketch in Section 2.4 the modifications needed to
adapt our arguments for any pu € 4.

Assuming now that p € Ao, we know that (|f|)g — 0 as £(Q) — oo whenever
f € L'(u). In particular, given any A > 0, there exists a collection of disjoint
maximal dyadic cubes {Q;}; such that

O ={zeR?: Myf()> 2} = @,
j

13
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where the cubes {Q;}; are maximal in the sense that for all dyadic cubes Q 2 Q;
we have

(2.2) (Ife <A <AIfhq;:

Using this covering of the level set 2y, we can reproduce the classical estimate to
show the weak-type (1,1) boundedness of the dyadic Hardy-Littlewood maximal
operator. Note that maximal cubes have positive measure by construction.

Proof of Theorem 1.1. We are currently assuming that u € B, see Section
2.4 for the modifications needed in the general case. By construction, f = g+b+ /.
Moreover, the support and mean-zero conditions for b; and 3; can be easily checked.
On the other hand, since the cubes @); are pairwise disjoint

X sl <2 Z/ o)l dir) < 201l
Similarly, by the maximality of the Calderén-Zygmund cubes, see (2.2), we obtain

S 1Bl Z (1fha, + (fg (@) <43 /Q i < 41 f o go-
j i U

It remains to prove the norm inequalities for g. Write g1, go and g3 for each
of the terms defining g and let us estimate these in turn. It is immediate that
lg1llruy < [1fllL1(- Since Mgy is of weak-type (1,1), Lebesgue’s differentiation
theorem yields [|g1/|po(y) < [Maf - lgavo,llLe(u) < A The estimates for go are
similar. Since <|f|>@ < )\, we obtain

J

lgallory < Ap(n) < [fllprg  and g2l peequ) < A

These estimates immediately yield the corresponding LP(u)-estimates for g, and

g2

The estimate for gs is not straightforward: each term in the sum is supported
in Q;, and these sets are not pairwise disjoint in general. In particular, an L>
estimate is not to be expected. However, we do have that

wQ;)
(@)

<2Z(/ D) 5 14, 0) = 2T1(@),

The following lemma contains the relevant estimates for 7"

e r<2 (g, + (1g,) 5 15 (2)

Lemma 2.3. Let {Q;}; be a family of pairwise disjoint dyadic cubes and set

1
Tf(x) = d — 15 ().
(a) Z(/Q ) 5515,

For every m € N, T satisfies the estimate

[ 1t@ldnw)™ [ 1r@ldut

1(Q;) Jo, U, Q;

17117y < 0t (sup
J
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Assume this result momentarily. The case m = 1 implies that [[gs|[z1(,) <

2| f[l1(u)- On the other hand, applying it for a general integer m, we get by (2.2)
lgsllFon ey < 27 mIA™ 7 f ]l L

Now, if 1 < p < oo is not an integer, we take m = [p] + 1 and let 0 < 6 < 1 be
such that p = 6 + (1 — #)m. Then, by Holder’s inequality with indices % and ﬁ
we obtain as desired

1-0)m p=l
1951175y < N9 93115y < 2P (M) ™= X7 £ 1
]

Proof of Lemma 2.3. The case m = 1 is trivial. Let us proceed by induction
and assume that the estimate for m holds. Write ¢; = ﬁ fQj |f|du and define
J

the sets

Ak = {(j1,j27-'-,jm+1) e N™:Qj, = Qj, N Qy ﬁ"‘ﬂQjm+1}
- {(]1’]2’ T ’]m+1) E Nm+1 : Q-]k C le’ M 7Q.7’7n+1}.

By symmetry we obtain

m+1
HTfHanjil < Z ZSOJE © P ma H(Qh AREE ﬂQjm+l)
k=1 Ay

1) 3 pies [ @)l du(o)

m+1 jm+1

—m) Y e > [ l@ldue)
J1snsdm Jm41:(J1, o Jm41) EAm41 Qimt1
Notice that for a fixed m-tuple (ji,...,Jm), it follows that
U Qjm+1 C U Qjm+1 C le n---N Qjm’

Jm+1:(J1,sIm+1) EAm 41 Fm41:(J150dm+1) €EAm 41

and, moreover, the cubes in the first union are pairwise disjoint. Thus, the fact
that Qj, N---NQj,, = @Qj;, for some 1 < i < m, gives

TH Ly < (m+1 A O d
TG < 04 ) 5 i Lo g, Mt
1 ~
< (m+1)(sww—= [ |7l o i p(@n 00 G,
(m )<Sljl'p/i(@j) /éjj | f] M)jlgmwj P 1 m)

= (m—&-l)(sgpm

/Q )T g

This and the induction hypothesis yield at once the desired estimate and the proof
is complete. ]
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The new Calderén-Zygmund decomposition in Theorem 1.1 can be used to
obtain that some classical operators are of weak-type (1,1) for general Borel
measures: the ¢9-valued dyadic Hardy-Littlewood maximal function with 1 < ¢ <
oo, the dyadic square function, and 1-dimensional Haar multipliers. For the first
operator, one needs a straightforward sequence-valued extension of the new Cal-
derén-Zygmund decomposition and the reader is referred to [16]. Let us then look
at the dyadic square function

1/2
saf@) = (X tha - gl 10))

Qev

It is well-known that Sy is bounded from L! () to L1*°(p) with a proof adopting a
probabilistic point of view. However, using our Calderén-Zygmund decomposition
one can reprove this result using harmonic analysis techniques as follows. We
decompose f = g + b+ (3 as in Theorem 1.1. The estimate for the good part is
standard using that Sy is bounded on L?*(u) and (a) in Theorem 1.1. For the
bad terms, using the weak-type (1,1) of Mgy, it suffices to restrict the level set to
R4\ Q). Theorem 1.1 parts (b) and (c) yield respectively that (Sgb;) lgag, =0
and (Sgf;) 1Rd\@j = 0. Thus everything is reduced to the following

2
eR¥\ Q) : SyB(x) > \/2} < = Su6;|d
ple € RO\ Q01 S,8(2) > A2} A;/@j\%um

; ~ 4 4
-2 Yo, - (g, 2D @00 < 5 3 1 < S0

(@)

All these ingredients allow one to conclude that Sy is of weak-type (1,1). Details
are left to the reader

Finally, under the assumption that 0 < p(l) < oo for all I € 2, we consider
the 1-dimensional Haar multipliers defined as

Tof(x) = ar(f,hr)hi(x),  suplas| < oc.
1€ I

This operator is bounded on L?(p) by orthonormality. A probabilistic point of
view, see Section 4.3, yields that T}, is a dyadic martingale transform and therefore
of weak-type (1,1). Again, our new decomposition gives a proof with a “harmonic
analysis” flavor. We first observe that Tob;(x) = 0 for every z € R\ @Q;. Therefore,
using Theorem 1.1 and proceeding as above everything reduces to the following
estimate

ple € R [Tp(@)] > A2} < 2 3 lag | ()1, — ()7, [y mT)ling Lo
J

8 ~ 8
< Sl}P |OZI|X Z<|f‘>ljm(lj) < Slllp \aI|X||fHL1(u),
J

where we have used (2.5) below, (2.2), (1.3) and that m(IA]) < p(ly) .



2.2. The dyadic Hilbert transform 17

2.2 The dyadic Hilbert transform

In this section we prove Theorem 1.5. Although the estimates for Hy and H,
follow from Theorem 1.11 as explained above, we believe that it is worth giving
the argument: the proofs for our toy models Hy and H7, are much simpler and
have motivated our general result. We will skip, however, the last statement in
the result since it follows from Theorem 1.11, as explained in Example 1.17, and

interpolation.

Before starting the proof we observe that by the orthonormality of the system
H we have
(2.4) 1Ho 11720 = D 1R < 20 £172(,)-

S
Thus, Hy and H7, are bounded on L3(p).

Proof of Theorem 1.5 (i). We first prove the necessity of p being m-increas-
ing. Take f = hy so that Hyf = h;_ — hy, . Using that h; is constant on dyadic
subintervals of I, (2.1) and that Hy is of weak-type (1,1) we obtain that pu is
m-increasing:

(V) + /mlI5) ) ~ Il + Ir

~ |Hghrl poo ) S el = vVm(I).

Next we obtain that if u is m-increasing then Hy is of weak-type (1, 1). In order
to use Theorem 1.1, we shall assume that p© € B, that is, p[0, 00) = p(—o00,0) =
o0o. The general case will be considered in Section 2.4 below. Fix A > 0 and
decompose f by means of the Calderén-Zygmund decomposition in Theorem 1.1.
Hence,

iz € R [Ho f(2)] > A} < pule € R : [Hog(@)] > A3} + u(9)
+p{r € R\ Q) : |[Hgb(x)| > A\/3} + p{z € R: |HgyB(z)| > A/3}
=51+ 59+ 53+ S4.

Using the weak-type (1,1) for My, Theorem 1.1 part (a) and (2.4) it is standard
to check that S + S2 < (C/A)|fllz1()- Using that each b; has vanishing integral
and that hy is constant on each Iy it is easy to see that Hybj(x) = 0 whenever
x € R\ I; and thus S3 = 0. To estimate Sy we first observe that

(2.5) (85, hi) = o (L)), = (N)7)y i) 6, -

This can be easily obtained using that 3; and h; have vanishing integrals; that
Bj is supported on I; and constant on each dyadic children of I;; and that hy is
supported on I. Thus,

HoBj =y o(D)(B), hp)hr = ((f)r; = (N )\ mT) (hy = ),

J
Iey
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where I® = f\ I € 2 is the dyadic brother of I € . Using (2.2), (1.3), the
assumption that p is m-increasing and the fact that m(I') < u(I) for every I € &
we conclude as desired

3 1 ~
<SS HoB g S 5 S Dm(E) S 5 / Al < 1z
J J

This completes the proof of (). O
Proof of Theorem 1.5 (ii). Take f = hy so that H,f = o(I)h;. Assuming
that H7, is of weak-type (1,1), we obtain by (2.1) that x is m-decreasing:

m(l) = hzllLr = Ihillpvee gy = 1HG oy S Ihrllpgy = vVm(I).

To prove the converse we proceed as above. We shall assume that y € Ao,
the general case will be considered in Section 2.4 below. The estimates for S; and
S, are standard (since H}, is bounded on L?(p)). For S5 we first observe that if
reR\ I

Hybj(x) = o(D){bj hr)hp(x) = o(L;){bs, hiy)hz (x) = o ()(f ha, Yy, (2)-

7

We use this expression, (1.3) and that u is m-decreasing;:

S0 ML ATCRICES SRR By AL
I;

% Sy /If! NAZ/ Fld < S0l

To estimate Sy we use (2.5),

3B =Y o) (B;, hi)hg = o(I)a (1) ((f)1, — ()7 ) m(I) by,

J (
1€ !

2)

where we recall that I, is the 2nd-dyadic ancestor of I;. We use that p is m-

decreasing and m(f ) < u(I) to conclude that

Zuﬂjﬁjny(u < 2SNy mTym (1)

J

1 1 1
szlm Nxz I|f|dﬂﬁx||fHLl(u)

J g v

This completes the proof of (7). O
Proof of Theorem 1.5 (iii). If u is m-increasing we can use (i) to interpolate

with the L?(u) bound to conclude estimates on LP(u) for every 1 < p < 2.
Conversely, we note that

1 1 P 1
(2.6) HhIHLp(M) = m(I) (,u(I_)p_l + /L(I+)p_1> =~ m(I)z



2.3. Haar shift operators in higher dimensions 19

On the other hand, if we then assume that Hy is bounded on LP(x) we conclude
that

1_1 1_1
m(I-)2 7" +m(l)> 7 = |lhr = hr e = [Hohrl e
11
S hillegey = m(I)? ¥
This and the fact that 1 < p < 2 imply that p is m-increasing. O

Proof of Theorem 1.5 (iv). For H}, we can proceed in the same way. By
interpolation and (ii), p being m-decreasing gives boundedness on LP(u) for
1 < p < 2. Conversely, if H, is bounded on LP(y) for some 1 < p < 2, then

_ 1
I

~ il oy = 1HZhi Loy S hallpegey = m(I)2 7,

N[
N[
Y e

m(I)

and therefore p is m-decreasing. O

2.3 Haar shift operators in higher dimensions

We first see that 111, 5 is a bounded operator on L?(p). Following [29], we write

I, f(x) = Z( > af sl ¢R>ws<w>> = Y Agf(x)

QEZ \ ReZ,(Q) QED
S€P:(Q)

As observed before, ® and ¥ are orthogonal systems. This implies

(2.7) 1A flIF2 = D <f, > a2,5¢3>

S€7:(Q) ReZ-(Q)

2
112200 D lodsl Ierlia

Re2-(Q)
5€2:(Q)

d Q 12
< 2(r+s) (Slflzps‘a&ﬂ )HfH%Q(#)'

34l

2
5172,

For Q € 2 and non-negative integer r,s, we write Pg o and Py o for the
projections

Poof = Y. (fior)ér,  Piof= > (fishvs.

ReZ-(Q) S€2:(Q)

We then have

Py yAQPhaf = D (Aq(r),vs) (f,ér)s
Re7-(Q)
S€7.(Q)

= 2 H¢RH%2(M)WSH%%M)O‘%SU’<Z5R)¢s:AQf.

Re2:(Q)
S€2:(Q)
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Fixed r and s, we notice that the projections Py o are orthogonal on the index @)
and the same occurs with Py . Hence, by (2.7) and orthogonality

I f I = D 1PSwAQPh 0 f |72y < C D 1Ph0f 720
Qe =2

<C Y > [if.én) SCHfHQLQ(u)

QeZ Re2,(Q)
and this shows that 111, 5 is bounded on L?(u).

Proof of Theorem 1.11. We first show that =Z(®, ¥;r, s) < oo implies that II,
is of weak-type (1,1). We shall assume that y € % and the general case will be
considered in Section 2.4 below. Let A > 0 be fixed and perform the Calderén-
Zygmund decomposition in Theorem 1.1. Then,

p{z € R : I, f(x)] > A} < pf{x € R : [T, og(2)| > A/3} + ()
+ puf{z € R\ Qy : |IIL,. 4b(x)| > A/3}
fpfe € RY: |IL L B()] > A/3)
— 51+ Sy + S5+ Si.

Using the weak-type (1, 1) for Mg, Theorem 1.1 part (a) and that I, s is bounded
on L?(u) it is standard to check that

Crs
S1+ 5 < — [FAFAYPE

We next consider S3. Let x € R\ Q; and observe that

(2.8) [sbj(x)| < Sup 026l > > (b, 6m)| [vs(@)
QEZ ReZr(Q)
S€2:(Q)

Y S by or)| Ibs(x)

(" REZ(Q),RCQ;

Q;CQCQ; S€2.1Q) J
In the last inequality we have used that each non-vanishing term leads to Q); C
Q C Qy) and R C @; since ¢g is supported in R and constant on the children
of R, b; is supported in @); and has vanishing integral, and 15 is supported in S.
This, Chebyshev’s inequality and Theorem 1.1 imply

|
S N HIr,sb' d/.l
A ; RNQ; | i
1
Sy X S bl l6al e gollvsllz)

7@, CQcQ(T) Regre(g)(g)CQj

2(r+s)dr _ C,
< ﬁ‘:(@aqj;rv S)ZHijLl(,u) < )\7 ||f”L1(,u)
J
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We finally estimate S4. Let us observe that §; and ¢ have vanishing integral.
Besides, 3; is supported in @j and constant on each dyadic child of @j, and ¢g
is supported in R and constant on each dyadic child of R. All these imply that
(Bj, ®r) = 0 unless R = @j. Then,

(29) Wofi(@)] < sup lagsl D [(8j.00)] his(a)

o 5€2,(QY)
SBilligy D g, I Ws(@)].

5€7.(Q\Y)

Therefore, Chebyshev’s inequality and Theorem 1.1 imply
3
Sy < X Z Hmr,sﬁjnLl(u)
J

1
Sy Bl Do leglemqollvsliig
J

Se7:(QS )

2sd’_‘ Crs
< E@, T $)D Bl < v -
J

Gathering the obtained estimates this part of the proof is complete.

We now turn to the converse, that is, we show that if a non-degenerate Haar
shift 11, ¢ is of weak-type (1,1) then E(®, ¥;r, s) < oco. For every Q € Py, we pick
Qo € 71(Q) such that ¢g (which we recall that is constant on the dyadic children
of @) attains its maximum in Q. Define

Balw) = (va(®) — (va)e) To(x),  polr) = san (so()) 3233 |

where sgn(t) = t/[t| if t # 0 and sgn(0) = 0. We note that by construction @g
is supported on @, constant on dyadic children of ) and has vanishing integral.
These imply that (¢g, ¢r) = 0 if Q # R. Also,

1

(Ba.90) = {va.00) = /Q  léa()ldux) = Iqlligo,

where we have used that ¢¢g has vanishing integral and is constant on the dyadic
children of (). On the other hand,

1Ballzig < 2 /Q po(@)] du(z) = 2.

Let us now obtain that E(®, U;r, s) < co. In the definition of Z(®, ¥;r, s) we
may clearly assume that R € ¢ and S € Zg. Thus, we fix Qp € Z, Ry € Z,(Qo)
and Sy € Z5(Qo) with [[¢Rryllz2(,) = 1 and |[¢s,[[2¢,) = 1. We use the properties
of the function ¢pr, just defined and the non-degeneracy of I1I, ; to obtain that for
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every z € RY

W@ = Y 3 afs (@ onus(@)]

QEY Re2-(Q)
S€2:(Q)

= lomollim | Do o svs(@)] 2 nf [0f l6m, l1=q) [¥s, (@)

Se-@s(QO)

where we have used that Z5(Q) is comprised of pairwise disjoint cubes. Using
that I, , is of weak-type (1,1) and that g, is constant on dyadic children of Sp,
and (2.1) we obtain

1R || oo () 1950 | 22 ) = |[Il6Ro Nl L0 () ¢SOHL1,00(M)
S MM s@ro ll oo () S N10Rol L1 (0) < 2
This immediately implies that Z(®, ¥;r, s) < co. O

Remark 2.10. From the previous proof and a standard homogeneity argument
on the parameter ||IL.s||5(1,(u)); the operator norm of III, s on L*(x). We obtain
that, under the conditions of Theorem 1.11,

1L sl 51 (), 220 () < Co (I,

B(L2(u))
d d = : e
+2°9(r2"" + 1) E(®, U3, ) sup |aggl),

where Cj is a universal constant (independent of the dimension, for instance, in
the previous argument one can safely take Cy < 217.)

Remark 2.11. One can obtain an analog of Theorem 1.5 parts (7i7), (iv) for non-
degenerate Haar shift operators defined in terms of 2-value Haar systems ® and W.
To be more precise, let 111, s be a non-degenerate Haar shift of complexity (r, s)
associated to two 2-value generalized Haar systems. If IIl, , is of weak-type (p,p)
for some 1 < p < 2 then E(®, ¥;r,s) < co. The proof is very similar to what we
did for the dyadic Hilbert transform. Fix Qo € %, Ry € Z,(Qo), So € Zs(Qo).
Then, using that the cubes in Z5(Qp) are pairwise disjoint,

M om (@) = | Y Y af g drpnvs(a)]

QEZ REZ,(Q)
S€P:(Q)

=| ¥ afsvs@)| = inf lof sl lus, (@)

SE@S (QO)

Using that III, ¢ is of weak-type (p,p) and that g, is constant on dyadic children
of Sy we obtain

V50l () S My 5@ R 100 () S 1 PRo L (1)
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Also, by (1.9), (1.10) and proceeding as in (2.6) we obtain

2

sto ”Ll(u ~ m\P(SO>

Jun

7R [ $s, ||

1
S DRl Lr(u) = ma(Ro)?

to\»—A

—(1—5)
~ H(bROHLOO(H)

S e

This easily implies that Z(®, ¥U;r, s) < oco.

2.4 The case p € A\ B

The Calderén-Zygmund decomposition in Theorem 1.1 has been obtained under the
assumption that every d-dimensional quadrant has infinite y-measure, p € B in
the language of Section 2.1. Also, Theorems 1.5 and 1.11 have been proved under
this assumption. Here we discuss how to remove this constraint and work with
arbitrary measures in Z.

