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“Ambition is the path to success. Persistence is the vehicle you arrive in.”

Bill Bradley





Abstract

Escuela Politécnica Superior

Departamento de Ingenieŕıa Informática

Master on Research and Innovation in Information and Communication Technologies

by Vı́ctor Rodŕıguez Fernández

This Master Thesis 1 presents the design and development of a computer simulator created for

executing and supervising missions carried out by multiple Unmanned Aerial Vehicles (UAVs).

The aim of this simulator is to provide an open, simple and accessible environment to train

and analyze the performance and evolution of low-experienced human operators supervising and

controlling a team of UAVs.

This work is divided into two parts. The first one is focused on describing the simulator mech-

anisms and architecture. To accomplish the required accessibility of this tool for novice users,

the simulator has been implemented following a web architecture, where only a web browser is

needed to execute it. Also, in order to engage and challenge the operator, some gamification

elements have been added, bringing the simulation closer to a videogame experience.

The second part of this work uses the developed simulator to carry out several experiments

with novice users. A set of performance metrics is designed to define the profile of a user, and

based on those profiles, we run and validate some clustering algorithms to obtain groups of users

with common performance profiles. These results are analyzed to extract behavioral patterns

that distinguish and rank the different users in the experiment, allowing the identification and

selection of potential expert operators.

Keywords
Unmanned Aerial Vehicles, Human-Robot Interaction, Computer-based Simulation, HTML5,

Web, Videogames, Performance metrics, Clustering, Behavioral patterns

1This work has been funded by Airbus Defence & Space (SAVIER Project: FUAM-076914)

http://www.uam.es
http://www.eps.uam.es/
http://www.uam.es/ss/Satellite/EscuelaPolitecnica/es/departamentos-3/departamentos-2/Page/subhome/ingenieria-informatica.htm




Resumen

Escuela Politécnica Superior

Departamento de Ingenieŕıa Informática

Máster en Investigación e Innovación de las Tecnoloǵıas de la Información y las Comunicaciones

por Vı́ctor Rodŕıguez Fernández

El presente Trabajo Fin de Máster 2 presenta el diseño y desarrollo de un simulador creado

con el fin de ejecutar y supervisar misiones llevadas a cabo por múltiples Veh́ıculos Aéreos no

Tripulados (UAVs). El objetivo de este simulador es ofrecer un entorno simple y accesible donde

entrenar y analizar el rendimiento y la evolución de operadores inexpertos mientras supervisan

y controlan un equipo de UAVs.

Este trabajo se divide en dos partes. La primera está enfocada en describir el funcionamiento

del simulador y su arquitectura. Para lograr la accesibilidad que esta herramienta requiere de

cara a usuarios inexpertos, el simulador ha sido implementado siguiendo una arquitectura web,

donde sólamente se requiere un navegador web para ejecutarlo. Además, para atraer y retar al

operador, se han introducido algunos elementos de gamificación, que acercan este simulador a

una experiencia propia del mundo de los videojuegos.

La segunda parte del trabajo se basa en el simulador desarrollado para llevar a cabo varios exper-

imentos con usuarios inexpertos. Se ha diseñado un conjunto de métricas de rendimiento con las

cuales se define el perfil de un usuario. Usando estos perfiles, se ejecutan y validan algoritmos de

clustering para obtener grupos de usuarios con perfiles de rendimiento comunes. Los resultados

se analizan de cara a extraer patrones de comportamiento que distingan a los diferentes usuarios

del experimento, permitiendo la identificación y selección de operadores expertos potenciales.

Palabras Clave
Sistemas Aéreos no tripulados, Interacción humano-robot, Simulación por computadora,

HTML5, Web, Métricas de rendimiento, Clustering, Patrones de comportamiento
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Chapter 1

Introduction

1.1 Motivation

The study of Unmanned Air Vehicles (UAVs) is currently a growing area. These new

technologies offer many potential applications in multiple fields such as infrastructure

inspection, monitoring coastal zones, traffic and disaster management, agriculture and

forestry among others [1–4].

The use of UAVs, and unmanned systems, require the supervision of one or many human

operators, responsible for monitoring the mission status continously and avoiding the

possible incidents that might alter the execution and success of the operation. The work

of these operators is extremely critical due to the high costs involving any UAV mission,

both financial and human. Thus, lot of research in the field of human factors, and more

specifically, in Human Supervisory Control (HSC) and Human-Robot Interaction (HRI)

systems, have been carried out, in order to understand and improve the performance of

these operators [5].

One of the key aspects in the field of HRI is the use of computer simulators, and their

extension into videogames. There are at least three motivations for robot simulators,

that apply to the world of Unmanned Aircraft Systems (UASs). One is the role of

simulators in adoption of new technology, in this case the UAV, another is their potential

for low-cost operator training, and finally their utility in research [6].

1



Chapter 1. Introduction 2

In recent years, two topics are emerging in relation to the study of UAS. One is the effort

to design systems such that the current many-to-one ratio of operators to vehicles can

be inverted, so that a single operator can control multiple UAVs. The other is related

to the fact that accelerated UAS evolution has now outpaced current operator training

regimens, leading to a shortage of qualified UAS pilots. Due to this, it is necessary to

re-design the current intensive training process to meet that demand, making the UAV

operations more accessible and available for a less limited pool of individuals, which may

include, for example, high-skilled video-game players [7].

