L =

UNIVERSIDAD AUTONOMA e
DE MADRID Escuela Politécnica Superior

Development of a Multi-UAV Simulator
to Analyze the Behavior of Operators in

Coastal Surveillance Missions

Author: Victor Rodriguez Fernandez

Advisor: David Camacho Fernandez

A thesis submitted in partial fulfillment for the Master Degree on

Research and Innovation in Information and Communication Technologies

in the
Escuela Politécnica Superior

Departamento de Ingenieria Informatica

April 2015

http://www.uam.es
http://www.eps.uam.es/
http://www.uam.es/ss/Satellite/EscuelaPolitecnica/es/departamentos-3/departamentos-2/Page/subhome/ingenieria-informatica.htm

“Ambition is the path to success. Persistence is the vehicle you arrive in.”

Bill Bradley

UNIVERSIDAD AUTONOMA e
DE MADRID Escuela Politécnica Superior

Abstract

Escuela Politécnica Superior

Departamento de Ingenieria Informatica

Master on Research and Innovation in Information and Communication Technologies

by Victor Rodriguez Fernandez

This Master Thesis ! presents the design and development of a computer simulator created for
executing and supervising missions carried out by multiple Unmanned Aerial Vehicles (UAVs).
The aim of this simulator is to provide an open, simple and accessible environment to train
and analyze the performance and evolution of low-experienced human operators supervising and

controlling a team of UAVs.

This work is divided into two parts. The first one is focused on describing the simulator mech-
anisms and architecture. To accomplish the required accessibility of this tool for novice users,
the simulator has been implemented following a web architecture, where only a web browser is
needed to execute it. Also, in order to engage and challenge the operator, some gamification

elements have been added, bringing the simulation closer to a videogame experience.

The second part of this work uses the developed simulator to carry out several experiments
with novice users. A set of performance metrics is designed to define the profile of a user, and
based on those profiles, we run and validate some clustering algorithms to obtain groups of users
with common performance profiles. These results are analyzed to extract behavioral patterns
that distinguish and rank the different users in the experiment, allowing the identification and

selection of potential expert operators.

Keywords

Unmanned Aerial Vehicles, Human-Robot Interaction, Computer-based Simulation, HTML5,

Web, Videogames, Performance metrics, Clustering, Behavioral patterns

!This work has been funded by Airbus Defence & Space (SAVIER Project: FUAM-076914)

http://www.uam.es
http://www.eps.uam.es/
http://www.uam.es/ss/Satellite/EscuelaPolitecnica/es/departamentos-3/departamentos-2/Page/subhome/ingenieria-informatica.htm

UNIVERSIDAD ACTONOMA -

DE MADRID Escuela Politécnica Superior

Resumen

Escuela Politécnica Superior

Departamento de Ingenieria Informatica

Master en Investigacion e Innovacién de las Tecnologias de la Informacién y las Comunicaciones

por Victor Rodriguez Fernandez

El presente Trabajo Fin de Méster 2 presenta el disefio y desarrollo de un simulador creado
con el fin de ejecutar y supervisar misiones llevadas a cabo por multiples Vehiculos Aéreos no
Tripulados (UAVs). El objetivo de este simulador es ofrecer un entorno simple y accesible donde
entrenar y analizar el rendimiento y la evolucién de operadores inexpertos mientras supervisan

y controlan un equipo de UAVs.

Este trabajo se divide en dos partes. La primera estd enfocada en describir el funcionamiento
del simulador y su arquitectura. Para lograr la accesibilidad que esta herramienta requiere de
cara a usuarios inexpertos, el simulador ha sido implementado siguiendo una arquitectura web,
donde sélamente se requiere un navegador web para ejecutarlo. Ademds, para atraer y retar al
operador, se han introducido algunos elementos de gamificacién, que acercan este simulador a

una experiencia propia del mundo de los videojuegos.

La segunda parte del trabajo se basa en el simulador desarrollado para llevar a cabo varios exper-
imentos con usuarios inexpertos. Se ha disenado un conjunto de métricas de rendimiento con las
cuales se define el perfil de un usuario. Usando estos perfiles, se ejecutan y validan algoritmos de
clustering para obtener grupos de usuarios con perfiles de rendimiento comunes. Los resultados
se analizan de cara a extraer patrones de comportamiento que distingan a los diferentes usuarios

del experimento, permitiendo la identificacién y seleccién de operadores expertos potenciales.

Palabras Clave

Sistemas Aéreos no tripulados, Interacciéon humano-robot, Simulacién por computadora,

HTML5, Web, Métricas de rendimiento, Clustering, Patrones de comportamiento

*Este trabajo ha sido financiado por Airbus Defence & Space (Proyecto SAVIER: FUAM-076914)

http://www.uam.es
http://www.eps.uam.es/
http://www.uam.es/ss/Satellite/EscuelaPolitecnica/es/departamentos-3/departamentos-2/Page/subhome/ingenieria-informatica.htm

Acknowledgements

First of all, I would like to acknowledge the financial support given by Airbus Defence
& Space under the Savier project (FUAM-076914), as well as all the information and
help provided from the Savier Open Innovation Project members: José Insenser, Juan

Antonio Henriquez and Gemma Blasco.

Secondly, I would like to thank David Camacho for managing this Master Thesis and
giving me the opportunity to work in this research group, and Antonio Gonzalez Pardo,

with whom I hope to develop a long and successful career in the next years.

I would like to express my gratitude to all my workmates from the AIDA group, both
those who are working now and those who left us last year, specially to Fernando Palero.
I am also indebted to all the people who have accompanied me throughout all these
years in the university, specially to Daniel G.V and Diego, who has become my personal

psychologist during the coffee time.

Special thanks to the three people who have been by my side day after day throughout
the course of this Master Thesis: Gema Bello Orgaz, undoubtedly one of the best people
I have had the pleasure of meeting this year, Héctor D. Menéndez, who has tutored the
whole of this work, and to whom I owe most of what I have learned here, and Cristian
Ramirez Atencia, who has become a brother to me after more than 6 years of continuous

working, geeking and laughing together.

Finally, I would like to express my deepest gratitude to my family, specially to my
mother for being so patient and kind with me, and to Reyes S.G, for giving me, even in
the distance, the strength to accomplish all my goals and the smile to go through all of
them.

viii

Contents

Abstract

Resumen

Acknowledgements

List of Figures

List of Tables

Abbreviations

1

Introduction

1.1 Motivation
1.2 Objectives
1.3 Document structure

Related Work

2.1 UAV Simulators e
2.1.1 Multi-UAV Simulators

2.2 Performance Analysis of UAV operators
2.2.1 Measuring the performance of a Human-Robot Team
2.2.2 Extracting patterns in Human-Robot Interaction systems
2.2.3 Clustering in profile analysis

Design and Development of a lightweight multi-UAV simulator
3.1 Requisites L
3.1.1 Mission Planning Load
3.1.2 Gamification Elements
3.1.3 Dataextraction L Lo
3.2 Simulator Description
3.2.1 Simulation Elements 0oL,
3211 UAVs
3.2.1.2 Actions
3.2.1.3 No Flight Zones
3.2.1.4 Refueling Stations

iv

vi

viii

xiii

XV

xvi

Contents xi

3.2.1.5 Airports 25

3.21.6 Targets 26

3.2.1.7 Incidents 26

3.22 InputData 27
3.2.2.1 Mission Scenario 28

3.2.22 Mission Plan, 29

3.2.2.3 Incidents Plan 30

3.2.2.4 Targets definition 30

3.2.3 Output Data 31

3.3 Graphical User Interface 33
3.3.1 Main Screen e 34
3.3.2 Waypoints Panel oo 35
3.3.3 Simulation Time Panel 35
3.3.4 UAV Information Panel 36
3.3.5 UAV Control Panel 37
3.3.6 Console Panel 37

3.4 Controls e e 38
3.4.1 Basiccontrols e 38
3.4.2 Control Modes 38
3.4.3 Waypoint controls L o 38
344 UAVcontrols e 38

3.5 Architecture 39
3.5.1 Simulation Module (SM) L. 43
3.5.2 Data Entry Module (DEM) 43
3.5.3 Visualization Module (VM) 45
3.5.4 Control Module (CM) 45
3.5.5 Data Storage Module (DSM) 45

4 Experimentation and Analysis of Simulation Data 47
4.1 Software load test 47
4.2 Experimental dataset oo 51
4.3 User performance metrics 54
4.3.1 Agility 55
4.3.2 Consumption e 56
4.3.3 Score ... e e 59
4.3.4 Attention 61
4.3.5 Precision 61

4.4 Experimental Setup oL 64
4.5 Experimental Results.o 66
4.5.1 Results for Replanning Missions (TestMission 01-02-03) 66
4.5.2 Results for Planning Missions (TestMission04) 67

4.6 Discussion e e e 72
4.6.1 Replanning Profiles Patterns 73
4.6.1.1 UPPpr Clusters for Hierarchical Clustering, k=2 73

4.6.1.2 UPPgr Clusters for Hierarchical Clustering, k=7 75

4.6.2 Planning Profile Patterns 77

4.6.2.1 UPPp Clusters for Hierarchical Clustering, k=2 78

Contents xii
4.6.2.2 UPPp Clusters for K-means, k=7 79

5 Conclusions and Future Work 83
5.1 Conclusions s, 83

5.2 Future Work 84

A DWR Dataset 87
A.1 UAS SIMULATION Database e e e e e 87
A.2 UAS MISSION Database o e 87
A.3 UAS SCENARIO Database s e e et e e 88
A4 Enumerations 89

B Publications 95
Bibliography 96

List of Figures

2.1

2.2
2.3

3.1

3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

3.15
3.16

3.17

4.1

Paparazzi GCS. The Paparazzi Ground Control Station is the heart of

the system and the user’s primary interaction interface. 8
Example of a dendrogram resulted from a Hierarchical Clustering method. 13
Example of a K-means clusterization.. 14

Drone Watch And Rescue (DWR) screenshot of a Danger Area Incident.
The orange area represents the new No Flight Zone generated by the
incident. 27
DWR screenshot of a Payload Breakdown Incident. Note how the yellow
circle around the Unmanned Air Vehicle (UAV) representing the Radar

has disappeared. L. L L 27
General schema of DWR mission input, showing the four components
compounding a mission. Lo oo 28
Mission Scenario Data diagram. Classes and attributes are deeply detailed
in Appendix A L 29
Mission Plan Data diagram. Classes and attributes are deeply detailed
in Appendix A 30
Incidents plan data diagram. Classes and attributes are deeply detailed
in Appendix A 31
Targets definition data diagram. Classes and attributes are deeply de-
tailed in Appendix A Lo 31
Output Entity Relationship Diagram (ERD). Entities and attributes are
deeply detailed in Appendix Ao 32
Simulator screenshot. Numbers represent the different parts of the Graph-
ical User Interface (GUI). 33
Simulator GUI screenshot - Main screen 34
Simulator GUI screenshot - Waypoints Panel 35
Simulator GUI screenshot - Simulation Time Panel 35
Simulator GUI screenshot - UAV Information Panel 36
Simulator GUI screenshot - UAV Control Panel 37
Simulator GUI screenshot - Console Panel 37

Architecture diagram of the designed simulator. Each of the five distinct
modules (boxes) is located in its corresponding architecture level (client-
SEIVET). o v v v i e e 43
General data flow (input/output) among the developed simulator (DWR),
and the Mission Planner utilized. 44

Metric comparison for analyzing the server load versus the number of
users connected to the simulator DWR, 50

xiii

List of Figures xiv

4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16
4.17

4.18

4.19

4.20

Mission Selection Screen prompted to the students taking part in the

experiment conducted for thiswork 52
Test Mission 01 screenshot. 54
Test Mission 02 screenshot. 55
Test Mission 03-04 screenshot. Note that these two missions share the
same Mission Scenario o 56
Evolution of the test missions played per user. ID(TM01)=0, ID(TM02)=1,
ID(TM03)=38, ID(TMO4)=4« ittt 57
Density distribution for the metric Agility. The dashed line represents

the mean value. 58

Density distribution for the Consumption metric. The dashed line repre-
sents the mean value. Lo oo 59
Density distribution for the Score metric. The dashed line represents the
mean value.o Lo 60
Density distribution for the Attention metric. The dashed line represents
the mean value. L L Lo 62
Density distribution for the Precision metric, comparing the results in
replanning missions against the results in planning missions. The dashed
lines represent mean values.o 64
Plots of the connectivity measure, the Dunn index, and the Silhouette
width against the fixed number of clusters when running each of the five

clustering algorithms to the UPPg dataset. 67
Plot of the dendrogram for hierarchical clustering with k=2, k=7 on the
UPPgr dataset. e 69

Plots of the connectivity measure, the Dunn index, and the silhouette
width against the number of clusters when running each of the five clus-

tering algorithms to the UPPp dataset. 70
Plot of the dendrogram for hierarchical clustering with k=2, using the
UPPp dataset. e e e e e 72
K-means clusters for k=7, using the UPPp dataset. 73
Replanning User Performance Profile Clusters, resulted from the execu-
tion of Hierarchical Clustering with k=2.. 74
Replanning User Performance Profile Clusters, resulted from the execu-
tion of Hierarchical Clustering with k=7.. 75
Planning User Performance Profile Clusters, resulted from the execution
of Hierarchical Clustering with k=2. 78