Due to the nature of the standard dyadic grid, R? splits naturally in 2¢
components each of them being a d-dimensional quadrant. Let Rd 1< k<24
denote the d-dimensional quadrants in R%: that is, the sets R x --- x R* where
R+ = [0,00) and R~ = (—00,0). Let Z* be the collection of dyadic cubes contained
in Rg. We set

Myf(@)= swp o /Q @) diny) = Mo (£ 1gg) (@) L ().

TEQEDkK k

Hence, given a function f we have that

Zf 1Rd Mgy f(x ZMjkf 1Rz(l’),

and in each sum there is at most only one non-zero term. Because of this
decomposition, to extend our results it will suffice to assume that f is supported
in some ]Rg and obtain the corresponding decompositions and estimates in ]Rg.

Notice that if f is supported in Rz, Mg f = Mgk f and this function is supported
in Rg. In particular, for any A > 0,

Qy={z eRY: Myf(x) > A} = {z € R{ : My f(z) > A},

and so any decomposition of this set will consist of cubes in 2*. We modify
our notation and define <f>1R% = @ fRZ fdp if p(RY) < oo and <f>R‘;§ =0 if
p(RY) =

The following result is the analog of Theorem 1.1.

Theorem 2.12. Given 1 < k <2¢ u € % and f € L' (n) with supp f C Ri, 50
that for every A > <|f‘>R‘;f there exists a covering of Qy = {Mgf > A} by mazimal
dyadic cubes {Q;}; C P*. Then, we may find a decomposition f = g+ b+ B with
g, b and B as defined in Theorem 1.1 and satisfying the very same properties.
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Proof. 1f M(Rg) = 00, then the proof given above goes through without change.
If u(RY) < oo, then in the notation used above, (|f|)q — <|f’>RZ <Aasl(Q) — oo
for Q € Z*. Hence, if Q € 2% is such that (|f|)g > A, then @ must be contained in
a maximal cube with the same property. Hence, we can easily form the collection
of maximal cubes {Q;}; C 2%. We observe that this covering gives the right
estimate for the level sets of My f = My f if A > <|f])Rg. For 0 < X < <’f‘>R§j we
immediately have
p(o) < p(Rh) < 5 [ @)l dute).

These in turn imply that M, is of weak-type (1,1). From here we repeat the
arguments in the proof Theorem 1.1 to complete the proof without change. O

Proof of Theorems 1.5 and 1.11 for u € . We obtain the weak-type (1,1)
estimate for I, s, the arguments for Hy and H7, are identical.

Suppose first that supp f C Rz with 1 < k < 2¢. If M(Rﬁ) = 00, then the
arguments above go through without change. Assume otherwise that ,u(]RZ) < 00.
If A > f|>Rﬁ then we repeat the same proof using Theorem 2.12 in place
of Theorem 1.1. If 0 < A < {| f|>Rg we cannot form the Calderén-Zygmund
decomposition. Nevertheless, the estimate is immediate after observing that by
construction III, , f is supported in R‘kl since so is f. Then,

p(le € RY: L. f(a)| > A) < w(®D) < 5 [ 17(0)]du(o)
R

k

To prove the weak-type estimate in the general case, fix f and write f =
d
S f lga. By construction we then have

2d

rsf Zmrs fle)(ib) 1Rg(x)'

k=1

Therefore, by the above argument applied to each ]Rﬁ
p({z € RY: UL f (z)| > A}) = Zu {w € RY « [Ls(f Lgg) (@) > A})

2d
;z/ Dldnte) = 5 [ 1) duta),
k=

and conclude as desired O

Remark 2.13. As explained above, the standard dyadic grid splits R? in 2¢
components, each of them being a d-dimensional quadrant. These components are
defined with respect to the property that if a given cube is in a fixed component,
all of its relatives (ascendants and descendants) remain in the same component.
This connectivity property depends on the dyadic grid chosen, and one can find
other dyadic grids with other number of components. Let us work for simplicity in
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R and suppose that we want to find dyadic grids “generated” by Iy = [0,1). We
need to give the ascendants of Iy, say I, k < —1. Once we have them, we translate
each I;, by j 27% with j € Z and these define the cubes of the fixed generation 27%
for k < 0. The small cubes are obtained by subdivision. Hence, in the present
scenario, we only need to define the I’s. Let us start by finding the parent of Ij:
we just have two choices [0,2) or [—1,1), and once we choose one, which we call
I_1, we need to pass to the next level and decide which is the parent of I_1, for
which again we have two choices. Continuing this we have a sequence of cubes I,
k < 0, which determines the dyadic grid. In the classical dyadic grid one always
choose the parent of I “to the right”, that is, so that [ is the left half of I_4.
This eventually gives two components. One way to obtain a dyadic grid with one
component is to alternatively take parents “to the left” and “to the right”. That
is, if we take I =[0,1), [y = [-1,1), [_o = [-1,3), -3 = [-5,3), .... we obtain
one component. More precisely, take the family of intervals I, = [0,27%) for k > 0
and for k < —1 let I, = [ax — 2%, ax) with a, = (27% +1)/3 if —k is odd and
ap = (27F*1 1 1)/3 if —k is even. Notice that {I}}rez is a decreasing family of
intervals of dyadic side-length. Notice that each Iy is one of the halves of Iy .
Using I, we generate the dyadic cubes of generation 27% by taking the intervals
Liy=7 27k 4 I}, with j € Z. Finally we set 9 = {Ix :j,k € Z}. This is clearly a
dyadic grid in R. Let us observe that a; — oo and a; — 2% — —oco0 as k — —o0
and therefore I, /R as k — —oo. This means that this dyadic grid induces just
one component (in the sense described above) since for any Iy, Is € 2 we can find
a large k such that both I; and Iy are contained in I_j € 7. We finally observe
that the dyadic grids with one component occur more often than those with two,
as the classical dyadic grid. Indeed, if at each generation we select randomly the
parent (among the possibilities “to the left” and “to the right”), the probability of
ending with a system with one component is 1.






Chapter 3

Examples of measures
and Haar systems

3.1 The one dimensional case

As we have seen above the 1-dimensional case is somehow special since the Haar
system is “uniquely” determined. Let us work with the measures in Theorem 1.5,
that is, p is a Borel measure in R with 0 < u(I) < oo for every I € 9. As we
have seen in that result, m-increasing, m-decreasing and m-equilibrated measures
are the ones governing the boundedness of Hg, H7, and Haar shift operators. We
are going to describe some examples of non-standard measures satisfying those
conditions.

We can easily obtain examples of m-equilibrated measures. Let pu be a
dyadically doubling measure, i.e., u(I) < u(I) for all I € 9 where I is the dyadic
parent of I. Then, m(I) ~ u(I) and clearly p is m-equilibrated. This applies
straightforwardly to the Lebesgue measure.

We next construct some measures that are m-increasing, m-decreasing or m-
equilibrated without being dyadically doubling or of polynomial growth. Set
dv = dz1g\[o,1) + du, where p is a measure supported on the interval [0, 1) defined
as follows. Let {Ix},>0 be the decreasing sequence of dyadic intervals Iy = [0,27%)
and let {ay}r>1 be such that 0 < a < 1 and a1 = 1/2. Set by = 1 — aj. Define p
recursively by setting (o) = 1 and

(3.1) () = apu(ly) = app(I—r)  and  p(Ih) = beu(ITy) = bppu(le—1),

for k > 1, where we recall that I,’; = [27%,27%*1) is the dyadic brother of I;. On
1Y, w is taken to be uniform, i.e., u(J) = p(12) |J|/|1%| for any J € @, J C I}. We
illustrate this procedure in Figure 3.1.

By construction, if I NIy =@ or Iy C I we have
m(I) _[I]/4 1

m(I) |I/4 2

27
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1 1 1
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Figure 3.1: Construction of

Also, if I € & and Ic I}; for some k > 1 then

p(IR) 1]
m(I) a1
m(I)  wUDII 2
4|17]

In the remainder cases we always have that I= fk for some k£ > 1 and [ is either
I, or I?. Note that by (3.1) we get

b b b R
m(I};) _ M((Ik);gglzg(lk)Jr) _ M(ik) _ %bk w(@y),
b
m(ly) = u(([k)uggg(fk)Jr) _ M(Ik—:j();jf)]]H—l) — apir brs an M(fk)7
ALV
m(Iy) = A k br (1)
Hence,
m(lx)  apr1brin an m(I}) 1
(3.2) i) - & d AT

We now proceed to study the previous ratios associated to measures given by
particular choices of the defining sequences {aj}r and {by}r. We shall construct
three non-dyadically doubling and of non-polynomial growth measures. In the
first example p is m-equilibrated, in the second p is m-increasing and is not m-
decreasing, in the third p is m-decreasing and is not m-increasing. Finally, in the
last example we give a measure p which is of polynomial growth but is neither
dyadically doubling, nor m-increasing, nor m-decreasing.

(a) Let by = % for k > 2. The measure u is non-dyadically doubling since by
(3.1),if k > 2

)

u(
u(

1
>:—:kz—>oo.
) bk k—ro0

=
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From substituting a; and by in (3.2) we get that,

m (1) 1 k m(I}) 1
m(fll:) (1- )m’ m(fz>_4(1_,g)'

Both sequences are bounded from above and from below, which implies that
1 is m~equilibrated. Besides, for 0 <t < oo

p(ly)  ar...ap 127

= =-= —
LfE ~  27F T 2k koo

Thus, @ does not have polynomial growth.

Set by = 2%, In this case u is non-dyadically doubling, since by (3.1)
7
L’Z) = 2k2 — 0.

g < ) _ 9k .
mly) (1= 202 2= ()? o °

Thus, p is m-increasing but is not m-decreasing. Notice that for ¢t > 1,

k
e a1 . kt I\k k(t—1
= - (1-279°) 2(1—7> — ok(t=1) o,
‘Ik‘t 1:[ 2 k—o0 o
For 0 <t <1, let n and m be positive integers such that —5 <t < E and

k= 2(n + 1)m. Then, 2% > 22™ and

M) (e[ ) (0 T1 a-2) 2 I -2

> 2m(1— 27 = (2(1 - 27 BTN o

m—ro0

Thus, p does not have polynomial growth.

Let n € N and set f(n) = % For k > 2 define

1

1
bk:§k—f(n—1)’

where n > 2 is such that f(n — 1) < k£ < f(n). Fix n > 2 and
f(n=1) <k < f(n). Thenk = f(n—1)+r, with1 <r < f(n)—f(n—1)=n
and by = 1/(2r). Hence,

<bp <

l\DM—\

1
2n
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and liminfy o by = 0. By (3.1) this choice of by defines a non-doubling
measure. Since £ < a; < 1, by (3.2) we get that m(Iy) ~ m(I}) for every k.
On the other hand,

k—ftn-1)  r ) '
bri1 Fl—fn—1) r41 b if k < f(n);
or N k- f(n—
k M:n%oo, if k= f(n).

Hence, by (3.2) p is not m-increasing. However, u is m-decreasing since
br /b1 < 2.

We finally see that p has no polynomial growth. We start with the case ¢ > 1.
For s,j > 2 such that f(s—1)<j=f(s—1)+r < f(s) with 1 <r <s, we
have that a; = 22=1. Then, if k = f(n)

w(ly) ap...ag et Tor Top 2r — 1
= = 2
‘Ik‘t o—kt H H 2
s=1r=1
n S
2r—1
_ ok(t—1)
II1I—
s=1r=1
> ok(t=1) _ of(n) (t=1) _, o

n—oo

Consider now 0 < t < 1 and let m > 2 be the unique integer such that
% <t< % Let k = f(n) with n large enough so that k > f(m)2.
Then 2kt > 22f(m) and

= T (o I 175

s=1r=1 s=m+1r=1

> 9f(m) f[ H 27“2;1

s=m+1r=1

25 (a2
st 225(s!)

— 9f(m)g=2(f(n)—f(m)) H (2'3)2!
s (s!)

> 9f(m)g=2(/(m)=f(m)g3(f(m)=F(m) _ of () __, oo

n—o0

where in the last inequality we have used that (2s)!/(s!)? is increasing and
therefore bounded from below by 8. Thus, u does not have polynomial
growth.

(d) Let by = bg = 1/2, and for every k > 2, boy, = 1/k, bogr1 = 1 — 1/k. The
measure 4 is non-dyadically doubling since by (3.1), if £ > 2, then

1 1
ﬂ(2k>:7:k_>oo.

/,L(ng) bzk k—o0
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From substituting a; and by in (3.2) we get that,

m(ISkJrl) 1

~

k
= =~ — oo,
m(lopi1) 40241 4 koo

which implies that u is not m-increasing. Also,

- -
m(lopi1) _ bak11 _ (k41 Q(k RN 50,
m(lort1) (k1) b2(k41) k k00

which implies that i is not m-decreasing.

We finally see that ;1 has linear growth, that is, u(I)/|I| < C for every I.
We first notice that it suffices to consider I € & since any arbitrary interval
J can be covered by a bounded number of I € & with |I| ~ |J|. Let us now
fix I € 2. The cases IN[0,1) = @ or [0,1) C I are trivial since u(I) = |I|.
Suppose next that I C [0,1). Then, either I = I} or I C I for some k > 1.
In the latter scenario we have that by construction u(I)/|I| = p(12)/|1],
therefore we only have to consider I = I, or [ = 1 }; for k large. Let us fix
k > 6. Notice that

p(p)  p(Ix) b p(le-1)

I el ar L]
Thus,
w(Is,)  p(lok) box _ pu(log) (I8 1) (1) p(Lak)
25 = =< , . = 2bopy1 <2 .
115, | |lok| aok = [Lox 1121l Lok L2k |
Additionally,
pL21) — p(L2k) 1(L2x)

= 2agp41 <2 :
| Toj41] | Lo - | T2k

All these together show that it suffices to bound p(lag)/|lok| for k& > 3. Let
k > 3, then we obtain as desired

% k k-1 1 4 4
_ . _ 93 ) ) _ 93" ~ 292k _ =
p(lo) = jl;[la; =2 (g@]) (jl;[202y+1) =2 I < 3 27 = 3 | Tog |-

3.2 The higher dimensional case:
specific Haar system constructions

As we have shown in Theorem 1.11, the weak-type (1,1) estimate for Haar shifts
is governed by the finiteness of the quantities Z(®, ¥;r, s). In the 1-dimensional
case, these can be written only in terms of the measure p since the Haar system
H is “unique” (see Remark 1.8). However in higher dimensions we have different
choices of the Haar system and each of them may lead to a different condition.
Therefore, before getting into that let us construct some specific Haar systems.
Among the p-Haar systems in higher dimensions, two of them are relatively easy
to construct: Wilson’s Haar system and Mitrea’s Haar system [77, 21, 12, 54, 29].
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Following [25], we present a simplified way of obtaining this two u-Haar systems
for measures p € A.

To construct Wilson’s Haar system, start with some enumeration (Qj)?d:1
of the dyadic children of @ and build a dyadic (or logarithmic) partition tree
on it. The partition is given as follows: set #5(Q) = {{1,2,...,29}} and
let 74(Q) = {{1,...,2971} {291 +1,...,2%}}. Proceed recursively to get the
partition #%(Q), obtained upon halving the elements of #}_1(Q) and ending up
with #4(Q) = {{1},{2},...,{2%}}. Set

d—1
Es=JQ; with we Q) =J 7@
k=0

JEW

We are going to see that the family of sets {E(‘:’?}wey/(@ behaves like a one-
dimensional dyadic grid. Form construction, any w € #;,_1(Q), 1 < k < d, has
two disjoint children w_,w; € #4(Q) such that w = w_ U wy. Thus, following
the notation of the 1-dimensional case, we write (Eg))- = Eg’ and (Eg)+ = Eg*.
Note that these two sets are disjoint and £y = (Eg)- U (Eg)+. We call (Ef)-
and (Eg)+ the dyadic children of E¢. Besides, for every w € #4(Q), 1 <k < d,
there exists a unique & € #j,_1(Q) such that @ D w and thus Ef C E\g = Eg We
call E\Zj the dyadic parent of E§. Moreover, E¢ and Eg are either disjoint or one
is contained in the other.

We define the Haar functions adapted to the family of sets {E£§},ex(q): for
every w € #((Q) we set

o _ [ (tEe- @
2= (E@)<M«E5»» M«EE%J>’

where

m(EQ) = W(B3)) (B

~ min {,U((EZJQ)—)v M((Egg)%—)}

(B p(Eg)s) (1 R
)+)

Note that this makes sense provided u((Eg)-) u((Eg)+) > 0. For otherwise, we
set hy = 0.

Note that for a fixed @ € Z and w € #(Q), one can easily verify that kg
satisfies the properties (a)-(d) in Definition 1.7. Let us further observe that A
is orthogonal to hg for w # w’. We would like to emphasize that here we have
2% — 1 generalized Haar functions associated to each @ (one for each w € #/(Q)).
In this way, if for every @ we pick wg € #(Q), we have that {th }oew is a 2-value
generalized Haar system in R? (see Definition 1.7 and Remark 1.8) and therefore
standard (see (1.12)).

Mitrea’s Haar system is constructed in the following way. Let us fix an
enumeration (Qﬁ?il of the dyadic children of Q. For every 2 < j < 2¢ we set
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C~2j = U%d:ij. We define Mitrea’s Haar system as follows: for every 1 < j <2¢—1

we set
1=\ /m(Q, 1o, _ 1@j+1
= \/m(Q,) (H(Qj) M@M)),
where
N -1
(0 = M@ M@jv1) _ 1 1 _— N
(Qj) M(@j) (:U’(Q]) * M(éjJrl)) {N(Q])ﬂu(Q]-i—l)}

This definition makes sense provided p(Q;) M(@jﬂ) > 0. For otherwise, we set
HL=0.

Again, for a fixed 1 < j < 29— 1 and Q € 2, one can easily verify that Hgg
satisfies the properties (a)—(d) in Definition 1.7 and also that H, é is orthogonal to

Hg for j # j'. As before, we have 2¢ — 1 generalized Haar functions associated to
each @ (one for each j). Hence, if for every @ we pick jg, 1 < jg < 2¢ _ 1, we have
that {H, éQ}QG 2 is a 2-value generalized Haar system in R? (see Definition 1.7 and
Remark 1.8) and therefore standard (see (1.12)).

We finally present another way to construct Haar systems in the spirit of the
wavelet construction. For this example, we assume that p is a product measure,
that is, p = p1 X -+ X pg where p1,...,uq are Borel measures in R satisfying
p;i(I) < oo for every I € 9. We will use the following notation, given Q € Z(R%)
we have that Q = 19 x -+ x IC? with IJQ € Z(R). Hence, u(Q) = H?:1 ,u,j(IjQ).
Associated to each p; we consider a p;-generalized Haar system ®; = {gbjl I 1€2(R)-
For every I € Z(R) with p;(I) > 0 we set gb?J = 11/,uj(I)% and ¢9,I = 0 otherwise.
For every € = (e1,...,¢q) € {0,1}%\ {0} and Q € Z(R?) we define

d
S() =[] 67,0e).
j=1 7
We have that each ¢f, satisfies the properties (a)—(d) in Definition 1.7 and also that
¢Zg is orthogonal to gbg for € # €. Hence, if for every @ we pick €g, as above, we
have that {QSEQQ }oew is a generalized Haar system in R?, see Definition 1.7. Note
that Remark 1.8 says each ®; is a 2-value generalized Haar system in R. However,
unless some further condition is imposed in each measure 415, one has that ¢g, may

take more than 2 non-vanishing values (this is quite easy if we take ¢ = {1}9).
Nevertheless, if Q € P then

d d
ool =] H¢;f[;2HL1(Mj)7 1651 ooy = [ ||¢ZI]Q”L°°(;L]~)*
j=1 j=1

Let m;(I) = pi(I-)p;(I+)/pi(I) for I € Pg,;. Then we have that, for every
Ie .@cpj,

15,1

0
L (uy) = A\ i (D), 165,10l o= () = T
J
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and, as in 1.3,

1
163110y = 2/ (D), 18}l = e
J

Thus, despite the fact that ® is not a 2-value generalized Haar system in general,
we obtain that ® is standard.

