

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Pattern Recognition 45.12 (2012): 4414 – 4427

DOI: http://dx.doi.org/10.1016/j.patcog.2012.06.002

Copyright: © 2012 Elsevier B.V.

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1016/j.patcog.2012.06.002

Hierarchical Linear Support Vector Machine

I. Rodriguez-Lujana,∗, C. Santa Cruza, R. Huertab

aDepartamento de Ingenieŕıa Informática and Instituto de Ingenieŕıa del Conocimiento, Universidad Autónoma de Madrid,
28049 Madrid, Spain.

bBioCircuits Institute, University of California San Diego, La Jolla CA 92093-0404, USA.

Abstract

The increasing size and dimensionality of real-world datasets make it necessary to design efficient algorithms

not only in the training process but also in the prediction phase. In applications such as credit card fraud

detection, the classifier needs to predict an event in 10 milliseconds at most. In these environments the

speed of the prediction constraints heavily outweighs the training costs. We propose a new classification

method, called a Hierarchical Linear Support Vector Machine (H-LSVM), based on the construction of an

oblique decision tree in which the node split is obtained as a Linear Support Vector Machine. Although

other methods have been proposed to break the data space down in subregions to speed up Support Vector

Machines, the H-LSVM algorithm represents a very simple and efficient model in training but mainly in

prediction for large-scale datasets. Only a few hyperplanes need to be evaluated in the prediction step,

no kernel computation is required and the tree structure makes parallelization possible. In experiments

with medium and large datasets, the H-LSVM reduces the prediction cost considerably while achieving

classification results closer to the non-linear SVM than that of the linear case.

Keywords: Large-Scale Learning, Real-Time Prediction, Support Vector Machine, Decision Tree, Pegasos

Algorithm

1. Introduction1

Support Vector Machines (SVMs) have been widely used in classification problems as a result of their2

effectiveness. However, the increasing size of real-world datasets in domains such as bioinformatics, document3

categorization or credit card fraud detection compromises their application. The computational complexity4

of the SVM decision function scales with respect to the number of support vectors nSV and Steinwart [1]5

showed that the number of support vectors scales linearly with respect to the number of training patterns.6

Consequently, other machine learning techniques are preferred in those large-scale domains in which an7

∗Corresponding author. Instituto de Ingenieŕıa delConocimiento; C/Francisco Tomás y Valiente,11; E.P.S., EdificioB; UAM-
Cantoblanco, 28049Madrid,Spain. Tel: +34 91 497 2339; fax: +34 91 497 2334

Email addresses: irene.rodriguez@iic.uam.es (I. Rodriguez-Lujan), carlos.santacruz@iic.uam.es (C. Santa Cruz),
rhuerta@ucsd.edu (R. Huerta)

Preprint submitted to Pattern Recognition May 28, 2012

*Manuscript
Click here to view linked References

efficient prediction step is needed, especially in real-time applications such as credit card fraud detection8

which requires a response time of less than 10 milliseconds.9

Although the machine learning community has been mainly focused on speeding up the training of10

the SVM, the emergence of applications requiring fast classification makes the design of new algorithms11

necessary whilst maintaining as much as possible the effectiveness of non-linear SVMs and improving its12

classification complexity at the same time. Linear SVMs are the best alternative for fast execution because13

their decision boundary is made up of a single hyperplane. However, their performance for non-linear14

problems is uncompetitive and a compromise between performance and classification speed is needed.15

The computational complexity of testing a pattern using a non-linear SVM is O(nSV × d × nK) where16

nSV are the number of support vectors, d is the dimension of the samples and nK is the cost of evaluating17

the kernel function. In large-scale problems, the number of support vectors is usually much higher than the18

dimension of the problem (nSV ≫ d) which is why almost all methods proposed in the literature aim at19

reducing nSV . The methods for reducing the number of support vectors can be divided into two groups [2]:20

• Numerical techniques find a reduced set of basis functions necessary to classify a pattern. These21

algorithms usually consider all of the training patterns and find a sparse representation of the support22

vectors. A more detailed overview of these methods is given by Keerthi et al. [2]. According to23

Keerthi’s categorization, the support vector reduction can be carried out as a post-processing phase24

after training the SVM model or during the training phase thus imposing a certain sparsity in the25

basis functions. The post-processing techniques ([3, 4]) reduce the number of support vectors once26

the SVM model has been trained. Therefore, they still depend on the standard SVM training which27

can be extremely costly in large-scale problems. Among the direct simplification approaches based28

on imposing sparseness on the basis functions in the primal space, several methods can be found in29

the literature [5, 6, 2]. These approaches considerably reduce the SVM prediction cost while having30

a competitive classification accuracy, but in some datasets the number of basis functions needed to31

maintain a competitive classification accuracy is still high for efficient training and prediction phases32

[2].33

• Data-reduction methods reduce the number of SVM training patterns dividing the original training34

set into one or several smaller datasets to train an SVM in each partition. Boosting [7], bagging [8],35

parallel mixture of SVMs [9] and SVM-cascade [10] algorithms can be categorized into this group. A36

recent work [11] proposes the DTSVM (Decision Tree Support Vector Machine) algorithm to build a37

decision tree with axis-parallel splits via the CART method [12] and to train an SVM with an RBF38

kernel in each leaf of the tree. This method reports a significant reduction of the number of support39

vector evaluations in the test or prediction phase. However, the number is still too high for large-scale40

datasets at the level used in credit card fraud detection.41

2

Our approach does not consider the use of non-linear SVMs because of their high classification and42

training cost. The aim of our work is to provide a model which generates non-linear decision boundaries via43

piecewise linear decision functions. This approach is motivated by the low classification cost of linear SVMs.44

Moreover, recent algorithms [13, 14] have shown the efficiency of stochastic gradient descent approaches for45

training linear SVMs and their usual fast convergence for large-scale datasets. Our work is not the first46

attempt at approximating non-linear SVMs through the linear case. Recent contributions have proposed the47

use of linear SVMs in the manifold coordinates such as sparse coding or local coordinate coding [15, 16, 17].48

The MLSVM method [18] is based on a mixture of linear SVMs defining an underlying probabilistic model49

which implicitly selects the linear SVMs to be used to classify each pattern. A test sample is classified by50

the weighted average over the mixture of classifiers.51

Our work approaches the task as the construction of a binary decision tree whose nodes are linear SVMs.52

The combination of linear SVMs and decision trees is motivated by the results of Bennett et al. [19] and53

some research combining decision trees and SVMs. An interesting comparison of the classification cost of54

decision trees and SVMs is given by Kumar and Gopal [20]. Basically, decision trees are much faster than55

SVMs in classifying new instances whereas the classification accuracy of SVMs is superior. Pursuing the56

objective of speeding up the prediction phase of a classifier, Zapién et al. [21] proposes a tree structure where57

the split of each node is a linear SVM. The tree presents a particular structure, which could be considered as58

a cascade of linear SVMs as the tree only expands the right branches. Then, it is assumed that each split in59

the tree is able to classify correctly all of the patterns belonging to the left child. The main difference with60

our method is that our tree is a complete binary decision tree in the sense that both children of each node61

can be expanded in the following steps. Although Zapién et al. provide the most straightforward approach,62

a balanced tree search is on average faster at classifying a datapoint since the cascade structure needs to63

run through all of the decision nodes to evaluate the worst datapoints. In addition, the hypothesis class64

(disjunctions of conjunctions) of H-LSVM is more general than that of the Zapién’s model (conjunctions)65

because (i) the cascade structure (also known as decision list) can be viewed as a special type of decision66

trees [22] and (ii) the number of decision tree skeletons with k decision nodes is given by the k-th Catalan67

Number [19, 23] while the Zapien’s cascade structure has only one possibility. The algorithms proposed by68

Fehr et al. [24] and Sun et al. [25] represent an extension of the Zapién model in which the linear SVM69

is the split in each node and nonlinear SVMs make up the leaves of the tree. These models still depend70

on a non-linear SVM which means a large number of support vector evaluations to classify a test sample.71

The DTO-SVM algorithm [26] builds an oblique decision tree whose node split is selected between the C4.572

[27] parallel-split calculated from the categorical variables and the SVM-SMO [28] classifier obtained from73

continuous attributes. The method still depends on the large number of support vectors given by the SMO74

which makes large-scale predictions costly.75

Another interesting approach to combine decision trees and SVMs is the one proposed by Bennett and76

3

Blue [29] in which the decision tree structure is set beforehand so that the model is formulated in the primal77

space as the minimization of a nonconvex objective function with respect to polyhedral constraints. This78

alternative is substantially different from the aforementioned ones and that adopted in this paper since they79

obtain the structure of the tree in an on-line manner. In addition, the margin is locally maximized in each80

node of the H-LSVM tree whereas the Bennett and Blue model looks for a global maximization.81

The main advantage of our H-LSVM is its ability to classify a pattern in a few milliseconds even for82

large-scale datasets thus speeding up the prediction phase of the SVMs by several orders of magnitude while83

maintaining a classification accuracy close of that of the non-linear SVMs. Moreover, the decision tree84

structure is easily parallelizable which favors training acceleration [30]. As H-LSVM is a piecewise linear85

classifier, its classification accuracy is not as good as those models based on non-linear SVMs. However, in86

those systems which do require real-time predictions, the reduction in accuracy is bearable when compared to87

the runtime savings. As regards other combinations of decision trees and linear SVMs models, the proposed88

method represents an improvement in the state-of-the-art not only in terms of classification accuracy but89

also in terms of prediction cost.90

The paper is organized as follows: Section 2 presents the H-LSVM algorithm including the explanation91

of several design aspects. Section 3 analyzes and compares the training and prediction complexities of linear92