Planning User Performance Profile Clusters, resulted from the execution
of K-means with k=7. 80

List of Tables

2.1 A comparison of available Low-Cost Unmanned Vehicle Simulators. 7
3.1 Basiccontrolsin DWR 39
3.2 Control Mode interactionsin DWR 40
3.3 Waypoint interactions in DWR 0oL, 41
3.4 UAVinteractionsin DWR 42
4.1 Specifications of the server host machine used for the load test. 48
4.2 Summary of the mission parameters used in the load test. 49
4.3 Specification summary for the test missions (T.M) designed in the exper-
ment. 53
4.4 Statistics summary for the metrics defined in the analysis. 61

4.5 Optimal results for the clustering of User Performance Profiles on replan-

ning missions (TestMission01, TestMission02, TestMission03). 66
4.6 Clustering results for the User Performance Profiles on replanning mis-

sions (TestMission01,TestMission02, TestMission03). Bolded cells repre-

sent the best results obtained for each cluster validation metric 68
4.7 Comparison of [min, max] ranges for the clustering validation on UPPg

and UPPp datasets. 69
4.8 Optimal results for the clustering of User Performance Profiles on plan-

ning missions (TestMission04). 71

4.9 Clustering results for the User Performance Profiles on planning missions
(TestMission04). Bolded cells represent the best results obtained for each

cluster validation metric oo 71
A.1 Simulations collection. 88
A.2 Simulation snapshots collection. L. 88
A.3 Simulation snapshots collection. 89
A4 Waypoints collection. L 90
A.5 Incidents Plan collection. 90
A.6 Incidents collection. 91
A.7 Targets definition collection. L. 91
A.8 Targets definition collection. 91
A9 Event Types Enumeration., 92
A.10 User inputs enumeration. 93
A.11 UAV Status enumeration. 93
A.12 Incident Type enumeration. 94
A.13 Incident Level enumeration. 94
A .14 Waypoint Type enumeration. 94

XV

Abbreviations

GCS

HCI

UAS

UAV

UMS

uv

UsS

MIT

uuv

GUI

MUT

(O}

DWR

TCSP

UML

ERD

JSON

Ground Control Station

Human Computer Interface

Unmanned Aircraft System

Unmanned Aerial Vehicle

Unmanned Mission Simulator

Unmanned Vehicle

Unmanned System

Massachusetts Institute of Technology

Unmanned Underwater Vehicle

Graphical User Interface

Manned-Unmanned Teaming

Operative System

Drone Watch and Rescue

Temporal Constraint Satisfaction Problem

Unified Modeling Language

Entity Relationship Diagram

Javascript Object Notation

xvi

Abbreviations

xvii

DBMS

FPS

UAM

PCA

HMI

HRI

UPGMA

DIANA

PAM

HRT

HSC

KPP

SA

KNN

SVM

DataBase Management System

Frames Per Second

Autonomous University of Madrid

Principal Component Analysis

Human-Machine Interaction

Human-Robot Interaction

Unweighted Pair Group Method with Arithmetic Mean

Dlvisive AN Alysis Clustering

Partition Around Medoids

Human-Robot Team

Human Supervisory Control

Key Performance Parameter

Situational Awareness

K-Nearest Neighbors

Support Vector Machine

Chapter 1

Introduction

1.1 Motivation

The study of Unmanned Air Vehicles (UAVSs) is currently a growing area. These new
technologies offer many potential applications in multiple fields such as infrastructure
inspection, monitoring coastal zones, traffic and disaster management, agriculture and

forestry among others [1-4].

The use of UAVs, and unmanned systems, require the supervision of one or many human
operators, responsible for monitoring the mission status continously and avoiding the
possible incidents that might alter the execution and success of the operation. The work
of these operators is extremely critical due to the high costs involving any UAV mission,
both financial and human. Thus, lot of research in the field of human factors, and more
specifically, in Human Supervisory Control (HSC) and Human-Robot Interaction (HRI)
systems, have been carried out, in order to understand and improve the performance of

these operators [5].

One of the key aspects in the field of HRI is the use of computer simulators, and their
extension into videogames. There are at least three motivations for robot simulators,
that apply to the world of Unmanned Aircraft Systems (UASs). One is the role of
simulators in adoption of new technology, in this case the UAV, another is their potential

for low-cost operator training, and finally their utility in research [6].

Chapter 1. Introduction 2

In recent years, two topics are emerging in relation to the study of UAS. One is the effort
to design systems such that the current many-to-one ratio of operators to vehicles can
be inverted, so that a single operator can control multiple UAVs. The other is related
to the fact that accelerated UAS evolution has now outpaced current operator training
regimens, leading to a shortage of qualified UAS pilots. Due to this, it is necessary to
re-design the current intensive training process to meet that demand, making the UAV
operations more accessible and available for a less limited pool of individuals, which may

include, for example, high-skilled video-game players [7].

This work is focused on the design and development of a computer simulator that allows
an operator to supervise and control the execution of a search and rescue mission carried
out by a fleet of multiple UAVs. The goal of this simulator will be training and selecting
inexperienced users in the world of the UAS, and thus, it will have the simplicity and

accessibility typical from videogames.

Besides, the simulator will extract data from the operator interactions, allowing the
measurement and analysis of the user performance and evolution. This performance
data will be used to extract behavioral patterns among users, which could be used to

select potential UAS operators.

1.2 Objectives

The aim of this project can be divided into two clearly distinguishable parts:

1. Development of a lightweight multi-UAV simulator: In this part of the work, there

are many milestones that shall be accomplished:

e To study of the state of the art in the development of computer simulator
for flight systems, both manned and unmanned. We must focus in those
simulators and videogames which allow an easy and quick understanding of

the simulation concept and are suitable for beginners.

e To choose the best software architecture, following the criteria of accessibility

and ease of use.

e To design a robust and complete set of input and output data.

Chapter 1. Introduction 3

e To design a set of gamification elements that challenge the operator and bring

the simulator closer to the field of videogames.

e To define a set of operator controls for supervising and controlling the simu-

lation.

e To design a simple and user-friendly Graphical User Interface (GUI) to show

the execution of a simulation.
e To implement the simulator using the selected architecture.

e To test the simulator against hundreds of simultaneous users and to deploy

it.

2. Measurement and Analysis of the novice user performance using the simulation
data: Once we have designed, implemented and deployed the simulator as required
above, we will carry out an experiment to prove its value for training and selecting

inexperienced users. To achieve this, the following milestones will be accomplished:

e To study the related work in the performance measurement in HRI systems,

and the techniques to analyze and discover patterns from user activities.

e To create a simulations dataset testing the simulator with a group of novice

users.
e To design a set of metrics that will define the performance in our simulator.

e To use valid data mining techniques for extracting common groups of users,
given its performance. Those groups will be analyzed to extract conclusions
about the behavioral patterns in the dataset and the value of each group of

users.

1.3 Document structure

This document is structured as follows: Chapter 2 reviews the state of the art in the
aforementioned topics of UAV simulators and performance analysis on UAS operators.
Then, Chapter 3 describes the simulator developed for this work, detailing its architec-
ture, main elements, input and output data. In Chapter 4 we test the simulator and

use it in a experiment with novice users. The entire process followed in the experiment

Chapter 1. Introduction 4

is detailed, including the dataset, the design of performance metrics, the use and vali-
dation of clustering techniques over the data and the analysis of the experiment results.

Finally, Chapter 5 presents the conclusions and future lines of research.

Chapter 2

Related Work

In this chapter, we introduce a state of the art on UAV Mission Simulators (UMSs),

focusing on their main features, objectives, complexity and accessibility.

2.1 UAYV Simulators

Computer simulations, and their extension into videogames, of Unmanned Systems
(USs) are an emerging topic. There are at least three motivations for these type of
simulators. One is the role of simulators in adoption of new technology, another is their
potential for low cost training, and finally their utility in research. The four critera used

to jugde the quality of any virtual simulator are defined in [8]:

1. Physical Fidelity: It can be described as the extent to which the virtual environ-
ment emulates the real world. A simulator with high physical fidelity is able to
render the environment with high resolution textures, shaders, lighting, reflection,
and bump mapping. A low physical fidelity simulator uses 2D rendering and no

sound is required.

2. Functional Fidelity: The degree to which the simulation acts like the operational
equipment in reacting to the tasks executed by the trainee. High functional fi-
delity is defined as the simulation of most of the forces acting on a vehicle and

its actuators including gravity, drag, and accelerations from motors and collisions

Chapter 2. Related Work 6

on specific elements of the vehicle. A low functional fidelity simulator does not

simulate forces applied to the vehicle but only velocities or absolute position.

3. Ease of Development: It is defined by how easy/difficult the simulator can be

modified, and the available documentation from the author.

4. Cost: For a simulator to be useful it must not be time consuming to install or run
and accessible in terms of initial monetary cost for both the developer and end

user. The simulator developed in this work is focused on maximizing this criteria.

In [6], Craighead et al. survey multiple US simulators, both commercial and open-source,
and provide a subjective rating of capabilities in terms of physical fidelity, functional
fidelity, ease of use, and cost. For the purposes of this work, we focus only on those
rated as “Low” in the Cost criteria. Table 2.1 summarizes the rating results of the

aforementioned “Low cost” US Simulators:

o FlightGear: FlightGear [9] is a 3D open source simulator, very realistic and focused
on simulating the flight of a single aircraft vehicle. It is available as a free download
under GPL license. The entire source code is available for modification and is
under constant development. The application runs on Windows, Mac, and Linux
operating systems. It has been used for various academic projects. For example,
Summers, et al. in [10] used FlightGear to simulate a UAV carrying environmental
sensors and Cervin, et al. in [11] used FlightGear to create an interface for a real

UAV.

e Simbad: Simbad [12] is a Java 3D robot simulator for scientific and educational
purposes. It is mainly dedicated to researchers/programmers who want a simple
basis for studying Situated Artificial Intelligence, Machine Learning, and more
generally Al algorithms, in the context of Autonomous Robotics and Autonomous
Agents. It is not intended to provide a real world simulation and is kept voluntarily

readable and simple.

e SimRobot: SimRobot [13] is a physics based robot simulator with a 3D OpenGL
based display. Several sensor types are supported, including cameras, range sen-
sors, touch sensors, and actuator state. It was used by the German team for the

2005 RoboCup competition [14].

Chapter 2. Related Work 7

TABLE 2.1: A comparison of available Low-Cost Unmanned Vehicle Simulators.

Simulator Physical Fi- | Functional Ease of De- | Cost
delity Fidelity velopment
FlightGear High Medium Medium Low
Simbad Medium Low Medium Low
SimRobot Medium Low Medium Low

Analyzing the simulators detailed above, it is appreciable that the Functional Fidelity
rating for all of them is not high, thus we cannot use them to easily analyze human
control over them. Also, none of them focuses on the field of UAVs purely, but cover
general unmanned robots or aircrafts instead. This is because at the time when these

simulators were released, UAVs did not have as much importance as now.

Recently, the rapidly increasing interest in UAVs has caused that they are no longer
part of a flight simulator or a type of robot in a general robot simulator. Small/micro
UAVs have become applicable in civilian circumstances like remote sensing, mapping,
traffic monitoring, search and rescue, etc. They are expendable, easy to be built and
operated. Most of them can be operated by one or two people, or even be hand-carried
and hand-launched [15, 16]. This has caused a large increase in the development of the

so-called Autopilots.

Autopilots are systems to guide the UAVs in flight with no assistance from human oper-
ators, consisting of both hardware and its supporting software. In [17], both commercial
and research autopilot systems for small UAVs are reviewed and discussed in detail.
Since this work is not emphasized on hardware, the most remarkable autopilot from

that survey, in terms of software development, is Paparazzi.

Paparazzi [18] is an open-source project, very popular among researchers, highlighted
by offering good flexibility and ease to modify the autopilot based on own requirements
(High “Ease of development” rate, following the criteria of [8]). For the software, it
achieves waypoints tracking, auto-takeoff and landing, and altitude hold. Figure 2.1
shows how this software tries to imitate a real Ground Control Station (GCS). A dis-
advantage of Paparazzi (and more generally, of all autopilots surveyed in [17]), is the
lack of support for cooperative control functions, required for some large area tasks that

need multiple UAVs to perform them.

Chapter 2. Related Work 8

Mee Heps Help ET M2 fﬁil-'-: LERE L] Ill‘lﬁl‘il'ﬂi:_l

ol TIl, AUTOZ
Bl Mi. mansdary, kll meade
02 MI2, G int

£ TIL, Flding ppit

711 M2, Halding paint
W47 50 TIL. Takawtl

194804 MI2, Tabeal

114807 TIL. Starefbes
19:48: 11 MI2, Starsdby

T im0 4]

NEEFEEEE Console

F1GURE 2.1: Paparazzi GCS. The Paparazzi Ground Control Station is the heart of
the system and the user’s primary interaction interface.

2.1.1 Multi-UAV Simulators

The increasing demand and complexity of UAV applications has brought into focus
several challenges associated with multiple UAVs [19]. Although several researchers
have done quite some experiments in this topic [20-22], few research-focused simulators

or autopilots have true multi-UAV functions built in.