To conclude this section we observe that although the generalized Haar systems
we have constructed above are all standard, this is not the case in general. We
work in R? and for k > 2 we let Qx = [k, k + 1) x [k, k + 1). Fix an enumeration
Q},Q%, Q3. Q} of the dyadic children of Q. Define F(z) =1 if ¢ Up>2Qy and
elsewhere

o0 2
F(z) = Z <% (1Q11€(x) + 1z (z)) + 2(]€]€22) (1Q2 () + 1 (:1:)))
k=2
We consider du(x) = F(x)dx which is a Borel measure such that 0 < p(Q) < oo
for every @ € 2. By construction we have

k2 —2
2k2

1

Q) = m@Q) =73, @) = (@) = p(Qr) =1,

Next we consider the system ® = {¢g, }r>2 with

_i lQllc B lQi k2 -9 le B lQi
(m”_%(MQb u@b>+ wﬂ(MQ@ u@@>

k k2
=5 (o —1ap) T/ g =gy lap ~ 1)

By construction each ¢g, satisfies (a)—(d) in Definition 1.7 where we observe that
in (d) we have |¢q,[|z2(n) = 1. Thus, ® is a generalized Haar system in R2. On
the other hand,

2 2
lboulziooldanlseg = [ 2+ o2 Y max { & [
H k 2 k2 2"\ 2(k2 —2)
>\/k27—2/-:_ k2 -2 R

Therefore, ® is not standard. We note that in view of Example 1.14 we have that

the Haar multiplier

(3.3) Tf=) eqlfdq)dq, =+l

Qe

is not of weak-type (1,1). We can obtain this from Theorem 1.11. However, here
the situation is very simple: we just take ¢g, = 1Q11€ /u(Q4) and obtain that

k
Tepq, = €qQy <‘ka’ ¢Qk> Qi = €Qy, ) PQy -
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Thus, by (2.1),

007
k—o00

1 Tepqpllirew _ klleoulrw g (1 N k2 — 2)

lequlliig 2 k 2 k?

and therefore T is not of weak-type (1,1).

Let us finally point out that in the classical situation (i.e., when p is the
Lebesgue measure and we take a standard Haar system) these operators are usually
referred to as a martingale transforms. As it is well known, martingale transforms
are of weak-type (1,1) for any measure p by the use of probability methods.
Surprisingly, Tt is not of weak-type (1,1) and therefore T, cannot be written as
a “martingale transform” operator in terms of martingale differences (see (4.16)
below for further details).

3.3 Examples of measures in higher dimensions

Taking into account the previous constructions, we are going to give some examples
of non trivial measures so that the conditions in Theorem 1.11 hold. We first
notice that if p is dyadically doubling then u(Q) ~ p(Q') for every dyadic children
Q' of Q. In particular, for any generalized Haar system ®, one can show that
[Pl 1w =~ 1(Q)Y? and [Pl oo () ~ w(Q)~/2 for every Q € Pg. This clearly
implies that we always have that Z(®, ¥;r,s) < C, ¢ for any choices of generalized
Haar systems. Thus, the problem becomes interesting when g is not dyadically
doubling. The general case admits too many choices, and we just want to give
an illustration of the kind of issues that one can find. Therefore we are going to
restrict ourselves to dimension d = 2 with 0 < u(Q) < oo for every Q € 2(R?) and
® = U with Zp = 2. We are going to consider the complexities (1,0) and (0,1)
(since these are related to the model operators Hy and H}, in 1-dimension).

We consider Wilson’s construction. We halve each ) horizontally and write Q
for the northern “hemisphere” and Qg the southern “hemisphere”. If for every cube
@ we take the anti-clockwise enumeration starting with the west-south corner then
Qs = Eg’2} and Qn = Eg“}. We now take Wilson’s system ¢ = {hg’Z’SA}}Qe%
that is,

{1234} _ Los loy _ 1(@Qs) m(@n)
gt = st (a5 ) @ =)
Suppose that du(x,y) = dx dv(y) then p is dyadically doubling iff v is dyadically

doubling. If Q = I x J then

~—
N
<
+
~—

v(J_
=|I J) =l ————".

my,s(Q) = [I|my,(J) = |I| ()

Then =Z(®, ®;0,1) < oo if and only if v is m,-increasing and Z(®, ®;1,0) < oo if

and only if v is m,-decreasing. Using the examples we constructed above we find

measures p in R? which are non-dyadically doubling but they satisfy one (or both)

conditions.
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However if we use another Haar system we get a different behavior. Suppose
now that our enumeration is clockwise and starts with the west-south corner
then Qw = Eg’Z} and Qp = Eg’A} are respectively the western and eastern

“hemispheres”. If now take Wilson’s system ¢ = {hél,2,3,4} } then we get the same
definitions as before replacing Qg by Qw and Qn by Qg. In particular,

’mE,W(Q) =—v(J)

Then we always have Z(®, ®;0,1) < 1/v/2 < 0o, whereas Z(®, ®;1,0) < oo if and
only if v is dyadically doubling.

Similar examples can be constructed using Mitrea’s Haar shifts.

We finally look at the Haar system using the wavelet construction. If our system
is comprised of qﬁg (x,y) = "i,l(a:)(;bé’](y) with ¢ = 0 or 1 we obtain

1

il i1
N o ST, Ml o (o) & ————s
196 2@y = 2 VT mu ()10 Nl @axan) ¥ ey

and then we have the same behavior as before: Z(®, ®;0,1) < oo if and only if v
is my-increasing and Z(®, ®;1,0) < oo if and only if v is m,-decreasing. On the
other hand, if we take gbé’o(l’, y) = qS%,I(z)(bg’J(y) and obtain

1
166" 52 goxay = VAT, 168 |t = s

Then we always have Z(®, ®;0,1) < 1/v/2 < 0o, whereas Z(®, ®;1,0) < oo if and
only if v is dyadically doubling.




Chapter 4

Further Results

4.1 Non-cancellative Haar shift operators

One can consider Haar shift operators defined in terms of generalized Haar systems
that are not required to satisfy the vanishing integral condition. To elaborate on
this, let us first consider the case of the dyadic paraproducts and their adjoints.
The space BMOg(p) is the space of locally integrable functions p such that

IPllenog ) = sup) <,£@ /Q (@) = ()l du(@))* < oo,

where as usual the terms where p(Q) = 0 are assumed to be 0. Given p €
BMOg(p), and © = {0g}gcz, ¥ = {¢g}gecz, two (cancellative) generalized Haar
systems, we define the dyadic paraproduct 11,

M, f(x) = > (p,00)(fote(@).

Qey

Note that for each cube @, 6g and v are cancellative generalized Haar functions.
However, the term (f)q can be viewed, after renormalization, as f paired with the
non-cancellative generalized Haar function 1¢/u(Q)'/2. That is the reason why we
call this operator a non-cancellative Haar shift, see below for further details.
Alternatively, one can consider dyadic paraproducts by incorporating pu-Car-
leson sequences. Given a sequence v = {ygQ}Qey, we say that 7 is a p-Carleson
sequence, which is denoted by v € €(u), if for every Q € Z we have that v9 =0

if 4(Q) =0 and

Xoea el
Ve =  sup <00
#) e, 1(Q)>0 (@)

Typical examples of u-Carleson sequences are given by BMOg (1) functions. Indeed

if p € BMOg(p), © = {0g}gecy is a generalized Haar system and we set
7@ = (p,bg) we have that v is u-Carleson measure: if Qg € 2 such that 1 (Qo) > 0,

37
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we have by orthogonality

S helP= Y0 o= {pa)lente)”

QEZ(Qo) QEZ(Qo)
< (0~ (Pan) aolZ2 < lIPIBri00 #(Q0)

and therefore ||7[l%(.) < llpllBMO4, (1) One can also reverse this procedure. Indeed,
given v € ¢ (p) and a generalized Haar system © = {fg}gcy we can define a
function p which is a Haar expansion using © with the coefficients given by the
sequence v as follows. It suffices to consider the function p in any d-dimensional
quadrant, say for simplicity that we are in RY = [0,00)%. Let Q = [0,27%)? and
set

pla) =) ( > 7Q 9@(@“)) 10\ (7)-

k€eZ Qe2(Qr)\Z(Qi+1)

Note that for every x € R‘f, the sum in k contains only one non-vanishing term.
From orthogonality and the Carleson condition it follows that for every kg € Z,

(4.1) lelZeig) < D >, ol?

k>ko QeZ(Qi)\Z(Qr+1)
= > el <

QREZ(Qry)

M(Qko)'

In particular p is locally integrable. We next take an arbitrary R € 4, R C R‘f.
Assume first that R = Qy, for some ko € Z. Then easy calculations and (4.1) lead
to

7 [ 1ot) = @)l dnte) = 1oPha, ~ (o)a,

< (1) Qu, = 1(@Qro) " 0l 72(qy,) <

On the other hand if R ¢ {Qi}x, then there exists a unique k such that
R C Qp \ Qk+1. Then for every x € R we have

plx) = > 1q 0g(x)
QeZ(Qr)\7(Qr+1)
= > 1o > 1Q0q(x) = I(z) + 1.
QEZ(R) QGQ(Qk)\@(QkH)
RCQ

Note that IT is constant and that [, I(z)du(x) = 0 then

/\p (o) r|* dp(x) /R Y 0bo(e ‘du(w)

QeZ(R)

1 2 2
< —— Yol” < ||v
s 2 hel* <l

(1)
QeZ(R)
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Gathering the two cases it follows that p € BMOg (1) with [|pllmog,(u) < [7llew
Further details are left to the reader.

Given v a p-Carleson sequence and ¥ = {1)g}gc» a generalized Haar system
we define the dyadic paraproduct IL, as follows

=Y 0 {fove().

Qe

If we set qu = 1o/u(@Q)*? if u(Q) > 0 and 5@ = 0 otherwise we have that
¢ = {¢pg}gey satisfies (a), (b) and (d) in Definition 1.7. Since (c) does not hold
we call @ a non-cancellative generalized Haar system. In such a way we can write

ILf(z) = 3 aq(f.dg)do(z),  ag=—2r.
Qe w(@Q)2

1
, 2\ 2
g < (ZQ/G@gg)”Q' ) <lh
7

Thus, we can see II, as a Haar shift of complexity (0,0) with respect to the non-

Note that

(1)

cancellative generalized Haar system ® and the (cancellative) generalized Haar
system W. Notice that the adjoint of the paraproduct can be written as

I f(2) = ) o (five) 162 ) =Y ag (f:1Q)dq().

Qev Qeg

Again II} is a Haar shift of complexity (0,0) with respect to a (cancellative)
generalized Haar system ¥ and the non-cancellative generalized Haar system .
This motivates the definition of a non-cancellative Haar shift operator:

(4.2) 1L, f(z Z Z aRS (f, dRr)Ds (), sup |a%51 < 00,
Q€2 Re2-(Q) @RS
S€P5(Q)

with & = {ggQ}QE@ and ¥ = {TZQ}QEQ being two non-cancellative generalized
Haar systems, i.e., both of them satisfies (a), (b) and (d) in Definition 1.7. We
would like to stress that ® and ¥ do not necessarily satisfy (c), therefore the
L?(p) boundedness does not automatically follow from the assumed conditions.
Thus, is natural to impose that Ifﬁm is bounded on L?(u) along with some local
boundedness property and these condition will be checked in any specific situation.

Theorem 4.3. Let p be a Borel measure on RY, d > 1, satisfying that u(Q) < oo
for every Q € 2. Let P = {5@}626/ and U = {QZQ}QGJ be two non-cancellative
genemlzzed Haar systems in R%. Let r, s be two non-negative mtegers and consider
H_Im asin (4.2). Assume that H_IT s is bounded on L?(u) and also that H_Ir s satisfies
the following restricted local L?(u1) boundedness: for every Qo € 9 we have that

~ 1
(4.4) ITII0 (1) | 220y S 1(Q0)?2,
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where the constant is uniform on Qg and

Z Z O‘g,sﬁa dr) Vs ().

QEZ(Qo) REZ:(Q)
SeP5(Q)

If2(®, U; 7, s) < 0o, then ITL«,S maps continuously L' (i) into LY (p).

Remark 4.5. Let us observe that fﬁf?g is the non-cancellative Haar shift operator
associated with the sequence 71%5 = ags for Q € 2(Qo), R € 2,(Q), S € 25(Q);
and 'yg ¢ = 0 otherwise. Also, the L?(;1) boundedness of ﬁigg clearly implies (4.4).

Remark 4.6. Notice that if we further assume that both Haar systems ® and U
are cancellative, then we automatically obtain (4.4) and the L?(p) boundedness of
ngfg’ (see Section 2.3). In such a case Theorem 4.3 becomes Theorem 1.11

Proof. The proof is similar to that of Theorem 1.11, therefore we only give the
parts of the argument that are different. Again we may assume that y € B, the
general case follows as before. Follow the proof of Theorem 1.11. For S we use
our assumption that ﬁ/lm is bounded on L?(u1). The estimate for Ss is the same.
Let us observe that the estimate for Ss is entirely analogous since in (2.8) we have
not used the vanishing integral of ¢g. We are then left with estimating Sy, for
which we first observe that

Sy < p(@) + pfe € BRI\ Qy ¢ [T,.5(x)] > A/3)
1 3 — __
< Il + 2 / LBl + / 1T, 3, |y
W) A;( o, ) Sa jldn)

J

and we estimate each term in the interior sum. Proceeding as in (2.8) and using

Theorem 1.1 we can analogously obtain
Z/ _ My sB] dp
5 RNQ;
S Yo 1Bl I9Rl Lo ll¥s L

I Q;cQcQitY Re7, (g)(g)c@j
€Ys

< 22+(T+S)dr E((Alsv \Al;a T, S)Hf”Ll(u)

On the other hand, for every z € @j \ Q; we have

T, LB, (o |<\Z Z ' \Z v \ (2) + G, (a)
QcQ, REZ( 3,cQ REZ:(Q)
SJS(Q S€Z5(Q)

and we estimate each function in turn. For Fj(x) we note that the terms @ C Q;
vanish and therefore R C @ C @; \ Q;. Thus f; is constant on R and then

:‘ S ady(8.0m) Ps(e)

QEQ;\Q; Se7(0)
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~(f)a, — N)g M( \ Y Y a8ulin. o n) ds@)
- Re2r(
QSQ;\Q; SEJS(Q;
w(Qj)
<2(fho, === > YooY aR (g ér) vs(@)
Q) Qe (Q;) QEZ(Q) ReZ-(Q)
Q'#Q; 5€7:(Q)
—2(Ifhg, M%) S L (199 ()],
N(Q]’) QE%(QJ)

This, the fact that supp Lﬁ%(l@) C @' and that these cubes and pairwise disjoint,
and (4.4) yield

/A Fydp <2(|f)q, (“@”) > /Q, T, (1) |dps

Q;\Q; w(Q;) Qen (@)
Q'#Q;
<20e (ay) 2 IMR0@) g #@)?
FA% Q€N (Q))
Q'#Q;
< [ 11w
Qj
For GG; we proceed as before
LoGas X% 1l 19kl sl
Q]\QJ Q]CQCQ(T+1) Reze(g)(g)CQ]

< olrts)d,, E(‘i, v, S)HBJ'HLl(M)

Gathering the previous estimates we conclude that

Z/ \mmﬁjldmz/ (Fi 4Gy
> /Q |frdu+2\wjuw <l O
i j

Remark 4.7. As above, if we keep track of the constants and use a standard
homogeneity argument we obtain that, under the conditions of Theorem 1.11,

Il g, 2-) < Co (ILrellzae

TP, (1)
+  sup i | ety 50, w:r,0) sup % s1):
QEZ,u(Q)#0 w(Q) QRS

where Cj is a universal constant (independent of the dimension, for instance, in
the previous argument one can safely take Cy < 220).
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4.2 Dyadic paraproducts

As a consequence of Theorem 4.3 we can obtain the following result for dyadic
paraproducts.

Theorem 4.8. Let p be a Borel measure on RY, d > 1, satisfying that u(Q) < oo
for every Q € 2. Let V = {Yg}gecy be a generalized Haar system. Given a
sequence v = {yQ ey we consider the dyadic paraproduct IL, and its adjoint 115

I f0) = 3 0 (Nevialo). W)= Y- 0 (o) 225
Qe7 Qe g

Then we have the following:

(i) For every v € €(n), IL, is of weak-type (1,1) and there exists a universal
constant Cqy (one can take for instance Cy < 288) such that

MLy Fllpree uy < Co vl lLf 1l -

Consequently, 11 is bounded on LP(u), 1 < p < 2 (the constant is dimension

free and depends linearly on ||7v[l%(,))-
(id) If
1
(4.9) sup [[Yqll oo (u) H(Q)? < 00,
Qe

then II3 is of weak-type (1,1) for every v € €' (n) with boundedness constant

depending linearly on ||7v|l¢ (). Conversely, if 113 is of weak-type (1,1) with

operator norm 11| gpr (), nree(uy) < C Vg for every v € €(un), then
(4.9) holds. Additionally, if (4.9) holds then I is bounded on LP(u) for
1 < p <2 (the case p > 2 follows from (i) without assuming (4.9)).

(791) Suppose in particular that d =1, u(I) > 0 for every I € 9 and that ¥ = H.
Then, 11, is of weak-type (1,1) and bounded on LP(u), 1 < p < 2, for every
v € € (). However, if for every v € € (u) we have that I3 is of weak-type
(1,1) or weak-type (p,p) for some 1 < p < 2, then u is dyadically doubling.
Conversely, if p is dyadically doubling then IS is of weak-type (1,1) and
bounded on LP(u), 1 < p < 2, for every v € €(u).

(iv) In (i), (ii), (iti) we can replace the condition “y € € (un)” by “yq = (p,0q)
with p € BMOg(u) and © = {0g}ocy a generalized Haar system”; and in
the boundedness constants |||l () by |lpllBMO (1)-

Before starting the proof, let us state the L?() boundedness of the paraproduct
(and its adjoint) along with the corresponding restricted local boundedness as a
lemma:

Lemma 4.10. Under the assumptions of Theorem 4.8, for every v € €(u) we
have

(4.11) 1T fll 2y < 211y

() 1 f1l L2 (-
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Moreover, for every Qo € ¥ we obtain

e 12, T9f = D vo (Hove-
QeZ(Qo)

(4.12) T fll 2y < 211y

Proof. We claim that it suffices to obtain (4.11). Indeed, we consider a new
sequence 7 = {yg}gez with 7o = v if Q@ € 2(Qo) and Yo = 0 otherwise. We
clearly have that 7y € €'(u) with |[7]l¢ (. % (u) and also Hg“ = II5. Thus,
(4.11) applied to 7 implies (4.12).