This work is focused on the design and development of a computer simulator that allows

an operator to supervise and control the execution of a search and rescue mission carried

out by a fleet of multiple UAVs. The goal of this simulator will be training and selecting

inexperienced users in the world of the UAS, and thus, it will have the simplicity and

accessibility typical from videogames.

Besides, the simulator will extract data from the operator interactions, allowing the

measurement and analysis of the user performance and evolution. This performance

data will be used to extract behavioral patterns among users, which could be used to

select potential UAS operators.

1.2 Objectives

The aim of this project can be divided into two clearly distinguishable parts:

1. Development of a lightweight multi-UAV simulator : In this part of the work, there

are many milestones that shall be accomplished:

• To study of the state of the art in the development of computer simulator

for flight systems, both manned and unmanned. We must focus in those

simulators and videogames which allow an easy and quick understanding of

the simulation concept and are suitable for beginners.

• To choose the best software architecture, following the criteria of accessibility

and ease of use.

• To design a robust and complete set of input and output data.
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• To design a set of gamification elements that challenge the operator and bring

the simulator closer to the field of videogames.

• To define a set of operator controls for supervising and controlling the simu-

lation.

• To design a simple and user-friendly Graphical User Interface (GUI) to show

the execution of a simulation.

• To implement the simulator using the selected architecture.

• To test the simulator against hundreds of simultaneous users and to deploy

it.

2. Measurement and Analysis of the novice user performance using the simulation

data: Once we have designed, implemented and deployed the simulator as required

above, we will carry out an experiment to prove its value for training and selecting

inexperienced users. To achieve this, the following milestones will be accomplished:

• To study the related work in the performance measurement in HRI systems,

and the techniques to analyze and discover patterns from user activities.

• To create a simulations dataset testing the simulator with a group of novice

users.

• To design a set of metrics that will define the performance in our simulator.

• To use valid data mining techniques for extracting common groups of users,

given its performance. Those groups will be analyzed to extract conclusions

about the behavioral patterns in the dataset and the value of each group of

users.

1.3 Document structure

This document is structured as follows: Chapter 2 reviews the state of the art in the

aforementioned topics of UAV simulators and performance analysis on UAS operators.

Then, Chapter 3 describes the simulator developed for this work, detailing its architec-

ture, main elements, input and output data. In Chapter 4 we test the simulator and

use it in a experiment with novice users. The entire process followed in the experiment
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is detailed, including the dataset, the design of performance metrics, the use and vali-

dation of clustering techniques over the data and the analysis of the experiment results.

Finally, Chapter 5 presents the conclusions and future lines of research.



Chapter 2

Related Work

In this chapter, we introduce a state of the art on UAV Mission Simulators (UMSs),

focusing on their main features, objectives, complexity and accessibility.

2.1 UAV Simulators

Computer simulations, and their extension into videogames, of Unmanned Systems

(USs) are an emerging topic. There are at least three motivations for these type of

simulators. One is the role of simulators in adoption of new technology, another is their

potential for low cost training, and finally their utility in research. The four critera used

to jugde the quality of any virtual simulator are defined in [8]:

1. Physical Fidelity : It can be described as the extent to which the virtual environ-

ment emulates the real world. A simulator with high physical fidelity is able to

render the environment with high resolution textures, shaders, lighting, reflection,

and bump mapping. A low physical fidelity simulator uses 2D rendering and no

sound is required.

2. Functional Fidelity : The degree to which the simulation acts like the operational

equipment in reacting to the tasks executed by the trainee. High functional fi-

delity is defined as the simulation of most of the forces acting on a vehicle and

its actuators including gravity, drag, and accelerations from motors and collisions

5
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on specific elements of the vehicle. A low functional fidelity simulator does not

simulate forces applied to the vehicle but only velocities or absolute position.

3. Ease of Development : It is defined by how easy/difficult the simulator can be

modified, and the available documentation from the author.

4. Cost : For a simulator to be useful it must not be time consuming to install or run

and accessible in terms of initial monetary cost for both the developer and end

user. The simulator developed in this work is focused on maximizing this criteria.

In [6], Craighead et al. survey multiple US simulators, both commercial and open-source,

and provide a subjective rating of capabilities in terms of physical fidelity, functional

fidelity, ease of use, and cost. For the purposes of this work, we focus only on those

rated as “Low” in the Cost criteria. Table 2.1 summarizes the rating results of the

aforementioned “Low cost” US Simulators:

• FlightGear : FlightGear [9] is a 3D open source simulator, very realistic and focused

on simulating the flight of a single aircraft vehicle. It is available as a free download

under GPL license. The entire source code is available for modification and is

under constant development. The application runs on Windows, Mac, and Linux

operating systems. It has been used for various academic projects. For example,

Summers, et al. in [10] used FlightGear to simulate a UAV carrying environmental

sensors and Cervin, et al. in [11] used FlightGear to create an interface for a real

UAV.

• Simbad : Simbad [12] is a Java 3D robot simulator for scientific and educational

purposes. It is mainly dedicated to researchers/programmers who want a simple

basis for studying Situated Artificial Intelligence, Machine Learning, and more

generally AI algorithms, in the context of Autonomous Robotics and Autonomous

Agents. It is not intended to provide a real world simulation and is kept voluntarily

readable and simple.