The main research line concerned to the study of multi-UAV systems focuses on mod-
elling the problem as a Multi-agent system. Thus, most multi-UAV simulators are used
only as testbeds for cooperative models and algorithms. In [23], the commercially avail-
able X-Plane flight simulator (rated in the survey described above in [6]), together with
MATLAB, are used to create a simulator framework for studying multi-UAV control
algorithms. Likewise, in 2014, Pujol et al. developed MAS-Planes [24],a Multi-Agent
Simulation Environment to investigate decentralized coordination for teams of UAVs.

As can be seen, the operator interactions in this type of simulators takes second place.

Chapter 2. Related Work 9

However, recent works from Massachusetts Institute of Technology (MIT) [25-28] have
studied and modeled the operator’s behavior while using a simulator called RESCHU
(Research Environment for Supervisory Control of Heterogeneous Unmanned Vehicles).
In that simulator, the user gives commands to a relatively small number of UAVs and
Unmanned Underwater Vehicles (UUVs), guiding them to stationary ground targets
while avoiding hazard areas. It has been developed in Java, and the source code can be
requested to the Human Automation Lab in MIT. In fact, some other works like [29]
have customed and extended RESCHU to allow Manned-Unmanned Teaming (MUT)

researches.

Other research lines around the field of multi-UAV simulations include the study of the
best interface or set of interfaces for the operator to monitor the status of all UAVs.
Related to this, the company Silicon Valley Simulation, specialized in real time visual
simulation since 1996, has developed MUSIM (Multiple UAV Simulation) [30]), a flexible

and modular UAV simulation environment used for research into the operator interface.

At the commercial level, the development of multi-UAV simulators focuses on getting
closer to reality in terms of the management and control of UAVs. For example, the
company DreamHammer [31] has developed Ballista [32], an Operative System (OS) for

drones that allows one person to simultaneously control multiple drones of any type.

2.2 Performance Analysis of UAV operators

The human operator is a key component of unmanned systems. Historically, these sys-
tems have required a disproportionate degree of human involvement in their operations.
For example, even more than 4 operators are needed to control a single Predator for

most missions [33].

For these reasons, Human-Machine Interaction (HMI), and more specifically, HRI re-
search, which are both subcategories of traditional human factors research, are emerging

topics in the field of UAVs, and UAS in general.

Chapter 2. Related Work 10

2.2.1 Measuring the performance of a Human-Robot Team

A key obstacle in the growth of unmanned vehicle operations is the number of operators
required to supervise and control an unmanned vehicle [34]. Increasing the operator-
vehicle ratio is an open and desirable topic among researches nowadays, in order to

reduce costs, extend human capabilities and improve system efficiency [35].

Operators in multi-UAV systems must be evaluated following the criteria of the field of
HSC in Human-Robot Teams (HRTSs) systems. According to the research of Crandall
et al. in [36], the different metric classes (set of metrics) defining the effectiveness of a

HRT should:

e Contain the Key performance parameters (KPPs): A KPP is a measurable quan-
tity that, while often only measuring a sub-portion of the system, indicates the

overall effectiveness of the team.

o Identify the limits of the agents in the team: It is needed to measure the capacity

of both human operator and robots in the team.

e Have predictive power: It is needed that the metrics have ability to generalize and

predict the effectiveness of the system under uncertain or untested conditions.

For the goals of this work, we focus on the metric class of human performance. The most
common are metrics based on the operator workload and Situational Awareness (SA).
On the one hand, metrics for measuring operator workload include subjective methods
[37], secondary task methods, as a chat interface [38], and psychophysiological methods
[39]. On the other hand, SA, which is defined in [40], is still an open question when
trying to measure it in an objective and non-intrusive manner [41]. However, in the field
of HRI there have been many efforts to formalize the SA, including the works of Drury
et al. in [42, 43], which establish a set of definitions for SA in a HRI environment, and
determine that most critical accidents in the environment are directly attributable to

lack of one or more of those definitions.

Apart from the workload and the SA, it is also interesting to define some metrics that
collect the performance of an operator in a HSC environment in a direct way, as a type

of global score indicating the quality of the performance. This work is focused on this

Chapter 2. Related Work 11

type of measures, which are also known as Direct measures of performance quality, and
are linked to the world of videogames, where these quality metrics create an user profile,
which allow, on the one hand, to distinguish and group users by common skills, and on

the other hand, to adapt the game based on the user expertise [44].

2.2.2 Extracting patterns in Human-Robot Interaction systems

When dealing with HMI, and more specifically with HRI systems, measuring the human
performance, the system quality or other metric classes is just the beginning of all

possible analysis that can be made over these type of systems.

The information given by the different metric classes, or just the information given by
the human interactions in the system can help to recognize and extract some hidden
information about the general use of the system, the different operator cognitive states

during a mission, etc...

Here, the field of data mining and machine learning takes much importance, since it
tries to extract valuable information and models from raw data [45]. An example of this
can be seen in the works of Rani et al. in [46], which study different machine learning
techniques, as K-Nearest Neighbors (KNN), Regression Trees, Bayesian Networks and
Support Vector Machines (SVMs) to recognize affect states using physiological signals

in a HRI environment.

In the field of UAV operations, the study of HRI pattern recognition and operator
modelling is undoubtedly led by M.L. Cummings and the Massachusetts Institute of
Technology. Their work to model and predict the operator behavioral patterns from
HRI systems, and more specifically from HRT environments, consist of building Hidden
Markov Models [47] representing behavioral states from the clicks that an operator make
during a multi-UAV simulation [27, 28]. Apart from the good results shown in these
works, it is remarkable to notice the conclusions they reach when comparing supervised
vs unsupervised learning techniques when creating the operator models for multi-UAV
systems. They say that, due to the fact that multi-UAV systems are still futurist devel-
opments, it is impossible to trust any expert trying to label the operator interactions in
order to make an objective supervised analysis, hence we can only work in this field by

using unsupervised learning techniques.

Chapter 2. Related Work 12

For this reason, the analysis made in this work is focused on one popular unsupervised

technique: Clustering, which is detailed in next section.

2.2.3 Clustering in profile analysis

Clustering is an unsupervised technique used to group together, in a blindly way, objects
which are similar to one another usually for the purpose of uncovering some inherent

structure which the data possesses [48].

This technique is related to many disciplines and plays an important role in a broad
range of applications, usually involving large datasets and many attributes. From bi-
ological fields, where it is commonly used with the aim of grouping together genes or
proteins which have similar expression patterns [49, 50|, to technological fields, where,
for example, it is widely used to group Wireless Sensor Network nodes into disjoint clus-
ters [51]. Other important clustering applications include time series-clustering [52] and

text-mining [53].

Regarding to this work, clustering can be seen as a way to discover patterns among user
activities. One popular example of this application is Web usage mining, which consists
in applying data mining techniques (including clustering) to discover usage patterns from
Web data, in order to understand and better serve the needs of Web-based applications

[54].

There are a lot of clustering algorithms, and deciding which to use might be a difficult
task for a research conducting a experiment. For the goals of this work, we introduce

five clustering methods from the state of the art:

1. Agglomerative Nesting: Also called Unweighted Pair Group Method with Arith-
metic Mean (UPGMA), or just Hierarchical, this is one of the most frequently
used clustering algorithms [55]. It is a bottom-up, non-parametric hierarchical al-
gorithm, which seeks to build a hierarchy of clusters. Each observation is initially
placed in its own cluster, and the clusters are iteratively joined together according
to their closeness. This closeness of any two clusters is measured by a dissimilarity
matrix between sets of observations, usually achieved by use of an appropriate

metric (Euclidean distance or Manhattan distance, among others). The results of

Chapter 2. Related Work 13

this algorithm (and all hierarchical methods) are usually presented in a dendro-
gram, as shown in Figure 2.2. This dendrogram can be cut at a chosen height to

produce the desired number of clusters.

A
Agglomerative

Divisive

e

FI1GURE 2.2: Example of a dendrogram resulted from a Hierarchical Clustering method.

2. Divisive Analysis Clustering (DIANA): DIANA [55] is a divisive hierarchical al-
gorithm that constructs the hierarchy in the inverse order (top-down). It initially
starts with all observations in a single cluster, and successively divides the clusters
until each cluster contains a single observation. The results are presented in a
dendrogram, as in the case of UPGMA (See Figure 2.2). Although it is usually
less efficient than the agglomerative nesting, DIANA stands out as a competitive

clustering algorithm for many fields [56].

3. K-Means: K-Means [57] is one of the most popular methods for cluster analysis,
belonging to the family of partitional clustering methods. The algorithm starts
with an initial guess for the cluster centers, and each observation is placed in
the cluster to which it is closest. The cluster centers are then updated, and the
entire process is repeated until the cluster centers no longer move. In the end,
each observation belongs to the cluster with the nearest center, resulting in a
partitioning of the data space (See Figure 2.3). The problem is computationally
difficult (NP-hard), but there are efficient heuristic algorithms that are commonly
employed and converge quickly to a local optimum [58]. It is well-known that the

K-Means algorithm suffers from initial starting conditions effects (initial clustering

Chapter 2. Related Work 14

and instance order effects), and many techniques have been developed to avoid this

issue [59].

t t T t t t t t d
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FI1GURE 2.3: Example of a K-means clusterization.

4. Partition Around Medoids (PAM): Proposed by Kaufman et al. in [60], this al-
gorithm is similar to K-means, but is considered more robust because it admits
the use of other dissimilarities besides Euclidean distance. In contrast to the k-
means algorithm, PAM chooses datapoints as centers (called medoids) instead of

centroids.

5. Model-based clustering: This algorithm, proposed by Fraley et al. in [61], fits the
dataset using a mixture of Gaussian distributions. Each distribution represents
a cluster, and its members are estimated using maximum likelihood estimations

(MLE), via the popular Expectation Maximization (EM) algorithm [62].

In order to assess the quality of a clusterization, and to compare and decide which
clustering algorithm is better for a specific dataset, the data-mining literature provides
a range of different validation techniques, with the main line of distinction between

external and internal validation measures [63].

External validation measures comprise all those methods that evaluate a clustering result

based on the knowledge of the correct class labels. Obviously, this is only useful when

Chapter 2. Related Work 15

the class labels are available. This type of measures are commonly used to compare
clustering algorithms on benchmark data, not in real datasets. Some of the best known
external metrics are the F-measure [64], that assesses the quality of a clustering result at
the level of the entire partitioning, the Rand Index [65], which determines the similarity
between two partitions as a function of positive and negative agreements in pairwise
cluster assignments, and the Jaccard coefficient [66], in which only positive agreements

are rewarded.

For the goals of this work, the most important clustering validation measures to help us
to choose an algorithm are the internal validation measures. These measures take
a clusterization and use information intrinsic to the data to assess the quality of the
clustering. Handl et al. in [67] give an overview of some quality notions that internal

measures usually employ:

o Compactness: Assesses cluster homogeneity by looking at the intra-cluster vari-
ance. The less variance a cluster has, the more homogeneous it is considered. This

is the criterion followed by the K-means algorithm to build the clusters.

e Connectedness: Assesses to what extent observations are placed in the same cluster

as their nearest neighbors in the data space.

e Separation: Quantifies the degree of separation between clusters (usually by mea-
suring the distance between cluster centroids). A good clusterization should max-

imize this value.

Based on these quality notions, there are multiple internal validation measures that
not only focuses on one of them, but also make non-linear combinations between them,
specially between compactness and separation, since they demonstrate opposite trends
(compactness increases with the number of clusters but separation decreases). For this

work, three internal validation measures from the state of the art are studied and used:

1. Connectivity: It is focused on improving the clustering quality in terms of connect-
edness. Given a clusterization C = C] ...,y of N observations into K clusters,
and let nn;) be the jth nearest neighbor of observation i, the connectivity is

defined as:
N L
Conn(C) = Z Z Tinn,j)» (2.1)

i=1 j=1

Chapter 2. Related Work 16

where ; pnp, , 1s 0 if ¢ and j belong to the same cluster and 1/j otherwise. L

(4
controls the number of neighbors evaluated for each observation (regulates the
accuracy of the metric). Higher values in this measure mean that clusters are not
represented by near elements in the data space, so a good clusterization should

minimize this value.

2. Dunn Indez: The Dunn Index [68] combines separation and compactness in the
same measure. It is defined as the ratio of the smallest distance between observa-

tions not in the same cluster to the largest intra-cluster distance:

D(C) = ming, ¢,ec,Cy#¢, (Minic, jec, dist(i, j))

2.2
maxc,,cc diam(Cy,) ’ (2:2)

where diam(C,,) represents the diameter of C,,, i.e. the maximum distance be-
tween observations in the cluster. Since a good clusterization requires high levels
of separation (measured in the denominator) and low levels of intra-cluster dis-
tance (high connectedness), this measure should be maximized in good clustering

results (It takes values between zero and o).