We obtain (4.11) using ideas from [60]. Let us first suppose that p € B
The argument is somehow standard, but, since our setting is very general, we give

the argument for completeness. Given f € L?(u) and A > 0, as in Theorem 1.1,
we can find a maximal collection of dyadic cubes {Q;‘}j such that Q) = Uij‘.
We notice that the existence of such maximal cubes follows from the fact that
(Ifhe < (]f\2>22/2 — 0 as £(Q) — oo, given our current assumption p € HBoo. Next
we use that W is cancellative, therefore orthogonal,

2
(4.13) T f i 2 = D bel® [(Nel I¥el72q,
Qe

/ D> o) el* 2 dx

Qe

<[ Y X hef2aan

J Qe2(Qy)

o [ S
J

<l [ me02a0

= H’YH%(M) HM@fH%mL) <4 H’YH%&(#) ”f”%aw

and this completes the proof of the fact that II, is bounded on L?(u) provided
1 € PBoo. To consider the general case, as before we may suppose that supp f C R¢,
1 <k <29 with u(RY) < co. In (4.13) we split the integral in two: 0 < A < <|f])Rg
and A > (|f \)Rz. In the second case we can find the maximal cubes {Q])‘} and the
previous argument goes through. Let us next consider the integral in the range
0 <A< <m>Rﬁ' Let {Qn}n>1 C 2(R{) be an increasing sequence such that

UnQn = Rg. Then, we proceed as above

<l

(‘f|>Rd
/ Y 1{<\f|>Q>A}(A)|7Q|22Acug<|f|>]§Z sup > ol
0 Qe@(Rg) n QEDQn)

< Il 1) 500 1(@Qn) = Iy 11720

This completes the proof of (4.11). O

Proof of Theorem 4.8. We start with IL,. Set <ZQ = 1Q/,u(Q)1/2 if (@) >0
and ¢g = 0 otherwise and consider the non-cancellative generalized Haar system
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o = {(ZQ}QGQ. As explained above, in the notation of Theorem 4.3, IL, is a non-
cancellative Haar shift operator of complexity (0,0) with respect to the systems
® and ¥ = ¥. By Lemma 4.10 we have the required L?(z) bounds in Theorem
4.3. Thus the weak-type (1,1) (and by interpolation the boundedness on LP(p),
1 < p < 2) of I, follows from the property = (<I> U;0,0) < oo. But this is in turn
trivial: by Holder’s inequality we have for every Q € Py

~ _1
1Pl Lol = (@) 21Vl < Yol =1

This completes the proof of (i). For the boundedness constant we can use Remark
4.7 along with Lemma 4.10 to obtain the linear dependence on |||/« ()

We now turn to (ii). We have shown that IL, is bounded on L?(u) and so is
its adjoint II;. Notice that (HTY)QO = (H,?O)* and therefore (Hi‘y)Q0 satisfies (4.12).
Then, we apply again Theorem 4.3 to II7, which is a non-cancellative Haar shift
operator of complexity (0,0) with respect to the non-cancellative generalized Haar
systems W, . Thus, Z(W, &); 0,0) < oo, which coincides with (4.9), implies that II,
is of weak-type (1,1) . The linear dependence on |||« (,) uses the same argument
as above. Let us now obtain the converse. Notice that in (4.9) we can restrict the
supremum to @ € Yy and in particular p(Q) > 0. Fix one of these cubes @y and

let g = 09,0, V/1(Qo). Then, v € € (n) @) = 1. Take
. 1Q0,00 (l‘)
f - Sgn (¢Q0 (IIJ‘)) ,UI(QO,oo) )

where Qoo € Z1(Qo) is a cube where 1, attains its maximum. Then, as in
the proof of Theorem 1.11 and using that I} is of weak-type (1,1) with uniform
constant (since ||v/|«(,) = 1) we obtain

o 22y V/A(Q0) = |[(£.0)

Lloo

= HnyfHLLOO(u) <Cfllpr = C-

1Q0 ‘
\/7

Repeating this for every Qo € Py we obtain (4.9) as desired.

To complete the proof of (ii) we first observe that for p > 2, duality and
(i) give the LP(u) boundedness of II%, with no further assumption on p. For
1 < p < 2, assuming (4.9), we already know that I is of weak-type (1,1). The
desired estimates now follow by interpolation with the L?(x) bound from Lemma
4.10.

To obtain (ii7) we apply (¢) and (i) and observe that (4.9) can be written as

() p)

sup . A sup
rez /min{u(I-), u(I1)}  1e9 /m(I)

which in turn is equivalent to the fact that p is dyadically doubling. To complete

< 00,

the proof of (i) it remains to show that if II% is of weak type (p,p) for some
1 < p < 2 then p is dyadically doubling. Fix then 1 < p < 2 and Iy € Z. Let
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Y =0;7, (E]) and observe that v € € (u) with [|y[l¢(,) = 1. Taking f = hz s
by (2.6) we have

Lp-2o(p)

< C|f oy =~ m(Io)?

. 1%‘

~ 1 1
p(lo)r ™2 = |y, =2
1o 1u(To)

TS f Nl 2o (o)

l\.’)\»—‘
*u\‘H
l\.’)\»—‘

1_ 1_1
m(Io)? pu(lo)v 2.
This estimate holds for every Iy € Z and therefore u is dyadically doubling as
desired.

We finally show (iv). As observed before if we set v9 = (p,0g) with
p € BMOg(u) and © = {fg}ocy being a generalized Haar system we have that
v € C(p)
contained in the previous items is the converse implication in (7). As before, in

¢ < llpllBMO, (). Therefore the only assertion that is not

(4.9), we can restrict the supremum to € Zy and in particular ©(Q) > 0. Fix
one of these cubes Qo, take © = ¥ and let p = g, \/1(Qo). Then,

) 2 1(Qo)
p = sup / p— d/,L = Sup
| HBMO@(#) QocOca M@ { >Q| Qocez M(Q)

=1.

We take the same function f as in (i), use that I} is of weak-type (1,1) with
uniform constant (since ||p[|gmo,, (u) = 1) and obtain

N

g lzoe ) 1(Q0)% = | (£, )

Lloo

= ||H ey < Cllfllzr = C.

1Q0 ‘
vV 1(Qo)

Repeating this for every Qo € Py we obtain as desired (4.9). This completes the
proof of (iv). O

4.3 On the probabilistic approach

We shall work with a fixed Borel measure y on R? such that u(Q) < oo for every
dyadic cube Q. The dyadic system 2 = (Z)recz is a filtration on RY. The
conditional expectation operator E; associated to %y is defined by

Erf(z)= > Eof(z)= Y (Nele(),

QED QEDy,

where (f)g = 0 if (@) = 0. The martingale difference operators D, are given
by D = Ex — Ex_1. It is clear from the definitions that the operators E; form an
increasing family projections that preserve integrals and that Dj are orthogonal
projections. Thus, if f € LP(u), 1 < p < oo, the sequence (Egf)gez is an LP-
martingale and

(4.14) f@)=> Dipf +E_ccf =) Dnf+Eif,

kEZ n>k
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where the convergence is in LP(u) and p-almost everywhere, and where E_ f =
d
Z?Z1<f>RC; Iga. Let @ € Z)_1 and denote by D¢ the projection
J J
Dof(z) = Dif()1g(@) = (Y Eqf(@)) —Eaf(@).
Q' EN(Q)

Hence Dy = > ocg, , Dg- Observe that we may set Dof = 0 if u(Q) = 0. We
casily obtain that ¢ € Dg(L?*(u)) (by this we mean the image of L?(u) by the
operator Dg) if and only if ¢ is supported on @, constant on dyadic subcubes of
@, and has vanishing p-integral. In such a case we may write

IEAC))
Q)

(4.15) dx)= >

Q'€ (Q)

with 3-5eg, (@) @@ = 0, and where it is understood that ag = 0 if u(Q’) = 0 and
we use the standard convention that 0-oo = 0. Hence, Dg(L?(1)) is a vector space
of dimension at most 2¢ — 1.

If we are in dimension d = 1 and I € & satisfies u(I) > 0, then hy € D;(L?(p))
(since Dyh; = hy). Note that in such a case D;(L?(u)) is 1-dimensional and
therefore Dy f = (f, h)hy, for every f € L*(p).

In the higher dimensional case, assume for simplicity that u(Q) > 0 for every
Q@ € 2. Let us consider the Wilson’s Haar system {hg) : w € #(Q),Q € Z}.
By othonormality of the Wilson’s Haar system and the fact that the cardinality of
#(Q) is 2¢ — 1 we immediately obtain that {hg : w € #(Q)} is an orthonormal
basis of Dg(L?(u)). Thus,

Dof = Y (Lhg)hg,  feL’(n).

weX (Q)

The same can be done with Mitrea’s Haar system (see above), in which case we

obtain
241

Dof = D (f HY)HY,  fe L.
j=1
Finally, if p = pu1 X - -+ X pg with p; Borel measures in R such that 0 < p;(I) < oo
for every I € Z(R) and we consider the Haar system in the spirit of the wavelet
construction {¢f, : € € {0, 134\ {0}4,Q € 2} we analogously have

Dof= >, (fég)eh,  feL?(p).
ec{0,1}4\{0}¢

We next see that martingale transforms can be written as Haar multipliers (i.e.,
Haar shifts of complexity (0,0)). A martingale transform is defined as

Tf(x) = &(x)Dpf(x)
keZ

where the sequence {{x}rez is predictable with respect to the dyadic filtration
(Pk)kez, that is, & is 0(Zk_1)-measurable. Then & is constant on the cubes
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Q € D—1. Namely, {i(2) = > geg,, @@le(z). Thus, by definition of the
projections Dg we get then that the martingale transform defined by {&y}rez can
be equivalently written as

2d_1
(416)  Tfx)=>. > agDef(z)=Y aQ( S, w@wg(:c)),

kEZ QEDy_1 Qe j=1

with {wé}lgjgd,l being any orthonormal basis of Dg(L?(u)). Thus, every
martingale transform can be represented as a sum of 2¢ — 1 Haar multipliers,
i.e., a Haar shift operators of complexity (0,0) (see Example 1.14). Note that each
Haar shift operator in the sum is written in terms of the system {wé?Q}Qe 9 where
for each Q € 2 we chose jo with 1 < jg <24 —1.

It is easy to see that any orthonormal basis {wé}lggzd_l of Do (L?(p)) is also
a basis of Dg(LP(p)) for 1 < p < co. Assuming further that p € %, (4.14) says
that {wé}lggzd,l@e@ is a basis of LP(u), 1 < p < co. However, in view of (4.16),
Burkholder’s theorem of LP boundedness of martingale transforms, 1 < p < oo,
does not suffice to show that a given Haar basis is unconditional in LP(u). In fact,
unconditionality of a Haar basis is not true in general. We take the last example
in Section 3.2 of a non-standard generalized Haar system and the Haar multiplier
n (3.3). We can easily see that for every 1 < p < 2,

B_ 1
HTe(PQkHLp(H) _ k“¢Qk||Lp(“) _ k (kp—Z N ( k2 )g 12_g>p
lealw ~ au@pi  2i5 \FT P2

2-p
Zkr» — o0.
k—oo

Also, if we now take o, = le/,u(lQ%) then, for 2 < p < oo,

~ 1
1TePaullzr(m _ < k? >2 Pl e ()
1BQellLr 2(2=2))  @3)r !

k2—2\2"p (kP2 K2O\: 1, %> 2
(52) (et (omg) 28) 26 o

These imply that ® = {¢g, }x>2 is not an unconditional basis (on its span) on
LP(p) for 1 < p < oo with p # 2.
Nevertheless, the standardness property

Njw

1
:2P

sup  sup [[65)l11 o 144l () < 00,
|<j<2i-10eP QI LY ()Y Q (»)
implies, by Theorem 1.11, that every Haar multiplier is of weak type (1,1) and,
by interpolation and duality, LP(x) bounded for every 1 < p < oco. This, in turn,
gives that {13 }1<j<od_1,0cy 18 an unconditional basis for LP(u), 1 < p < o0.
Let us now look at the case of the dyadic Hilbert transform an its adjoint in
dimension d = 1. Assume that u(I) > 0 for every I € 2. One can easily see that

hiy(z) = T “ffg}) hr ()i (z).
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Hence,

Hyf(x) =Y (f,hu)(hi_(2) = hr, (x))

]6@

—Z( > M (x)m(l)(l”h“(x))( > <f,hJ>hJ<x>>

k€Z \I€D_1 JEDK—1

= &(2)Dpf (@

kEZ

i (@) + ()b, (@) (f, hi) b (2)

where we have used that D, = Zle%@,l D; and that D;f = (f,hr)h;. The
coefficient & is 0(Zg41)-measurable, defining a non predictable sequence. One may
thus regard the dyadic Hilbert transform as a “generalized martingale transform”.
Let us finally observe that for the adjoint of the Hilbert transform, since Dy is a
projection, we have
Hiyf(x) =) Dp(&f) (=
keZ

Similar expressions can be obtained for other Haar shift operators in every
dimension provided the coefficients can be split as a% g= fyg 5§~ This procedure
shows that Haar shift operators of arbitrary complexity “fill” the space of
“martingale transforms” with arbitrary measurable coefficients, further details are
left to the interested reader. In particular, we see why classical tools coming
from martingale LP-theory do not apply in the present contexts, and our Calde-
rén-Zygmund decomposition establishes the right substitute of Gundy’s martingale
decomposition in such a general setting.



Part 11

Calderon-Zygmund operators
associated to matrix-valued kernels






Chapter 5

Introduction and main results

A semicommutative Calderén-Zygmund operator has the formal expression

Tfa) ~ [ ) (F)d,

where the kernel acts linearly on the matrix-valued function f = (f;;) and satisfies
standard size/smoothness Calderén-Zygmund type conditions. This is the operator
model for quite a number of problems which have attracted some attention in recent
years, including matrix-valued paraproducts, operator-valued Calderén-Zygmund
theory or Fourier multipliers on group von Neumann algebras, see [33, 36, 50, 56, 58]
and the references therein. To be more precise, let B(¢3) stand for the matrix
algebra of bounded linear operators on fo. Consider the algebra formed by
essentially bounded functions f : R? — B(f3). Its weak operator closure is a
von Neumann algebra A and as such we may construct noncommutative L,, spaces
over it. Let us highlight a few significant examples:

e Scalar kernels: k(z,y) € C and
k. y)(f) = (K. 9)fi ().
e Schur product actions: k(z,y) € B(f3) and
B, y)(FW) = (ki) fis )

e Fully noncommutative model: k(x,y) € B(¢2)®B(¢3) and
K ) () = (Z ﬂ(k;<y>f<y>)k;<x>ij).

e Partial traces, noncommuting kernels: k(z,y) € B(¢3) and

(Z Fis (i, y)fsj(y)> :
(Z Fis(n)ksj (@, y>>

k(x,y)(f(y) =

o1
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Scalar kernels require a matrix-valued Calderén-Zygmund decomposition in
terms of noncommutative martingales and a pseudo-localization principle to control
the tails of T'f in the Lo-metric [58]. Hilbert space-valued kernels were later
considered in [53], see also [51, 66, 70] for previous related results. The second case
refers to the Schur matrix product k(x,y) e f(y), considered in [36] to analyze cross
product extensions of classical Calderén-Zygmund operators. It is instrumental for
Hoérmander-Mihlin theorems on Fourier multipliers associated to discrete groups
and for Schur multipliers with a Calder6n-Zygmund behavior [36, 35]. In the fully
noncommutative model, we approximate k(z,y) by a sum of elementary tensors
Y ki (2) @ k7 (y) and the action is given by

Tt~ [ (o) (Keo) (e © 1)) dv

In this case, we regard the space L,(A) = L,(R% L,(B(f2))) as a whole.
In other words, the noncommutative nature of L,(A) predominates and the
presence of a Euclidean subspace is ignored. That is what happens for purely
noncommutative Calderén-Zygmund operators [34] and justifies the presence of
id ® Tr, to integrate over the full algebra A and not just over the Euclidean
part. The last case refers to matrix-valued kernels acting on f by left/right
multiplication, k(z,y)f(y) and f(y)k(z,y). Matrix-valued paraproducts are
prominent examples [41, 50, 52, 56, 68]. This is the only case in which the kernel
does not commute with f, since the Schur product is abelian and we find that
(id®Tr) (k(z,y) (1) @ f(y)) = (id®@Tr)((1pe,) @ f(y))k(z,y)) as a consequence
of the tracial property.

Our main goal is to obtain endpoint estimates for Calderén-Zygmund oper-
ators with noncommuting kernels, motivated by a recent estimate from [36] for
semicommutative Calderén-Zygmund operators. If k(x,y) acts linearly on B(¢3)
and satisfies the Hérmander smoothness condition in the norm of bounded linear
maps on B({3), the following results were recently proved in [36]

o If T'is Loo(B(f2); L5(R?))-bounded, then T': Ly (A) — BMO,(A),
o If T is Loo(B(£2); L§(R?))-bounded, then T : Lo (A) — BMO,(A).

Here, the Loo(L$)-boundedness assumption refers to

H ( / T ()T (x) dx) ( / f@) f() dx)
R4 R4

while the column-BMO norm of a matrix-valued function g is given by

<

~

B(¢2)

)

B(¢2)

sup
Q cube

(Mlg‘/Q (9(x) — (9)0) " (9(=) — (9)0) dx)

B(£2)

Taking adjoints we find Lo (L})-boundedness and row-BMO norm. The noncom-
mutative BMO space BMO(A) = BMO,(A) N BMO.(A) was introduced in [66].
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According to [55] such a BMO space satisfies the expected interpolation behavior
with the corresponding L, scale. Therefore, standard interpolation and duality
arguments show that 7' : L,(A) — L,(A) for 1 < p < oo provided the kernel is
smooth enough in both variables and T is a normal self-adjoint map satisfying the
Lo (LE) and Loo(L§) boundedness assumptions. In other words, the row/column
boundedness conditions essentially play the role of the Ls-boundedness assumption
in classical Calderén-Zygmund theory.

Although this certainly works for non-scalar kernels — Schur product actions
were used e.g. in [36] — the boundedness assumptions impose nearly commuting
conditions on the kernel. Namely, given k : R2*\ A — B(f3) smooth and given
x ¢ suppga f, let us set formally the row/column Calderén-Zygmund operators

T.5() = [ Fbledy and Tof(e) = [ ko) sy
It is not difficult to construct noncommuting kernels such that
e T and T¢ are La(.A)-bounded,
e T} and T; are not Ly(A)-bounded for 1 < p # 2 < o0,

see e.g. [58, Section 6.1] for specific examples. Therefore, the Lo (L5) and Loo(LS)
boundedness assumption is in general too restrictive when kernel and function do
not commute. Assume in what follows that T, and T are Ly(A)-bounded. We are
interested in weakened forms of L, boundedness and endpoint estimates for these
Calderéon-Zygmund operators.

Let 2 denote some dyadic grid in R%. A dyadic noncommuting Calderén-Zyg-
mund operator will be a La(.A)-bounded pair (75, T¢.) associated to a noncommuting
kernel satisfying one of the following conditions:

e Perfect dyadic kernels are such that

Hk(l’,y) - k(zvy)HB(gQ) + Hk‘(y,l’) - k(yaz)HB([Q) =0
whenever x, z € () and y € R for some disjoint dyadic cubes Q, R € Z.

e Haar shift kernels are given in terms of two generalized Haar systems ® =
{pg}gez and ¥ = {1pg} ey as defined in Section 6.2. For some fixed r,s € Z
let

Kry) =Y > afsory)vs(a),

Q€7 Re2,(Q)
S€25(Q)
with uniformly bounded matrix-valued symbols oz%s € B(l2). Here Z;(Q)
denotes the family of k-dyadic descendants of @, i.e., the partition of @ into
subcubes R € 2 of side-length £(R) = 27%4(Q).

Perfect dyadic kernels were introduced in [2] and include Haar multipliers, as well
as paraproducts and their adjoints. If I_ and I denote the left/right halves of
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a dyadic interval I C R, the standard model for Haar shifts is the dyadic Hilbert
transform with kernel ) ;(h;_(y) — hr, (y))hr(z). It appeared after Petermichl’s
crucial result [62], showing the classical Hilbert transform as a certain average
of dyadic Hilbert transforms. Hytonen’s representation theorem [29] extends this
result to arbitrary Calderén-Zygmund operators.

By a generic noncommuting Calderén-Zygmund operator wi will refer to Lo(A)-
bounded pairs (T}, Tc) with a noncommuting kernel satisfying the standard size and
smoothness conditions:

o if 2,y € RY, we have

1
Hk(%y)HB(zg) N m-

e There exists 0 < v < 1 such that

x X 1 r—XT r —
/|y 1
/ < |y y| . /
Hkﬁ(fﬁ,y) k(l’y )HB(@Q) ~ | y‘d+,}, if |y Y | < 2|$ - y|

We will refer to v as the Lipschitz smoothness parameter of the kernel.

Theorem 5.1. The following inequalities hold:
(1) Given f € Li(A), there exists an explicit decomposition f = fr + fc so
that the following inequality holds for any row/column pair T,/T. of dyadic
noncommuting Calderon-Zygmund operators

1T fellLy o) 1 Tefellzr oty S N N2y ca)-

(1) Given any row/column pair T, /T, of generic noncommuting Calderdn-Zyg-
mund operators, we have Ty : Hj(A) — L1(A) and T, : H{(A) — Li(A). In
particular, if || fllm, 4y ~ | el (a) + I fellie ay we get

| T2 fellocay + 1 Tefellocay S N Flya)-

The noncommutative forms of Lq . and the Hardy space H; are well-known
in the subject, but we will remind the definitions later on. Our main result is the
inequality in Theorem 5.1 (i) and its noncommutative martingale generalization
in Theorem 5.3 below. The argument we use simplifies that of [58] for dyadic
Calderon-Zygmund operators with commuting kernels. The following result easily
follows from Theorem 5.1 by interpolation and duality arguments. Nevertheless, it
is worth mentioning the L, estimates derived by our main results.