SVMs, non-linear SVMs and H-LSVM. Section 4 provides a generalization error bound for the H-LSVM93

method and Section 5 presents the empirical results in terms of classification accuracy and prediction cost of94

the proposed method compared to linear and non-linear SVMs and other algorithms based on the speeding95

up of SVMs via linear SVMs. A numerical analysis of the H-LSVM scalability and generalization error96

bound are also given in this section.97

2. The H-LSVM Algorithm98

The proposed algorithm called a Hierarchical Linear Support Vector Machine (H-LSVM) is based on the99

construction of a decision tree. As described by Breiman et al. [12], four elements must be considered in100

the construction:101

1. The goodness of the node split which needs to be evaluated in each node of the tree.102

2. The type of test carried out in each node of the tree to decide whether a pattern belongs to the left103

or to the right child of the current node.104

3. The stop-splitting rule.105

4. The criteria for assigning the class label to a pattern when it reaches a leaf of the tree.106

The H-LSVM algorithm node split is a linear SVM. The linear SVM is trained using the Pegasos algorithm107

[13] with weighted patterns. The weight of each pattern is not fixed and it depends on which node of the108

tree we are working on. For the rest of the elements, well-known techniques and criteria have been used.109

4

Once the complete tree is trained, a pruning step can improve the generalization capability of the H-LSVM110

model. The four key elements for the construction of a decision tree with the pruning algorithm will be111

described in this section.112

Let us establish some notation. Given a training set S = {(xi, yi)}
N
i=1, where xi ∈ R

d and yi ∈ {+1,−1},113

we define:114

• Hk: a node in the tree.115

• SHk
: subset of samples in the node Hk.116

• S+
Hk

: subset of positive samples in the node Hk.117

• S−
Hk

: subset of negative samples in the node Hk.118

• NHk
= |SHk

|: number of samples in the node Hk.119

• N+
Hk

= |S+
Hk

|: number of positive samples in the node Hk.120

• N−
Hk

= |S−
Hk

|: number of negative samples in the node Hk.121

• xi
Hk : i-th sample in the subset SHk

.122

• wHk
: normal vector to the hyperplane associated to the node Hk.123

• bHk
: bias term of the hyperplane associated to the node Hk.124

• hHk
(xi): evaluation of the i-th pattern in the node Hk, that is125

hHk
(xi) = wHk

· xi + bHk
.126

• Sl
Hk

: left child of the node Hk: {x ∈ SHk
| hHk

(x) ≤ 0}.127

• Sr
Hk

: right child of the node Hk: {x ∈ SHk
| hHk

(x) > 0}.128

• pi
Hk : weight of the i-th pattern in the node Hk verifying

NHk

i=1 pHk

i = 1 ∀k.129

Splitting Goodness. The definition of the splitting goodness is based on the impurity function concept [12].130

Two different concepts need to be defined: the impurity of a node and the impurity of a split. The impurity131

of a node Hk, I(Hk), does not depend on the splits and it is a function of the number of patterns of each132

class in the node, I(Hk) = I(N+
Hk

, N−
Hk

). The impurity of a split is the impurity induced by the node133

split which divides the samples into the subsets Sl
Hk

and Sr
Hk

. The impurity of a split given by wHk
and134

bHk
, I(wHk

, bHk
), can be defined straightforwardly from the impurity of the children, I(H l

k) and I(Hr
k), as135

follows,136

5

Class 1:2000

Class 2:2000

Class 1:1500

Class 2:500

Class 1:500

Class 2:1500

Split 1

Class 1:2000

Class 2:2000

Class 1:1000

Class 2:2000

Class 1:1000

Class 2:0

Split 2

Figure 1: An example of two different splits in a decision tree. If the classification error is used as an impurity measure, both

splits misclassified 1, 000 samples. Nevertheless, the second split seems more desirable for the future expansion of the tree.

I(wHk
, bHk

) =
|Sl

Hk
|

|SHk
|
I(H l

k) +
|Sr

Hk
|

|SHk
|
I(Hr

k). (1)

As the aim of the decision tree is to minimize the overall misclassification rate of the tree, it would be137

natural to choose the classification error as an impurity measure. However, as pointed out by Breiman et138

al. [12, Chapter 4], this measure has two significant limitations: i) The improvement in the impurity can be139

zero for all the splits in SHk
, and ii) the inadequacy for an iterative-split decision tree method (see Figure 1140

extracted from [12, Chapter 4]).141

As an alternative, entropy was chosen as impurity function because it is one of the most common impurity142

functions in recent methods. The entropy of a node Hk in a binary decision tree is formulated as follows,143

I(Hk) = −
|(SHk

)
+
|

|(SHk
)|

× log

|(SHk
)
+
|

|(SHk
)|

−
|(SHk

)
−
|

|(SHk
)|

× log

|(SHk
)
−
|

|(SHk
)|

(2)

where the superscripts + and − represents the category of the samples.144

Splitting Criteria. The H-LSVM algorithm uses a linear SVM as splitting criteria because a single hyperplane145

vector w is obtained as a result of the training process which makes prediction much more efficient. More146

precisely, the Pegasos algorithm [13] was used because it is an efficient method for training linear SVMs in147

6

large-scale datasets. The Pegasos algorithm minimizes the objective function of a linear SVM in the primal148

space,149

min
w

λ

2
w2 +

1

N

(x,y)∈S

L (w; (x, y)) (3)

where L (w; (x, y)) represents the loss function,150

L (w; (x, y)) = max {0, 1− y(w · x)} . (4)

To solve the problem in Equations 3 and 4, the Pegasos algorithm alternates between stochastic gradient151

descent steps and projection steps:152

• Stochastic gradient descent. On iteration t of the algorithm, a set At ⊂ S of size k is chosen.153

Then, the objective function given in Equation 3 is approximated by,154

min
w

f(w;At) = min
w

λ

2
w2 +

1

k

(x,y)∈At

L (w; (x, y)) . (5)

The update of the w based on the gradient descent method is given by wt+ 1
2
= wt − ηt∇

w
t , where155

ηt =
1
λt

is the learning-rate and ∇w
t is the subgradient of f(w;At) with respect to w on the iteration t,156

∇w
t = λwt −

1

k

(x,y)∈A
+
t

yx , (6)

A+
t being the set of samples in At with non-zero loss that is, A+

t = {(x, y) ∈ At | y(wt · x) < 1}.157

• Projection step. Projection of wt+ 1
2
onto the set B =

w | w ≤ 1√
λ

since it can be shown that158

the optimal solution of SVM is in the set B [13].159

The Pegasos algorithm has been used in the H-LSVM to obtain the oblique splitting hyperplane in each160

node of the tree but some changes have been applied:161

• Weighted-patterns. The H-LSVM algorithm generates a piecewise linear model using a decision162

tree to divide the input space into disjoint regions. In each region, the proportion of patterns of163

each class might be unbalanced and might not necessarily be the same as in the original problem.164

In addition, some classification problems, such as fraud detection [31] or medical diagnosis [32], are165

unbalanced by nature. If the original formulation of the primal SVM objective function is used, the166

misclassification cost for each pattern is the same and independent of the class. However, this scheme167

7

can give undesirable classifiers which assign the majority class label to all patterns [33] while we are168

interested in separating the classes with successive decision tree splits. To overcome the imbalance,169

the H-LSVM method computes the weight pHk

i of the sample xi in the node Hk according to,170

pHk

i =











1
2N+

Hk

if xi ∈ S+
Hk

1
2N−

Hk

if xi ∈ S−
Hk

.
(7)

Now, the objective function of the Pegasos algorithm incorporates the sample weight in the loss term,171

min
w

f(w;At) =

min
w

λ

2
w2 +

1

k

(p,x,y)∈At

pmax {0, 1− y(w · x)} (8)

and the subgradient of Equation 8 respect to w on the iteration t is given by,172

∇w
t = λwt −

1

k

(p,x,y)∈A
+
t

pyx . (9)

It can be easily shown that the Weighted-Pegasos algorithm still verifies that the norm of the optimum173

in Equation 8 is upper bounded by 1√
λ
and the number of iterations required for achieving a solution174

of accuracy ǫ is O(1
λǫ
).175

• The bias term. The presence of a bias term in the hyperplane is essential for the H-LSVM as a176

result of the multiple separation of the feature space. There are different approaches to estimate the177

bias term of the hyperplane [13]. Following the heuristics implemented in standard SGD packages1,178

the bias is updated via a subgradient descent and by using a smaller learning rate (scaled by the179

heuristically chosen parameter τ) because the bias term is updated more frequently than the weights.180

At each epoch t, not only is the stochastic gradient descent applied to the w vector but also to the181

bias term b: bt+1 = bt − τηt∇
b
t . The subgradient of the bias is given by ∇b

t = − 1
k

(x,y)∈A
+
t

py.182

• Pegasos Parameters. Some meta parameters have to be set in the Weighted Pegasos Algorithm,183

– λ Regularization Parameter : Obtained via a validation subset or cross validation (Section 5).184

– T Maximum number of iterations in Pegasos Training.185

– k size of the subset of samples At used to update the subgradient.186

1http://leon.bottou.org/projects/sgd

8

– ǫP Tolerance in Pegasos Training. Allowable tolerance for the norm of the difference between187

w vectors in consecutive iterations.188

– τ bias scale. In our experiments we set τ = 0.01.189

Splitting-Stop Criteria. A node split is stopped when it does not represent an improvement in the impurity190

measure or when the rate of training samples associated to this node is lower than a parameter δ. If δ is too191

high, the tree might be not expanded enough. Small values of δ which yield an overfitted tree are preferable192

because this tree will be pruned later. That is why, δ was set to 10−i, i = ⌊log10N⌋ in our experiments.193