3. Silhouette Width: The silhouette of an observation in a specific clusterization
measures the degree of confidence with which we can ensure that the observation
really belongs to the cluster it is assigned [69]. Given an observation i the silhouette

for that observation, S(i), is defined as:

bi—ai

s(i) = (2.3)

max (b;, a;)’

where a; is the average intra-cluster distance for ¢, and b; the average inter-cluster
distance with respect to the nearest cluster to ¢, i.e:
dist(i, j
b = min Z (((j)j), (2.4)
crec\e) So - (C
where C(7) represents the cluster to which ¢ is assigned, and n(C%) the number of
observations contained in cluster C. The closer s(i) gets to 1, the more confidence

we have of ¢ as well-assigned, and viceversa if s(i) gets close to —1. Finally, to

compute the Silhouette width of a clusterization, we simply compute the average

Chapter 2. Related Work 17

Silhouette value for each observation:

_ chec ZiECk s(i)
1C]

S(0) (2.5)

The result lies in [—1, 1], and should be maximized in order to achieve a good

clusterization.

Chapter 3

Design and Development of a

lightweight multi-UAV simulator

This chapter details the different processes involved in the design and development of a
Multiple Unmanned Aircraft Vehicles (multi-UAV) mission simulator, which has been
named as Drone Watch And Rescue (a.k.a DWR). The following sections are struc-
tured as follows: First we introduce the backgrounds and requisites that the simulator
development must accomplish. Then, Drone Watch And Rescue (DWR) is presented
and described, detailing all the elements comprising it and taking part of a simulation.
After that, we show the simulator GUI and list the different interactions that can be
made by an operator/player during the execution of a mission. Finally, we will detail
the web architecture on which the simulator is built, necessary to achieve the lightness

and accessibility required.

3.1 Requisites

The simulator to develop is not intended to achieve a high simulation fidelity level in
terms of graphics, physics, and technical topics related to UAVs. According to the four
criteria defined in [8] to evaluate a simulator (See Chapter 2), this simulator should be
rated as : [Physical Fidelity: LOW, Functional Fidelity: LOW, Ease of Development:
MEDIUM, Cost: HIGH].

19

Chapter 3. Design and Development of a lightweight multi-UAV simulator 20

The main goal of DWR is to collect easily big amounts of data from the interactions
made by UAV operators (regardless of their level of expertise) during the execution of a
multi-UAV mission. Below are described the main issues to address in order to achieve

this goal.

3.1.1 Mission Planning Load

As was noted above, the simulator to develop does not focus on achieving high levels
of fidelity in technical aspects of UAVs. However, the issue of Mission Planning for
multiple UAVs is critical for this simulator, since it represents the logical core in terms
of movement, cooperation and control of each UAV. Due to this, it is required that the

simulator is able to load sophisticated mission plans.

A mission for multiple UAVs is usually planned following three steps [70, 71]:

1. The operator or mission manager establish, inside a mission map, which are the
map zones where UAVs will flight, and the type of task to perform in each of them
(Photographing the zone, Surveillance, Mapping, etc.).

2. Data obtained in step 1 is input to the Mission Planner, along with information
about the mission environment (No Flight Zones, Refueling Stations...) and the

available resources (UAVs, available fuel for each UAV| airports...).

3. The Mission Planner computes one or many feasible mission plans to accomplish
the defined tasks using the available resources. Given that, each UAV is assigned
to a set of waypoints that will guide its flying path throughout the different task
zones. Each waypoint contains the time when the UAV must reach a position, and

the action to perform when the waypoint is arrived.

For this work, the mission plans that feed the simulator will be generated utilizing the
Mission Planner developed by Ramirez-Atencia et al. in [72-74]. This work models the
problem of Mission Planning as a Temporal Constraint Satisfaction Problem (TCSP),
and returns, for an specific mission, a list of task assignments for each UAV taking part

of the mission.

Chapter 3. Design and Development of a lightweight multi-UAV simulator 21

3.1.2 Gamification Elements

A pure multi-UAV simulator could be reduced only to the execution of a mission plan,
with any possible interaction, in order to check if the mission is correctly designed.
However, since this work is aimed to analyze data from operators, the simulator to
develop must allow control of both the UAVs and the mission plan of a simulation. This
makes the simulator an interactive tool, and brings it closer to the world of videogames,
which is commonly known as a process of gamification [75]. This is a term for the
use of video game elements in non-gaming systems to improve user experience and user
engagement. Following the gamification idea, there are some elements that should be

added to this simulator.

As a way of engaging the operators and focusing them on a main challenge to comply
during a simulation, the simulator to develop will include mobile targets to watch and
rescue. Therefore, the main goal of the execution of the simulator will consist in finding

the maximum number of targets while consuming the minimum possible resources.

Furthermore, during the execution of a mission with multiple UAVs, several incidents
may occur, altering both the mission environment and the UAVs performing it. Below

are listed some examples of possible incidents:

e Apparition of a hazard flight zone, due to meteorological conditions or other type

of threat.

e A UAV’s sensor breaks and stops working (radar, camera...). This may make the

UAV unable to perform some tasks.

e Data link loss between a UAV and the GCS controlling it. This turns the UAV

invisible, and unable to receive any operator command.

When an incident appears, the operator must respond by replanning the UAV’s
path in order to guarantee that the mission goal is accomplished, and no UAV
is destroyed. These actions are extremely fragile and decisive, and suppose an
extra challenge for the operators. In fact, there are numerous studies that aim
to facilitate these replanning actions and reduce the stress levels of the operators

performing them [76, 77].

Chapter 3. Design and Development of a lightweight multi-UAV simulator 22

3.1.3 Data extraction

The main motivation to develop this simulator lies in the necessity to collect big amounts
of data from the simulations. To achieve this, the simulator to develop must fulfill the

following properties:

o Accessibility: The simulator must be easily and quickly accessible, in terms of
installation and deployment for anyone trying to use it. Likewise, the system
requirements must be low, so that any personal computer or laptop can execute

simulations.

e Portability: The simulator must be ready to execute in any platform and operative

system.

o Simplicity: The simulation mechanisms, the GUI and the controls must be simple,

basic and clear, even for non-expert users.

The data collected by this simulator must represent a simulation robustly. This means
that, knowing the simulation mechanisms and rules, every simulation instance could be

completely replayed inductively only by observing the data stored.

3.2 Simulator Description

This section describes the mechanism and elements comprising the simulator created in
this work, in accordance with the requisites defined in Section 3.1. As was said at the
beginning of this chapter, the name of the developed simulator is Drone Watch And
Rescue (DWR), in relation with the main goal of the simulator, which is detecting a set

of targets using multiple UAVs.

3.2.1 Simulation Elements

Below are described the different elements that compose DWR:

Chapter 3. Design and Development of a lightweight multi-UAV simulator 23

3.2.1.1 UAVs

UAVs are the primary element of the simulator. The main features of each UAV involved
in an specific mission are described as part of the Mission Scenario, loaded as part of
the input data (See Section 3.2.2). In order to perform the mission tasks, each UAV
may have one or more sensors. There are many type of sensors, and although many of
them are loaded into the simulator, only radars are considered during the execution of

a simulation.

Radars detect mobile targets around the zones overflown by UAVs. Although there exist
many radar types in the database from which the input data is loaded, the simulator
does not distinguish between them. A radar is defined only by a fixed detection ratio,

within which any target placed inside will be considered as detected.

Each UAV starts a simulation on an Airport (See 3.2.1.5), and follows a flight path
composed of a list of waypoints. There are two main classes of waypoints: those that are
as part of the mission plan, called pre-planned waypoints, and those added or modified by
the operator during the simulation, called operator-waypoints. Each waypoint is defined

by the following attributes:

e Position: Given by the duple (Latitude, Longitude) or (x,y), depending on the
coordinate system used in the Mission Scenario. The altitude of a waypoint is not
modelled in DWR. This is because we make the assumption that each of the UAVs
taking part of a simulation flies around an independent altitude range, so there
is no collision risk among UAVs. Therefore, we can conclude that the trajectory
that will be simulated for each UAV, despite being loaded as a three-dimensional

trajectory, will be computed as a plane trajectory.

e Type: The waypoint type will define which kind of action will be performed by
the UAV when it reaches it. The possible values for this attribute are: Route,
Refueling, Landing, Take-off, Task. A Task waypoint includes all possible tasks
to perform (See 3.2.1.2).

e Estimated time of Arrival: Measured from the beginning of the mission (time
0), this attribute indicates the time in which the UAV is expected to reach the

waypoint. This value is given as part of the computations made by the Mission

Chapter 3. Design and Development of a lightweight multi-UAV simulator 24

Planner developed by Ramirez-Atencia et.al in [72-74] (See 3.2.2). If the user adds
or modifies a waypoint during the simulation, the simulator does not recalculate

this value.

e Action: Each waypoint can be associated to an action. This action will be exe-
cuted by the UAV when it reaches the waypoint. Waypoints may have a default

associated action type in accordance with its type:

Route, Take-off: No action associated.

— Task: The action associated triggers the beginning of a task, which has been

previously assigned to the UAV in the Mission Plan.

— Refueling: Refueling waypoints always have a ”Refueling” action associated,
whether they are loaded as part of the mission plan (pre-planned waypoints)
or they are generated by the simulator (operator waypoints)

— Landing: Similar to Refueling waypoints, in this case with the action ” Land-

ing”

3.2.1.2 Actions

An action encompasses all possible things that a UAV can do during the execution of
a simulation, apart from flying from point to point. In DWR, actions are associated to
waypoints, so they are implicitly linked to a specific position on the map. Every action
has a finite duration defined either by default or by the mission input data. Below are

detailed the different actions modeled in DWR:

e Landing: This action is always associated to waypoints positioned in airports (See
3.2.1.5). When a UAV lands, its sensors will be fixed in case they were broken
by an incident (See 3.2.1.7). If this action is commanded by an operator, the
duration considered is 0, which means that once the UAV reaches the airport, it

is considered as landed instantly.

e Refueling: This action is always associated to waypoints positioned in refueling
stations (See 3.2.1.4). Depending on the duration of the action, the UAV will
charge more or less amount of fuel. In case this action is commanded by an

operator during the simulation, the refueling duration is always 20 seconds. On

Chapter 3. Design and Development of a lightweight multi-UAV simulator 25

the contrary, if the action is pre-planned by the Mission Planner, this value is

variable.

o Tusk: A task is a special type of action, and as an action, it is triggered when
an UAV reaches the associated waypoint. Every task has a scope zone (area)
associated, where the task is executed, and a time interval in which it must be
completed. Tasks are always part of the mission plan loaded as part of the input
data (See 3.2.2). This means that an operator cannot create tasks on the fly, during
the execution of a simulation. DWR only models one type of task: Surveillance,
which consists in exploring an area searching for targets. The set of tasks assigned

to a UAV is commonly called as payload

3.2.1.3 No Flight Zones

No Flight Zones are volumes and areas where the flight of any UAV is forbidden. They
are defined in the Mission Scenario loaded as part of the input data for any simulation
(See 3.2.2). During the simulation, if a UAV flies within any of these zones, it will be

immediately destroyed.

3.2.1.4 Refueling Stations

Refueling Stations charge the UAV’s fuel. They are defined in the Mission Scenario
loaded as part of the input data for any simulation (See 3.2.2). Each of them is described
by the position they are located on the map (geodesic or cartesian coordinates), the
maximum amount of fuel they can store and the refueling speed they can achieve. During
the simulation, a Refueling action is triggered whenever a UAV reaches a waypoint of
type Refueling, and it ends when the UAV gets full or when the refueling station runs

out of fuel.

3.2.1.5 Airports

Airports are the starting and ending point for every UAV taking part of a mission. They
are defined in the Mission Scenario loaded as part of the input data for any simulation

(See 3.2.2). An airport can be defined by a point on the map or an area.

Chapter 3. Design and Development of a lightweight multi-UAV simulator 26

3.2.1.6 Targets

Targets are one of the gamification elements of DWR. They are not part of either the
Mission Scenario or the Mission Plan, so they must be loaded from a different source
(See 3.2.2). The trajectory they follow will be generated randomly by the simulator,
and it will always be bounded to a specific area. During the simulation, the operator
will not be able to see the targets moving, only the areas where they could be found.

When a UAV detects a target, the latter is immediately removed from the simulation.

3.2.1.7 Incidents

Incidents in DWR are asynchronous events that occur during the course of a simulation
and alter, either temporarily or permanently, both the environment and the UAVs taking
part in the mission. DWR loads an Incident Plan from the input data (See 3.2.2). The
aim of adding incidents to the simulation is to challenge the operator, forcing him to
make use of the simulation controls in order to adjust some parameters and avoid the

incidents successfully.

An Incidents Plan is composed of a list of incidents scheduled over the mission time.
Appendix A contains the information included in each of these incidents. Among this

information, two attributes are remarkable:

o Start Time: Defines the time, measured from the beginning of the mission (time 0)
in which the incident will start. When DWR runs this mission, and the timeline
reaches this start time, the simulator will show the incident in screen. Figures

3.1,3.2 show how DWR displays the incidents.
e [Incident Type: There are two types of incidents defined in DWR:

1. Danger Area: Due to a heavy storm or any other reason, a new danger
area appears somewhere in the map. When a UAV overflies it, it will be
automatically destroyed. To overcome this incident, an operator must change

the flying path of the UAVs taking part in the mission (See Figure 3.1).