Theorem 5.2. The following inequalities hold for generic noncommuting Calde-

ron-Zygmund operators:

(1) If1<p<2and f € Ly(A)

f:i}‘zifc HTrfrHLp(A) T HTCfCHLp(A) S llz, -

In fact, we also have that T, : H,(A) — Ly(A) and Te : Hy(A) — Lp(A).
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(it) If2 <p < oo and f € Ly(A)

I7:/]

Hy (A) T |7/ me () S 111z, c)-

(4ii) Given f € Loo(A), we also have ||T; f||gmo, (4) + [|TeflIBMOc(4) S I f]4-

Theorems 5.1 and 5.2 also hold for other operator-valued functions, replacing
B(¢3) by any semifinite von Neumann algebra M. Our proof will be written in this
framework. Let us now consider a weak-* dense filtration ¥4 = (Ay,)n>1 of von
Neumann subalgebras of an arbitrary semifinite von Neumann algebra A. In the
following result, we will consider two kinds of operators in L,(.A):

e Noncommuting martingale transforms

M{f = Dp(f)é—1 and Mgf = & 1Dp(f).

k>1 E>1

e Paraproducts with noncommuting symbol

I (f) =Y Ex-1(f)Dr(p) and TI5(f) = Di(p)Er-1(f).

k>1 k>1

Here Dj denotes the martingale difference operator E, — Ex_1 and & € Ag is an
adapted sequence. Of course, the symbols £ and p do not necessarily commute with
the function. Randrianantoanina considered in [70] noncommutative martingale
transforms with commuting coefficients. As for paraproducts with noncommuting
symbols, Mei studied the Ly,-boundedness for p > 2 and regular filtrations in [50]
and analyzed in [52] the case p < 2 in the dyadic matrix-valued case under a strong
BMO condition on the symbol. Our theorem below goes beyond these results, see
also [53] for related results.

Theorem 5.3. Consider the pairs:

(i) martingale transforms (Mg, M§), with supy, [|{k][am < oo;

(i4) martingale paraproducts (1L, I1;), with H;/C Ly(A)-bounded.
If ¥ 4 is regular, we obtain weak type (1,1) inequalities like in Theorem 5.1 (i)
for martingale transforms and paraproducts. The estimates in Theorems 5.1 (ii)
and 5.2 also hold for both families and for arbitrary filtrations 3 4. Moreover,

the martingale paraproducts II, and 17 are Ly-bounded for 2 < p < oo and
Lo — BMO.

For martingale transforms, there are also examples of noncommuting kernels
lacking L,-boundedness for p # 2. In the case of regular filtrations, our weak
type estimates extend those in [70] with appropriate substitutes for noncommuting
coefficients. Our strong type estimates — including the analog of Theorem 5.1 (i7)
— may be derived from the results in [66]. We use nevertheless a different argument
using atomic decompositions, which is also valid for paraproducts. Our result for
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paraproducts goes beyond [50, Theorem 1.2] in two aspects. First, our estimates
for p > 2 hold for arbitrary martingales, not just for regular ones. Second, we
partially answer Mei’s question in [50] after the proof of Theorem 1.2 for the case
p < 2 and also for weak type (1,1) estimates.

This part of the dissertation is organized following the order presented in this
Introduction, describing the basic setting in Chapter 6. We shall assume some
familiarity with basic notions from noncommutative integration. The content of
[58, Section 1] is enough for our purposes, more can be found in [40, 67, 73].



Chapter 6

Noncommuting dyadic operators

Let M be a semifinite von Neumann algebra equipped with a normal semifinite
faithful trace v. Consider the algebra of essentially bounded functions R — M
equipped with the normal semifinite faithful (n.s.f.) trace

"= [ @)

Its weak-operator closure is a von Neumann algebra A. If 1 < p < oo, we write
L,(M) and L,(A) for the noncommutative L, spaces associated to the pairs (M, v)
and (A, 7). The lattices of projections are written P(M) and P(.A), while 14 and
14 stand for the unit elements.

The set of dyadic cubes in R? is denoted by 2 and we use 2 for the k-th
generation, formed by cubes @ with side-length ¢(Q) = 27%. If f : R? = M is
integrable on Q) € 2, we set the average

1
e =15 /Q f(y) dy = ]{2 f () dy.

Let us write (Eg)gez for the family of conditional expectations associated to the
classical dyadic filtration on R?. E;, will also stand for the tensor product Ej ®idq
acting on A. If 1 <p < oo and f € L,(A)

Er(f) = fe=Y_ (faolo

QEDy,

Di(f) =:dfi = Y (o —(o)le

QED

where @ denotes the dyadic parent of Q. We will write (Ag)rez for the filtration
Ay, = Ex(A). The noncommutative weak Lj-space, denoted by L1 o (.A), is the set
of all T-measurable operators f for which [|f|[,, (1) =supxso AT({[f| > A}) < oo,
see [23] for a more in depth discussion. In this case, we write 7({|f| > A}) to denote
the trace of the spectral projection of | f| associated to the interval (A, co0). We find
this terminology more intuitive, since it is reminiscent of the classical one. The
space L o (A) is a quasi-Banach space and satisfies the quasi-triangle inequality

o7
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below which will be used with no further reference

AT{If1+ fol > A}) < Ar({1A] > A/2)) + Ar({[ 2 > A/2}).

Let us consider the dense subspace
AL gk =Li(A)N {f ‘R M: fe Ay, suppga f is compact} C LT (A).

Here suppga means the support of f as a vector-valued function in R%. In other
words, we have suppra f = supp || f||m- We employ this terminology to distinguish
from supp f, the support of f as an operator in A.

Any function f € Ay g gives rise to a martingale (fy)rez with respect to the
dyadic filtration. Moreover, it is clear that given f € A, g and A > 0, there must
exist mx(f) € Z so that 0 < fi < A for all & < my(f). The noncommutative
analogue of the weak type (1,1) boundedness of Doob’s maximal function is due
to Cuculescu. Here we state it in the context of operator-valued functions from A.

Cuculescu’s construction [18]. Let f € Ay g and consider the corresponding
martingale (fx)rez relative to the filtration (Ag)kez. Given X € Ry, there exists a
decreasing sequence of projections (qi(\))kez in A satisfying

(a) qx is a projection in Ay,
(b) qx commutes with qx_1 fxqr—1,
(©) @rfrar < A

(d) ¢ = N\ ar satisfies
1
lafiglla <X for allk 21 and (14 = q) < T fllLica)-

Explicitly,
@A) = Lo (@r—1(A) frqr—1(N))qr—1(N)

with qi(A) = 14 for k < my(f).

Given f € Ay g, consider the Cuculescu’s sequence (gi(\))rez associated to
(f,A\) for a given A > 0. Since A will be fixed most of the time, we will shorten the
notation by ¢x and only write gi(\) when needed. Define the sequence (py)kez of
disjoint projections pr = qrx_1 — g, so that

Y pk=1la—q with ¢= )\ g

k€eZ keZ

Calderén-Zygmund decomposition [58]. Given f € Ay g and A > 0, we
may decompose f = g+ b as the sum of operators defined in terms of Cuculescu’s
construction, where each term has a diagonal and an off-diagonal part given by
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® g =ga + goff, where

9a = qfq+ Y prfipk,
keZ

ot = Y _pifivipi + af(la—aq)+ (1a—q)fq;
i#j

e b=">ba + by, where

ba =Y pe(f = f)pk,  bow = Y pilf — fivi)ps-

keZ i#j

Moreover, we have the diagonal estimates

2
+ H < 29\ :
quq ];Zpszkpk ) 1£11 s )

> en(F = F0mnll, ay < 201y

keZ

The expression below for gog will be also instrumental

[eS) 00
Joff = Z Z pkdfk+SQk+371 + Qk+371dfk+spk-
s=1k=m)+1

The key result of this Part is Theorem 5.1, since the remaining theorems
follow from it or by using analog ideas. We begin with the proof of the weak
type estimates for perfect dyadic Calderén-Zygmund operators and then make the
necessary adjustments to make it work for Haar shift operators. The proof of
Theorem 5.1 (¢3) will require to recall some recent results on square function and
atomic Hardy spaces.

6.1 Perfect dyadic Calderé6n-Zygmund operators

To the best of our knowledge, the notion of perfect dyadic Calderén-Zygmund
operator was rigorously defined for the first time in [2] by Auscher, Hofmann,
Muscalu, Tao and Thiele. Accordingly, we define a perfect dyadic Calderén-Zyg-
mund operator with noncommuting kernel as a pair (T;,T;) formally given by

15w~ [ Fke iy T~ [ ke f)dy
with an M-valued kernel satisfying the perfect dyadic conditions

k(2 y) = k(2. 9)]| o, + [[E(y, 2) = Ky, 2) ]| o, = 0

whenever z,z € @ and y € R for some disjoint dyadic cubes @, R. Alternatively,
we may think of perfect dyadic kernels k : R24\ A — M as those which are constant
on 2d-cubes of the form @Q x R, where Q, R are distinct dyadic cubes in R? with
the same side-length and sharing the same dyadic parent. Classical perfect dyadic
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Calderon-Zygmund operators include Haar multipliers and dyadic paraproducts.
In fact these operators and adjoints of paraproducts essentially build up the class
of perfect dyadic Calderén-Zygmund operators as proved in [2]. In this respect,
as we shall taler see, Haar shift operators generalize perfect dyadic operators. To
further emphasize the perfect cancellation property of the kernel, we can express
the associated scalar operators in the following form

Tof( / (Z 0@ 2‘d1@)(y)> f(y) dy,

Qe
1 _
HJ@»—/’(XIW‘<>—wm@ﬂmmzd@@Of@w%
with supg [ag| < oo and p : R? — C in dyadic BMO. In the noncommuting setting,
the coefficients ag and the symbol p become operators in M and a M-valued

function respectively which a priori do not commute with f € L,(A). Nevertheless,
the perfect dyadic condition for the kernel is still satisfied in these cases.

Proof of Theorem 5.1 (i) - Perfect dyadic operators. Since f can be split
as a sum of four positive operators and by density of the span of A x in L;(A), we
may clearly assume that f € A4 x. A well-known lack of Cuculescu’s construction
is that we do not necessarily have gi(A1) < gr(A2) for A7 < A9, This is typically
solved restricting our attention to lacunary values for A. Define

Tk = /\ qr(2°) — /\ qr(2°%) for j,keZ.

s>j s>j-1

We have Zj ik = 14 — 9y in the SOT sense, where

o= N\ a(2):

SEZL
Observe that Yrdfy, = dfiyyr, = 0 for k € Z. Indeed, we have

1 1 1 1
lVrdfilla < 1Vefid lall fell 4 + e fiqlall fr-tll %

1 1 1 1 1

= 19r Futrl 2N el 2+ N9k foanl Al foall 3 < Tim 2172 112

In particular, we find f =), (14 — ¥g—1)dfr,(14 — Yx—1) and set f = f + f. with

ZLTk 1 dfk Z(Zﬂ'@k 1dfk7T],l<: 1)

keZ kEZ \i>j
= UT_1(dfy) = Z(Zﬂ'zk 10f T 1o 1)
kEZ keZ \ i<j

This is the decomposition we will use for any perfect dyadic Calderén-Zygmund
operator. Given such an operator 7' = (T}, 7T,) and A > 0, the goal is to show that
there exists an absolute constant ¢y so that

AT fel > AY) + AT({[Tefel > A}) < coll fll )
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for any f € Af kg and any A > 0. By symmetry in the argument, we will just
prove the inequality for 7. f.. Moreover, replacing cy by 2cy we may also assume
that A = 2¢ for some ¢ € Z. Having fixed the value of A = 2¢, we may consider the
Calderon-Zygmund decomposition f = ga + gogf + b + bog and set

95 =Y UTi1(Dilga)), 955 =D UTk—1(Dr(gost)),

kEZ kEZ
A= UTp1(Di(ba)), big=> UTi_1(D(bos))-
kEZ kEZ

By the quasi-triangle inequality it suffices to show

A(T{\Tcgg\ > A} + {|Tubs | > A}
+ r{|Teglal > A} + T{Tebsal > A}) S 1l

The first term is first estimated by Chebychev’s inequality in A

1 1
M {[Tegil > A} < 51 Tegill7, 4 S 511980 E )

We use that UTk_l(Dk(gA)) are in fact martingale differences, so that

1 1
XHQZH%Q(A) = > IUTk-1(Dr(9a)) HiQ(A)

kez
2
1 ) 1
<3 > IDk(ga) 17,0y = X > Dilga)
keZ keZ La(A)
2
1
=7 qfq+ Zpkfkpk <2 £l a)-
kez La(A)

Indeed, the first inequality above follows from the fact that triangular truncations
are contractive in La(A), while the last inequality arise from the diagonal estimates
in the noncommutative Calderén-Zygmund decomposition stated above. To handle
the remaining terms, we introduce the projection

7= /N\a2) =N\ N\«

s>0 s>L kEZ

According to Cuculescu’s construction, we find

2
Tla—-9) <> T(la—q(2)) <> %Hf”IA(A) = Il

s>0 s>l

This reduces our problem to show that

A(r{ITe@)dl > A} + 7{|Telgla] > A+ 7{| Tem)dl > A}) S 1l

The perfect dyadic nature of T, comes now into scene. Indeed, we claim that
the three terms T.(b%)q, Tc(95g)q and Ti(ble)q vanish whenever T. is perfect
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dyadic. This will be enough to conclude the proof. If Qg(z) is the only cube
in 9 containing x, we find a.e. x

Te(b3)(@)G(x) = > Te(UTk 1(Dr(ba))) (x) Glx)

keZ
= 3T (UTh 1 (Pw(ba)) g, o)) (@) )

keZ
+Z Z (/ z,y)UT,_1(Dx(ba))(y) dy) q(z).
keZQezg AN

The last term on the right vanishes since the term UTy_1(Dg(ba)) has mean 0 in
any Q € %1, so that we may replace k(z,y) by k(x,y) — k(x,cq), which is 0
when z ¢ @ by the perfect dyadic cancellation of the kernel. On the other hand,
if we define the projection

Qe—1 = /\ qr-1(2°),

s>l
we see that g(x) = @x—1(2)q(z) = qr—1(y)q(x) for any y € Q_1(x). This gives
T(08)@)dw) = 3 Te(UTh 1Dk 110, 0 ) () 3(0)
The exact same argument applies for g° and b, so that it suffices to prove
UTr—1(Dr(ba)) @r—1 =0,

UTr—1(Dr(goft)) Tk
UT,—1(Dr(boe

for all k € Z. In all these cases we will be using the following two key identities
® Qi 1Tik—1 = Tjk—1qk—1 = 0 for i,j > ¢ and k € Z,
® T k_1Pk—s = Pk—sTjk—1 =0 for s >1,4,5 </ and k € Z.

The proof is straightforward and left to the reader. It only requires to apply the
monotonicity properties of A - y qx(2°), which increases in j and decreases in k. If
we apply the first identity to UTx_1(Dg(7)) gp—1 for any -, we get

UTk 1 (D)) @1 = Y ik 1Tk 1Gk1-

i<j<t

Therefore, if we know that dy, = Ay + By where the left support of Ay and the
right support of By are dominated by s>1Pk—s = 14— qg—1, then we deduce that
UTk—1(Dg(y)) @k—1 = 0. In other words, it suffices to prove that

k—1Dk(V)gr—1 =0 for v =€ {ba, gor; bofr }-

We have

= Z D (p;(f — fi)p;)
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=> il = F)pi— Y pilfer — Fi)ps

<k j<k—1
= Y pidfip; = (1a — qr—1)Dr(ba)(1a — gr—1).
j<h—1

To calculate the martingale differences for g.g, we invoke the formula
[e.e]
ot = Y > pjdfirstive1 + Grs1dfirsp)
s=1 jeZ
given in the statement of the Calderén-Zygmund decomposition. Then we find

[e.e]
Di(goft) = Y _ Phsfci—1 + qr-1dfiDi—s

s=1

= (14 — qe—1)dfxqr—1 + Ge—1dfr(1a — qr—1).

Finally, it remains to consider the martingale differences of byg

Di(bot) = Y . Y Di(pi(f = fivs)pjts + pivs(f = fits)ps)
s=1 jeZ
=3 pi(fr — Fivs)pits + pivs(fr = Fivs)ps
s=1 j<k—s
= > pilfo1 = firs)pies + Pivs(fe1 — fivs)ps
s=1 j<k—s—1
=3 pidfipjrs+ Y Y piredfen; = Ap + A
s=1 j<k—s s=1 j<k-—s

So qr—1Ar = Ajqr—1 = 0and qx_1Dx(7)qr—1 = 0 for v = ba, goff, bosr as desired. [

6.2 Haar shift operators

We say that ® = {¢g}geca is a generalized Haar system in R? adapted to Z if the
following conditions hold:

(a) For every Q € Z, supp(¢g) C Q.

(b) I Q, Qe Zand Q C Q, then ¢g is constant on Q'

(c¢) For every Q € 2, / ¢g(x)dr = 0.
R4

(d) For every Q € 7, we have |¢gl|r2(,) = 1.

Such Haar systems yield orthonormal systems in Lo(R?). If the vanishing integral
condition (c¢) is not imposed, the Haar system is said to be non-cancellative.
Particular constructions of Haar systems are considerer in Part 1.
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Let ® = {¢g}gez and ¥ = {9g}oecz be two non-necessarily cancellative
generalized Haar systems in R?. A column noncommuting Haar shift with
complexity (r,s) has the form

=Y Agf=> Y apglf.er)s(x), supllaf gl <o

Qe QEZ Re7,(Q)

S€2:(Q)
where (f,¢r) = [fordzr € M. A row operator is likewise defined. If the
underlying Haar systems are cancellative, the Har shift operator is said to be
cancellative. Several objects in commutative dyadic harmonic analysis admit this
general form, including Haar multipliers, dyadic paraproducts, the dyadic Hilbert
transform and their adjoints. As in the classical case, orthogonality arguments are
enough to show Lo boundedness. Further, if the symbols a% g € M satisfy the

VIS s
Q

the associated Haar shift operator is contractive in La(.A). We proceed to show
this.

estimate

Lemma 6.1. A cancellative row/column Haar shift operator 111, s satisfies the Lo
estimate

1 T
I £l oy < 22074 sup ([0 ||yl 1l o)

Proof. The argument is standard. Observe that for a row/column operator we
have

IL,.f = Y PiqAePsof
QeD

where P&;Q and P&",Q denote the projections
Poof= >, (fiériér and Piof= > (fvs)vs;
Re2-(Q) SeZs(Q)

thus obtaining families of projections orthogonal on the index (). Therefore

1L/, = D IAaf 13,00 = O [AaPsof |, 4

Qe Qe

It is easily seen that Ag is a bounded operator on Ly(.A). Indeed, by Holder’s and
triangular inequalities we have

2
||AQ9||%2(A): Z Z ag,s(%@%)
5€25(Q) Il Re2:(Q) La(M)
2
< 2 ( > lofsllu f |g<x>||L2(M>|¢R<x>|dz)
S€7.(Q) \ REZ,(Q) R
< Y ol [ lo@e
S€2:(Q) ReZ-(Q)

< 2rts)dgyp

O‘R,sHiAHQH%Q(A)
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This yields

ITIL 6 f117, 4y < 20779 sup HO‘%,SHM > HP&;,QinQ(A)
Qe

< 20+ sup 09 Lo, 1 o .

As in the case of paraproducts, in what follows we will assume that non-
cancellative Haar shift operators are bounded on La(A).

The next lemma is crucial to analyze Haar shifts and general Calderén-Zyg-
mund operators with noncommuting kernels. We take here the opportunity to
slightly modify the argument in [58, Lemma 4.2], which was not entirely correct.

Lemma 6.2. Given r € Z, there ezists ¢ € P(A) such that:
(i) AM(1a=¢) <27 flly )

(13) If Qo € Dk, and x € Q(()T), then ((x) < qi,(y) for all y € Qo.
In the second property, we write Q(()T) for the unique r-th dyadic ancestor of Q.