• SimRobot : SimRobot [13] is a physics based robot simulator with a 3D OpenGL

based display. Several sensor types are supported, including cameras, range sen-

sors, touch sensors, and actuator state. It was used by the German team for the

2005 RoboCup competition [14].
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Table 2.1: A comparison of available Low-Cost Unmanned Vehicle Simulators.

Simulator Physical Fi-
delity

Functional
Fidelity

Ease of De-
velopment

Cost

FlightGear High Medium Medium Low

Simbad Medium Low Medium Low

SimRobot Medium Low Medium Low

Analyzing the simulators detailed above, it is appreciable that the Functional Fidelity

rating for all of them is not high, thus we cannot use them to easily analyze human

control over them. Also, none of them focuses on the field of UAVs purely, but cover

general unmanned robots or aircrafts instead. This is because at the time when these

simulators were released, UAVs did not have as much importance as now.

Recently, the rapidly increasing interest in UAVs has caused that they are no longer

part of a flight simulator or a type of robot in a general robot simulator. Small/micro

UAVs have become applicable in civilian circumstances like remote sensing, mapping,

traffic monitoring, search and rescue, etc. They are expendable, easy to be built and

operated. Most of them can be operated by one or two people, or even be hand-carried

and hand-launched [15, 16]. This has caused a large increase in the development of the

so-called Autopilots.

Autopilots are systems to guide the UAVs in flight with no assistance from human oper-

ators, consisting of both hardware and its supporting software. In [17], both commercial

and research autopilot systems for small UAVs are reviewed and discussed in detail.

Since this work is not emphasized on hardware, the most remarkable autopilot from

that survey, in terms of software development, is Paparazzi.

Paparazzi [18] is an open-source project, very popular among researchers, highlighted

by offering good flexibility and ease to modify the autopilot based on own requirements

(High “Ease of development” rate, following the criteria of [8]). For the software, it

achieves waypoints tracking, auto-takeoff and landing, and altitude hold. Figure 2.1

shows how this software tries to imitate a real Ground Control Station (GCS). A dis-

advantage of Paparazzi (and more generally, of all autopilots surveyed in [17]), is the

lack of support for cooperative control functions, required for some large area tasks that

need multiple UAVs to perform them.
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Figure 2.1: Paparazzi GCS. The Paparazzi Ground Control Station is the heart of
the system and the user’s primary interaction interface.

2.1.1 Multi-UAV Simulators

The increasing demand and complexity of UAV applications has brought into focus

several challenges associated with multiple UAVs [19]. Although several researchers

have done quite some experiments in this topic [20–22], few research-focused simulators

or autopilots have true multi-UAV functions built in.

The main research line concerned to the study of multi-UAV systems focuses on mod-

elling the problem as a Multi-agent system. Thus, most multi-UAV simulators are used

only as testbeds for cooperative models and algorithms. In [23], the commercially avail-

able X-Plane flight simulator (rated in the survey described above in [6]), together with

MATLAB, are used to create a simulator framework for studying multi-UAV control

algorithms. Likewise, in 2014, Pujol et al. developed MAS-Planes [24],a Multi-Agent

Simulation Environment to investigate decentralized coordination for teams of UAVs.

As can be seen, the operator interactions in this type of simulators takes second place.
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However, recent works from Massachusetts Institute of Technology (MIT) [25–28] have

studied and modeled the operator’s behavior while using a simulator called RESCHU

(Research Environment for Supervisory Control of Heterogeneous Unmanned Vehicles).

In that simulator, the user gives commands to a relatively small number of UAVs and

Unmanned Underwater Vehicles (UUVs), guiding them to stationary ground targets

while avoiding hazard areas. It has been developed in Java, and the source code can be

requested to the Human Automation Lab in MIT. In fact, some other works like [29]

have customed and extended RESCHU to allow Manned-Unmanned Teaming (MUT)

researches.

Other research lines around the field of multi-UAV simulations include the study of the

best interface or set of interfaces for the operator to monitor the status of all UAVs.

Related to this, the company Silicon Valley Simulation, specialized in real time visual

simulation since 1996, has developed MUSIM (Multiple UAV Simulation) [30]), a flexible

and modular UAV simulation environment used for research into the operator interface.

At the commercial level, the development of multi-UAV simulators focuses on getting

closer to reality in terms of the management and control of UAVs. For example, the

company DreamHammer [31] has developed Ballista [32], an Operative System (OS) for

drones that allows one person to simultaneously control multiple drones of any type.

2.2 Performance Analysis of UAV operators

The human operator is a key component of unmanned systems. Historically, these sys-

tems have required a disproportionate degree of human involvement in their operations.

For example, even more than 4 operators are needed to control a single Predator for

most missions [33].

For these reasons, Human-Machine Interaction (HMI), and more specifically, HRI re-

search, which are both subcategories of traditional human factors research, are emerging

topics in the field of UAVs, and UAS in general.
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2.2.1 Measuring the performance of a Human-Robot Team

A key obstacle in the growth of unmanned vehicle operations is the number of operators

required to supervise and control an unmanned vehicle [34]. Increasing the operator-

vehicle ratio is an open and desirable topic among researches nowadays, in order to

reduce costs, extend human capabilities and improve system efficiency [35].