Class Assignment Criteria. Once a pattern reaches a leaf of the decision tree, it is assigned to the majority194

class in this leaf. It can be shown [12, Chapter 2] that this rule minimizes the expected misclassification195

probability of the leaf assuming that the cost of misclassifying a pattern is independent of its class.196

Pruning. Incorporating a pruning process into a decision tree algorithm reduces the risk of having an197

overfitted model [34, 35]. Although the SVM formulation already incorporates a regularization term which198

favors the generalization capability of the optimal hyperplane, a small value for δ in the splitting-stop criteria199

might imply an overfitted model. This point can be solved by setting different δ values and evaluating the200

performance of the model in a validation step. However, this approach is computationally costlier than201

using a small value for δ –that is, making the tree grow as much as possible– and then applying a pruning202

algorithm. The latter approach is used by H-LSVM and it uses the Cost Complexity (CC) pruning algorithm203

proposed by Breiman et al. [12]. The CC method requires a pruning set not used to train the tree. This204

set can be selected randomly or via cross-validation. The rate ρ of those training patterns kept away for the205

pruning phase is a parameter of the H-LSVM algorithm. The main idea of the CC pruning algorithm is to206

construct a set of decreasing-sized subtrees of the original tree and evaluate the goodness of each subtree207

as its classification accuracy on the pruning set. In the original CC method, the smallest subtree with a208

classification accuracy in k standard deviations of the original tree is selected. In our experiments, we set209

k = 0 and, therefore, the subtree selected is that which has the highest classification accuracy and, in the210

case of several subtrees with the highest accuracy, the smallest one is chosen. For more details, see [12,211

Chapters 10,11].212

Figure 2 shows the decision boundary of the H-LSVM model on the synthetic banana dataset 2 for213

different pruning rates (ρ). The H-LSVM parameters were λ = 10−5 and δ = 10−3. Blue and light blue214

points correspond to positive and negative samples. The problem is not linearly separable. The classification215

accuracy of the linear SVM is 54.44% while the Gaussian Kernel SVM achieves a classification rate of 90.60%216

and 1, 152 support vectors. Figure 2(a) shows the H-LSVM decision boundary when no pruning is applied217

2Dataset available at http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark

9

−4 −3 −2 −1 0 1 2 3−4

−3

−2

−1

0

1

2

3

4
λ = 10−5 ρ=0

x1

x 2

(a)

−4 −3 −2 −1 0 1 2 3−4

−3

−2

−1

0

1

2

3

4
λ=10−5 ρ=0.1

x1

x 2

(b)

Figure 2: Best viewed in color. The decision boundary of the H-LSVM model in the banana dataset. Figure 2(a) shows the

decision boundary when no pruning is applied. Figure 2(b) shows the decision boundary after a pruning process with ρ = 0.1.

(ρ = 0.0). The model is clearly overfitted. Figure 2(b) shows the H-LSVM decision boundary when pruning218

is applied (ρ = 0.1). This model only needs to evaluate at most 10 hyperplanes to classify a new pattern219

thus achieving a classification rate of 90.00%. In this case, H-LSVM obtains the same classification accuracy220

but with a classification time two orders of magnitude lower than the non-linear case.221

2.1. Pseudocode222

Once the model parameters T, k, ǫP , δ, τ have been fixed and the parameters λ and ρ have been estimated223

in the validation phase, the H-LSVM training procedure can be summarized as follows,224

1. Select randomly (1−ρ)N samples from the initial training set S to form the subset S0. The remaining225

ρN samples, subset P , is used by the pruning algorithm.226

10

2. Initialize the weight of each pattern in S0 as described in Equation 7.227

3. Train recursively the H-LSVM Tree following the steps given in Figure 3.228

4. As a result of the H-LSVM tree construction, a set of NH hyperplanes {wn, bn}
NH

n=1 is obtained.229

5. Pruning step: If ρ > 0 apply the pruning algorithm on the set P to get

wn, b̃n

ÑH

n=1
where230

ÑH ≤ NH ; otherwise, set {(wn, bn)}
NH

n=1 =

wn, b̃n

ÑH

n=1
.231

6. Prediction step: Let x be a new sample and the H-LSVM tree defined by

wn, b̃n

ÑH

n=1
. The232

target ỹ of the pattern x is calculated as the majority class in the leaf node of the tree associated to x.233

3. Training and Prediction Complexity234

In this section we analyze the training and classification cost as a function of the number of operations235

needed by the linear SVM, the non-linear SVM and the proposed H-LSVM method. As already mentioned,236

the main advantage of the H-LSVM method is the speeding up of the prediction phase of non-linear SVMs.237

SVMs have very good results in performance in off-line problems, but when they are placed in a real time238

operation, such as the credit card fraud detection, they are not viable. Thus, focal attention has to be placed239

on prediction complexity. Training complexity of H-LSVM is also provided for completeness.240

3.1. Training Complexity241

The linear SVMs were trained using the popular LIBLINEAR classification package [36]. The algorithm242

behind LIBLINEAR is coordinate descent in the dual SVM formulation [37]. As pointed out by Menon [38],243

this algorithm is very attractive because it converges in only O

log 1
ǫ

iterations, ǫ being the optimization244

tolerance. Menon’s experiments show that this algorithm achieves a lower generalization error solution faster245

than Pegasos. However, for large-scale datasets Pegasos’ training time decreases to get a fixed generalization246

error [39] while this is not clearly true for LIBLINEAR. The use of the LIBLINEAR package does not affect247

to our analysis focused on the classification complexity. The non-linear SVMs have been trained using the248

SMO algorithm whose training cost is O(N2 d) [28] using N d-dimensional patterns. A detailed analysis of249

these costs can be found in [38].250

The H-LSVM cost is that of training as many linear SVMs as nodes in the H-LSVM tree via the251

Weighted-Pegasos algorithm. More precisely, if the H-LSVM decision tree has NH internal nodes, the252

training complexity is given by the cost of training NH linear SVMs with the Weighted-Pegasos algorithm.253

Then, considering that the number of iterations needed by the Weighted-Pegasos algorithm to achieve254

a solution with tolerance ǫ is O

1
λǫ

and the cost per iteration is O (kd), the total cost of H-LSVM is255

O

NHkd
λǫ

. For simplicity, the tolerance ǫ is fixed for every node in the tree, but as suggested by Shalev-256

Shwartz and Srebro [39], it could be adapted as a function of the number of training samples ni reaching257

the i-th node to get some fixed generalization error in each node.258

11

INPUT: S0,λ, T, k, ǫP , δ, τ

I0=I(H0)

if I0 = 0 then

FINISH {Homogeneous node}

end if

if (|S0|
N

> δ) then

{w, b}=Weighted-Pegasos(S0,λ, T, k, ǫP , τ)

else

FINISH {There are not enough patterns.}

end if

if I(w, b) ≥ I0 then

FINISH {Cannot find any split}

end if

SHl = {x ∈ S0 | w · x+ b ≤ 0}

SHr = {x ∈ S0 | w · x+ b > 0}

if |SHl | > 0 then

Compute the weight of each pattern in SHl using Equation 7 where Hk = H l

H-LSVM Tree(SHl ,λ, T, k, ǫP , δ, τ)

end if

if |SHr | > 0 then

Compute the weight of each pattern in SHr using Equation 7 where Hk = Hr

H-LSVM Tree(SHr ,λ, T, k, ǫP , δ, τ)

end if

OUTPUT: {(wn, bn)}
NH

n=1

Figure 3: H-LSVM Tree Construction.

12

Training Classification

Linear SVM Nd log
�

1

ǫ

�

d

SMO-SVM N
2
× d nSV × nK(d)

H-LSVM
NHkd

λǫ
N

P

H (x)× d

Table 1: Number of operations needed to train a set S of N patterns in a d-dimensional space (Training column) and to classify

a new pattern (Classification column) by Linear SVM, SVM-SMO and the H-LSVM algorithm. λ: regularization parameter

in Pegasos formulation. ǫ: optimization tolerance. nSV : number of support vectors of the non-linear SVM model. nK(d):

operations are needed to compute the kernel between each support vector and the test pattern. NH : total number of internal

nodes in the H-LSVM tree. ni: number of training samples which reach the node i in the H-LSVM tree. NP

H
(x): number of

nodes encountered by pattern x in the H-LSVM tree.