Proof. We have

o=@ =Y (31— ZZPQ@IQ—Z{ZpR}@)IQ

J<k <k Qe; QEY, ROQ

for some family of projections pg € P(M). Define
(= A& with G=14-\ '\ rolge-

keZ <k QeZ;

It is clear that the (i’s are decreasing in k and we find
MAqa—¢) =X lim T(1a — (k)

<)\hmzz pQ‘Q

i<k Qe2;
= ord hm )\Z Z T(pg ® 1q)
i<k Qe;
=2"A7(1a—q) =27 7(La—a@™) S27 Fllzy )

m>4
To prove the second property, it will be useful to observe that )1 C Q)2 implies
that pg, and pg, are orthogonal projections. Indeed, according to the definition of
pq above, we ha've PQ1PQ:1Q: = (%1*1 - @1)(@2*1 - C/I\jz)lQl =0 for £(Q1) =277
and £(Q2) = 2772, Then, we find

(@) < Go@)=1m— \ 'V polom(@

J<ko Q€2
< 1m— \/ PR = 1M — Z PR
RDQo RDQo

:(1,4— Z(ng>®1Q) D=duly). O

Q€Zk, \RDOQ
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Proof of Theorem 5.1 (i) - Haar shift operators. As in the perfect dyadic
case, we assume f € A4 g and decompose f = f; + f. in the same way. Once more
the argument is row/column symmetric, and we just consider the column part.
After fixing A = 2¢ for some ¢ € Z, we construct the corresponding Calderén-Zyg-
mund decomposition for f. = g} + g5 + bR + bSs. According to Lemma 6.1, we
may control the term III7 (g% ) in as in Theorem 5.1 (7). Given v € {ba, ot boft },
the other terms can be decomposed as follows

= I (UTe—1(Dk(7)))

keZ
Y ¥ QRS( [ VT A ondy) s (o)
k€EZ QeP ReZ,(Q
SEJS(Q)
:Z< oo+ Y o+ Y ) = A, + B, +C,.
keZ QEZ Qe Qe

Q)<27 R p(@Q)>27 kT g(Q)>2r kL
Z(Q) §2r7k+1

We claim that C,, = 0. Namely, we have £(R) = 27%¢(Q) > 2%+, This means that
Ex—1(ér) = ¢r since the Haar functions ¢ are constant in the dyadic children of
S, whose length sides are greater or equal than 2=+~ This yields

| UTee (Out)énrdy = [ B (UTuer(Du())on) dy
R R4
= /Rd Ex—1(UTk-1(Dk()))or dy
= /Rd (Ukal(Eklek(’)’))(pR dy =0.

In order to deal with the remaining terms A, and B, we invoke the identity

Qe—1Dk(Y)qr—1 =0

which was already justified in the perfect dyadic case whenever v = ba, goft, boft-
Namely, since m; p—1(14 — qx—1) = (14 — qr—1)7; k-1 = 0 for 4, j < ¢, we find

UTr_1(Di(y Z?Tzk 1DV k-1 = Zm,k—le(’V)Wj,k—L
1<j 1<j
>t

Let us now consider the term A, we have
~ A
Mr{|4, > A} S A7(1a— ) + Mr{| Ad] > 5}

We already know that the first term on the right is dominated by || f| 1, 4) and

Ag=3 Y >, aRS(/ UT -1 (Dx( ))¢Rdy>¢s() q(x).

keZ Qe Re9,(
(Q)<27 k1 Se, (Q)



6.2. Haar shift operators 67

Given Q € 2 with £(Q) < 27*+1 let

kg >k —1 determined by £(Q)=2"%e.
It is clear that q(z) = Gk, (2)q(*) = Gk, (¥)q(*) = Gk—1(y)q(x) whenever z,y belong
to Q. However, the presence of ¢g(x), ¢r(y) implies (unless the corresponding term
is 0) that the pair (z,y) € S x R C @ x @ so that we may write

Ag=> > > ozR5</ UTk—1(Dk(7))qk— 1¢Rdy>¢s( )q().

keZ Qe Re2,(Q)
(Q)<27++ 5€9,(Q)

Therefore, we conclude

UTi—1(Dx(7))qr—1 = Z?Tzk 1Dk (V)7 k—1Gr—1 =0
i<j
j>t
since 7 k—1qx—1 = 0 when j > ¢. This shows that A,g = 0. Let us finally consider
the term B,. We will follow a similar argument with the projection ¢ from Lemma
6.2 instead. Namely, we have

M{|By| > A} < Ar(1a—¢) + AT{\BA,Q > %}

According to property i) of Lemma 6.2, it suffices to show that B, = 0. Now
we know that £(Q) < 2"*+1 so that kg > k —r — 1. Let us now consider the
2rd dyadic cubes T; having @ as their r-th dyadic ancestor. This gives rise to the
identities

() = Crotr (2)C(2) = Crotr (W)C(T) = T 1r(2)C(2) = Gr1(2)C()

for (z,y,2) € @ x Q x Tj. Indeed, the second identity follows from the fact that
Ekq (CkQJrr) = Ckg-+rs the third one from the second property in Lemma 6.2 and the
last one from the inequality kg > k£ —r — 1. Hence, given y € S C @ we pick the
unique j for which R = T} and deduce that ((z) = gx—1(y){(x). Then it yields the
identity

BC=Y X Y afs( [ B P rondy)vs(o) (o)

kEZ Qe Re2-(Q)
6Q)>27M1 S€2:(Q)
E(Q)SQT—IﬁLl

The integrand UTj_1(Dg(7))qk—1 vanishes for the same reason as it did above. [

Remark 6.3. Our constants ~ 2% seem far from being sharp. The classical
argument giving constants ~ r unfortunately encounters a major obstacle due to
the presence of triangular truncations, which are not bounded in L;. This is also
the reason why we did not succeed in extended the argument above to generic
Calderon-Zygmund operators. In fact, we leave this as an open problem for any
interested reader.
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Remark 6.4. Note that our decomposition f = f; + f. is completely determined
by the projections 7; ;, which in turn depend on f. According to the statement of
Theorem 5.1 (i7), it would be desirable to identify subspaces or even subsets A, /A
of L1(A) for which we have

T, : A — LLOO(.A) and T¢: Ac — LLOO('A)

Note however that our use of Calderén-Zygmund decomposition provides estimates
of the form || T frl|L, .4y S I fllz,(a)- Morally, f can not be replaced by f; on the
right hand side since triangular truncations are not bounded in L;. On the other
hand, the sets A, and A. are not empty since both contain

A= {f eLf(A)| f= Z Wj,kfldfkﬂj,kfl}a

J,kEZ

which in turn contains all f € LT (A) such that f(z) belongs to the center of M
for all z € R?. Note that A is not a linear subspace since the mjx’s depend on f.
It is an interesting problem to determine larger sets A;/A. in Lq(A).



Chapter 7

Noncommuting Calderén-Zygmund
operators

7.1 Operator-valued Hardy spaces

The proofs of Theorems 5.1 (i7), 5.2 and 5.3 arise from a careful combination
of recent results in the theory of noncommutative Hardy spaces. Let us begin
introducing Mei’s notion [51] of row and column Hardy spaces for our algebra of
operator-valued functions A. In order to distinguish from order Hardy spaces to
be introduced below, let us follows Mei’s notation and define

Hi(R% M) = Hi (R M) + Hf (R M)
as the space of functions f € Li(A) for which we have
HfHHl(R’i;M) = fiIglfrh HgHHrl(]Rd;M) + ”hHHg(Rd;M) < o0,

where the row/column norms are given by

B 85 05" 95 95" dzdty 5

ol any = | ( /F R RN i CaRE=y
Oh* Oh Oh* Oh dxdty 3

Il sa = | ( /F Tt oz, axﬂ (40 5r)

with T' = {(z,t) € R‘f’l | |x| <y} and f(z,t) = P,f(z) for the Poisson semigroup
(Pt)t>0. In other words, operator-valued forms of Lusin’s square function. We say
that a € Li(M; L§(RY)) is a column atom if there exists a cube @ so that

9

L1(A)

)

Li(A)

® suppgaa = Q,

: 1
° HaHLl(M;Lg(Rd)) = V<</Q\a(y)\2dy> ) < \/ﬁ
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According to [51, Theorem 2.8], we have

1/ Il e (ma; 01y ~ inf { Zk el | f = Zk Aray, with ag column atoms}.

On the other hand, we have already settled a dyadic filtration (Ag)gez for our
algebra of operator-valued functions A. Then, we may follow [66] to define the
corresponding noncommutative Hardy space Hj(.A) as the completion of the space
of finite martingales in L;(A) with respect to the norm

1 1
2 2
Il = Inf ( ngkdg;;> + ( Zdh;’;dhk>
g,h maftingales keZ Li(A) kEZ L1(A)

In other words, H;(A) = Hj(A) + H{(A), where the spaces on the right are the
completions of the spaces of finite Li-martingales with respect to the norms in L
of the corresponding row/column square functions given above. By the use of a
dyadic covering [13, 51], it can be shown that there exist d + 1 dyadic filtrations
Ei‘ (0 < j <n) in R? so that

QL

Hy (RG M) ~ ) Hi(A, %),

J=0

where the latter spaces are defined as H; (A) after replacing the standard filtration
294 by any other dyadic filtration in our family. Moreover, this isomorphism also
holds independently for row/column Hardy spaces.

Proof of Theorem 5.1 (ii). We will show that
T. :Hi(A) — L1(A) and Tt :HJ(A) — Li(A),

for any generic noncommuting Calderén-Zygmund operator (7;,7c). Indeed, in
that case we decompose f = f; + f. € Hi(A), so that

[ f ey cay ~ el cay + [ fellme a)

and we deduce that

1T fellzy ) + 1 Tefellzray S I ellagcay + 1 ellagcay ~ 1 e ca)-

According to our observation above, H;(.A) embeds isomorphically into Hy (R%; M)
by means of a suitable choice of dyadic coverings of R?, and the same holds for row
and column spaces isolatedly. Thus, it suffices to show that

T, : HY (R4 M) — Li(A) and T : Hf(RYG M) — Li(A)

boundedly. Both estimates are identical, let us prove the column case. According
to the atomic decomposition of H§(R%; M) we just find a uniform upper estimate
for the L; norm of T¢(a) valid for an arbitrary column atom a

ITe(a)llzy(a) < HTC(“)12QHL1(A) + HTC(“)le\2QHL1(A)'
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The second term is dominated by

dzx

re@tsssallin = [, | [ <) dy

S/Q</Rd\2QHk($7y)_k(xch)HM dm)l’\a(y)ldy
Sv a(y)|d v a(y)*d ’ ,
< (/Q| (v)| y>g Ql ((/Q| (v)| y) >g1

where the next to last estimate follows from Hansen’s inequality or as a consequence
of the operator-convexity of the function a ~ |a|?. As for the first term, it suffices
to show that T, : Li(M; L§(RY)) — Li(M; L§(R?)), since then we find again

HTC(G’)12QHL1(A) = V</2Q |Te(a)(x)| dﬁ?)
12@|u<< /2Q|Tc<a><sc>| dx> )
20]v ((/ (e |2dx> )gL

The Li(M; L§(R?))-boundedness of T, follows from anti-linear duality

VI

HTC(f)H[q(M;L%(Rd)) < ( sup HT:(g)HLOO(M,Lg(Rd))> HfHLl(M,Lg(Rd))

191l oo (£g) <1

It is easily checked that the adjoint 7;(g) has the form

Tog(x) ~ /Rd k(y,z)*g(y) dy

when we construct it with respect to the anti-linear bracket [f, g] = 7(f*g). This
means in particular that T3 is still an Le-bounded column Calderén-Zygmund
operator associated to a kernel satisfying Hormander smoothness. This gives rise

to
1
2
* * 2
HTC (g)HLoo(M;Lg(Rd)) = H (/Rd |Tc (g)(l‘)| d.’E)
M
( T (g)(2)|u, u] dm)
||u||L2(M)<1 La(M)
) 3
HT* (gu)( )H dx)
"l (M)<1( La(M)

1
3
sup g(z)u dx
||u||L2(M><1< ool )

=
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( /. |g<oc>|2cw:>é

The third identity above uses the right M-module nature of column Calderén-Zyg-

M

mund operators. ]

Remark 7.1. The proof above also shows that Ll(Lg) and LOO(LE) boundedness
of Tt for + € {r,c} follow from the corresponding Lo boundedness of the
same operator. As noticed in [36], this is very specific of Calderén-Zygmund
operators with noncommuting kernels since other semicommutative Calderén-Zyg-
mund operators fail to satisfy this implication. The key property here is left/right
M-modularity, so that

uTli(f) = Ti(uf) and To(f)u = Te(fu).

7.2 Row/column L, estimates

Theorem 5.2 follows as an easy consequence of Theorem 5.1 after applying suitable
interpolation/duality results. Thus, we will only outline the definition of the
involved spaces and the necessary results to deduce Theorem 5.2 from Theorem
5.1. Given 1 < p < oo, the noncommutative Hardy space H,(.A) is defined as

HY(A) + HS(A) if1<p<2,

Hp(A) = {H;(A)QHE(‘A) if 2 <p < oo,

where the corresponding row/column Hardy spaces arise as the completion of the
subspace of finite martingales in L,(A) with respect to the norms given by the row
and column square functions

1
2
1 1 ) = (dekdf;*) :
kez Ly(A)
1
2
1£ 1l (a) = (de;dﬁ)
keZ Ly(A)

Pisier/Xu obtained in [66] the noncommutative Burkholder-Gundy inequalities
which can be formulated as L,(A) ~ Hy,(A) for 1 < p < co. On the other hand, we
know from [32, 38] that Hj,(A)* ~ H;;, (A) for T € {r,c} and 1 < p < co. Regarding
interpolation, we know from Musat [55] that

HY(A) = [HE, (A), H, ()],
where 1 € {r,c} and % = lp—_o'g—i—l%. The proof of Theorem 5.2 is now straightforward.

Proof of Theorem 5.2. We know that

T, HI(A) = Li(A) and Tp:HS(A) — Li(A).
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If1 <p <2, wefind T; : Hy(A) = Lyp(A) and T¢. : Hj(A) — Ly(A) by interpolation
with Lo(A) = HS(A) = HS(A). Hence, taking a decomposition f = fi + f.
satisfying

I zpcay ~ (1 T, ca) ~ (el ca) + ([ fellmg ay

we get |1y felln,a) + 1Tcfelln,a) S Ifllz,a). Now if 2 < p < oo, recalling
that T, T} are again row/column Calderén-Zygmund operators with the same
properties, duality gives T; : L,(A) — H(A) and T¢ : Ly(A) — Hy(A). This
immediately yields the inequality in Theorem 5.2 (i7). The L., — BMO type
estimates were originally proved in [36], these also follow by duality from Theorem
5.1. O]

Remark 7.2. We may also find L, boundedness for T} /T, after composing with
suitable smooth Fourier multipliers approximating the identity. Let us illustrate
this assertion for T, and 2 < p < co. Indeed, if A is the infinitesimal generator of
a Markov semigroup S = (S¢):>0 acting on A, it will be proved in [34] — refining
the argument in [36, Theorem A] — that the operator

AE
(1+ A)%

takes Hj,(S) to Lp(A), with constants depending on ¢ > 0. We refer e.g. to [36] for
the definition of the semigroup Hardy space H5(S). When A = Loo(R?)@M and
the generator —A is the Laplacian, H}(S) is isomorphic to H(.A) and the operator
above is the Fourier multiplier with symbol |¢[%/(1 + |¢]?)2.






Chapter 8

Noncommuting martingale transforms
and paraproducts

In this chapter we turn our attention to noncommutative martingale transforms
and paraproducts. In particular, the former pair (A, 7) will refer in what follows
to an arbitrary semifinite von Neumann algebra equipped with a normal faithful
semifinite trace. Our filtration ¥4 = (Aj)r>1 will be any increasing family of von
Neumann subalgebras, whose union is weak-* dense in A. The operators E; and Dy,
still denote the corresponding conditional expectations and martingale difference
operators. As mentioned in the Introduction, we will deal with

e Noncommuting martingale transforms

MEf=> Di(f)é-1 and M{f=>> & 1Du(f).

k>1 k>1

e Paraproducts with noncommuting symbol

() =Y Er1(f)Dr(p) and TI5(f) = Di(p)Ex—1(f).

k>1 k>1

The martingale coefficients &, € Aj form an adapted sequence and it is easy to
show that Lo-boundedness of Mg and Mg hold iff the &’s are uniformly bounded
in the norm of A. On the other hand, the classical characterization II, : Ly — Lo
iff p € BMO was disproved by Nazarov, Pisier, Treil and Volberg [56], see also
Mei’s paper [50]. Hence, the Lo-boundedness of II, and II7 will be simply assumed
in what follows.

8.1 Weak-type (1,1) estimates

Regarding Cuculescu’s construction and the Calderén-Zygmund decomposition, no
essential changes are needed. Namely, given f € L] (A) (the former space Ay
is unnecessary since our filtration starts now at £k = 1) and A € Ry, Cuculescu’s
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construction is verbatim the same. The only difference is on the diagonal estimate
e 2
+ kfk kH SA :
quq ;p fieve], o S AL

This inequality requires to work with regular filtrations, which are defined through
the additional condition Eg(f) < cEx_1(f) for some absolute constant ¢ > 0 and
every pair (f,k) € Ay x Zy. Of course, the reader might think that it is more
appropriate to use in this case the noncommutative form of Gundy’s decomposition
[59], which does not require any regularity assumption on the martingale. This
leads unfortunately to new difficulties related to our use of triangular truncations.

Proof of Theorem 5.3 (i). The argument is essentially the same as in the
perfect dyadic case. Given f € LT(A), we construct the same decomposition
f = fr + fc via the projections m;; and fix A = 2¢ for some £ € Z. A further Cal-
derén-Zygmund decomposition gives f. = g + gig + bR + bSg as usual. According
to our regularity assumption, we still have

max { 9113, . 195 03,00 } < l9al?,

afa+ > prfpn

k>1

S ALy a)-
Lo(A)

Thus, arguing as in the proof of Theorem 5.1 it suffices to show that
qM; (") = M¢(7°)g = @l (v") = ,(v)g =0

for any v € {gofr, ba, borr }. As usual, we just consider the column case by symmetry.
Let us begin with martingale transforms. Since y¢ = >, UT;_1(D;(7)) and the
triangular truncation UT;_; is built with j-predictable projections, we see that
UT;_1(D;(v)) is a j martingale difference, so that

Dr(7¢) = UTy_1(Dx(7))-

By the proof of Theorem 5.1, we know UTy_1(Dg(7y))qk—1 = 0 and

ME(Y)T =Y &-1Dk(v)7 =D _ & 1UTk1(Dk(7))k—17 = 0.
k=1 k=1

For martingale paraproducts, we observe that Ex_1(7°) = >_;_, UT;-1(D;(v)) and

o

5(v*)g =Y Di(p) > UT;-1(D;())gj-14 = 0. O
k=1 i<k

Remark 8.1. Is really the regular filtration assumption in Theorem 5.3 necessary?

Remark 8.2. Adjoints of martingale paraproducts have the form

[T6]°f = Bk 1(Di(p")Dk(f)) and [I]"f = Ex1(Dr(f)Dx(p"))

k>1 k>1
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when using the anti-linear duality bracket. It is easy to adapt the argument above
for these maps, to obtain weak type inequalities for adjoints of noncommutative
paraproducts associated to regular filtrations

le}zifc H [HZ] *fTHLLoo(A) + H [HZ]*fCHLl,oo(A) < HfHLl(A)

8.2 Atoms and John-Niremberg inequality

We defined above the noncommutative Hardy spaces Hy(A). Alternatively, we may
also consider the noncommutative form hy(A) = hf(A) + h$(A) + h£(A) of the
conditional Hardy space hj, where the norms are given by

)

£ llns 4y = H(Z Ekl(dfkdfl:)>;

= L1(A)
1
£ 1Ing 4y = H(;E’f—l(df’:df’gw 2 Li(A)

W = || S| =" Idfellzaay-
E>1 La(A) E>1

The space h;(A) was studied in [33, 61], it was independently proved that

In conjunction, these isomorphisms could be regarded as a noncommutative form of
Davis’ decomposition for martingales. Shortly after, it was found in [3] an atomic
decomposition for the spaces h}(A) and h{(.A). More precisely, an element a in
Li(A) N La(A) is called a column atom with respect to the filtration (Ag)g>1 if
there exists ko € Z4 and a finite projection e € Ay, such that

e a — ae,
[ ] Eko(a) = O,

_1
o llallzyeay < 7(e)7>.