2. Payload Breakdown: The sensors conforming the UAV’s payload stop work-

ing. From this moment, the UAV is not able to perform any task successfully

Chapter 3. Design and Development of a lightweight multi-UAV simulator 27

DWR-Mission simulator

Drone information

A DRONE-1

QN

I Add waypoints A Manual

F1cURE 3.1: DWR screenshot of a Danger Area Incident. The orange area represents
the new No Flight Zone generated by the incident.

nor detect any target. To overcome this incident, the operator must com-
mand the affected UAV to return to its base airport, where it will be repaired

(See Figure 3.2).

DWR-Mission simulator

Drone information @ Unselectrones

DRONE-1

Drone control

4 Manual

Waypoints Console

ROUTE 175543

LAND. 40000 2Am11m33s

F1GURE 3.2: DWR screenshot of a Payload Breakdown Incident. Note how the yellow
circle around the UAV representing the Radar has disappeared.

3.2.2 Input Data

Before starting a simulation, DWR must load all data related to the mission to simulate.
A mission is composed of two main objects: the Mission Scenario and the Mission

Plan. Both of them are essential components of any UAV mission in any UAV

Chapter 3. Design and Development of a lightweight multi-UAV simulator 28

simulator. Besides this, DWR adds another interesting components to a mission, in order
to achieve the gamification process required in 3.1. Those are the Incidents Plan and the
Targets definition, which can be seen as gamification components. Together, essential
components and gamification components compound the mission input, necessary for

DWR to start a simulation (See Figure 3.3). Below are detailed each of the mission

components.
Mission
scenario plan incidents targets
1 1 1 1
Mission Scenario Mission Plan Incidents Plan Targets definition

FIGURE 3.3: General schema of DWR mission input, showing the four components
compounding a mission.

3.2.2.1 Mission Scenario

The Mission Scenario gathers all the information about the map, UAVs and other envi-
ronmental elements concerning to a specific mission. This scenario is the same that
uses the Mission Planner developed by Ramirez-Atencia et al. in [72-74]
as input data. This way we ensure that DWR missions are defined in a robust way,
in accordance with current works in this field. Figure 3.4 shows a Unified Modeling
Language (UML) diagram describing all elements compounding a Mission Scenario. It
is important to note that some elements showed in this figure, despite being loaded, are

not used during the simulation execution (e.g: Cameras).
Hence, based on figure 3.4, we can describe which elements comprise a Mission Scenario:

Hence, based on these diagrams, we can describe what elements comprise a Mission

Scenario:

e No Flight Zones: Loaded as a polygonal area.
o Airports: The simulator loads its identifier and position.
e UAVs: All attributes showed in figure 3.4 are loaded and used by the simulator.

e Refueling Stations

Chapter 3. Design and Development of a lightweight multi-UAV simulator 29

Mission Scenario

BoundUpperLeft: Point
BoundDownRight: Point

uavs
o FlightZ
noFlightZones refueling station:
UAV 0..* 0..* °
Identifier: string {unique} NoFlightZone alrports Refueling Station
type: Enum {HALE, MALE, UCAV, URAV, TACT, TANKER} = 0..* - -
il ks el Identifier: string {uniquel Aroort Tdentifier: string {uniquel
mnaltitude: Double _ P . . capacity: Int
maxSpeed: Double Identifier: string {unique} position: Polnt
maxFuel: Double +position: Point +remainingFuel: Double
intialPosition: Point +refuelingSpeed: Double
initialFuel: Couble ‘
sensors
Q.. * area
<<abstract=>
Sensor <<abstract>>
Area
+ID: String
+Name: String type: enum {PCLYGON, CIRCLE}
1 Polygon
Radar Camera points: PointCollection

detectionRatio: Double type: Enum
+focallength: Double
+lensRatio: Double

FIGURE 3.4: Mission Scenario Data diagram. Classes and attributes are deeply detailed
in Appendix A

Appendix A contains a deeper description of each attribute comprising a Mission Sce-

nario.

3.2.2.2 Mission Plan

The Mission Plan is the result of running the Mission Planner developed by Ramirez-
Atencia et al. in [72-74]. It assigns, for each UAV, the list of tasks it must perform, and
the time window (starttime,endtime) in which this tasks should be completed. The
simulator must load this plan and transform the task assignation of each UAV into a set
of waypoints that will guide the UAVs flying path. Figure 3.5 shows, diagrammatically,

the elements comprising a Mission Plan.

As can be seen in the figure, a Mission Plan consists of a set of Objectives, each of them
composed of a set of Tasks. Each Task is assigned to the zone where it will be performed
(defined as an area), the list of sensors that a UAV needs to complete it and the specific
UAV that will perform it (assignation). So far, the simulator only works with 1-task
objectives, and does not treat any objective nor task time dependencies. In fact, as

described in 3.2.1.2, the only task type modeled DWR so far is the Surveillance task.

The simulator loads the Mission Plan as follows: For each Task, it gets the assigned

UAV and appends two waypoints to its flying path: The first one is located at the Task

Chapter 3. Design and Development of a lightweight multi-UAV simulator 30

UAV

assignedTo
1

Objective Task

ﬂ:ﬁ Identifier: string {unique} ._ta_sk.s. Identifier: string {unique}

Mission Plan L™ startTime: double {optional) L..* type: enum TaskType {
duration: double (optieonal) | Surveillance
endTime: double (optional) :
zone
1
Zone

F1cUre 3.5: Mission Plan Data diagram. Classes and attributes are deeply detailed
in Appendix A

entry point, and marks the task beginning. The second one is located at the Task exit
point and marks the end of the task. When all tasks have been loaded, a final return
waypoint is added to the flying path of every UAV, so that they finish the mission in
the same point that they started it (usually an airport).

3.2.2.3 Incidents Plan

An Incidents Plan schedules, for a specific mission, all incidents that will appear during
the mission simulation. It is designed in order to test and train the skills of operators.
Figure 3.6 shows a UML data diagram for an Incidents Plan. An Incidents Plan is
composed of a list of incidents scheduled over the mission time. Appendix A contains

the information included in each of these incidents.

3.2.2.4 Targets definition

As was discussed in section 3.1, it is needed to introduce targets to detect into a simu-
lation as a way to challenge the operators. The number and description of these targets

is given by the targets definition entity, as showed in figure 3.7.

Basically, a targets definition entity is composed of a list of identified targets. Each
target is associated to an area inside the mission map. During the simulation, targets
will move randomly (controlled by the simulator), but they will never go outside its

associated area.

Chapter 3. Design and Development of a lightweight multi-UAV simulator 31

Incidents Plan
+ID: String

incidents
0..*
<<abstractss>
Incident

+ID: String

+message: String

+level: Enum {CAUTION, WARNIMNG, DANGER}
+startTime: Integer

+endtime: Integer (Optional)

T

Danger Area Payload Breakdown
area af f ectedUal

1 1

Area UAV

F1cURE 3.6: Incidents plan data diagram. Classes and attributes are deeply detailed
in Appendix A

Targets definition

+ID: String
targets
O_ _Z#Z
Target
+ID: String @ area) Area
+speed: Double 1
+initialPosition: Point

F1GURE 3.7: Targets definition data diagram. Classes and attributes are deeply de-
tailed in Appendix A

3.2.3 Output Data

Undoubtedly, retrieving data from simulations is a key factor in the design and develop-
ment of DWR. The experimentation made in this work (See chapter 4) needs a dataset
containing all relevant data extracted by the simulations run in DWR, so it is critical
to define the output data so that no information is missed throughout the execution of

the simulator.

Figure 3.8 shows a Entity Relationship Diagram (ERD) diagram containing the designed

output data scheme for DWR, which will be implemented in a database (See architecture

Chapter 3. Design and Development of a lightweight multi-UAV simulator 32

in section 3.5). The data organization has been designed following an event-driven de-
sign pattern. Whenever an event occurs during a simulation run, we store the simulation
status in that moment, making what is commonly called a Simulation Snapshot. This
snapshot contains all relevant information of the current status of every element taking
part in the simulation (See appendix A), as well as a set of Drone Snapshots, represent-
ing the current status of each of the UAVs still participating in the mission (If a UAV
has been destroyed, it will have no associated Drone Snapshots after its destruction).
Storing the data in this way, we ensure that no data is lost, thus we obtain a complete
track of the simulation run and we are able to develop a robust analysis. In fact, we

could make a re-execution of a simulation inducted only by the data stored.

SimulationSnapshot Simulation
—id Objectld _id Objectld
simulation Simulation* name String
— simulationElapsedTime | Number >_|_F clientlP String
realElapsedTime Number createdAt Date
simulationSpeed Number missionID String
event Objectld *
DroneSnapshot Event
id Objectld _id Objectld
simulationSnapshot | SimulationSnapshot * type EventType
droneld Number params Any
status Enum
remainingFuel Number 1
speed Number
position Position EventType
1 key Enum
Description | String

Waypoint
_id Objectld
droneSnapshotld | DroneSnapshot * Userlnput
position Position key Enum
plannedTime Number Description | String

F1cURE 3.8: Output ERD. Entities and attributes are deeply detailed in Appendix A

Fach of the events causing a Simulation Snapshot in DWR has an associated FEvent
Type, indicating the reason why the event was generated. Appendix A contains the list

of all possible Event Types. Some of the most relevant ones are:

Chapter 3. Design and Development of a lightweight multi-UAV simulator 33

e A UAV reaches a waypoint.

e An incident starts/end.

e A target is detected.

A UAV is destroyed.

A UAV starts/finishes an action.

The operator performs an interaction over the simulation. This is the most im-
portant Event Type in terms of analyzing operator’s behavior, and therefore is
modeled as a specific entity: User Input (See figure 3.8). The operator control

interactions can be of several types, as detailed in Section 3.4.

Appendix A details deeper the attributes of each of the entities comprising the output
data.

3.3 Graphical User Interface

One of the most important aspects consider in order to achieve a balance between
usability and complexity in simulators is to design a good GUI, that arrange the mission

information neatly and clarify what actions can be done.

Figure 3.9 shows a general screenshot of the execution of a simulation. It is appreciable

that the GUI designed can be divided into multiple frames:

DWR-Mission simulator

Drone information
A DRONE-1

N

]
773/1000

FIGURE 3.9: Simulator screenshot. Numbers represent the different parts of the GUI

Chapter 3. Design and Development of a lightweight multi-UAV simulator 34

3.3.1 Main Screen

Displays graphically the Mission Scenario. It is the most important screen in terms of
visualization and control of the simulation. Below are detailed the simulation elements

represented in this screen.

FIGURE 3.10: Simulator GUI screenshot - Main screen

e UAVs: Represented by a UAV icon, wrapped by a yellow circle marking its radar
range. When a UAV is selected, the simulator displays its current flying path, as
a sequence of flags (waypoints) connected by straight lines. The color of a flag

indicates the waypoint type:

— Red Flags: Route waypoints
— Black Flags: Action waypoints (Refueling, Landing).

— Task waypoints (Surveillance).
o Task Zones: Represented by a green polygonal area.
e No Flight Zones: Represented by a red polygonal area.

o Airports: Represented by a H heliport icon, together with a label indicating the

name of the airport.

Chapter 3. Design and Development of a lightweight multi-UAV simulator 35

e Refueling Station: Represented by a station icon, together with a label indicating

the duple (remaining fuel/fuel capacity).

In addition, in the upper-left of the screen, some additional simulation information is
displayed so that the operator can have a quick look at them: Current control mode (See
controls in Section 3.4), targets detected (if any), and remaining fuel for the selected

UAV.

3.3.2 Waypoints Panel

Waypoints

setecton Xecoodnate k] Yeomrdmae(km) Arival ime

ROUTE 40.0000 -76.0000 Sh:54mi57s

ROUTE 141.0000 -76.0000

ROUTE 141.0000 -120.0000

FI1GURE 3.11: Simulator GUI screenshot - Waypoints Panel

Displays a table with detailed information about flying path of the selected UAV. For

each waypoint belonging to the UAV trajectory, the following attributes are showed:

Selection: Shows whether this waypoint is currently selected or not (See controls

in Section 3.4).

Order (#): Shows the order in which this waypoint will be reached.

Position: Given in geodesic coordinates (Latitude, Longitude) or Cartesian coor-
dinates (z,y).
Arrival time: See 3.2.1.1.

3.3.3 Simulation Time Panel

Simulation speed

FIGURE 3.12: Simulator GUI screenshot - Simulation Time Panel

Displays a slide with information about the current simulation speed. The minimum
assignable value is 1 (SimulationTime = Realtime) and the maximum is 1000 (SimulationTime =

1000 * Realtime).

Chapter 3. Design and Development of a lightweight multi-UAV simulator 36

3.3.4 UAV Information Panel

Drone information @» UnselectDrones

A DRONE-1

| | 1N
2

ID 1
Status CRUISE
Paosition

Alfitude 2.00 km

Remamining fuel 24296 L

FIcure 3.13: Simulator GUI screenshot - UAV Information Panel

Displays a table with information about all UAVs participating in the mission. This
information is updated continuously during the simulation execution. Below are detailed

the attributes shown in this table:

e Name (DRONE-1 in Figure 3.13).

e ID (Alphanumeric).

e Position: A duple (Latitude, Longitude) or (z,y).

e Altitude: Invariable during the simulation.

e Remaining Fuel (L): When it is less than 50 L, this label turns red to alert about
it.

o Fuel Capacity (L)

o Speed (Km/h)

As detailed in the controls section (See 3.4), this panel also offers interactive controls to

select /unselect a UAV.