Table 1 (column Training) shows the training time complexities of the three algorithms: linear SVM,259

SVM-SMO and H-LSVM. The H-LSVM cost is highly dependent on each dataset as it is determined by260

the structure of the tree (NH). As expected, the lowest training cost corresponds to the linear SVM. The261

comparison between the training times of non-linear SVM and H-LSVM is not straightforward as it depends262

on the H-LSVM tree structure and the λ and ǫ parameters. H-LSVM would be faster than SMO-SVM in263

the training phase if NHk
λǫ

≪ N2.264

3.2. Prediction Complexity265

The cost of classifying a new pattern x ∈ R
d by a linear SVM is the cost of computing the dot product266

between the model hyperplane and the pattern to be classified: O(d). In the case of non-linear SVMs, the267

classification of the pattern x is carried out according to:
nSV

i=1 αi ×K(xi, x), nSV being the number of268

support vectors. If nK(d) is the number of operations needed to compute K(xi, x), the SVM prediction269

complexity is nSV ×nK(d). The proposed H-LSVM algorithm needs to find the leaf of the tree for the pattern270

x which leads to NP
H(x) × d operations, NP

H(x) being the number of internal nodes –oblique hyperplanes–271

evaluated by the algorithm until the pattern x reaches a leaf in the tree.272

The summary of the number of operations needed by each algorithm to classify a new pattern x is given273

in Table 1 (column Classification).274

Obviously the lowest classification cost corresponds to the linear SVM but it will be shown in Section 5275

that the linear model is not usually competitive enough for real-world datasets. As regards the non-linear276

models, it is reasonable to assume that the number of kernel operations nK(d) is at least d. In that case,277

H-LSVM has the lowest cost if the number of node evaluations needed to classify the pattern x, NP
H(x), is278

lower than the number of support vector encountered by SVM, nSV . In Section 5, the values of nSV and279

NP
H(x) for real-world datasets are given, and it is shown that, in practice, the number of evaluations needed280

by H-LSVM is indeed several orders of magnitude lower.281

13

4. Generalization Error Bound for the H-LSVM Algorithm282

In this section we provide a generalization error bound for the H-LSVM algorithm. First, we show283

that the H-LSVM learning algorithm always converges and produces a decision tree as a final model. The284

number of nodes to be generated is finite and upper bounded by the number of training samples because of285

the stopping criteria commonly used in learning decision tree schemes: the tree expansion is finished when286

there is no improvement in the impurity measure or when there are not enough patterns in a node. The287

convergence properties of the model can be obtained by considering each node separately and applying the288

Pegasos convergence bounds [13] which hold in the weighted version.289

The generalization error bound is obtained based on the results given by Golea et al. in [40]. Although290

other bounds for decision trees have been proposed in the literature [41, 42], some of them tighter than291

those of Golea et al., the latter has been considered in this paper because of its simplicity and its explicit292

dependence on the decision tree parameters, favoring the understandability of the empirical results obtained293

in Section 5.6. Among the alternative bounds, the work of Shah [42] based on the Sample Compression (SC)294

paradigm deserves a special mention because it generally yields tighter bounds and sparse models. These295

bounds assume axis-parallel decision trees and their application to H-LSVM trees is not straightforward.296

The formulation of the SC bounds for oblique decision trees is a direction for future work which might297

also help to alleviate (or even eliminate) the cost of the pruning phase by using these bounds to guide the298

learning process in a similar way as in [42, 43, 44, 45].299

Suppose a two-class decision tree T whose internal decision nodes are labeled with boolean functions300

from some class U and whose leaves are labeled as −1 or 1. The bounds obtained depend on the effective301

number of leaves Leff, a data-dependent quantity which reflects how uniformly the training data covers the302

tree’s leaves and which can be considerably smaller than the total number of leaves in the tree, L [46]. This303

bound is different from the Vapnik−Chervonenkis one, which depends on the total number of leaves in the304

tree [47, 48].305

Formally, let P = (P1, . . . , PL) the probability vector which represents the probability of a pattern x306

reaching leaf i for i = 1 . . . L. Then, the quadratic distance between the probability vector P and the uniform307

probability vector U = (1/L, . . . , 1/L) is given by ρ(P,U) =
L

i=1 (Pi − 1/L)2 and the effective number of308

leaves in the tree is defined by Leff ≡ L(1− ρ(P,U)).309

A bound of misclassification probability under the distribution D, PD [T (x) = y], can be estimated using310

the following theorem [40]:311

Theorem 1. For a fixed ξ > 0, there is a constant c that satisfies the following. Let D be a distribution312

on X × {−1,+1}. Consider the class of decision trees of a depth of up to D, with decision functions in U .313

With a probability of at least 1− ξ on the training set S (of size N), every decision tree T that is consistent314

with S has315

14

PD [T (x) = y] ≤ c

Leff VCdim(U) log2N log D

N

1
2

where Leff is the effective number of leaves of T and V Cdim is the Vapnik Dimension.316

The H-LSVM algorithm is in line with this framework identifying the class U with the Linear SVM. It317

is known that the Vapnik Dimension of a hyperplane in a d-dimensional space is (d+ 1) [49] therefore, the318

error bound for the H-LSVM method is reformulated as,319

Lemma 2. For a fixed ξ > 0, there is a constant c that satisfies the following. Let D be a distribution on320

X ×{−1,+1}. Consider the class of decision trees of a depth of up to D, with H-LSVM decision functions.321

With a probability of at least 1− ξ on the training set S (of size N), every decision tree T that is consistent322

with S has323

PD [T (x) = y] ≤ c

Leff (d+ 1) log2N log D

N

1
2

(10)

where Leff is the effective number of leaves of T .324

In practice it is quite difficult to have a consistent tree with the training data S. In that case, a bound325

of the misclassification probability can be obtained as a function of the misclassification probability in S,326

PS [T (x) = y]. Now, the probability vector P is reformulated according to the training set as:327

P ′
i =

PiPS [T (x) = y | x reaches leaf i]

PS [T (x) = y]

By applying the theorem given in [40] for the particular case of the H-LSVM tree, we obtain the following328

result,329

Lemma 3. For a fixed ξ > 0, there is a constant c that satisfies the following. Let D be a distribution330

on X × {−1,+1}. Consider the class of decision trees of a depth of up to D with H-LSVM internal node331

decision functions. With a probability of at least 1− ξ on the training set S (of size N), every decision tree332

T has333

PD [T (x) = y] ≤ PS [T (x) = y] + c

L′
eff (d+ 1) log2N log D

N

1
3

(11)

where c is a universal constant, and L′
eff = L(1− ρ(P ′, U)) is the empirical effective number of leaves of334

T .335

15

Therefore, for a given training set S of N patterns, the parameters of the tree which determine the error336

bound for the H-LSVM algorithm are the depth D of the tree and the effective number of leaves Leff: the337

lower these parameters are, the better generalization error. The parameter values and an estimation of the338

model complexity according to Equation 11 are given in Section 5.339

5. Experiments340

The aim of the experiments described in the following subsections is fourfold:341

• Compare H-LSVM with linear SVMs and non-linear SVMs in terms of classification accuracy and342

prediction complexity (Section 5.2).343

• Compare H-LSVM with Zapién’s [21, 24] and Adaboost [50] algorithms in terms of classification344

accuracy and prediction complexity (Sections 5.3 and 5.4).345

• Analyze numerically the H-LSVM scalability (Section 5.5).346

• Analyze numerically the H-LSVM error bound studied in Section 4 (Section 5.6).347

The H-LSVM has been implemented in C language and the code can be found at:348

https://sites.google.com/site/irenerodriguezlujan/HLSVM-1.1.zip.349

As the H-LSVM algorithm has been designed for binary classification domains, the experiments have350

been conducted in large-scale binary classification problems. We have considered the large-scale datasets351

used by Keerthi et al. [2]: IJCNN, Shuttle, M3VO and Vehicle. The Shuttle dataset has been converted352

to a binary classification problem by differentiating class 1 from the rest. In the same way, the Vehicle353

dataset has been reformulated as a binary classification task consisting of differentiating class 3 from the354

rest. The M3VO dataset corresponds to differentiate digit 3 from all the other digits in the MNIST problem.355

An extension of the MNIST dataset with 8, 100, 000 patterns (MNIST8m) has also been included since it356

represents a very large-scale classification problem. Again, the classification of digit 3 from all of the others357

has been considered (M3VOm8). In order to compare the performance of our method with the Zapién358

algorithm [21, 24], initially we chose the binary datasets used in this work: Heart and Faces. However359

in the case of the Heart dataset, the classification accuracy of the linear SVM is the same as that of the360

non-linear SVM and thus, we decided not to include this dataset in our experiments. Finally, we added the361

binary version of the covtype dataset (class 2 versus others) because of its large number of patterns. The362

characteristics of the datasets are shown in Table 2 as well as the repositories where they are available.363

In most of the datasets (IJCNN, Shuttle, M3VO and Vehicle), the training and test subsets are given364

beforehand. In the Faces dataset, we followed the experimental setup described in [52] which uses two365

16

Train # Test # Feat. Repository

IJCNN 49, 990 91, 701 22 LIBSVM [51]

Shuttle 43, 500 14, 500 9 LIBSVM [51]

M3VO 60, 000 10, 000 780 LIBSVM [51]

M3VOm8 810, 000 7, 290, 000 784 LIBSVM [51]

Vehicle 78, 823 19, 705 100 LIBSVM [51]

Faces 8, 525 4, 263 576 http://www.cs.ubc.ca/~pcarbo/#data

Binary Covtype 522, 910 58, 102 54 LIBSVM Reposity [51]

Table 2: Binary datasets used to compare H-LSVM with linear SVMs and non-linear SVMs.

thirds of the observations for the training and the rest as a testing set. Moreover, data was normalized to366

minimum and maximum feature values. We run the experiments on 10 different randomly chosen training-367

test partitions of the dataset. In the case of the M3VOm8 and Covtype datasets, we have tried to use as368

many training patterns as possible in order to simulate a large-scale system with a high number of support369

vectors 3. Then, the first 810, 000 patterns in the M3VOm8 dataset were used for training and the remaining370

samples for test. In the Covtype dataset, according to the experiments carried out in [9, 53], 9/10 of the371

samples for training and the remaining patterns for test. In both cases, the experiments were run on 10372

different randomly chosen training-test partitions of the dataset.373

In all of the experiments, linear SVMs and non-linear SVMs implemented in LIBLINEAR [36] and374

LIBSVM [51] packages were used. The Gaussian kernel, k(xi, xj) = exp

−γxi − xj
2

, was used for375

non-linear SVMs.376

5.1. Hyperparameter Tuning377

Linear SVMs, non-linear SVMs and H-LSVM need to determine the values of a few parameters. In all378

datasets, except Covtype, the hyperparameter selection has been made using a 5-fold cross validation on379

the training set. The cost parameters in linear SVMs and non-linear SVMs were selected from the grid380

10i, i = −6, . . . , 6. The γ parameter of the Gaussian kernel was taken from the range 10i, i = −3, . . . , 3.381

Finally, for the H-LSVM model, we fixed the maximum number of Pegasos iterations T = 107 with a382

tolerance of ǫP = 10−4 and the minimum proportion of patterns needed to split a node δ was chosen as 10−i
383

with i = ⌊log10 N⌋ to guarantee that the H-LSVM grows to a sufficient size (pruning is applied if necessary).384

The regularization parameter λ was chosen from the grid 10i

N
, i = −6, . . . , 6, N being the number of training385

3LIBSVM for the M3VOm8 dataset did not finish in reasonable time when training with all the available patterns.