An element a € Li(A) is called a c-atom if it is a column atom or a € A
with [la|z, 4y < 1. Row atoms are defined to satisfy a = ea instead and r-
atoms are defined similarly. We also refer to [28] for g-analogs of these notions.
In the following result, we collect some norm equivalences coming from atomic
decompositions and John-Nirenberg type inequalities. Recall that

2
)

I lsnrona) = sup | ER[(f = fi1)"(F = fin)]
E>1

1
J
i

17 omecay = max { Ly, cap 300 €[0S = i°(7 = 5]
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As usual, the corresponding row norms of f arise as the column norms of f*. If
we also define || f|lbmo,(4) = supy, [|dfx|l.4, then we can define the spaces BMO(.A)
and bmo(A) as follows

| fllBMo(4) = max {HfHBMOr(A)a HfHBMOC(A)}7
1 lomoty = 2% I oo () 1 ooy 1 lomon () }-
The isomorphism BMO(.A) ~ bmo(.A) was independently proved in [33, 61].

Atoms and John-Nirenberg inequality [3, 28]. We have

[ £llny ~ inf{z el | f = Zk Arag and ay r—atom},
k

[ llng ~ inf{z Xl | f = Zk Akag and ay C—atom},
k

Il f lbmo(.a) NSUP{dek:Hoov BSHP 18(f = fr) HL )V ;up H(f—fk:)ﬁHLl(A)}-

IB8]l1<1 18]l <1

The last equivalence is a John-Nirenberg type inequality, which differs from [37].

Proof of Theorem 5.3 (ii). Let us begin with H; — L type inequalities. We
will show that T} : HI (A) — L1 (A) with 1 € {r,c} for both martingale transforms
and paraproducts. Since we have

H{(A) ~ hi(A) + b (A),

it suffices to show that 7% : X — L;(A) with X any of the two spaces appearing on
the right. Once more, the argument is row/column symmetric and we just consider
columns. To see that T, : h{(A) — Li(A) we may use the atomic decomposition
above, so that it suffices to find a uniform upper bound for |7c(a)z,(4) with a
being a c-atom. If a € A; with [|al|r,4) < 1, then we see that

1 1
M¢(a) = &ar and 1j(a) = pa = 1T (ula|?)|a]? for a = ulal.

In particular, [|M¢(a)|r, )+ (a)llL, ) S llallz,a) < 1. If ais a column atom,
we find

= > &aDr(a) = Y & 1Dk(a)e = Mi(a)e,

k>ko k>ko
M(a) = Y Dp(p)Er-1(a) = > Di(p)Er_1(a)e =TI (a)e.
k>ko+1 k>ko+1

This gives rise to

[Te(a)llL, ) = ITe(@)ellzyay < NTel@)llpyayllell Loy S lallallellzocay <1
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for both martingale transforms and paraproducts. We have already justified the
h{ — L1 boundedness. Let us now look at h{

IME ey < D 1€lAIDEN 2y ) < (i&lf”ék“/\) 1 llna )

k>1

As for the paraproduct, we use the John-Nirenberg inequality above

IS (A pyay = || D Dr(p) > D;(f)
k>1 i<k L1(A)
=11 (= p)Dr(f) S Nollbmoay 1 llna ay
k>1 L1 (A)
According to [33, 61] and [50, 56], we have

H;HB(LQ(A)) }

All this together gives that M¢ and II} take H{(A) into L (A) as we claimed. In fact
slight modifications of the given argument yield the same result for [IIf]*, details

Hp”bmo(A) ~ HPHBMO(A) S maX{HHZHB(LQ(A))’

are left to he reader. This is all what is needed to produce analog inequalities in
this setting to those in Theorems 5.1 and 5.2, we just need to follow the arguments
verbatim. It remains to show that IIj : L,(A) — Ly(A) for p > 2, for which it
will be enough to prove L., — BMO boundedness and use interpolation. The
Lo, — BMO,. boundedness follows by duality from the H{ — L; boundedness of
[II7]*. On the other hand, the Lo — BMO, boundedness is very simple

1
2

11T, £ IBMoO, (4) = Sup Ex (ZD (IL5(f))D; (IT5(f))* )

>k A

1
2

= sup | Ey (Z Dj(P)Ej—l(f)Ej—l(f)*Dj(p)*>

UL Nz A
1
2

1£lloo < llpl B30, ()1 lloo-
A

< sup | Ex( ZDj<p>Dj<p>*>

k21 ik

Now we majorize ||p||gno,(4) by the Lo — Lo norm of II, as we did above. O

Observe that we have not needed to assume regularity of our martingale
filtration and we find that [IL]*, [IIJ]* take Hy — L; and L, — L, for 1 <
p < 2 by duality. In some sense, row/column noncommutative paraproducts
present a similar behavior as row/column square functions in the noncommutative
Burkholder-Gundy and Khintchine inequalities [47, 48, 66]. On the other hand,
[71, Theorem 5.7] yields Llog L — L type estimates for a finite von Neumann
algebra A with (T}, 7.) a martingale transform/paraproduct with noncommuting
coefficients/symbol

f:l}llg-fc HTrfrHLl(A) + HTCfCHLl(A) 5 ||f||L10gL(,A)-
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Non-doubling semicommutative
dyadic harmonic analysis






Chapter 9

Introduction and results

Recall that ® = {¢g}gecz is a generalized Haar system in R? adapted to a locally
finite Borel measure p € & and a dyadic lattice & if the following conditions hold:

(a) For every Q € 2, supp(¢q) C Q.

(b) If @', Q € Z and Q' C Q, then ¢ is constant on Q'

(c) For every Q € 2, /]Rd dgdp = 0.

(d) For every Q € 7, either ||¢q|lr2(,) = 1 or ¢g =0 and u(Q) = 0.

If the vanishing integral condition (c¢) is not imposed, the Haar system is said to
be non-cancellative. Let ® = {¢pg}gecy and ¥ = {¢g}gcy be two non-necessarily
cancellative generalized Haar systems in R?. A Haar shift operator of complexity
(r,s) € N x N is an operator of the form

(91) L f(e) =Y Y afyf.or)ps(x), with sup |af | < oo;
Qe% Re7,(Q) Q.18
S€2:(Q)

where (f,9) = [gafgdp and Z3(Q), k € N, denotes the family of k-dyadic
descendants of (): the partition of () into subcubes R € % of side-length
((R) = 27%(Q). Several objects in dyadic harmonic analysis have the general form
(9.1), including Haar multipliers, dyadic paraproducts, the dyadic model of the
Hilbert transform and their adjoints. Haar shift operators have served as important
tools in the study of many different problems in harmonic analysis since the form
(9.1) is a fruitful source of models of Calderén-Zygmund operators. In particular,
in the case where  is the Lebesgue measure, Calderén-Zygmund operators can be
expressed as weak limits of certain averages of cancellative Haar shift operators
and paraproducts [29] and are pointwise dominated by positive dyadic operators,
which are Haar shift operators relative to non-cancellative Haar systems [15].

The boundedness behavior of Haar shift operators with respect to arbitrary
locally finite Borel measures in the commutative setting was studied in [46]
as presented here in Part I, where the weak-type (1,1) of such operators is
characterized. In this Part of this thesis we extend the scope of this result to
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the setting of semicommutative L, spaces. The main technique that we will use in
our approach is a generalization of the Calderéon-Zygmund decomposition stated
in Theorem 1.1 which is valid for operator-valued functions, in the spirit of the
Calderén-Zygmund decomposition constructed in [58].

Let us briefly recall the semicommutative framework and adapt it to the non-
doubling setting. Consider a pair (M, v) where M is a von Neumann algebra and
v is a normal semifinite faithful trace on M and let u be a locally finite Borel
measure on R?. Let Ap be the algebra of essentially bounded M-valued functions

Ap = {f :RY — M : f strongly measurable s.t. esssup ||f(z)[|pm < oo}
z€R

equipped with the n.s.f. trace 7(f) = [pav(f)dp. The weak-operator closure
A of Ap is a von Neumann algebra isomorphic to Leo (R, p)®@M. Given a
rearrangement invariant quasi-Banach function space X, let us write X (M) and
X (A) for their associated noncommutative symmetric spaces. In particular L, (M)
and Ly(A) denote the noncommutative L, spaces associated to the pairs (M, v)
and (A, 7). It can be readily seen that for 1 < p < oo the noncommutative L,
space Ly(A) is isometric to the Bochner L, space L,(R%, u; L,(M)). The lattices
of projections are denoted by P(M) and P(A), while 154 and 14 stand for the
unit elements and M’ and A’ stand for their respective commutants. For a more
detailed discussion on noncommutative L, spaces we refer to [53] and references
therein. The reader unfamiliar with the theory of noncommutative L, spaces may
think of M as the algebra B(¢5) of n x n matrices equipped with the standard trace
Tr, thereby recovering the classical Schatten p-classes. The reader should take into
account that, with this setting in mind, we provide estimates uniform on n.
Before stating our results let us reintroduce some notation. By (Ey)xez we will
denote the family of conditional expectations associated to &), — the dyadic cubes
Q of side-length £(Q) = 2% — relative to y and write Dy, for the corresponding
martingale difference operators. The tensor product E; ® idyg acting on A will
also be denoted by Ej, which yields a filtration (Ag)gez on A. We thus have that

Ex(f) = fr=>_ (faolo

QED,

Dr(f) =: dfy. = Z ((He—(Ho)la

QEDy,

which correspond to projections to the class of operators constant at scale Zj.
Here 1¢ denotes the characteristic function of Q, (f)g = u(Q)~! fQ fdp and @
is the dyadic parent of ): the only dyadic cube that contains () with twice its
side-length.
We will construct the Calderén-Zygmund decomposition for functions in the
class
AL g ={f: RY - M | f >0, supppa(f) is compact},

whose span is dense in L;(A). Here supppra(f) stands for the support of f as
an operator-valued function, as opposed to its support projection as an element
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of a von Neumann algebra. As the Calderén-Zygmund decomposition introduced
in [58] — which is suitable for the Lebesgue measure and doubling measures —
the Calderén-Zygmund decomposition here presented is comprised of diagonal and
off-diagonal terms, reflecting the lack of commutativity in the operator-valued
framework. Taking i V j = max{i,j} and i A j = min{i, j} for i, j € Z we have:

Theorem 9.2. Let f € Ay i and let A\ > 0. Then there exist a family of pairwise
disjoint projections (pi)rez adapted to (Ag)kez and a projection q := 14—, pi €
P(A) such that f can be decomposed as f = g+b+[3, where each term has a diagonal
and an off-diagonal part given by

® g = ga + goft, where

ga = afq+ Y En_1 (orfupk)
kEZ

9ot = (la— Q) fa+af(La—q) + > Eivj1 (pifivsps);
1#]

e b=">ba + by, where

ba =Y pe(f = fdpk,  bow = Y pilf — fivi)ps;

keZ i#]j
o 3= A+ Bosr, where

Ba = Di(prfspk),  Bor = Y Divj (pifivip;) -

keZ i#j

The diagonal terms satisfy the classical properties

(a) ga € L1(A) N La(A) with
lgallz,ay = Ifllzycays  N19alZ,ca) < 39S Ly i
(b) ba = > pez br, with fRd bi dp = 0 and satisfies the estimate

1allzycay = Mokllrycay < 20 Fllzy s
kez

(¢) Ba = Y ez Br, with each By a k martingale difference, and is such that

1Ballzyay < D 1Bklrycay < 20 Fllzy -
kEeZ

The off-diagonal terms are such that

(d) gog decomposes as gog = Zkez,hzlgk,h: where gy p, is the (k + h) martingale
difference gi b = Dith (P frthQhth + Qoth fr+npi), and satisfies the estimate

sup > gkl 7,04y < 16AN Ly );
h21ken
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(€) boff = D kezn>1kn, where byp = pr(f — fetn)Phtn + Peen(f — frtn)Prs
fRd brndp =0 and

> boknllnyay < 8+ DIFl Ly s
kEZ

(f) Boft = X kezn>1Brnh: where B p = Diin(pr fo+nPh+h + Prtnfe+npr) and

> 1Benllzcay < 8h+ DI fllz,a

keZ

Observe that the diagonal terms satisfy estimates similar to those of their
commutative counterparts found in [46]. However, in contrast to the classical
setting, there are additional difficulties in proving the estimates even for diagonal
terms due to the noncommutativity of A. In particular, the estimates of ga
are proved in a different way and only hold for p < 2. In addition, the
fact that p is allowed to be nondoubling brings other difficulties not present in
[58]. On the other hand, at first glance the off-diagonal estimates in (d), (e)
and (f) seem to be insufficient, since they are weaker than the expected ones:
9ol L4y S AllfILcays 2Zpn l0knllzyiay S Iflziay and 324, 1Benllz ) S
IlfllL,(4)- Moreover, estimates of this nature seem to fail as hinted in [58]. However,
the estimates at hand will prove to be sufficient for our purposes as the operators
under consideration are localized in a sense stronger than in [53, 58]. In that
respect, one can think of our result as a partial answer to the question posed in
[53] about the existence of a Littlewood-Paley theory for nondoubling measures in
the semicommutative context.

Let ® = {¢g}tgez and ¥ = {¢g}gey be two non-necessarily cancellative
generalized Haar systems. A commuting Haar shift operator is an Ly(A) bounded
operator of the form

93)  ILof(x) =Y. Y. afg(for)vs(@), sup [lafgllm < oo,
Q€7 Re7,(Q) QRS
S€Z5(Q)

where the symbols O‘?{,S lie in M N M’, the center of M. Notice that in this
definition the pairing (f,g) = [pafgdp is in fact a partial trace and whence
operator-valued. Our second result determines conditions for which the weak-type
(1,1) for these operators hold.

Theorem 9.4. Let I, s be given as in (9.3). Assume that 111, s satisfies the
restricted local vector-valued Lo estimate

(9.5) / 11190 (1,) () 3 dpa(z) < Cpa(Qo),

uniformly over Qo € 2. Here

S Y afslforhvs(a),

QeZ2(Qo) REZ2-(Q)
S€Z:(Q)
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where Z(Q) denotes the family of all dyadic subcubes of @ including Q itself. If

(9.6) (P, ¥,7,5) = Sug{uquHLoo(u)HwSHLMM) P Re 7:(Q), 5 € 75(Q)} < o0
60

then 111, s maps Lq1(A) continuously into L1 o(A).

Remark 9.7. A testing argument with simple functions is used in [46] to show
that the condition (9.6) is also necessary when the symbols are all nonzero. One
can show that this is also the case in the present setting by following similar ideas.
Indeed, the validity of the testing arguments relied on the fact that (2.1) holds for
simple functions. For a simple tensor it is clear that

11 @l o) = Sup AT (Lx00)(1E @ p))
>
=7(lg @ p) = pu(E)v(p) = 1l L1l (m)-

And thus
1 fllpreecay < 1fllpray < #{f (@) : 2 € R £l prooay

holds for operator-valued functions of the form
n
f= ZailEi ® pi,
i=1

where a; € C, E; C R? are pairwise disjoint p-measurable sets and p; € P(M) are
v-finite pairwise disjoint projections.

Remark 9.8. As in the commutative case, if the Haar systems ® = {¢g}gec and
U = {Yg}gey are cancellative, orthogonality arguments may be used to verify
that the condition (9.5) and the L? boundedness of I, ; are satisfied.

As discussed in Part I, the condition (9.6) may be interpreted as certain
restriction on the measure p in terms of its degeneracy over generations of dyadic
cubes. The resulting class of measures depends strongly on the Haar shift operator
in question. For some operators the associated class of measures is shown to be
strictly bigger than the doubling class, but nevertheless disjoint from the class
of measures of polynomial growth, for which non-standard Calderén-Zygmund
theories are available.






Chapter 10

The Calderén-Zygmund
decomposition

This section is devoted to the proof of Theorem 9.2. First, some reductions are in
order. For simplicity we will assume that p(R?) = oo and that the dyadic lattice
2 has no quadrants. Namely, that & is such that for every compact K there
exists @ € Z with K C ). These assumptions can be removed arguing as in [46].
However, we find the second assumption very natural since — in a probabilistic
sense — almost all dyadic lattices satisfy it. Also, as argued in [46], we are confident
that our results also hold in the context of geometrically doubling metric spaces.
From the previous assumptions, it can be seen that for a fixed f € A4 g and
A > 0 there exists my(f) € Z such that f < Al4 for all & < my(f) (see [58]).
Without loss of generality, we may also assume that f has only finite non-vanishing
martingale differences.

Remark 10.1. To ease notation, we will use the normalization my(f) = 0. It is
safe to assume so since in the proofs of Theorems 9.2 and 9.4 both f € A4 x and
A > 0 will remain fixed, but otherwise arbitrary.

We start with the construction of the projections (pk)rez and ¢ of Theorem
9.2. To that end we will use the so-called Cuculescu’s construction. Here we state
it in the precise form that we will use, although the construction can be done in
any semifinite von Neumann algebra.

Cuculescu’s construction [18]. Let f € A4 g and consider the associated
positive martingale (fi)rez relative to the dyadic filtration (Ak)gez. Given X > 0,
the decreasing sequence of projections (qi)kez defined recursively by qr = 14 for
k<0 and

ar = qr(f, N) == Lo n (qr—1feqr—1)
is such that

(a) gx is a projection in Ay,

(b) qr commutes with qp_1 frqr—1,
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(€) @rfear < Mgk,

(d) ¢ = A\ ar satisfies
1
lafrglla <X for allk =1 and (14 = q) < Tl fllzica:

Define the sequence (py)r>1 of pairwise disjoint projections by

Pk = Qk—1 — Qk-

In particular

> pr=1a—¢

k>1
and also pg fxkpr > Apk-

Remark 10.2. Since the projection gy, is (% )-measurable, we have the following
useful expression

Q= Z qQ ® g,
QEDy

where g = qq(f, Q) are projections in M defined by

Im if k<0
qQ = ‘
Lon(ag (aag) ifk=0.

As in Cuculescu’s construction, these projections satisfy

(a) 90 < q5-
(b) gq commutes with g (fo a45-

(©) 4@ ()@ 9q < Mq-
One then can express the projections py as

(10.3) =) (ig—da)le= Y po®lq,
QEYy, Qe

and we analogously have that pg € P(M) is such that po(f)opg > Apg. As
detailed in [58], one could interpret the projections py as the union dyadic cubes of
side-length 27% into which the classical level set ) = {supy, fr > A} is decomposed.
One can thus view ¢ as the complementary set of 2.

Proof of Theorem 9.2. By construction f = g+ b+ 5. We now turn to the
estimates of the diagonal part. For the L; estimate of ga observe that by the
tracial property

lgallz,y = 7(f@) + > 7(Ex1(prfupr))

k>1

=7(fQ) +7(f(la—a) = L)
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since Ej preserves the trace. The proof of the Lo estimate of ga is a bit more
involved since p is not necessarily doubling. Also, the lack of commutativity of M
prevents us from following the argument that appeared in [46]. However, standard
arguments in noncommutative martingale theory apply. First notice that since g
commutes with qx_1 fxqr_1,

Ev—1(Pefrpr) = Qo1 fo—1ak—1 — Ex—1(qr frar)-

Thus,
2 2

> Er—1(prfipr) < 2( > akfrar — Ero1(ax foar)

k>1 Ly(A) k>1 La(A)
2

1D arfrar — ae-1fo-1q6—1 )
k>1 La(A)
—2(I 4+ IT).