Chapter 3. Design and Development of a lightweight multi-UAV simulator 37

Drone control

Speed [Kmh)

a0

FIGURE 3.14: Simulator GUI screenshot - UAV Control Panel

3.3.5 UAYV Control Panel

Displays the interactive widgets to control the selected UAV (if any selected). It features
a slide to adjust the UAVs speed, bounded by the UAVs min/max speed, and three

buttons to change the control mode, as detailed in the controls section (See 3.4).

3.3.6 Console Panel

Console

lh:4Tm:41s- [WARNING] : Incident 3 finished -
lh:48m:15s- [INFD] : Finishing task [ID = rl, type= refueling]

1lh:48m:15a- [INFO2] : Refueling drone 1 [+ 0 L]

1h:58m:56=- [INFD] : Simlation time ratioc = x42

Zh:7Tm:50=- [INFO] : Drone 1 has reached the waypoint (32, -68)

Zh:Tm:50=- [INFO] : Control mode set to [MONITORING]

Zh:Tm:52=- [INFO] : Drone 1 has reached the waypoint (32, -68)

Zh:Tm:52=- [INFO] @ Control mode set to [MONTITORING]

FIGURE 3.15: Simulator GUI screenshot - Console Panel

Logs every event that happens during the simulation (events and operator interactions).
Each message is displayed together with the time it has been generated (measured from
the beginning of the mission). Depending of the level of the message, it is colored
differently. There are 4 types of message levels: Information (uncolored), Warning

(Orange-colored), Error (Red-colored) and Success (Green-colored).

Chapter 3. Design and Development of a lightweight multi-UAV simulator 38

3.4 Controls

To achieve an intuitive and quick understanding of the different controls available in the
simulator, almost all of them have been designed to be activated by doing mouse clicks
on the Main screen. The interactions with the simulator can be divided into several

groups.

3.4.1 Basic controls

These controls do not alter any aspect of the simulation. They are useful for the operator
in order to monitor the simulation status easily. Table 3.1 lists all basic controls, and

how to perform them.

3.4.2 Control Modes

In order to interact with the Main Screen of the GUI in multiple ways, 3 control modes
are defined. Depending on the control mode chosen, the operator would be able to
perform different interactions in that screen. Table 3.2 lists all possible control modes

interactions, and how to activate them.

3.4.3 'Waypoint controls

In terms of replanning a Mission Plan, the most important interactions to consider
during a simulation are those that create or modify the flying path of a UAV. Table 3.3

details all possible interactions with waypoints offered by the simulator.

3.4.4 UAV controls

It is necessary to have control over the basic features of a UAV. Table 3.4 lists all possible

interactions of this type offered by the simulator.

Chapter 3. Design and Development of a lightweight multi-UAV simulator 39

TABLE 3.1: Basic controls in DWR

Name

Description

How to perform it

Move Camera

Moves the camera along the Main
Screen. This allows the operator
to see every point in the mission
map.

Arrow keys (Up, Down,
Right, Down)

Select a UAV

At the beginning of the simulation
run there is no UAV selected. Se-
lecting a UAV allows the operator
to monitor and control the UAV
status and waypoints.

2 modes:

e Left-click over a

UAV in the main
screen.
o Left click on the

Select button of a
specific UAV in the
UAV
panel.

information

Unselect UAVs

Unselect UAVs in order to clear the
Main Screen vision and have a gen-
eral overview of the simulation.

Left-click over the Unse-
lect UAVs button in the
UAV Information Panel.

Unselect UAVs

Unselect UAVs in order to clear the
Main Screen vision and have a gen-
eral overview of the simulation.

Left-click over the Unse-
lect UAVs button in the
UAV Information Panel.

Set
speed

simulation

Increase or decrease the simulation
time speed. Normally, UAV mis-
sions last many hours, thus some-
times it is desirable to accelerate
the process. The minimum simu-
lation time speed is 1, what means
that it is equal to the real time.
The maximum value is 1000, which
means that it is 1000 times higher.

Left-click over the slider
on the Simulation Time
Panel.

3.5 Architecture

DWR has been developed using modern web development technologies from the

field of video games. The main advantages of these environments include:

e Portability of the developed application between both desktop and mobile systems.

Chapter 3. Design and Development of a lightweight multi-UAV simulator

40

TABLE 3.2: Control Mode interactions in DWR

Name

Description

How to perform it

Set control mode:

Monitor

Sets the control mode of the se-
lected UAV to Monitor. This is the
default control mode and allows
the operator to see and edit the
UAVs waypoints, but not to add
new waypoints. When a new UAV
is selected or when a UAV reaches
a waypoint, this control mode is set
automatically.

Press the Monitor button
in the UAV control panel.
It is necessary to select
a UAV before performing
this interaction.

Set control mode:

Add waypoints

Sets the control mode of the se-
lected UAV to ”Add waypoints”.
This control mode allows the op-
erator to view and edit the UAVs
waypoints, and also to add new
waypoints at the beginning of
the UAVs flying path, maintaining
the rest of the waypoints un-
changed.

Press the 7Add way-
points” button in the
UAV Control Panel. It
is necessary to select a
UAV before performing
this interaction.

Set control mode:

Manual

Sets the control mode of the se-
lected UAV to Manual. This con-
trol mode allows the operator to
define a new path, deleting the
previous one.

Press the "Manual” but-
ton in the UAV control
panel. It is necessary to se-
lect a UAV before perform-
ing this interaction.

e High Accessibility: Using any web browser with HTML5 capabilities, a user can
access the URL where the simulator is hosted and use it without installing any

additional software.

However, it is important to note the limitations of this type of technologies. The system
requirements on a UAV simulator are much higher than those of a common web appli-
cation, and current Javascript engines, despite being more and more powerful, yet have
notorious performance troubles when running compute-intensive jobs. This simulator is

an example of this kind of jobs in which the system usage must be taken into account.

Because of this, the simulator has been designed with a 2-level architecture (server-
client), based on the design patterns used in the development of multi-user real time
applications and video games. These design patterns divide the different components
conforming the application engine (or videogame engine) between the two levels of the

architecture [78].

Chapter 3. Design and Development of a lightweight multi-UAV simulator 41

TABLE 3.3: Waypoint interactions in DWR

Name

Description

How to perform it

Add a waypoint

Adds a new waypoint to the cur-
rent UAVs path. It is necessary
to select a UAV to perform this
Depending on the con-
trol mode selected, this interaction
change its behavior:

action.

e Control mode “Mon-
itor”: It is not pos-
sible to add way-

points.
e Control mode “Add
waypoints”: The

waypoints added do
not change the pre-

vious UAVs flying
path.

° Control mode
“Manual”: The
waypoints added

define a new path.

With a UAV selected,
and the appropriate con-
trol mode set, click any
point in the Main Screen
to add a waypoint in that
position. Click anywhere
over the sea to create
Route waypoints. Click
over a refueling station
to create Refueling way-
points. Click over an air-
port to create Land (or re-
turn) waypoints.

Set waypoint posi-
tion

Set a new position for an existing
waypoint. It is necessary to select
a UAV to perform this interaction.
All the control modes are valid for
this interaction.

With a UAV selected,
drag any waypoint
across the Main Screen.

Increase waypoint
order

Increase by one the order of a way-
point. This interaction is not avail-
able for the first waypoint.

Select a specific waypoint
by clicking its associated
row in the Waypoints
Panel and pressing the
button Up.

Decrease waypoint
order

Decrease by one the order of a way-
point. This interaction is not avail-
able for the last waypoint.

Select a specific waypoint
by clicking its associated
row in the Waypoints
Panel and press the Down
button of the same table.

Remove waypoint

Remove a waypoint from the cur-
rent UAVs path.

Select a specific waypoint
by clicking its associated
row in the Waypoints
Panel and by pressing
the Remove button of the
same table.

Chapter 3. Design and Development of a lightweight multi-UAV simulator 42

TABLE 3.4: UAV interactions in DWR

Name Description How to perform it

Set UAVs speed Set the UAV speed. The new speed | Mouse click over the slider
value must be between the UAV | on the UAV control panel.
minimum and maximum speed val-
ues. It is necessary to select a UAV
to perform this action.

The server contains the logical core of the simulator. It is responsible for initializing
a new simulation every time a client asks for it, retrieve and process the mission data
loaded by the Data Entry Module (See Section 3.5.2), maintain and update the simula-
tion status, send it to the client periodically, process the user commands and store the
relevant information and events happened during the simulation time. The framework
used to implement the server is NodeJS [79], written in Javascript and highly supported

by the open source community.

The client (web browser) receives the simulation status sent by the server and is re-
sponsible for showing it on screen in real time. It is completely unconscious of the core
logic running in the server, and only knows how to display, graphically or textually, each
of the elements that compose the simulation status, according to the GUI described in
3.3. Moreover, the client is also responsible for catching the user interactions (keyboard
and mouse inputs), and sending the corresponding control commands to the server, that
will process them and change the simulation status appropriately. The client has been
implemented using multiple web-development frameworks: Phaser [80], to build the
main screen, and AngularJS [81], to manage the information and control panels (See

GUI description in 3.3).

Client-Server communication is achieved by the use of the Websockets communica-
tion protocol [82], which offers lower latency than HTTP, and is specially suitable for
real time data streams [83]. From a functional point of view, the architecture of this
simulator can be divided into 5 distinct modules, as shown in figure 3.16. Below are

described each of the 5 modules comprising DWR architecture.

Chapter 3. Design and Development of a lightweight multi-UAV simulator 43

simulation
Scenario snapshot |~ = = DSM [|--- Data
Mission plan I base
Incidents 1
Targets 1
Process SM

oo T > DEM Simulation
entry status (ss) !
aia I Process
: user input
i 1.Update ss !
1 GAME LOOP T |
Server c !
: i
i i
Websocket [:
. d 2.Send ss | CM
communication :
I 1
Client i 3.Paint ss E

F1GURE 3.16: Architecture diagram of the designed simulator. Each of the five distinct
modules (boxes) is located in its corresponding architecture level (client-server).

3.5.1 Simulation Module (SM)

The Simulation Module (SM) represents the functional core of the simulator and all
the elements that compose it. It runs entirely on the server, and it is responsible for
managing the Simulation Status and sending it to the client periodically. All simulation

elements described in 3.2 are managed by this module.

3.5.2 Data Entry Module (DEM)

The Data Entry Module is responsible for loading into the simulator all data necessary
to start the simulation of a mission (See data input in 3.2.2). It runs entirely on the
server side, called by the Simulation Module whenever an user connects to the simulator

web page.

Chapter 3. Design and Development of a lightweight multi-UAV simulator

44

— N
___ UAsINFO

UAVs I

Sensors

~—_

N; Flight fﬂ
ones
Airports

Y
N

UAS MISSION
INPUT

Y

Mission
Planner

- =3

r
|
|
|
|

e =y

Scenarios
N—"

FIGURE 3.17: General data flow (input/output) among the developed simulator
(DWR), and the Mission Planner utilized.

i
P

UAS MISSION
PLAN

Plans
J

SIMULATIONS

Although this module can load some test missions directly from Javascript Object No-

tation (JSON) files, normally the data source will be a set of databases implemented

using the Database Management System (DBMS) MongoDB [84]. These databases are

the same that uses the Mission Planner developed by Ramirez-Atencia et al. in [72-74],

and contain data concerned to the elements that compound a typical UAS. As shown

in figure 3.17, there are many databases from which the Data Entry Module loads the

input data:

e UAS Info: Contains the static information about the environment, which is shared

shared by all missions (No flight Zones, UAVs main features, Airports...).

o UAS Mission Input: Contains Mission Scenarios (See 3.2.2.1).

o UAS Mission Plan: Contains Mission Plans obtained by the Mission Planner (See

3.2.2.2).

Chapter 3. Design and Development of a lightweight multi-UAV simulator 45

3.5.3 Visualization Module (VM)

The Visualization Module is responsible for displaying, both graphically and textually,
the Simulation Status in real time. It runs entirely on the client side of the architecture
(i.e, the web browser). None of the simulation logic elements are contained in this
module, its behavior only consists in receiving the Simulation Status periodically (sent
by the Simulation Module) and displaying each of its elements in a proper screen or
panel. The layout designed for visualizing the simulation data is detailed in the GUI
section (See 3.3).

3.5.4 Control Module (CM)

The Control Module catches, sends and processes the different interactions that an oper-
ator performs during a simulation run. In accordance with the developed two-level game
architecture, this module establish a link between the two levels of the architecture, since
it catches the operator inputs (keyboard and mouse events) on the client side, transmits
them (via Websockets), and finally processes them on the server side, changing the sim-
ulation status appropriately. Section 3.4 details the different interactions recognized by

this module.

3.5.5 Data Storage Module (DSM)

The Data Storage Module (DSM) is responsible for storing all the necessary data from
the execution of a simulation. This module is essential for the purposes of this work,
since the data sets retrieved here serve as a starting point for the experimentation made
in the next chapter. To store the data, a MongoDB database is used (See Figure 3.17,
UAS SIMULATIONS). The data stored is event-organized as described in 3.2.3. Due
to this, this module works asynchronously as an event listener. Whenever an event
occurs during the simulation run, the DSM stores the simulation status in that moment,
taking a Simulation Snapshot. As was discussed before, the data obtained this way

represents a simulation robustly.