Operators in multi-UAV systems must be evaluated following the criteria of the field of

HSC in Human-Robot Teams (HRTs) systems. According to the research of Crandall

et al. in [36], the different metric classes (set of metrics) defining the effectiveness of a

HRT should:

• Contain the Key performance parameters (KPPs): A KPP is a measurable quan-

tity that, while often only measuring a sub-portion of the system, indicates the

overall effectiveness of the team.

• Identify the limits of the agents in the team: It is needed to measure the capacity

of both human operator and robots in the team.

• Have predictive power : It is needed that the metrics have ability to generalize and

predict the effectiveness of the system under uncertain or untested conditions.

For the goals of this work, we focus on the metric class of human performance. The most

common are metrics based on the operator workload and Situational Awareness (SA).

On the one hand, metrics for measuring operator workload include subjective methods

[37], secondary task methods, as a chat interface [38], and psychophysiological methods

[39]. On the other hand, SA, which is defined in [40], is still an open question when

trying to measure it in an objective and non-intrusive manner [41]. However, in the field

of HRI there have been many efforts to formalize the SA, including the works of Drury

et al. in [42, 43], which establish a set of definitions for SA in a HRI environment, and

determine that most critical accidents in the environment are directly attributable to

lack of one or more of those definitions.

Apart from the workload and the SA, it is also interesting to define some metrics that

collect the performance of an operator in a HSC environment in a direct way, as a type

of global score indicating the quality of the performance. This work is focused on this
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type of measures, which are also known as Direct measures of performance quality, and

are linked to the world of videogames, where these quality metrics create an user profile,

which allow, on the one hand, to distinguish and group users by common skills, and on

the other hand, to adapt the game based on the user expertise [44].

2.2.2 Extracting patterns in Human-Robot Interaction systems

When dealing with HMI, and more specifically with HRI systems, measuring the human

performance, the system quality or other metric classes is just the beginning of all

possible analysis that can be made over these type of systems.

The information given by the different metric classes, or just the information given by

the human interactions in the system can help to recognize and extract some hidden

information about the general use of the system, the different operator cognitive states

during a mission, etc...

Here, the field of data mining and machine learning takes much importance, since it

tries to extract valuable information and models from raw data [45]. An example of this

can be seen in the works of Rani et al. in [46], which study different machine learning

techniques, as K-Nearest Neighbors (KNN), Regression Trees, Bayesian Networks and

Support Vector Machines (SVMs) to recognize affect states using physiological signals

in a HRI environment.

In the field of UAV operations, the study of HRI pattern recognition and operator

modelling is undoubtedly led by M.L. Cummings and the Massachusetts Institute of

Technology. Their work to model and predict the operator behavioral patterns from

HRI systems, and more specifically from HRT environments, consist of building Hidden

Markov Models [47] representing behavioral states from the clicks that an operator make

during a multi-UAV simulation [27, 28]. Apart from the good results shown in these

works, it is remarkable to notice the conclusions they reach when comparing supervised

vs unsupervised learning techniques when creating the operator models for multi-UAV

systems. They say that, due to the fact that multi-UAV systems are still futurist devel-

opments, it is impossible to trust any expert trying to label the operator interactions in

order to make an objective supervised analysis, hence we can only work in this field by

using unsupervised learning techniques.
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For this reason, the analysis made in this work is focused on one popular unsupervised

technique: Clustering, which is detailed in next section.

2.2.3 Clustering in profile analysis

Clustering is an unsupervised technique used to group together, in a blindly way, objects

which are similar to one another usually for the purpose of uncovering some inherent

structure which the data possesses [48].

This technique is related to many disciplines and plays an important role in a broad

range of applications, usually involving large datasets and many attributes. From bi-

ological fields, where it is commonly used with the aim of grouping together genes or

proteins which have similar expression patterns [49, 50], to technological fields, where,

for example, it is widely used to group Wireless Sensor Network nodes into disjoint clus-

ters [51]. Other important clustering applications include time series-clustering [52] and

text-mining [53].

Regarding to this work, clustering can be seen as a way to discover patterns among user

activities. One popular example of this application is Web usage mining, which consists

in applying data mining techniques (including clustering) to discover usage patterns from

Web data, in order to understand and better serve the needs of Web-based applications

[54].

There are a lot of clustering algorithms, and deciding which to use might be a difficult

task for a research conducting a experiment. For the goals of this work, we introduce

five clustering methods from the state of the art:

1. Agglomerative Nesting : Also called Unweighted Pair Group Method with Arith-

metic Mean (UPGMA), or just Hierarchical, this is one of the most frequently

used clustering algorithms [55]. It is a bottom-up, non-parametric hierarchical al-

gorithm, which seeks to build a hierarchy of clusters. Each observation is initially

placed in its own cluster, and the clusters are iteratively joined together according

to their closeness. This closeness of any two clusters is measured by a dissimilarity

matrix between sets of observations, usually achieved by use of an appropriate

metric (Euclidean distance or Manhattan distance, among others). The results of
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this algorithm (and all hierarchical methods) are usually presented in a dendro-

gram, as shown in Figure 2.2. This dendrogram can be cut at a chosen height to

produce the desired number of clusters.