As it is proved in [70, Lemma 3.4], we have that

g frar — Ex—1(arfran) 17, cay < 2(lanfuarll,a) — lak—1 ferae-117, )
+ 6AT (-1 fe—1ak-1 — @ frk)-

Therefore, by orthogonality of martingale differences and the previous estimate,
summation over k gives

=" llarfrar — Ex—1(prfupi) |70
k>1

< lim <2 (H%fk%”i(;\) - ||<]ofoCJo||%2(A)) + 6A7(q0.foq0 — Qk;kak))

< klggo <2quka/§||%2(,4) + 6>\T(CI0f0)> <8 fllzy )

where Hoélder’s inequality and (c¢) of Cuculescu’s construction were used. To
estimate I1 we perform the telescopic sum in order to get

1T <2|lgfql7,a) + 290 foq0l1 7, ) < 4N Fll L )5

which follows from the estimate ¢fq < Ag, which in turn can be deduced from
Cuculescu’s construction (see [58, Section 4.1]). By this last estimate and using
that (a + b+ ¢)? < 3a? + 3b? + 3¢? for a, b, ¢ positive numbers, we finally obtain

l9alZ,ca) < 39N F Nz, -

The bad terms are easier to handle. Clearly the bad term ba is comprised of
the self-adjoint terms by = pr(f — fi)pr with the mean zero property E(bx) = 0,
so that f]Rd bdu = 0. Moreover, by the orthogonality of the projections py, the
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tracial property of 7 and since conditional expectations are bimodular and trace
preserving, we have that

Al =D okllry ) <D 7(pe(f + fr)pr)

k>1 k>1
=27(f(1a —q)) < 2[|fllL,a)-

Similarly, Ba = ;. Bk, where 8, = Dy(pi fxpr) = Difa is a k martingale difference
— and hence of mean zero. Moreover, as conditional expectations are contractive

on L;(A)
1Ballzyay < D MBklryay <2 m(prfipr) = 27(F(1a — ) < 2/ £l a)-
k>1 k>1

We now turn to the off-diagonal terms, which require some more work. To get
the appropriate estimate for g.g, first we need to obtain a manageable expression
for its k martingale difference. Rewrite gog as

9ot = (14— ) fq+af(la— @) + > > Enpn1(PeSrsnPrin + Dkt iinpr)-
k>1h>1

Since pinj,Pivi < @inj—1 and by the commutation property (b) of Cuculescu’s
construction we have that

(10.4) DifiniPi = Ditinj—1finjdinj—10j =0, i #j, 4,5 € NU{oo}.
Thus,

> Ekino1 0k frrnDiin + Proinfinpr)

k>1h>1

= Bk 1 (Pe(frsn — F)ken + Drvn(Fern — fr)p)

k>1h>1
h
= 3 Ekrna (prdfiyivhin + phendfiyipr).
k>1h>1 i=1
We may now proceed to calculate D;(gog) for j > 1. Taking into account that, for
h>1, DjEpip—1 = Dj if j <k + h and zero otherwise, we get that
Dj(got) = Dj(1a — q) fg +af(1a—q))

h
+ Z Z Z D; (Pedfk+iPk+n + PrndfkviPk)

k<j h>j—k i=1

h
+) 30> Dj(prdfurivrrn + prpndferipk) =T+ T+ I11.
k>j h>1 i=1

We deal first with /1. By Fubini’s theorem we obtain that

j—k
I = Z (Z Z D, (PrdfktiPr+h + PrtrndfkriPr)

k<j \i=1 h>j—k



The Calderén-Zygmund decomposition 93

+ > Y Di(prdfiriprin + pk+hdfk:+ipk)>

i>j—k h>i
j—k
— Z <Z D; (prdfe+iqj + @jdfkripk)
k<j \i=1

+ Z D; (PrdfrtiQr+i—1 + qeri—1dfkviPr)
i>j—k

- Z D; (prdf+iq + qdfk—i—ipk)) =11, + I+ II3.

i>1

After summing over ¢ in I]; and noticing that by (b) of Cuculescu’s construction
(recall that k < j)

Pk Sk = Prr—1frar—1q; = 0 = q; fxpr,

we find that

II = D;(prfigs + 4fiok) = Dy ((1a — ¢-1) fi05 + 451 — q5-1)).
K<y

The term I, vanishes since

(10.5) PedfktiGhtri—1 + Qeti—14fk+iPk = Diti(Pk f ki1 + Qrti—1/Pk)

and D;jDyy; = 0, as k +¢ > j. Performing the summation over ¢ in II3 and using
(10.4) with i A j = k and i V j = oo, we get that
1T = Dj((1a = gj-1) fiaj + 4 fi(1a — ;1))
—Dj((la—gj-1)fa+af(la—gj-1)).

Changing the order of summation

III = Z Z Z D (PrdfitiPk+n + Prsndfkripk)

k>j i>1 h>i

=y ( > D (prdfiyihtio1 + Qrri-1dfrsipr)

E>j \ i>1

— Z Dj (pkdeiq + qdfk+ipk)>

i>1
= -D;((¢j-1 — 9)fa+af(gj-1 — ).

Here, we have also used (10.5), as k 4+ 4 > 7, and (10.4) with 7 V j = co. Finally,
summing everything we get that for j > 1

Dj(got) = Dj((1a — ¢j—1)fi45) + D;(g; fi(1a — ¢j-1))-
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On the other hand, D;(gog) = 0 for j < 0. Indeed,

D;(got) = Dj((1a — @) fa+ qf(1a—q))
h

+) 3 Dj(prdferipecn + Prandfisivr)

E>1 h>1 i=1
and, arguing as with 11 above and since gy = 14, we have that
h
>0 Diwrdfryivren + perndferipe) = D ((la — ) fa + af (14 — ).
E>1 h>1 i=1

Thus, in Ly sense

goft = > _Dj(got) = Y _ > Dj(prfias + a; fipr)

Jj=1 J21k<j
= DrsnOrfisnrin + aernfornpi) =YY Gkn:
E>1h>1 E>1h>1

We are now in the position to prove the estimate in (d) of Theorem 9.2. Notice
first that by Holder’s inequality, the C*-algebra property and (c¢) of Cuculescu’s
construction
2 2
19811174y < 16/l artn frrnprll 7, a)
= 167 (Pk fi+nQh-+h fr+nDr)

<16[| g n Ly T (e it h)

= 16||qr+n frrn@usnlla TPk frnpr) < 16AT(fpr).

This proves that for all h > 1

> M gknllToa < 16AT(f(1a = @) < 16A] fllL, a)-
k>1

For the bad terms we follow [58]. First, rewrite bog as

bot = > > Pk(f = frern)Prin + Pern(f = fran)pk =2 DD b

R>1k>1 h>1k>1
Clearly, the terms by, 5, have mean zero and satisfy the estimate
0kl Ly (4) < 2lPrfPrrn + Prrn SRl Ly (4)-

Next, observe that we can decompose the off-diagonal terms py fpran + PrrnfDk
into a sum of four positive overlapping box-diagonal terms

h h h—1 h—1
Pk Pkth + DitnfPe = (Z pk+j> f (Z pk+j> - (Z pk+j> f (Z pk+j>
=0 =0 i=0

J=0

- (th; pk+j> f (jzh; pk+j> + (:i pk+j) f Ci;l pk+j> :
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The previous expression implies that

h
> ok fprern + pranforliay <4 0> T(fores)

k>1 k>1 j=0
h

and hence the estimate in (e) holds. On the other hand, we have

Boit = > > Din(prfutnbiin + Prinfunpr) = > > Brn-

E>1h>1 E>1h>1
Each term in the previous sum satisfies the same estimate
1Bk,nll Ly 4y < 2Pk fPkrn + Pran PR L1 (4)5

which yields the corresponding estimate for Sog-.






Chapter 11

Commuting Haar shift operators

We now turn to the proof of Theorem 9.4. Namely that

AT({[UL s /] > A}) S Wl

for all A > 0. Here 7({|f| > A}) denotes the trace of the spectral projection of
| f| associated to the interval (A, 00), which defines a noncommutative distribution
function. We find this terminology more intuitive, since it is reminiscent of the
classical one. Following the construction of noncommutative symmetric spaces
(see [53] and references therein), the resulting L; o (A) space is a quasi-Banach
space with quasi-norm || f||z, . (4) = supxso AT({|f| > A}) which interpolates with
Ly(A). Tt should be mentioned that the weak Bochner space Li oo (R%, y; L1(M))
is of no use for our purposes since L;(M) is not a UMD space and thus even
Haar multipliers may not be bounded, which rules out the use of this space as an
appropriate setting for providing weak-type (1,1) estimates for the operators in
question. The same applies if one considers M instead of L;(M) as target space.

Proof of Theorem 9.4. Let f € Ay k. The general case follows by the density
of the span of Ay g in L1(A). Consider the Calderén-Zygmund decomposition

f=9ga +ba+ Ba + goft + bot + Bogt associated to (f, A) for a given A > 0. By the
quasi-triangle inequality in L o (A) it suffices to show that

AT({[L s (V)] > A}) S W12y

for all v € {ga,ba, BA, goft; boft, Lot . We start with the diagonal terms, for which
the estimates are very similar to the classical ones. For ga we use Chebyshev’s
inequality, the Ly boundedness of III, ; and the Ly estimate in (a) of Theorem 9.2
to get

AT ({5 (9a)] > A}) < 39NTL s 1B, (a1 1|, ()

where ||, s|[g(L,(4)) denotes the operator norm of I, s on La(A). For the
remaining -y, we decompose I, 4(y) as

mhs(’}/) = (lA - Q>mr,s(’7)(1¢4 - q) + qmr,s(’)/)q
+ L5 (v)(Ta = q) + (1a — L 5(v)g-
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Since the distribution function is adjoint-invariant and by the second estimate in
(d) of Cuculescu’s construction, we get that

AT({L s (v)] > A}) < 12[| fllzy a) + AT({lgMrs (V)g] > A/4}).

To prove the estimate for v = ba, observe that we may further decompose each
term by, in (b) of Theorem 9.2 as

b= pr(f = (fH)prle = Y br,

LEDy Le9y,

where the projections py, are defined as in (10.3). Since the Haar function ¢p is
constant on dyadic subcubes of R and by, has zero integral, (br, ¢r) is nonzero only
for R C L, i.e., R < L) for their respective r-dyadic ancestors. On the other
hand, if z € L we have that ¢(z) < gx(z) = ¢ in the order of the lattice P(M).
This together with (10.3) gives that for z € L

(11.1) q()(br, dr)q(x) = q(x)qr pr{br, or)PLALA(T) = 0.

Using that ag g € M N M’ we find the estimate

(11.2) HqH—Ir,S(bL)q”Ll(A)
< > ST 0@ slmlltbr, o)y o llsllz,

QeEY ReZ-(Q),RCL
LCQCL™  Se€2,(Q)

< Sup. laRgllae > Yo 0rl e lslLy g 0Ll

s Qe? Re2-(Q),RCL
LCQCL(™  S€Z4(Q)

< 72049 sup [[af gllm E(@, T, 8)lbLlL, a)

s 4l

This, Chebyshev’s inequality, the fact that dyadic cubes in &, are disjoint and (b)
of Theorem 9.2 give the estimate

M ({lgI sbagl > A}) < r2 0 sup (o olla E(@, W57, 8)[|f ] 1, 4

)4l

For v = A we proceed likewise by writing

Br=Dr(Ba)= >, > pJ JPJ<1J_ZE31L>

LeDy_1 JeD1 (L
> Z Brao=: > Br,
LeDy 1 JE@l(L) Ley,

where each term f, is supported (as an operator-valued function) on L, is constant
on the dyadic descendants of L and has mean zero. By Chebyshev’s inequality we
have

(il (Ba)al > A H <30 S0 / IL,,,81 («)(2)]) da()

k>1 LeD_

+ /L v (la()TL,, B (2)a(@)] ) dpu() ).
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Since (AL, ¢r) is nonzero only for dyadic cubes R C L, proceeding as in (11.2) we
obtain

[ vlla@i, pu(z)ate) ) dutz)
R4\ L

<20 sup [laf glla E(®@, Wir, )18y (4

s 4ly

Arguing as above and recalling that ag g EMNM, for x € L we obtain

q(@) L (Br) (@)q(z) = 3 S 0%y a@) (B éndala)vs(a)

Qe Re2-(Q),RCL
LCcQcLM  Se2s(Q)

+3 S a@ga(@) (B, dr)ala)vs(x)

QEZ Re2,(Q)
QSEL Se€7:(Q)

= Fr(x) + Gr(x).

As in (11.2) we get the estimate

/L v(1FL () ) () < (r + 120499 sup (0@ gllm E(@, U7, 5) B2 12 ca

4l

To estimate G (x) we further decompose 1 and get

Z Z Z O‘qu NBL,7, ¢r)q(x Z Gr.j(z

JeP1 (L) QEZ ReZ-(Q Je2 (L)
QCL Seg; (Q)

Given J € 2,(L) and a dyadic cube @ C L we either have Q C J or Q C L\ J.
Yet the former case leads to zero terms since, as in (11.1), for x €  C J we have
q(r) < gy and thus Q($)<5L,J, ¢r)q(z) = 0. Hence,

Gra(x) =-ps(f JPJ Z Y afsal@) (g, dr)a(z)s(z)
QEeE? ReZ2-(Q)
QCL\J S€Z:(Q)

=-ps(flaps il i > > > Oéqu N1lqr, dr)a(z)s(z)

Q’e@ (L) Qe2(Q’) Re2-(Q)

Q'#J Se2:(Q)
:—pJ<f>Jijj§ﬁ S @) (1g)(@)a(x).
Q€21 (L)

Q'#J

Then, by Holder’s inequality and the fact that suppga (IHQ;(IQ/)) cqQ

[Ge@))dnte)
:/u( > pJ<f>JpJM(i) > @) (1g)(x)q() )du(x)
L JEeP(L) 1( )Q S

‘e
Q'#J
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J
< X Inatplon 55 / 12, (1) () vt dis(x)
Je2:1(L) Qeﬁ
Gy
w(J
< Z ||pJ<f>JpJ||L1(M)7()
1 p(L)
1(L)
.
/ 1
| X ([ m ek ) w@)?
Q€21 (L) R
Q#J
1 2
< sup (/ ||m$€s<1Q><x>||i4du<x>) S el
u?g)%o Q) - Je (L) L1 (A)

which is finite by the local vector-valued Lo estimate (9.5). By the estimate in (c)

Li(A) >

< Bkl + llpw frprlln) < 3lI£1h-

k

of the Calderén-Zygmund decomposition

>N <||/3L\L1(A) +

k>1 Le9y

Z ps(flapsly

JeD (L)

Thus, gathering the previous estimates

AT ({[qI, s(Ba)g| > A})

< <<r+2>21+<’“+5> sup 0@ gl E(@, ir, s)

[kt

I ;
+oswp 2 ([ (1) (o) e du(o)) >||f||L1<A>.
M

We now turn to the weak-type estimates for the off-diagonal terms, starting

with gof. By Chebyshev’s inequality

Zqﬂlrs gkh

k>1

({‘QH—[T’S(QOH)(]’ > A < Z

h>1

Lo(A)

We further decompose the terms gy, 5, as

Geh= Y Z pr( JQJ+QJ<f>JpL)<1 M() ) > gin

Le9,, JG]}L LeDy,

Clearly, each term g is such that suppgra(gr,) C L and has mean zero on
the (h — 1)-descendants of L. Thus, (g7, ¢r) is nonzero only for R C J for
some J € Zy(L), which amounts to say that R € Zj,4;_1(L) for some j > 0.
Furthermore gy, = prArn + A7 ,prL, Where

n(J)

Apn=pr(f)ras <1J - u(j)lj)
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Proceeding as in (11.1) we get that ¢(x){(grn, ¢r)q(z) = 0 if x € L. In other
words, only the cubes R such that R(") O L lead to nonzero terms. These
two observations in terms of side-lengths provide that h must be such that
(L) = 27F < ¢(RM) = 2=(k+h+i=1=7) namely h < r. This and the assumption
a%s e MN M allow us to deduce that ¢(z)I, g »(x)g(x) = 0 whenever h > 7.
This localization property and the orthogonality of martingale differences in La(.A),
enable us to obtain that

Z quﬂrs gkh

< My sl B(La(a) Z > gk

r>1 1l k>1 La(A) h=1 1l k>1 La(A)
, 1/2
o 2
—’IHT,SHB(LQ(A))Z< : (A)> :
h=1 \ k>1

Therefore, by the estimate in (d) of Theorem 9.2 we arrive at

AT ({lqlL s (gorr)al > A}) < 1672 | T 1y, )y I 1L 4

To get the estimate for b, we proceed in an entirely similar way by decomposing
the terms by, in (e) of Theorem 9.2 as

b= > > ((f = (Hps+ps(f = (FHpL)ls=: > bip.

LEDy, JeTy (L) LeDk

It is clear that suppgra(brn) C L, that by j has mean zero over the h-dyadic
descendants of L and that by p = prBrn+ By ,prL, with By, p, = pr(f—{(fYr)psls.
Arguing as above, q(2)(br 1, ¢r)q() is nonzero only for R ¢ L € R ¢ L") and
hence q(x)11, 4(br, n)(x)q(z) vanishes if h > r. Thus, for h < r we follow the steps
in (11.2) to get the estimate

> gL s(brp)al L, )
LEDy

< (r— 1209 gup ||aRS||M 2(®, W5, 8)[1bap | 2y (4

)4l

By Chebyshev’s inequality and the estimate in (e) of the Calderén-Zygmund
decomposition we obtain

AT ({|qIy s (bofr)g| > A})

< (r—1)23+(r+s)d s%ps HaRSHM E(P,W;r, ) Z(h + DI fllz,ca)
bkl ]’L:1

= r(r = 1)(r +3)270 sup |[af gl aa (@, U5r, )| ]|y (a)-

)4l

Finally, for v = B.g observe that

Ben=>_ > (plf)ops+ps(fspL) <1J_’u({)1j>

LEDy, JeT (L) pu(J)

= Z BL,h = Z (pLCL,h +C>[k/,hpL)'

LeDy, LeZy,
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Here we may repeat the analysis made for by, ,, as each fr, j, is a (k+ h)-martingale
difference operator with suppgra(Sr,,) C L. This and (f) of Theorem 9.2 render
the desired estimate

AT({lqy s (Bort )| > A})
< r(r—1)(r+3)2°7 0 sup o v E(@, U7 8)| £y ),

s 4l

with which we complete the proof of Theorem 9.4. ]

Remark 11.3. It is worth mentioning that we have not truly needed the
assumption that the symbols are commuting to obtain the estimates for the
diagonal terms. Indeed, all the calculations for the diagonal terms in the proof
of Theorem 9.4 can be done without this assumption simply by rearranging
multiplications. Unlike in (11.1), in the case when v € {gof, boft, St} and x € L,
q(z) is required to be multiplied on both sides of (v, 4, ¢r) in order to annihilate
it.

Remark 11.4. The consideration of noncommuting symbols in (9.3) introduces
considerable additional difficulties when trying to provide a priori estimates. First,
different operators arise depending on whether the symbols act by right or left
multiplication on each coefficient (f, ¢r). More specifically, in the case of Haar
multipliers, a pair of column/row operators are introduced by

Ts(f) =Y aglfidQ)de,  Ta(f) =D (f de)agde,

ez Qey

with uniformly bounded ag € M. Even in the Lebesgue setting, Haar multipliers
with noncommuting symbols may lack weak-type (1,1) and strong (p,p) estimates
for p # 2. This problem was solved in [27] as presented in Part II. There, weak-
type (1,1) estimates for Haar shift operators relative to the Lebesgue measure were
obtained in terms of a column/row decomposition of the input function. Let us
recall that decomposition, given f € Ay g and a,k € Z consider the Cuculescu’s
projections ¢x(2¢) = qx(f,2¢) and

Tk = N\ a2 = N\ @2

ca cza—1

For fixed k the projections m, ) are pairwise disjoint. Thus, f decomposes in
column/row components as f = f. + fr in terms of the multiscale triangle
truncations

Fe =D Takadfimpr, fo=)_Y Tak 1dfempr 1.

k>1 a<b k>1 a>b

This decomposition is used in conjunction with the Calderén-Zygmund decomposi-
tion found in [58] to obtain that ||M; fe||1,00+ || Mcfelli,00 S |1 f]l1, among analogous
estimates for other Haar shift operators. Key to this argument is that the terms
in the Calderén-Zygmund decomposition not having a proper Ly estimate are such
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that Dy(v) = (14 — qr—1)Ar + A7 (14 — qx—1), which leads to vanishing triangu-
lar truncations. A major setback for extending this argument to the nondoubling
setting is that Dg(Ba) = Br = qk—18kqk—1, reflecting that its classical counterpart
decomposes into terms supported in the dyadic parents of the maximal dyadic cubes
of Q). This forces to estimate L; norms of triangular truncations of S8, which in
the B(¢4)-valued setting brings constants at best of order log(n + 1). Furthermore,
higher integrability of S — such as Llog L (see [69])— might be hindered since p
is permitted to be nondoubling.
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