Chapter 4

Experimentation and Analysis of

Simulation Data

The purpose of this chapter is to show the experiments carried out using the simulator
DWR, in order to prove that this platform, and specially the data extracted from it, is
suitable to analyze the behavior and performance of UAV operators during a training

session.

First of all, the simulator will pass a load test to ensure that it is able to maintain
multiple users simultaneously. Then, the real experiments made for extracting data from
the simulator will be introduced, detailing the data source and the processes followed
to obtain it. Once we have a robust dataset, we will explain how the performance of a
user is evaluated and, based on this evaluation, how we create and group user profiles
in order to create clusters that indicate similar user behaviors. Finally, those clusters

will be analyzed and interpreted in the context of this experiment.

4.1 Software load test

The web architecture described in the previous chapter (See 3.5), and used to im-
plement DWR, is the basis for allowing a low-cost multi-UAV simulation environment,
where operators, and more generally, users, are able to train their monitoring, planning
and replanning skills without the need for a powerful machine or a specific software
installation (just a web-browser).

47

Chapter 4. Ezxperimentation and Analysis of Simulation Data 48

To ensure the proper functionality and scalability of the designed architecture, it is
necessary to carry out some load tests in each of the architecture levels (server, client,
communication). To test the client, some basic experiments have been made in order
to show that client requirements are very low, hence any modern computer can run and
visualize a simulation correctly. The simulator has been executed (i.e, accessed via web
browser) using different platforms (desktop and laptops), operative systems (Windows,
Linux, MacOS...) and HTML5-browsers (Chrome, Safari, Firefox, Internet Explorer).
All of them have run all the test missions designed for this experimentation (See 4.2),
performing a constant 30 Frames Per Second (FPS) rate. Smart-phones, tablets and

other mobile devices cannot execute the developed simulator.

In this section we focus on testing the server side of the architecture, evaluating its
capacity to host multiple simulations simultaneously. The server host machine, whose
specifications are showed in Table 4.1, is responsible for both serving the simulator web
GUI to the client (doing the works of a web server), and for maintaining a real-time
communication with it, sending the simulation status periodically. It also contains the
database that will store the simulation data retrieved by the Data Storage Module (See
3.5.5).

TABLE 4.1: Specifications of the server host machine used for the load test.

Parameter Description

CPU AMDG64 - 4 cores (1.6 GHz)
RAM 8 GB

oS Linux (Debian)

Instead of using real users for analyzing the server load, an automatic test-bed has been
created. This test-bed connects to the server, every 2 seconds, a new virtual player to a
total of 2000 players. Every time a new connection is received, the server begins to load,
process, and send data of a new simulation. Virtual players behave passively: They keep
the connection with the simulator opened, but they do not send control commands to
interact with it. This is the behavior that an operator would have if he only monitors

and observes a mission, without performing any interaction.

The mission loaded as input data for every simulation in this load test is the same. A

brief summary of the mission parameters is shown in Table 4.2. As it can be appreciated,

Chapter 4. Ezxperimentation and Analysis of Simulation Data 49

the complexity and load of this mission is low, since it only features one UAV performing

a unique Surveillance task to watch one target.

TABLE 4.2: Summary of the mission parameters used in the load test.

Parameter Value

Map dimensions 440x160Km
UAVs 1

Targets 1

Incidents 2

Surveillance Tasks 1

Planned waypoints 11

No flight Zones 1

Refueling Stations 1

Planned Refueling Actions 2

In order to analyze the server, a performance profiler is used. This profiler measures
the status of several server components at one minute intervals. In this test, the following

metrics are taken into account:

1. Number of players: This metric is taken from the amount of simultaneous connec-

tions kept by the server at a specific time (See Figure 4.1, players).

2. CPU Time: It measures, in milliseconds, how much CPU time has been consumed
by the server during the minute in which this metric was taken. The maximum
possible value is 60000 ms, which means that the server has consumed the whole

CPU time during a specific minute (See Figure 4.1, CPU time).

3. Use of Memory: It measures, in M B, the amount of RAM used by the server

during the minute in which the metric was taken (See Figure 4.1, memory).

The results of this test are shown graphically in Figure 4.1. From these results, three

server states can be distinguished:

1. Light Load State: In this state, the server use of memory keeps constantly low,
because the amount of data processed in each of the connections (simulations) is

not too high. However, increasing the number of players affects directly to the

Chapter 4. Ezxperimentation and Analysis of Simulation Data 50

5 Server load
8. 8,8,
9 g3 CPU Time
o o
S o 8
— 8 —
04
o
o | ™ o
o (@I
] Lo
© olo- <V
- wn
S E |
< 3 g time
>
s E &
52 ©
= 0
@)

FIGURE 4.1: Metric comparison for analyzing the server load versus the number of
users connected to the simulator DWR

CPU time metric, which reaches its maximum value (60000 ms) shortly before

connecting 500 players (See Figure 4.1, green area).

Heavy Load State: When the CPU time metric reaches its maximum value, the
arrival of new players (connections) requires an increasing in the use of mem-
ory in order to host, load an process the simulation of each connection. During
this state, the process of updating the simulation status begins to suffer some de-
lays, causing an increase in the response time to the client (See Figure 4.1, yellow

area).

Saturation State: When the server hosts around 1000 connected virtual players, the
CPU collapses and the large increase on the use of memory result in an excessive
delay in the computing of each simulation, and an inability to maintain some player
connections. Therefore, as it can be appreciated, some connections are closed, and
the server response time is too high to offer a real-time communication (See Figure

4.1, red area).

The three server states obtained by this load test suggest that it would be necessary

to enable a second server to host simulations when the amount of users connected

Chapter 4. Ezxperimentation and Analysis of Simulation Data 51

simultaneously gets close to 1000 users. Thanks to the high portability of the designed
architecture, this could be done quite easily. However, in the experiments carried out in
this work, and described in the following sections, a unique server was enough to host

all users correctly.

4.2 Experimental dataset

Once we have ensured that the designed simulator architecture is valid for being used
by hundreds of users simultaneously, the next step is to use the simulator with real
users, in order to extract knowledge about their behavior in a multi-UAV simulation

environment.

For this purpose, the simulator was deployed into a server located at Autonomous Uni-
versity of Madrid (UAM), with the system specifications detailed in Table 4.1. The
testers of the simulator were Computer Engineering students of the same university
(UAM), all of them coursing the last year of the degree. Although the experiment was
conducted in two different days, all users received the same tutorial before using the sim-
ulator, so, a priori, it makes no sense to distinguish the students by the day when they

were tested. All data extracted during these two days is therefore treated uniformly.

The experiment was conducted as follows: for each of the days, the students (testers)
were given a brief explanation about: the basic concepts of multi-UAV missions, the goal
they had to reach using the simulator, and the list of all possible interactions they were
able to perform during a simulation. At the same time, since each student had a personal
computer, they were asked to access the simulator web page and follow the tutorial by
their own, to get a better understanding of the GUI and the controls. When the tutorial

ended, they were asked to use the simulator freely during 30 minutes approximately.

When a user entered the simulator web page, he did not start a simulation immediately

but was prompted with a mission selection screen, as shown in Figure 4.2.

This screen shows, for each available mission, a brief summary of the mission content
(Number of targets, UAVs, no flight zones...) and a little description explaining the goal

of the mission. Table 4.3 summarizes the main features for each of the 4 test missions

Chapter 4. Experimentation and Analysis of Simulation Data 52

Drone Watch & Rescue Home Mission Simulator

Mission Simulator

Select a mission from this table to be executed by the simulator

ID Objectives UAVs No Flight Zones Test
testMission01 1 1 2 true
testMission02 1 1 1 true
#| testMission03 4 3 3 true
testMission04 4 3 3 true

Description: This test mission features three different UAVs performing Survsillance tasks to detsct multipls targsts in multiple areas. Each drone starts with a preloaded flight-plan

The mission presents several incidents during the simulation, affecting both the environment and the drones involved in it

Mission plan

testMission03 -

SIMULATE THE MISSION PLAN!

FI1GURE 4.2: Mission Selection Screen prompted to the students taking part in the
experiment conducted for this work

designed for this experiment. As it can be appreciated, there is an increasing order in

terms of the challenge that suppose a mission:

1. TestMission01: This test mission features one UAV performing one Surveillance
task. It starts with a pre-loaded Mission Plan and presents several incidents during

the simulation (See Figure 4.3).

2. TestMission02: This mission is similar to TestMission01 except for the Mission

Scenario (See Figure 4.4).

3. TestMission03: This test mission features three different UAVs performing Surveil-
lance tasks to detect multiple targets in multiple areas. Each UAV begins with
a preloaded flight-plan. The mission presents several incidents during the simu-
lation, affecting both the environment and the UAVs involved in it (See Figure

45).

4. TestMission04: This test mission loads exactly the same Mission Scenario, In-

cidents Plan and Targets Definition as TestMission03. The main difference lies

Chapter 4. Ezxperimentation and Analysis of Simulation Data 53

TABLE 4.3: Specification summary for the test missions (T.M) designed in the experi-

ment.

T.M.01 T.M.02 T.M.03 T.M.04
1D 0 1 3 4
Map extension (Km) | 4402160 4302500 8002500 8002500
UAVs 1 1 3 3
Tasks 1 1 4 0
Targets 1 1 4 4
Incidents 2 2 4 4
No Flight Zones 1 2 4 4
Refueling Stations 1 3 4 4

in the fact that there is no pre-loaded Mission Plan, hence the operator
must plan each UAV manually before starting the simulation (See Figure

4.5).

The dataset resulted of extracting data from this experiments is composed of 127 dis-
tinct simulations, played by a total of 27 users. This is a great amount of data if
we take into account that the conducted experiments were simple and relatively short
in terms of duration. This fact proves the potential of the developed simulator when

trying to collect data massively.

Before starting the user performance analysis, it is interesting to analyze if the users have
generally used the simulator progressively. To do this, we must check the order in which
the students have run the four available test missions. Figure 4.6 shows the evolution
of the 27 users in the dataset. Each user is identified by the day when he participated
in the experiment (05 or 07, corresponding to the fifth and seventh of November) plus

the three last digits of the IP address from the computer he/she was using.

As can be appreciated, the general trend for the users that have run more than one
simulation is to go from the first two missions (TestMission 01,02), which served as a
tutorial during the experiment, to the last ones (TestMission 03-04), which were played

when the students used the simulator freely.

In order to achieve a robust analysis of the data extracted, we must clean the dataset

by removing those simulations which can be considered as useless. Since the simulator

Chapter 4. Experimentation and Analysis of Simulation Data 54

FIGURE 4.3: Test Mission 01 screenshot.

is running in a web-environment, a user can “restart” (or abort) a mission simulation
by doing a page refresh in his web browser. Due to that, we must remove from the
dataset those simulation which have been aborted prematurely. In this work, we
consider that a simulation is useless if it has been aborted before 20 seconds. From the
127 simulations composing our students dataset, only 102 of them are considered useful

simulations, and will be used in the data analysis process.

4.3 User performance metrics

The main goal of this experimentation is to analyze the user performance when running
missions in the designed simulator. That lead us to the necessity of defining a way to

measure the performance of a user in a specific simulation.

Chapter 4. Experimentation and Analysis of Simulation Data 55

FIGURE 4.4: Test Mission 02 screenshot.

To achieve this, five performance metrics have been defined: Agility (A), Consumption
(C), Score (S), Attention (At) and Precision (P). All of them are numeric values in the
range [0, 1], where 0 represents the worst performance for that metric, and 1 represents
the best. It is remarkable that the metrics have been designed so that none of them is

dependent of some other. Below are detailed the implementation of each of the metrics.

4.3.1 Agility

Agility (A) measures the average speed with which the user has interacted with the
simulator. All interactions defined in Section 3.4 are taken into account. Let I(s) the
set of interactions performed during a given simulation s, the Agility metric is computed

as:

Z simulationSpeed (i)
i€l(s) MAX_SPEED (4 1)

[1(s)]
where MAX _SPEFED = 1000 and simulationSpeed(i) gives the speed in which the sim-

A(s) =

ulation was running in the moment when the interaction ¢ was made. As was explained

in Section 3.4, the user can manipulate the simulation speed using a slider, giving values

Chapter 4. Experimentation and Analysis of Simulation Data 56

FIGURE 4.5: Test Mission 03-04 screenshot. Note that these two missions share the
same Mission Scenario

from 1 to 1000. A user is considered agile if he can interact when things are happening

fast.

Figure 4.7 shows the distribution of this metric on the students dataset (removing useless
simulations). As can be seen, the metric tends to obtain low values in this
dataset, which means that the students have usually run the simulator slowly and
carefully. This makes sense when taking into account the fact that the students are
novice users, using the simulator for the first time. Therefore, when analyzing user
performances, a high agility value (higher than the mean, which is 0.29) should be

considered as discriminating.