Figure 2.2: Example of a dendrogram resulted from a Hierarchical Clustering method.

2. Divisive Analysis Clustering (DIANA): DIANA [55] is a divisive hierarchical al-

gorithm that constructs the hierarchy in the inverse order (top-down). It initially

starts with all observations in a single cluster, and successively divides the clusters

until each cluster contains a single observation. The results are presented in a

dendrogram, as in the case of UPGMA (See Figure 2.2). Although it is usually

less efficient than the agglomerative nesting, DIANA stands out as a competitive

clustering algorithm for many fields [56].

3. K-Means: K-Means [57] is one of the most popular methods for cluster analysis,

belonging to the family of partitional clustering methods. The algorithm starts

with an initial guess for the cluster centers, and each observation is placed in

the cluster to which it is closest. The cluster centers are then updated, and the

entire process is repeated until the cluster centers no longer move. In the end,

each observation belongs to the cluster with the nearest center, resulting in a

partitioning of the data space (See Figure 2.3). The problem is computationally

difficult (NP-hard), but there are efficient heuristic algorithms that are commonly

employed and converge quickly to a local optimum [58]. It is well-known that the

K-Means algorithm suffers from initial starting conditions effects (initial clustering
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and instance order effects), and many techniques have been developed to avoid this

issue [59].

Figure 2.3: Example of a K-means clusterization.

4. Partition Around Medoids (PAM): Proposed by Kaufman et al. in [60], this al-

gorithm is similar to K-means, but is considered more robust because it admits

the use of other dissimilarities besides Euclidean distance. In contrast to the k-

means algorithm, PAM chooses datapoints as centers (called medoids) instead of

centroids.

5. Model-based clustering : This algorithm, proposed by Fraley et al. in [61], fits the

dataset using a mixture of Gaussian distributions. Each distribution represents

a cluster, and its members are estimated using maximum likelihood estimations

(MLE), via the popular Expectation Maximization (EM) algorithm [62].

In order to assess the quality of a clusterization, and to compare and decide which

clustering algorithm is better for a specific dataset, the data-mining literature provides

a range of different validation techniques, with the main line of distinction between

external and internal validation measures [63].

External validation measures comprise all those methods that evaluate a clustering result

based on the knowledge of the correct class labels. Obviously, this is only useful when
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the class labels are available. This type of measures are commonly used to compare

clustering algorithms on benchmark data, not in real datasets. Some of the best known

external metrics are the F-measure [64], that assesses the quality of a clustering result at

the level of the entire partitioning, the Rand Index [65], which determines the similarity

between two partitions as a function of positive and negative agreements in pairwise

cluster assignments, and the Jaccard coefficient [66], in which only positive agreements

are rewarded.

For the goals of this work, the most important clustering validation measures to help us

to choose an algorithm are the internal validation measures. These measures take

a clusterization and use information intrinsic to the data to assess the quality of the

clustering. Handl et al. in [67] give an overview of some quality notions that internal

measures usually employ:

• Compactness: Assesses cluster homogeneity by looking at the intra-cluster vari-

ance. The less variance a cluster has, the more homogeneous it is considered. This

is the criterion followed by the K-means algorithm to build the clusters.

• Connectedness: Assesses to what extent observations are placed in the same cluster

as their nearest neighbors in the data space.

• Separation: Quantifies the degree of separation between clusters (usually by mea-

suring the distance between cluster centroids). A good clusterization should max-

imize this value.

Based on these quality notions, there are multiple internal validation measures that

not only focuses on one of them, but also make non-linear combinations between them,

specially between compactness and separation, since they demonstrate opposite trends

(compactness increases with the number of clusters but separation decreases). For this

work, three internal validation measures from the state of the art are studied and used:

1. Connectivity : It is focused on improving the clustering quality in terms of connect-

edness. Given a clusterization C = C1 . . . , Ck of N observations into K clusters,

and let nni(j) be the jth nearest neighbor of observation i, the connectivity is

defined as:

Conn(C) =
N∑
i=1

L∑
j=1

xi,nni(j)
, (2.1)
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where xi,nni(j)
is 0 if i and j belong to the same cluster and 1/j otherwise. L

controls the number of neighbors evaluated for each observation (regulates the

accuracy of the metric). Higher values in this measure mean that clusters are not

represented by near elements in the data space, so a good clusterization should

minimize this value.

2. Dunn Index : The Dunn Index [68] combines separation and compactness in the

same measure. It is defined as the ratio of the smallest distance between observa-

tions not in the same cluster to the largest intra-cluster distance:

D(C) =
minCk,Cl∈C,Ck 6=Cl

(mini∈Ck,j∈Cl
dist(i, j))

maxCm∈C diam(Cm)
, (2.2)

where diam(Cm) represents the diameter of Cm, i.e. the maximum distance be-

tween observations in the cluster. Since a good clusterization requires high levels

of separation (measured in the denominator) and low levels of intra-cluster dis-

tance (high connectedness), this measure should be maximized in good clustering

results (It takes values between zero and ∞).