17

LIBLINEAR LIBSVM H-LSVM

c c γ λ ρ

IJCNN 101 101 100 10−5 0

Shuttle 102 106 100 10−7 0.2

M3VO 100 102 10−2 10−4 0.2

M3VOm8 100 102 10−2 10−5 0.2

Vehicle 10−1 101 10−1 10−6 0.1

Faces 10−1 101 10−2 10−5 0.1

Covtype 100 100 0.346 10−7 0.0

Table 3: Parameters used in the linear SVM, non-linear SVM and H-LSVM models for each binary dataset.

samples. The grid was obtained from the equivalence λ = 1
CN

between the LIBLINEAR and LIBSVM cost386

parameter c and the λ regularizer in H-LSVM. The prune rate ρ took values in [0.0, 0.1, 0.2]. For the Covtype387

dataset, we used the non-linear SVM hyperparameters provided in [9]. The resulting parameters for each388

dataset and each model are given in Table 3.389

5.2. Results390

The results in terms of classification error (Error (%)) and classification cost are shown in Table 4. In391

the case of the linear SVM, the number of hyperplane evaluations is shown whereas the number of support392

vectors is indicated for the non-linear SVM (nSV or Hyp). While the classification cost of linear/non-linear393

SVMs is independent of the test sample, the H-LSVM prediction cost depends on the path of the pattern in394

the H-LSVM tree. Thus, the mean number of H-LSVM hyperplanes encountered per test sample together395

with the maximum number of H-LSVM hyperplane evaluations written in parentheses are shown. In those396

cases in which there were several training/test partitions, the average and standard deviation on the 10 runs397

of the experiment are shown.398

The quantification of the performance of the algorithms considering the linear and non-linear SVMs as399

the points of reference is given by the quantities Relative Error (RE) and Relative Complexity (RC),400

RE =
eLSVM − e

eLSVM − eSVM
(12)

RC =
Hyp− 1

nSV − 1
, (13)

where e represents the classification error rate. A value equals 0 at these magnitudes RE/RC indicate401

that the classification accuracy/complexity is the same as that of the linear SVM while a value of 1 represents402

18

the equivalence with the non-linear case. Therefore, it would be desirable to have a Relative Error close to403

1 and a Relative Complexity close to 0.404

As expected, the classification results of the non-linear SVMs are greater than those of the linear SVM405

and H-LSVM. However, the classification accuracy of the H-LSVM is significantly better than that of the406

linear model in all cases. These results are not surprising because the proposed H-LSVM method is simpler407

than the non-linear SVM but more sophisticated than linear SVMs. While the classification error of H-408

LSVM is closer to that of the non-linear SVM in most cases, the H-LSVM classification accuracy is closer409

to the linear model for the Faces and M3VO datasets. Nevertheless, in the case of the Faces dataset the410

H-LSVM model represents an improvement of 41% in respect to the linear SVM and it will be shown later411

that it yields significantly better results than the Zapién et al. [21] algorithm. These results show that the412

non-linear SVMs cannot be approximated by the proposed method in certain domains. It is worth pointing413

out that H-LSVM outperforms the non-linear SVM in the Covtype dataset. Although, the classification414

error obtained for the non-linear SVM is comparable to the results reported in [9], a thorough search of415

the non-linear SVM parameters might provide better results. Unfortunately, to apply the hyperparameter416

procedure described in Section 5.1 is unfeasible because of the size of the dataset and the number of support417

vectors.418

Our main interest is not having the best classification error rates but providing a method capable of419

classifying a pattern in few milliseconds while obtaining a competitive performance. In this respect, the420

non-linear SVM needs the largest number of operations in prediction while the lowest cost is that of the421

linear SVM. However, the performance of the linear SVM can be extremely poor as in the IJCNN or Covtype422

datasets. The classification complexity of H-LSVM is between these two models: it is higher than that of the423

linear SVM –in the worst case it increases the cost of the linear model in one order of magnitude– but much424

lower than the cost of the non-linear SVM –H-LSVM can accelerate the prediction cost of the non-linear425

SVM even by a factor of 104 as in the case of the M3VOm8 and Covtype datasets. In fact, the Relative426

Complexity is lower than 10−1 in all cases.427

5.3. Results: Comparison with SVM Trees Algorithm428

Having compared H-LSVM to baseline models, we can contrast the results with the Zapién decision429

tree [21]. As mentioned above, only one of the two binary classification problems used in this work cannot430

be classified accurately by a linear SVM (Faces). Despite the fact that our method has been designed for431

binary classification problems, the performance of our model in the multiclass USPS dataset was measured.432

The USPS dataset for handwritten text recognition is available in the LIBSVM Repository [51]. It consists433

of 7291 training samples and 2007 test samples. Each example is described by 256 features. Following434

the methodology described in [52], we normalized the data to minimum and maximum feature values and435

we applied one against one approach (1A1) for the multiclass problem. The 1A1 strategy consists of436

19

IJCNN

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 7.82 1.01 2.36

nSV or Hyp 1 3, 154 7.28 (16)

RE / RC 0 / 0 1 / 1 0.80 / 2.0 · 10−3

Shuttle

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 2.21 0.062 0.10

nSV or Hyp 1 66 5.18 (12)

RE / RC 0 / 0 1 / 1 0.98 / 6.43 · 10−2

M3VO

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 2.09 0.33 1.79

nSV or Hyp 1 2, 873 3.15 (8)

RE / RC 0 / 0 1 / 1 0.17 / 7.49 · 10−4

M3VOm8

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 3.90 0.03 1.43± 0.02

nSV or Hyp 1 13, 471 4.73± 0.003 (11.00± 0.00)

RE / RC 0 / 0 1 / 1 0.64 / 2.77 · 10−4

Vehicle

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 14.18 11.88 12.61

nSV or Hyp 1 23, 642 2.84 (10)

RE / RC 0 / 0 1 / 1 0.68 / 7.78 · 10−5

Faces

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 8.81± 0.35 2.97± 0.24 6.39± 0.43

nSV or Hyp 1 1, 260.3± 14.81 2.59± 0.06 (5.30± 0.15)

RE / RC 0 / 0 1 / 1 0.41 / 1.26 · 10−3

Covtype

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 23.66± 0.21 18.57± 0.20 11.39± 0.08

nSV or Hyp 1 245, 687.2± 167.8 12.93± 0.087 (44.00± 1.08)

RE / RC 0 / 0 1 / 1 2.41 / 4.86 · 10−5

Table 4: Test error rate (Class. Err (%)) and classification complexity (nSV or Hyp) of Linear SVMs, non-linear SVMs

and H-LSVM. The mean number of hyperplane evaluations per test sample is indicated for linear SVMs and H-LSVM. The

maximum number of H-LSVM hyperplane evaluations is shown in parentheses. In the case of non-linear SVMs, the number of

support vectors (nSV) is shown. The reference measures RE and RC (Equations 12 and 13) are also provided.

20

Faces

Linear SVM Non-linear SVM SVM Trees H-LSVM

Class. Err (%) 8.81 2.97 8.99 6.39

nSV or Hyp 1 1260.3 4 2.59 (5.30)

RE / RC 0 / 0 1 / 1 −0.03 / 0.002 0.41 / 0.001

USPS

Linear SVM Non-linear SVM SVM Trees H-LSVM

Class. Err (%) 8.67 4.53 6.24 5.38

nSV or Hyp 1 1521 49 64.77 (117)

RE / RC 0 / 0 1 / 1 0.59 / 0.03 0.79 / 0.04

Table 5: Comparison of the SVM Trees method by Zapién et al. [21, 52] and H-LSVM. Misclassification error (Class. Err

(%)) and the mean number of hyperplane evaluations per test sample (Hyp) are shown for both methods and for the linear and

non-linear SVMs (nSV). The maximum number of H-LSVM hyperplane evaluations is indicated in parentheses. The number

of hyperparameter evaluations was computed as the sum of the hyperplanes evaluated in every binary classifier. The Relative

Error (RE) and the Relative Complexity (RC) of the SVM Trees method and H-LSVM are also given.

training a classifier for every pair of classes and classifying a new pattern based on majority voting. The437

hyperparameters were chosen by using 5-CV as described above. For the linear SVM, the cost parameter438

was set to c = 1, for the non-linear SVM c = 101 and γ = 10−2 and for the H-LSVM algorithm λ = 10−5
439

and ρ = 0. The results in terms of the misclassification error and classification cost for both methods are440

given in Table 5. The performance of the Zapién method has been extracted from [21, 52].441

In both cases H-LSVM is superior in terms of classification accuracy whereas the classification cost is in442

the same order of magnitude. Specifically, their classification complexity is quite similar in the Faces dataset443

but the SVM Trees algorithm is slightly faster for the USPS database. In any case, the classification cost of444

both algorithms is of the same order of magnitude. In summary, the H-LSVM decision tree, expanding both445

children of each node as well as the weighted patterns used in the linear SVM training, provide advantages446

in terms of classification accuracy while maintaining the classification cost. It is also worth noting that in all447

cases the maximum depth of the tree is lower than the number of internal nodes (the number of linear SVMs),448

which means that the structure of the tree is far from being a cascade of classifiers as in [21, 24, 25, 52].449