4.3.2 Consumption

The Consumption metric measures the fuel consumed throughout the simulation time.
Given a specific instant (also called snapshot) sh of a simulation s, we can compute the

global remaining fuel (rf) at that instant as

rf(s,sh) = Z rf(u,sh) + Z rf(r,sh) (4.2)

ueU(s) reR(s)

Chapter 4. Ezxperimentation and Analysis of Simulation Data 57

< - 05_112 <« - 05_113 <« - 05 117 <« - 05 118 < _0&605 119
™ —Joe ™ ™ - m - o -
~ o~ o~ o~ ~
- - - - - — - - - -
D e B A e S B N B s e B s e B A D e B B
2 6 10 2 6 10 2 6 10 2 6 10 2 6 10
< - 05_121 “ - 05_122 “ - 05 123 “ - 05_125 < - 05_127
® - ™ - o - ™ - ™ -
N - N - N - N - N -
- - - — - — - — - —
e o e e o e e o S T T e o e e
2 6 10 2 6 10 2 6 10 2 6 10 2 6 10
<« - 05_128 < - 05_129 “« - 05_130 <« - 05_131 <« - 05_134
™ ™ ™ - m - o -
o~ o~ o~ o~ ~
8 - — - — - — - — - —
% o — o — o — o — o —
@® LI B I B LI B I B LI B I B T T T T T T T T
Q 2 6 10 2 6 10 2 6 10 2 6 10 2 6 10
g 05_135 05_136 07_109 07 110 07_112
a < < < oo < <
7)) ™ - ™ - ™ - o ™ -
S o« A ~ ~ ~ ~ _/v
- — - — - — - — - —
o - o - o - o 4 o -
LI B I B LI B I B LI B I B LI B I B L B I B
2 6 10 2 6 10 2 6 10 2 6 10 2 6 10
07_115 07_116 07_118 07_119 07 124
< < < < < -
™ ™ ™ - m - o - ;
~ - ~ - ~ - ~ - ~ A
- - - — - — - - - —
o 4 o - o o o

2 6 10 2 6 10 2 6 10 2 6 10 2 6 10
07 _125 07 _127
< <
[™ -
N - N -
— —jo-o — —
e o e e i o e e
2 6 10 2 6 10

Simulation Count

FIGURE 4.6: Evolution of the test missions played per user. ID(TM01)=0,
ID(TM02)=1, ID(TM03)=3, ID(TM04)=4

where U (s) is the set of UAVs participating in the simulation s and R(s) is the set of
refueling stations taking part in the Mission Scenario of simulation s. The remaining
fuel value for both UAVs and refueling stations can be retrieved from the information
contained in the simulation snapshots taken during a simulation. When a UAV wu is
destroyed during the simulation, it is considered that 7 f(u, sh) = 0 for every instant sh

after the UAV destruction.

To calculate the consumption over a simulation s, we compare the remaining fuel at the
end of the simulation (last snapshot, or [Sh) with that at the beginning (first snapshot,

or fSh):
7 f(s,1Sh(s))
O = s, Fon(s)) (43)

Chapter 4. Ezxperimentation and Analysis of Simulation Data 58

1.00 -

0.75 -

0.25-

0.00 -

I I
0.00 0.25 0.50 0.75 1.00
agility

FIGURE 4.7: Density distribution for the metric Agility. The dashed line represents
the mean value.

High values of this metric indicate that the remaining fuel at the end of the mission is
high, so the consumption is considered low. On the other hand, low values mean high

consumption rate.

Unlike the case of the Agility metric, Figure 4.8 shows how the distribution of the
Consumption metric for the dataset used in this experiment tends to concentrate on
very high values, obtaining a mean value of 0.848. This could lead us to conclude that
the users usually make a good use of the resources available in a mission, but this seems

confusing providing that the dataset is entirely composed of novice users in the field.

If we analyze deeper the consumption equation defined in Equation 4.3, we see that the
value obtained is inversely proportional to the duration of the simulation. Short
missions will likely obtain high consumption rates, and viceversa. Since a simulation can
be aborted at any time by the user, we can conclude that this metric distribution is really
indicating that users in this dataset have generally run short simulations, prob-
ably because they were inside a trial and error process in which the mission objectives

were not taken into account.

Chapter 4. Ezxperimentation and Analysis of Simulation Data 59

1.00 -

0.75 -

0.25-

0.00 -

0.6 0.8 1.0
consumption

FIGURE 4.8: Density distribution for the Consumption metric. The dashed line repre-
sents the mean value.

However, in terms of the general information that a variable is potentially able to offer
for ranking and grouping users, this metrics performs the worst values of all, since it

features an extremely low variance (0.01812) and a short range of values ([0.43,1.00]).

4.3.3 Score

The Score (S) metric gives a global success/failure rate of a simulation. As was discussed
in Section 3.2, the main goal for a user (operator) monitoring a simulation in DWR is
to capture the maximum number of targets, minimizing the resources consumed and
returning all UAVs to an airport at the end of the mission. Given that, we can divide

the general goal into 3 sub-goals:

1. Detecting targets.
2. Minimizing resource loss.

3. Returning the UAVs to an airport to finish the mission.

Chapter 4. Ezxperimentation and Analysis of Simulation Data

60
Based on this description, we define the score of a simulation s as:
S(s) = 1 [[targetsDetected(s)| N <1 B]destroyedUAVs(s)\)
3 T(s)| U (s)]
UAVsInBase(s,lSh(s))

(4.4)
[U(s)]] ’

where U(s) is the set of UAVs participating in the mission and 7'(s) the set of mission

targets. Note that UAV sInBase(s,lSh(s)) queries how many UAVs were positioned on

an airport at the last instant (last snapshot [Sh) of the simulation.

1.00 -

0.75 -

scaled
o
(e
o
1

0.25-

0.00 -

1 1
0.50 0.75
score

FI1GURE 4.9: Density distribution for the Score metric. The dashed line represents the
mean value.

Figure 4.9 proves that the Score metric obtains a well-balanced density distribution
for our dataset. This means that there is not a general tendency for this metric, and

therefore it can be used robustly to compare the user performance in a general way.

Chapter 4. Ezxperimentation and Analysis of Simulation Data 61

TABLE 4.4: Statistics summary for the metrics defined in the analysis.

Metric Min. 1st Qu. | Median | Mean 3rd Max. | Var.
Qu.
Agility 0.00100| 0.06777 | 0.24560 | 0.28890 | 0.44170 | 0.97920| 0.06359

Consumption| 0.4307 | 0.7847 0.8728 0.8486 0.9620 1.0000 | 0.01812

Score 0.0000 | 0.1806 0.3333 0.4025 0.5556 1.0000 | 0.08684

Attention 0.2929 | 0.7226 0.8143 0.7657 0.8737 0.9219 | 0.02157

Precision 0.02083| 0.04762 | 0.18330 | 0.36620 | 0.50000 | 1.00000| 0.13691
(Missions
1-2-3)

Precision 0.01351] 0.01887 | 0.03333 | 0.16670 | 0.29170 | 1.00000| 0.07215
(Mission 4)

4.3.4 Attention

The Attention (At) metric rates globally the user intensity in terms of the interactions

he has performed during a simulation. Given a simulation s, the Attention is defined as:

1
At(s) =1 — ————— (4.5)
L+ /[1(s)]
where I(s) is the set of all interactions performed during simulation s. A square root is

introduced in the equation in order to avoid a fast convergence to 1.

The density distribution of the Attention metric, showed in Figure 4.10, shows a general
tendency very close the Consumption distribution. The mean value is close to 1, and
the minimum is located at 0.29. This means that this metric will result useless in terms
of ranking and grouping users, since the range of values it takes ([0.29,0.92]) is short

and its variance (0.02157) is too low.

4.3.5 Precision

The Precision (P) metric measures the replanning skills of a user on a simulation, rating
how he has reacted to the mission incidents. The design of this metric is based in the
following assumption: A precise operator should only perform replanning interactions
(add/edit/remove waypoints) when an incident occurs. Therefore, the waypoints added

when no incident has happened should penalize the precision rate. Based on this, we

Chapter 4. Ezxperimentation and Analysis of Simulation Data 62

1.00 -

0.75 -

0.25-

0.00 -

I
0.4 0.6 0.8
attention

FIGURE 4.10: Density distribution for the Attention metric. The dashed line represents
the mean value.

can divide the precision computation into two parts: The precision in times of incidents
(Incident Precision, Pr) and the precision when nothing is altering the simulation, i.e,

the operator must only monitor the simulation status (Monitoring Precision, Pyy).

. Pr+ Py

P(s) 5

(4.6)

The Incident Precision, Pr, supposes that every waypoint added/edited /removed during
a specific interval time (10 seconds for this experiment) since the beginning of an incident
is placed in order to avoid that incident, so it is considered as a precise interaction. Let
In(s) be the set of incidents happened during the simulation s, we can compute a

incident precision average as follows:

Zieln(s) pf(i7 5)
Pr(s) = (4.7)
[In(s)]
, where p;(i, s) gives the precision for an specific incident i, computed as:
. 1
pr(i,s) =1— (4.8)

L+ [W(s)

Chapter 4. Ezxperimentation and Analysis of Simulation Data 63

In this last equation, W;(s) is the set of all waypoint interactions (add/edit/remove)
performed since the incident ¢ started until 10 seconds after (i.e, interactions within the
interval [startTime(i), startTime(i) + 10]). The more waypoints are changed during

that interval, the more the precision increases for that incident.

The Monitoring Precision, Py, is conceptually contrary to the Incident Precision, in
the sense that it penalizes the waypoint interactions performed during monitoring time,

so the less interactions here, the more precision obtained. It is computed as

1

Pu(s) = O

(4.9)

where Wj(s) is the set of all waypoint interactions performed during monitoring time.
This can be seen as the complementary of all waypoint interactions made to avoid
incidents, i.e:

Wa(s)= | Wi(s) (4.10)

i€ln(s)

To analyze the distribution of this metric, we must note that in our dataset, de-
tailed in Section 4.2, there are two type of missions: Replanning missions (TestMis-
sion01, TestMission02, TestMission03), in which the UAVs started with a pre-loaded Mis-
sion Plan, and Planning Missions (TestMission04), in which the user had to build a
Mission Plan from scratch at the beginning of the simulation. The reason why we must
divide the precision metric depending on the type of mission is that, in the case of plan-
ning missions, the user is forced to add/edit/remove waypoints in order to design a valid
Mission Plan, so the incident/monitoring precision cannot be evaluated in the same way
we evaluate a replanning mission, where, a priori, an operator is asked to act only when

it is needed.

Figure 4.11 compares the distribution of the Precision metric for these two type of
missions in the dataset. Obviously, the values for the planning mission are lower than
the same for replanning missions, but still, the last are not too high (The mean value is
0.3662). This indicates clearly that the users in this experiment are not expert in the
field, since they have made lot of replanning interactions when nothing happened, which

can be very costly in the real world.

Although the Precision metric has been designed focused on replanning missions, it can

also give secondary information about skills in planning missions. On the one hand,

Chapter 4. Experimentation and Analysis of Simulation Data 64

scaled

1.00 - 1

0.75 -

0.50 -

replanning

0.25-

0.00 -

1
0.00 0.25 0.50 0.75 1.00
precision

FIGURE 4.11: Density distribution for the Precision metric, comparing the results in
replanning missions against the results in planning missions. The dashed lines represent
mean values.

lower values of precision indicate that the operator (user) has designed a complex and

efficient Mission Plan, good enough to avoid some incidents only by the way it was built.

On the other hand, medium /high values of precision here may tell us that the user has

designed a poor initial plan and he has needed to make lot of changes to it during the

simulation time.

4.4 Experimental Setup

As was introduced at the beginning of this chapter, the final goal of the experimentation

made in this work is to detect and analyze performance patterns among operators using

the developed simulator, DWR.

The performance profile of a simulation s is defined by the tuple:

PPr(s) = (A(s), C(s), S(s), At(s), P(s)),

Chapter 4. Ezxperimentation and Analysis of Simulation Data 65

and based on that, we can define, for a given user u, the user performance profile,

UPP(u), as tuple obtain averaging all its performance profiles, i.e:

UPP(u) = Zsejgzjfr(s) (4.11)

where S(u) is the set of simulations executed by user w.

Computing UPP(u) for all users in our dataset results in a 5-dimensional metric space,
on which we can apply clustering methods to group together users which have similar
performance profiles. Since the test missions designed for this experiment are divided in
two types (replanning, planning), we must compute two different performance profiles
for each user u, defined as UPPg(u), in the case of replanning, and UPPp(u), in the

case of planning:

EsesR(u) PPr(s)
|Sr(u)l 7

ZSESP(U) PPT(S)

UPPatu) = Sp(]

UPPP(’U,) =

S(u) = SR(U)USP(U)
(4.12)

To extract the similar User Performance Profiles (UPP), we make use of five clustering
algorithms from the state of the art: Hierarchical, K-means, DIANA, Model-based clus-
tering and PAM. All of them are tested against both the set of observations UP Pgr(U)
and UPPp(U), where U is the set of distinct users in our dataset.

For internal validation of the User Performance Profile groups, we selected three vali-
dation measures from the state of the art that reflect the compactness, connectedness,

and separation of the cluster partitions:

e Connectivity: Returns a value between zero and oo and should be minimized.
e Dunn index: Lies in the interval [—1,1] and should be maximized.

o Silhouette width: Returns a value between zero and oo and should be maximized.

All these clustering algorithms are tested using Cluster k values from 2