3. Silhouette Width: The silhouette of an observation in a specific clusterization

measures the degree of confidence with which we can ensure that the observation

really belongs to the cluster it is assigned [69]. Given an observation i the silhouette

for that observation, S(i), is defined as:

s(i) =
bi − ai

max (bi, ai)
, (2.3)

where ai is the average intra-cluster distance for i, and bi the average inter-cluster

distance with respect to the nearest cluster to i, i.e:

bi = min
Ck∈C\C(i)

∑
j∈Ck

dist(i, j)

n(Ck)
, (2.4)

where C(i) represents the cluster to which i is assigned, and n(Ck) the number of

observations contained in cluster Ck. The closer s(i) gets to 1, the more confidence

we have of i as well-assigned, and viceversa if s(i) gets close to −1. Finally, to

compute the Silhouette width of a clusterization, we simply compute the average
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Silhouette value for each observation:

S(C) =

∑
Ck∈C

∑
i∈Ck

s(i)

|C|
(2.5)

The result lies in [−1, 1], and should be maximized in order to achieve a good

clusterization.





Chapter 3

Design and Development of a

lightweight multi-UAV simulator

This chapter details the different processes involved in the design and development of a

Multiple Unmanned Aircraft Vehicles (multi-UAV) mission simulator, which has been

named as Drone Watch And Rescue (a.k.a DWR). The following sections are struc-

tured as follows: First we introduce the backgrounds and requisites that the simulator

development must accomplish. Then, Drone Watch And Rescue (DWR) is presented

and described, detailing all the elements comprising it and taking part of a simulation.

After that, we show the simulator GUI and list the different interactions that can be

made by an operator/player during the execution of a mission. Finally, we will detail

the web architecture on which the simulator is built, necessary to achieve the lightness

and accessibility required.

3.1 Requisites

The simulator to develop is not intended to achieve a high simulation fidelity level in

terms of graphics, physics, and technical topics related to UAVs. According to the four

criteria defined in [8] to evaluate a simulator (See Chapter 2), this simulator should be

rated as : [ Physical Fidelity : LOW, Functional Fidelity : LOW, Ease of Development :

MEDIUM, Cost : HIGH].

19
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The main goal of DWR is to collect easily big amounts of data from the interactions

made by UAV operators (regardless of their level of expertise) during the execution of a

multi-UAV mission. Below are described the main issues to address in order to achieve

this goal.

3.1.1 Mission Planning Load

As was noted above, the simulator to develop does not focus on achieving high levels

of fidelity in technical aspects of UAVs. However, the issue of Mission Planning for

multiple UAVs is critical for this simulator, since it represents the logical core in terms

of movement, cooperation and control of each UAV. Due to this, it is required that the

simulator is able to load sophisticated mission plans.

A mission for multiple UAVs is usually planned following three steps [70, 71]:

1. The operator or mission manager establish, inside a mission map, which are the

map zones where UAVs will flight, and the type of task to perform in each of them

(Photographing the zone, Surveillance, Mapping, etc.).

2. Data obtained in step 1 is input to the Mission Planner, along with information

about the mission environment (No Flight Zones, Refueling Stations...) and the

available resources (UAVs, available fuel for each UAV, airports...).

3. The Mission Planner computes one or many feasible mission plans to accomplish

the defined tasks using the available resources. Given that, each UAV is assigned

to a set of waypoints that will guide its flying path throughout the different task

zones. Each waypoint contains the time when the UAV must reach a position, and

the action to perform when the waypoint is arrived.

For this work, the mission plans that feed the simulator will be generated utilizing the

Mission Planner developed by Ramirez-Atencia et al. in [72–74]. This work models the

problem of Mission Planning as a Temporal Constraint Satisfaction Problem (TCSP),

and returns, for an specific mission, a list of task assignments for each UAV taking part

of the mission.
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3.1.2 Gamification Elements

A pure multi-UAV simulator could be reduced only to the execution of a mission plan,

with any possible interaction, in order to check if the mission is correctly designed.

However, since this work is aimed to analyze data from operators, the simulator to

develop must allow control of both the UAVs and the mission plan of a simulation. This

makes the simulator an interactive tool, and brings it closer to the world of videogames,

which is commonly known as a process of gamification [75]. This is a term for the

use of video game elements in non-gaming systems to improve user experience and user

engagement. Following the gamification idea, there are some elements that should be

added to this simulator.

As a way of engaging the operators and focusing them on a main challenge to comply

during a simulation, the simulator to develop will include mobile targets to watch and

rescue. Therefore, the main goal of the execution of the simulator will consist in finding

the maximum number of targets while consuming the minimum possible resources.

Furthermore, during the execution of a mission with multiple UAVs, several incidents

may occur, altering both the mission environment and the UAVs performing it. Below

are listed some examples of possible incidents:

• Apparition of a hazard flight zone, due to meteorological conditions or other type

of threat.

• A UAV’s sensor breaks and stops working (radar, camera...). This may make the

UAV unable to perform some tasks.

• Data link loss between a UAV and the GCS controlling it. This turns the UAV

invisible, and unable to receive any operator command.

When an incident appears, the operator must respond by replanning the UAV’s

path in order to guarantee that the mission goal is accomplished, and no UAV

is destroyed. These actions are extremely fragile and decisive, and suppose an

extra challenge for the operators. In fact, there are numerous studies that aim

to facilitate these replanning actions and reduce the stress levels of the operators

performing them [76, 77].
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3.1.3 Data extraction

The main motivation to develop this simulator lies in the necessity to collect big amounts

of data from the simulations. To achieve this, the simulator to develop must fulfill the

following properties:

• Accessibility : The simulator must be easily and quickly accessible, in terms of

installation and deployment for anyone trying to use it. Likewise, the system

requirements must be low, so that any personal computer or laptop can execute

simulations.