The superiority of the H-LSVM tree against the Zapién’s algorithm in terms of classification accuracy is not450

surprising given that, as already mentioned in Section 1, the hypothesis class of H-LSVM (disjunctions of451

conjunctions) is more general than that of the SVM Trees algorithm (conjunctions) [22]. What is more, this452

difference can be quantified taking into account that the number of decision tree skeletons with k decision453

21

100 101 102 103 104 105 1060

5

10

15

20

25

nSV / Hyp

C
la

ss
ifi

ca
tio

n
Er

ro
r R

at
e

(%
)

IJCNN
Shuttle
M3VO
M3VOm8
Vehicle
Faces
Binary Covtype
USPS

Figure 4: Best viewed in color. Classification complexity (nSV / Hyp) versus classification error rate for different datasets. •

Linear SVM � Non-linear SVM � H-LSVM.

nodes is given by the k-th Catalan Number [19, 23] in comparison to the only one possibility for the Zapién’s454

method.455

In order to visualize the trade-off between the misclassification error vs. classification cost, Figure 4 shows456

the dependence between these two magnitudes for the linear SVM, non-linear SVM and H-LSVM. The x-457

axis represents the number of support vectors or hyperplanes encountered by each method in logarithmic458

scale. The y-axis shows the classification error rate. Each dataset is represented by a color according to459

the legend. Circles, squares and diamonds represent the linear SVM, non-linear SVM and H-LSVM models,460

respectively. The lower left-hand area is associated to the best scenario: the lowest classification error461

and the lowest classification complexity. In this Figure, three clusters can be easily identified according to462

the classifier (circles, squares and diamonds). Clearly, the non-linear SVMs have the highest classification463

complexity while the H-LSVM cost is closer to the linear one. Looking at the classification error, in all cases464

the non-linear SVM is superior – except the Covtype dataset – and the H-LSVM effectiveness is greater than465

that of the linear model.466

Finally, to give an idea of the quality of the H-LSVM algorithm with regard to the prediction time,467

Table 6 shows the time in seconds needed by a linear SVM, a non-linear SVM and H-LSVM to classify468

a new pattern in an Intel(R) Core(TM) i7 CPU 920 at 2.67GHz. The training time is also included for469

completeness. As expected, the lowest training and test times correspond to the linear SVM. As regards the470

22

Linear SVM Nonlinear SVM H-LSVM

Training Test Training Test Training Test

IJCNN 4.00 · 10−1 1.22 · 10−7 2.54 · 101 2.17 · 10−4 1.44 · 103 2.21 · 10−6

Shuttle 4.77 · 10−1 1.09 · 10−7 4.83 · 100 3.91 · 10−6 2.37 · 104 2.76 · 10−6

M3VO 4.76 · 100 6.47 · 10−7 6.40 · 103 3.27 · 10−3 6.25 · 103 3.61 · 10−5

M3VOm8
3.38 · 102 3.00 · 10−6 7.71 · 104 2.77 · 10−2 7.19 · 104 2.88 · 10−5

±1.28 · 10−8
±5.88 · 10−6

±4.90 · 10−8

Vehicle 2.82 · 100 4.83 · 10−7 1.85 · 103 9.02 · 10−3 2.99 · 104 2.67 · 10−6

Faces
1.04 · 100 2.41 · 10−6 2.39 · 101 2.52 · 10−3 4.70 · 103 1.36 · 10−5

±5.28 · 10−2 ±5.38 · 10−9 ±9.61 · 10−2 ±1.66 · 10−5 ±5.98 · 101 ±4.71 · 10−7

Covtype
6.65 · 101 1.30 · 10−7 2.10 · 104 1.95 · 10−2 3.13 · 104 6.83 · 10−6

±1.05 · 10−1 ±1.76 · 10−9 ±1.31 · 102 ±7.43 · 10−5 ±8.47 · 101 ±3.86 · 10−8

USPS 5.46 · 100 3.58 · 10−6 5.21 · 100 1.17 · 10−3 5.88 · 103 1.59 · 10−4

Table 6: Training and testing time in seconds required by LIBLINEAR, LIBSVM and H-LSVM.

training cost discussed in Section 3.1, the differences between the training cost of the non-linear SVM and471

H-LSVM are given by the structure of the H-LSVM tree. Therefore, depending on the dataset either the472

non-linear SVM or H-LSVM is faster in the training phase. Focusing on the aim of speeding up the non-473

linear SVM prediction cost, the H-LSVM classification time is always in the order of tenths of milliseconds474

at most and significantly lower than those of the non-linear SVM.475

476

Several techniques based on the use of linear SVMs on the manifold coordinates have come out recently477

[15, 16, 17]. In particular, the Locally Linear SVM (LLSVM) model proposed by Ladicky et al. [17] reports478

results for the USPS dataset. The classification accuracy of H-LSVM is slightly better than that of the479

LLSVM and the LLSVM algorithm needs to compute the distance to 100 k-means centroids while H-LSVM480

evaluates on average 64.77 hyperplanes (maximum 117). That is, both methods are comparable in terms of481

classification accuracy and prediction complexity.482

23

5.4. Results: Comparison with Adaboost Algorithm483

Other natural competitors for H-LSVM are boosting algorithms [54] since they create piecewise linear484

functions with a good generalization performance [55] and low classification cost. In particular, we have485

considered the most known boosting algorithm: AdaBoost (Adaptive Boosting) [50]. Decision stumps were486

used in accordance with the Adaboost algorithm originally proposed by its authors Freund and Schapire487

[50] and motivated by its successful application in the state-of-the-art Viola-Jones face detection algorithm488

[56]. The main advantage of Adaboost with decision stumps on competitors is the speed of learning and489

prediction, which is particularly critical in large-scale problems.490

Adaboost requires the establishment of the maximum number of weak classifiers H to be used. Since our491

paper focuses on accelerating the classification times, H was fixed to make the prediction cost of Adaboost492

comparable to that of H-LSVM. Then, by taking into account that Adaboost needs to evaluate all the weak493

learners to classify a test pattern and considering that the prediction complexity of each decision stump is494

O(1), H is computed as the mean number of hyperplanes evaluated by H-LSVM multiplied by the dimension495

of the patterns. The comparison of both methods in terms of misclassification rate and classification cost496

as well as the value of the parameter H for each dataset are given in Table 7.497

The results show that Adaboost has a better performance in the Shuttle and Vehicle datasets, the differ-498

ence in classification accuracy being 0.15% at most. However, in some cases such as IJCNN and Covtype,499

H-LSVM significantly outperforms Adaboost. On average, Adaboost and H-LSVM have misclassification500

rates of 7.81% and 5.15%, respectively on all the datasets. Overall, the H-LSVM yields a better perfor-501

mance/classification speed ratio than Adaboost with decision stumps.502

5.5. Numerical Analysis of H-LSVM Scalability503

To illustrate the applicability of the H-LSVM algorithm to real large-scale scenarios, we show the scala-504

bility in the training time and convergence of the test error rates as the number of training samples increases.505

In this regard, Figures 5a – 5c show the training complexity of H-LSVM in terms of the number of hyper-506

planes in the H-LSVM tree and the computational time as a function of the number of training samples N .507

Figure 5d shows the training and test classification accuracies as a function of N . The results represent the508

average on the 10 training/test partitions of the Binary Covtype dataset. In turn, 4 subsets of size 10, 000,509

50, 000, 100, 000 and 200, 000, respectively, have been randomly chosen from each training partition.510

According to the training cost of H-LSVM presented in Section 3.1, O(NHkd
λǫ

), by maintaining λ, ǫ and d511

constant for the different training sizes, the training cost of H-LSVM depends on the subsampling rate k and512

the number of internal nodes in the H-LSVM tree NH as O(NHk). Unfortunately, NH depends inextricably513

on the problem in question and thus, a general estimation of NH based on N cannot be provided. However,514

it is possible to compare the number of internal nodes in the H-LSVM tree against those corresponding to515

the best tree (balanced tree) and the worst one (a linear or cascade tree). In this regard, Figures 5a (linear516

24

Adaboost H-LSVM

Class. Err (%) H Cost Class. Err (%) Hyp Cost

IJCNN 6.50 170 170 2.36 7.28 160.16

Shuttle 0.08 50 50 0.10 5.18 46.62

M3VO 2.69 2460 2460 1.79 3.15 2457.00

M3VOm8 3.61± 0.01 3710 3710 1.43± 0.02 4.73 3708.32

Vehicle 12.46 290 290 12.61 2.84 284.00

Faces 6.39± 0.33 1500 1500 6.39± 0.43 2.59 1491.84

Binary Covtype 22.95± 0.23 700 700 11.39± 0.08 12.93 698.22

Average 7.81 1268.57 1268.57 5.15 5.53 1263.74

Table 7: Test error rate (Class. Err (%)) and classification complexity (Cost) of Adaboost and H-LSVM. The number of

weak learners (H) are indicated for Adaboost and the mean number of hyperplane evaluations per test sample is indicated for

H-LSVM (Hyp). Note that the classification cost is computed by considering that the classification complexity of each decision

stump is O(1) whereas it is O(d) for each hyperplane in the H-LSVM tree.

25

0 1 2 3 4 5
x 105

0

1

2

3

4

5
x 105

Number of training samples (N)

N
um

be
r o

f i
nt

er
na

l n
od

es
 (N

H
) (a)

H−LSVM tree
Balanced tree
Linear tree

0 1 2 3 4 5
x 105

100

102

104

106

Number of training samples (N)

N
um

be
r o

f i
nt

er
na

l n
od

es
 (N

H
) (b)

H−LSVM tree
Balanced tree
Linear tree

0 1 2 3 4 5
x 105

0

1

2

3

4x 104

Number of training samples (N)

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

(c)

H−LSVM

0 1 2 3 4 5
x 105

75

80

85

90

95

Number of training samples (N)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

(d)

H−LSVM training
H−LSVM test

Figure 5: H-LSVM training complexity and classification rate convergence as a function of the number of training samples (N)

for the Covtype dataset. Figure 5a: number of internal nodes NH in the H-LSVM tree. Reference values corresponding to a

balanced and cascade tree are also included. Figure 5b: Figure 5a using logarithmic axis in the y-axis. Figure 5c: training

time of the H-LSVM algorithm. Figure 5d: training and test classification accuracies.

26

y-axis) and 5b (logarithmic y-axis) include the number of internal nodes associated with the balanced517

decision tree (log2(N)) and those encountered in the cascade structure (N). In this case, the complexity of518

the H-LSVM tree is closer to that of the balanced tree. Similar results are expected for the other datasets519

since in all cases the maximum depth of the tree is much lower than the number of internal nodes.520

Furthermore, the variability in the distribution of the training samples throughout the decision tree also521

affects the exact computation of a general training cost of the Pegasos algorithm in each node. Although522

the subsample size k is fixed at the beginning of the algorithm – in this experiment, it was set 50, 000 –,523

the effective subsampling size in each node is determined online as the minimum between k and the number524

of samples reaching the current node, which is totally linked to each particular dataset. Nevertheless, the525

empirical measure of the training time of H-LSVM as a function of the number of training samples N shown526

in Figure 5c seems to have a linear growth and, in fact, it has been proven that the polynomial curve fitting527

the points with the lowest error is that of degree 1. Again, a comparison with the training complexity of the528

balanced and the linear decision trees can be valuable. Under the assumption that the cost of computing529

the split of the i-th node is proportional to the number of samples ni reaching the node, the balanced tree530

has a linear cost with respect to N :531

log2(N)

i=0

i ni =

log2(N)

i=0

i
i

2i
= O(N) ,

while the linear tree has a quadratic dependence:532

N−1

i=0

ni =

N−1

i=0

(N − i) = O(N2) .

Therefore, the complexity of H-LSVM training is closer to the best scenario. Finally, Figure 5d reveals533

that the gap between training and test errors converges with approximately 300, 000 patterns. Although534

the classification accuracy in the test set increases with the number of training samples, the improvement535

becomes smaller as N grows, especially when N is larger than 300, 000 in which case the difference with536

respect to the model trained with all the training samples is 0.52%.537

The preceding results corroborate the applicability of H-LSVM to large-scale scenarios.538

5.6. Numerical Analysis of H-LSVM Generalization Error Bound539

Lemma 3 provides a generalization error bound for the H-LSVM method as a function of some data-540

dependent parameters according to the equation,541

PD [T (x) = y] ≤ PS [T (x) = y] + c

L′
eff (d+ 1) log2N log D

N

1
3

27

which establishes a linear dependence between the difference PD [T (x) = y] − PS [T (x) = y] and the542

complexity of the tree given by T =

L′

eff (d+1) log2N log D

N

1
3

. In this section, an empirical analysis of the543

above equation is provided.544

The misclassification probability under a distribution D, PD [T (x) = y] has been approximated with the545

error rate in the test set: P̂D [T (x) = y]. The range of values of the complexity measure T depends on the546

characteristic of each dataset making the comparison between the different datasets impossible. However,547

an interesting point of analysis is to determine whether in practice a linear correlation exists between548

the difference of the test and training error rates and the complexity of the model T . This relationship549

is analyzed for the IJCNN and Faces datasets by varying the values of the δ parameter to obtain the550

values for T , PS [T (x) = y] and P̂D [T (x) = y]. The δ parameter allows the complexity of the model to be551

measured and controlled. If δ takes values in the grid {δ1 > δ2 > . . . > δM}, the obtained trees Tδm verify552

Tδ1 ⊆ Tδ2 ⊆ . . . ⊆ TδM . In our experiment, the δ grid was: {5 · 10−2, 2.5 · 10−2, 1 · 10−2, 7.5 · 10−3, 5 · 10−3,553

2.5 · 10−3, 1 · 10−3, 7.5 · 10−4, 5 · 10−4, 2.5 · 10−4, 1 · 10−4}, the prune rate was fixed to ρ = 0.0 in both cases554

and the λ parameter was selected as in Table 3. The obtained results are shown in Figure 6 in which the555

high correlation between the complexity term T and the gap between the training and test errors is shown556

by the points representing the difference between the training and test errors. More precisely, the linear557

correlation between the H-LSVM tree complexity T and the difference between the test and training error558

rates is 0.91 for the IJCNN dataset and it is 0.97 for the Faces dataset. These high correlations show that559

the generalization error bound given in Lemma 3 holds in practice.560

Finally, it is interesting to see how the underfitting and overfitting effects are reflected in Figure 6. In561

the case of the IJCNN dataset, the differences between the test and training error rates are small for the562

largest values of δ while the test error rate is the worst. It is a case of underfitting. On the other hand,563

the lowest values for δ have the largest differences between the test and training error rates but the test564

error rate is the lowest. This scenario is preferable to that with large values of δ. In the Faces dataset565

the underfitting/overfitting are clearly reflected for high/small δ values, respectively. Regarding how the δ566

parameter was chosen in the experiments (see Table 3), it makes sense that the optimal pruning rate for the567

Faces dataset was ρ = 0.1 in order to avoid overfitting.568

6. Conclusions569

This paper has presented and analyzed a new classification method for medium and large-scale datasets.570

As the application of non-linear SVMs in these problems is prohibitive because it generates a large number571

of support vectors, the proposed method takes advantage of the efficiency of linear SVMs to construct a572

piecewise linear model. The new algorithm, called a Hierarchical Linear Support Vector Machine (H-LSVM),573

is based on the construction of a decision tree whose node splits are Linear Support Vector Machine trained574

28

0.5 1 1.5 2 2.5 3 3.5 40

2

4

6

8

10

12

T (Complexity)

R
at

e
(%

)
IJCNN Dataset

Difference between Test and Training Error Rates
Test Error Rate

δ=0.05

δ=0.05

δ=0.0001

(a)

2 2.5 3 3.5 4 4.5 5 5.5 6 6.50

2

4

6

8

10

12

T (Complexity)

R
at

e
(%

)

Faces Dataset

Difference between Test and Training Error Rates
Test Error Rate

δ=0.05

δ=0.0001

δ=0.05

(b)

Figure 6: Difference between the test and training error rates and the test error rate as a function of the complexity T of the

H-LSVM model. Figure 6(a) IJCNN dataset; Figure 6(b) Faces dataset.

29

with a modified version of the Pegasos algorithm with weighted patterns.575

Here, we provide a description of the H-LSVM algorithm, an upper bound of the H-LSVM generalization576

error and an analysis of the H-LSVM prediction cost compared with those of linear SVM and non-linear577

SVM. The experiments carried out in medium and large datasets show that the H-LSVM algorithm improves578

the classification accuracy of linear SVMs. Compared with the existing methods based on the construction of579

a decision tree with linear SVMs as splitting criteria, the H-LSVM model is superior in terms of classification580

accuracy while maintaining a classification complexity of the same order of magnitude.581

In summary, the H-LSVM method is an attempt at a solution to the problem of applying SVM technology582

to industrial settings with high loads in real-time classification. In online industrial environments when583

decisions have to be taken in a hundredth of a second, non-linear SVMs are just impossible to apply.584

H-LSVMs may bridge this gap because it is simple and efficient.585

Acknowledgements586

The authors would like to thank the anonymous reviewers for their comments that help improve the587

manuscript. I.R.-L. is supported by an FPU grant from Universidad Autónoma de Madrid, and par-588

tially supported by the Universidad Autónoma de Madrid-IIC Chair and TIN 2010-21575-C02-01. R.H.589

acknowledges partial support by ONR N00014-07-1-0741, USARIEM-W81XWH-10-C-0040 (ELINTRIX)590

and JPL-1396686.591

References592

[1] I. Steinwart, Sparseness of support vector machines—some asymptotically sharp bounds, Neural Information Processing593

Systems 16 (2004) 1069–1076.594

[2] S. S. Keerthi, O. Chapelle, D. DeCoste, Building support vector machines with reduced classifier complexity., Journal of595

Machine Learning Research 7 (2006) 1493–1515.596

[3] C. J. C. Burges, B. Schölkopf, Improving the accuracy and speed of support vector learning machines, in: Advances in597

Neural Information Processing Systems 9, MIT Press, Cambridge, MA, 1997, pp. 375–381.598

[4] T. Downs, K. E. Gates, A. Masters, Exact simplification of support vector solutions, Journal of Machine Learning Research599

2 (2002) 293–297.600

[5] E. E. Osuna, F. Girosi, Reducing the run-time complexity in support vector machines, Advances in kernel methods, MIT601

Press, Cambridge, MA, USA, 1999, pp. 271–283.602

[6] M. Wu, B. Schölkopf, G. H. Bakir, Building sparse large margin classifiers., in: ICML ’05: Proceedings of the 22th603

international conference on Machine learning, Vol. 119, 2005, pp. 996–1003.604

[7] R. E. Schapire, Y. Singer, Improved boosting algorithms using confidence-rated predictions, Machine Learning 37 (3)605

(1999) 297–336.606

[8] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.607

[9] R. Collobert, S. Bengio, Y. Bengio, A parallel mixture of SVMs for very large scale problems., Neural Computation 14 (5)608