• Portability : The simulator must be ready to execute in any platform and operative

system.

• Simplicity : The simulation mechanisms, the GUI and the controls must be simple,

basic and clear, even for non-expert users.

The data collected by this simulator must represent a simulation robustly. This means

that, knowing the simulation mechanisms and rules, every simulation instance could be

completely replayed inductively only by observing the data stored.

3.2 Simulator Description

This section describes the mechanism and elements comprising the simulator created in

this work, in accordance with the requisites defined in Section 3.1. As was said at the

beginning of this chapter, the name of the developed simulator is Drone Watch And

Rescue (DWR), in relation with the main goal of the simulator, which is detecting a set

of targets using multiple UAVs.

3.2.1 Simulation Elements

Below are described the different elements that compose DWR:
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3.2.1.1 UAVs

UAVs are the primary element of the simulator. The main features of each UAV involved

in an specific mission are described as part of the Mission Scenario, loaded as part of

the input data (See Section 3.2.2). In order to perform the mission tasks, each UAV

may have one or more sensors. There are many type of sensors, and although many of

them are loaded into the simulator, only radars are considered during the execution of

a simulation.

Radars detect mobile targets around the zones overflown by UAVs. Although there exist

many radar types in the database from which the input data is loaded, the simulator

does not distinguish between them. A radar is defined only by a fixed detection ratio,

within which any target placed inside will be considered as detected.

Each UAV starts a simulation on an Airport (See 3.2.1.5), and follows a flight path

composed of a list of waypoints. There are two main classes of waypoints: those that are

as part of the mission plan, called pre-planned waypoints, and those added or modified by

the operator during the simulation, called operator-waypoints. Each waypoint is defined

by the following attributes:

• Position: Given by the duple (Latitude, Longitude) or (x, y), depending on the

coordinate system used in the Mission Scenario. The altitude of a waypoint is not

modelled in DWR. This is because we make the assumption that each of the UAVs

taking part of a simulation flies around an independent altitude range, so there

is no collision risk among UAVs. Therefore, we can conclude that the trajectory

that will be simulated for each UAV, despite being loaded as a three-dimensional

trajectory, will be computed as a plane trajectory.

• Type: The waypoint type will define which kind of action will be performed by

the UAV when it reaches it. The possible values for this attribute are: Route,

Refueling, Landing, Take-off, Task. A Task waypoint includes all possible tasks

to perform (See 3.2.1.2).

• Estimated time of Arrival : Measured from the beginning of the mission (time

0), this attribute indicates the time in which the UAV is expected to reach the

waypoint. This value is given as part of the computations made by the Mission
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Planner developed by Ramirez-Atencia et.al in [72–74] (See 3.2.2). If the user adds

or modifies a waypoint during the simulation, the simulator does not recalculate

this value.

• Action: Each waypoint can be associated to an action. This action will be exe-

cuted by the UAV when it reaches the waypoint. Waypoints may have a default

associated action type in accordance with its type:

– Route, Take-off : No action associated.

– Task : The action associated triggers the beginning of a task, which has been

previously assigned to the UAV in the Mission Plan.

– Refueling : Refueling waypoints always have a ”Refueling” action associated,

whether they are loaded as part of the mission plan (pre-planned waypoints)

or they are generated by the simulator (operator waypoints)

– Landing : Similar to Refueling waypoints, in this case with the action ”Land-

ing”

3.2.1.2 Actions

An action encompasses all possible things that a UAV can do during the execution of

a simulation, apart from flying from point to point. In DWR, actions are associated to

waypoints, so they are implicitly linked to a specific position on the map. Every action

has a finite duration defined either by default or by the mission input data. Below are

detailed the different actions modeled in DWR:

• Landing : This action is always associated to waypoints positioned in airports (See

3.2.1.5). When a UAV lands, its sensors will be fixed in case they were broken

by an incident (See 3.2.1.7). If this action is commanded by an operator, the

duration considered is 0, which means that once the UAV reaches the airport, it

is considered as landed instantly.

• Refueling : This action is always associated to waypoints positioned in refueling

stations (See 3.2.1.4). Depending on the duration of the action, the UAV will

charge more or less amount of fuel. In case this action is commanded by an

operator during the simulation, the refueling duration is always 20 seconds. On
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the contrary, if the action is pre-planned by the Mission Planner, this value is

variable.

• Task : A task is a special type of action, and as an action, it is triggered when

an UAV reaches the associated waypoint. Every task has a scope zone (area)

associated, where the task is executed, and a time interval in which it must be

completed. Tasks are always part of the mission plan loaded as part of the input

data (See 3.2.2). This means that an operator cannot create tasks on the fly, during

the execution of a simulation. DWR only models one type of task: Surveillance,

which consists in exploring an area searching for targets. The set of tasks assigned

to a UAV is commonly called as payload

3.2.1.3 No Flight Zones

No Flight Zones are volumes and areas where the flight of any UAV is forbidden. They

are defined in the Mission Scenario loaded as part of the input data for any simulation

(See 3.2.2). During the simulation, if a UAV flies within any of these zones, it will be

immediately destroyed.