(2002) 1105–1114.609

30

[10] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, V. Vapnik, Parallel support vector machines: The cascade SVM, in:610

Advances in Neural Information Processing Systems, MIT Press, 2005, pp. 521–528.611

[11] C. G. X. L. F.Chang, C. Lu, Tree decomposition for large-scale SVM problems, Journal of Machine Learning Research 11612

(2010) 2935–2972.613

[12] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classification and Regression Trees, Chapman & Hall, New York,614

NY, 1984.615

[13] Y. Singer, N. Srebro, Pegasos: Primal estimated sub-gradient solver for SVM, in: In ICML, 2007, pp. 807–814.616

[14] A. Bordes, L. Bottou, P. Gallinari, Sgd-qn: Careful quasi-newton stochastic gradient descent, Journal of Machine Learning617

Research 10 (2009) 1737–1754.618

[15] X. Zhou, N. Cui, Z. Li, F. Liang, T. S. Huang, Hierarchical gaussianization for image classification., in: ICCV, IEEE,619

2009, pp. 1971–1977.620

[16] K. Yu, T. Zhang, Y. Gong, Non-linear learning using local coordinate coding, in: Advances in Neural Information Pro-621

cessing Systems 22, 2009, pp. 2223–2231.622

[17] L. Ladicky, P. Torr, Locally Linear Support Vector Machines, in: ICML ’11: Proceedings of the 28th international623

conference on Machine learning, 2011, pp. 985–992.624

[18] Z. Fu, A. Robles-Kelly, J. Zhou, Mixing linear SVMs for nonlinear classification., IEEE Transactions on Neural Networks625

21 (12) (2010) 1963–1975.626

[19] K. P. Bennett, N. Cristianini, J. Shawe-Taylor, D. Wu, Enlarging the margins in perceptron decision trees, Machine627

Learning 41 (2000) 295–313.628

[20] M. Arun Kumar, M. Gopal, A hybrid SVM based decision tree, Pattern Recognition 43 (2010) 3977–3987.629

[21] K. Z. Arreola, J. Fehr, H. Burkhardt, Fast support vector machine classification using linear SVMs., in: ICPR (3), IEEE630

Computer Society, 2006, pp. 366–369.631

[22] M. Anthony, Generalization error bounds for threshold decision lists, Journal of Machine Learning Research 5 (2004)632

189–217.633

[23] J. R. Quinlan, R. L. Rivest, Inferring decision trees using the minimum description length principle, Information and634

Computation 80 (3) (1989) 227–248.635

[24] J. Fehr, K. Z. Arreola, H. Burkhardt, Fast support vector machine classification of very large datasets., in: GfKl, Studies636

in Classification, Data Analysis, and Knowledge Organization, Springer, 2007, pp. 11–18.637

[25] J. Su, G. Wang, Q. Hu, S. Li, A novel SVM decision tree and its application to face detection., in: SNPD (1), IEEE638

Computer Society, 2007, pp. 385–389.639

[26] V. Menkovski, I. Christou, S. Efremidis, Oblique decision trees using embedded Support Vector Machines in classifier640

ensembles, in: 7th IEEE International Conference on Cybernetic Intelligent Systems, 2008. CIS 2008., 2008, pp. 1–6.641

[27] J. R. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.642

[28] J. C. Platt, Fast training of support vector machines using sequential minimal optimization, in: Advances in Kernel643

Methods: Support Vector Learning, MIT Press, Cambridge, MA, 1998, pp. 185–208.644

[29] K. P. Bennett, J. Blue, A support vector machine approach to decision trees, in: The 1998 IEEE International Joint645

Conference on Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence., 1998.646

[30] Y. Ben-Haim, E. Tom-Tov, A streaming parallel decision tree algorithm., Journal of Machine Learning Research 11 (2010)647

849–872.648

[31] S. Viaene, R. A. Derrig, G. Dedene, Cost-sensitive learning and decision making for massachusetts pip claim fraud data.,649

International Journal of Intelligent Systems 19 (12) (2004) 1197–1215.650

[32] S.-B. Park, S. Hwang, B.-T. Zhang, Mining the risk types of human papillomavirus (hpv) by adacost., in: DEXA, Vol.651

2736 of Lecture Notes in Computer Science, Springer, 2003, pp. 403–412.652

31

[33] Y. Huang, S. Du, Weighted Support Vector Machine for classification with uneven training class sizes, in: Proceedings of653

2005 International Conference on Machine Learning and Cybernetics, Vol. 7, 2005, pp. 4365–4369.654

[34] J. Quinlan, Simplifying decision trees., International Journal of Man-Machine Studies 27 (1987) 221–234.655

[35] W. W. Cohen, Efficient pruning methods for separate-and-conquer rule learning systems., in: IJCAI, 1993, pp. 988–994.656

[36] R. Fan, K. Chang, C. Hsieh, X. Wang, C.-J. Lin, LIBLINEAR: A library for large linear classification., Journal of Machine657

Learning Research 9 (2008) 1871–1874, software available at http://www.csie.ntu.edu.tw/~cjlin/liblinear/.658

[37] C. Hsieh, K. Chang, C. Lin, S. S. Keerthi, S. Sundararajan, A dual coordinate descent method for large-scale linear SVM.,659

in: ICML ’08: Proceedings of the 25th international conference on Machine learning, Vol. 307, 2008, pp. 408–415.660

[38] A. K. Menon, Large-scale support vector machines: Algorithms and theory, Tech. rep., University of California, San Diego661

(2009).662

[39] S. Shalev-Shwartz, N. Srebro, SVM optimization: inverse dependence on training set size., in: Proceedings of the 25th663

International Conference on Machine Learning (ICML’08), Vol. 307, 2008, pp. 928–935.664

[40] M. G. Peter, I. Llew Mason, Generalization in decision trees and dnf: Does size matter?, in: Advances in Neural Information665

Processing Systems, The MIT Press, 1997, pp. 259–265.666

[41] Y. Mansour, D. A. McAllester, Generalization bounds for decision trees., in: COLT, 2000, pp. 69–74.667

[42] M. Shah, Sample compression bounds for decision trees, in: ICML, Vol. 227, 2007, pp. 799–806.668

[43] M. Marchand, M. Sokolova, Learning with decision lists of data-dependent features, Journal of Machine Learning Research669

6 (2005) 427–451.670

[44] F. Laviolette, M. Marchand, M. Shah, S. Shanian, Learning the set covering machine by bound minimization and margin-671

sparsity trade-off, Machine Learning 78 (1-2) (2010) 175–201.672

[45] M. Shah, M. Marchand, J. Corbeil, Feature selection with conjunctions of decision stumps and learning from microarray673

data, IEEE Trans. Pattern Anal. Mach. Intell. 34 (1) (2012) 174–186.674

[46] R. C. Holte, Very simple classification rules perform well on most commonly used datasets, Machine Learning 11 (1993)675

63–90.676

[47] U. M. Fayyad, K. B. Irani, What should be minimized in a decision tree?, in: Association for the Advancement of Artificial677

Intelligence (AAAI), 1990, pp. 749–754.678

[48] A. Ehrenfeucht, D. Haussler, M. Kearns, Learning decision trees from random examples needed for learning, Information679

and Computation 82 (1989) 231–246.680

[49] V. N. Vapnik, Statistical Learning Theory, Wiley-Interscience, 1998.681

[50] Y. Freund, R. E. Schapire, Experiments with a new boosting algorithm., in: International Conference on Machine Learning682

(ICML), 1996, pp. 148–156.683

[51] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, software available at http://www.csie.ntu.edu.684

tw/\~cjlin/libsvm (2001).685

[52] J. Fehr, K. Z. Arreola, H. Burkhardt, Fast support vector machine classification of very large datasets, Tech. rep., University686

of Freiburg, Department of Computer (2007).687

[53] I. W. Tsang, J. T. Kwok, P.-M. Cheung, Core Vector Machines: Fast SVM Training on Very Large Data Sets., Journal688

of Machine Learning Research 6 (2005) 363–392.689

[54] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, in:690

Proceedings of the Second European Conference on Computational Learning Theory, 1995, pp. 23–37.691

[55] R. E. Schapire, Y. Freund, P. Bartlett, W. S. Lee, Boosting the Margin: A New Explanation for the Effectiveness of692

Voting Methods., The Annals of Statistics 26 (5) (1998) 1651–1686.693

[56] P. Viola, M. Jones, Robust real-time face detection, International Journal of Computer Vision 57 (2) (2004) 137–154.694

32

Irene Rodriguez­Lujan received her degree in Computer Engineering and Mathematics from the
Universidad Autonoma de Madrid (UAM) in 2007 and the Master degree in Computer Science in 2009
from the same university. Currently she is working on her Ph.D. thesis in the UAM Computer Science
Department and she collaborates with the Instituto de Ingenieria del Conocimiento (IIC). Her research
interests include feature selection and classification in real­time large­scale systems.

Carlos Santa Cruz received the physics degree from the Universidad Autonoma of Madrid (UAM) in
1987. He received the Ph.D. degree in physics from the UAM in 1991. Currently, he is a Professor at the
Computer Science Department of the UAM and head of the Quantitative Methods Group of the Instituto
de Ingenieria del Conocimiento (IIC). His research interests are in pattern recognition, model building,
and time series forecasting using neural networks.

Ramon Huerta received the B.S. and M.S. degrees in physics from the Universidad Autonoma de
Madrid, Spain, and the Ph.D. degree in Computer Science from the same University in 1994. He became
Associate Professor at UAM in 2000 and left on leave of absence to his current Research Scientist
position at the University of California San Diego. His research interests are at the intersection of
Aritificial Intelligence, Physics and Biology with more than 80 journal articles in these three fields.

*Author Biography