3.2.1.4 Refueling Stations

Refueling Stations charge the UAV’s fuel. They are defined in the Mission Scenario

loaded as part of the input data for any simulation (See 3.2.2). Each of them is described

by the position they are located on the map (geodesic or cartesian coordinates), the

maximum amount of fuel they can store and the refueling speed they can achieve. During

the simulation, a Refueling action is triggered whenever a UAV reaches a waypoint of

type Refueling, and it ends when the UAV gets full or when the refueling station runs

out of fuel.

3.2.1.5 Airports

Airports are the starting and ending point for every UAV taking part of a mission. They

are defined in the Mission Scenario loaded as part of the input data for any simulation

(See 3.2.2). An airport can be defined by a point on the map or an area.
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3.2.1.6 Targets

Targets are one of the gamification elements of DWR. They are not part of either the

Mission Scenario or the Mission Plan, so they must be loaded from a different source

(See 3.2.2). The trajectory they follow will be generated randomly by the simulator,

and it will always be bounded to a specific area. During the simulation, the operator

will not be able to see the targets moving, only the areas where they could be found.

When a UAV detects a target, the latter is immediately removed from the simulation.

3.2.1.7 Incidents

Incidents in DWR are asynchronous events that occur during the course of a simulation

and alter, either temporarily or permanently, both the environment and the UAVs taking

part in the mission. DWR loads an Incident Plan from the input data (See 3.2.2). The

aim of adding incidents to the simulation is to challenge the operator, forcing him to

make use of the simulation controls in order to adjust some parameters and avoid the

incidents successfully.

An Incidents Plan is composed of a list of incidents scheduled over the mission time.

Appendix A contains the information included in each of these incidents. Among this

information, two attributes are remarkable:

• Start Time: Defines the time, measured from the beginning of the mission (time 0)

in which the incident will start. When DWR runs this mission, and the timeline

reaches this start time, the simulator will show the incident in screen. Figures

3.1,3.2 show how DWR displays the incidents.

• Incident Type: There are two types of incidents defined in DWR:

1. Danger Area: Due to a heavy storm or any other reason, a new danger

area appears somewhere in the map. When a UAV overflies it, it will be

automatically destroyed. To overcome this incident, an operator must change

the flying path of the UAVs taking part in the mission (See Figure 3.1).

2. Payload Breakdown: The sensors conforming the UAV’s payload stop work-

ing. From this moment, the UAV is not able to perform any task successfully



Chapter 3. Design and Development of a lightweight multi-UAV simulator 27

Figure 3.1: DWR screenshot of a Danger Area Incident. The orange area represents
the new No Flight Zone generated by the incident.

nor detect any target. To overcome this incident, the operator must com-

mand the affected UAV to return to its base airport, where it will be repaired

(See Figure 3.2).

Figure 3.2: DWR screenshot of a Payload Breakdown Incident. Note how the yellow
circle around the UAV representing the Radar has disappeared.

3.2.2 Input Data

Before starting a simulation, DWR must load all data related to the mission to simulate.

A mission is composed of two main objects: the Mission Scenario and the Mission

Plan. Both of them are essential components of any UAV mission in any UAV
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simulator. Besides this, DWR adds another interesting components to a mission, in order

to achieve the gamification process required in 3.1. Those are the Incidents Plan and the

Targets definition, which can be seen as gamification components. Together, essential

components and gamification components compound the mission input, necessary for

DWR to start a simulation (See Figure 3.3). Below are detailed each of the mission

components.

Figure 3.3: General schema of DWR mission input, showing the four components
compounding a mission.

3.2.2.1 Mission Scenario

The Mission Scenario gathers all the information about the map, UAVs and other envi-

ronmental elements concerning to a specific mission. This scenario is the same that

uses the Mission Planner developed by Ramirez-Atencia et al. in [72–74]

as input data. This way we ensure that DWR missions are defined in a robust way,

in accordance with current works in this field. Figure 3.4 shows a Unified Modeling

Language (UML) diagram describing all elements compounding a Mission Scenario. It

is important to note that some elements showed in this figure, despite being loaded, are

not used during the simulation execution (e.g: Cameras).

Hence, based on figure 3.4, we can describe which elements comprise a Mission Scenario:

Hence, based on these diagrams, we can describe what elements comprise a Mission

Scenario:

• No Flight Zones: Loaded as a polygonal area.

• Airports: The simulator loads its identifier and position.

• UAVs: All attributes showed in figure 3.4 are loaded and used by the simulator.

• Refueling Stations
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Figure 3.4: Mission Scenario Data diagram. Classes and attributes are deeply detailed
in Appendix A

Appendix A contains a deeper description of each attribute comprising a Mission Sce-

nario.

3.2.2.2 Mission Plan

The Mission Plan is the result of running the Mission Planner developed by Ramirez-

Atencia et al. in [72–74]. It assigns, for each UAV, the list of tasks it must perform, and

the time window (starttime, endtime) in which this tasks should be completed. The

simulator must load this plan and transform the task assignation of each UAV into a set

of waypoints that will guide the UAVs flying path. Figure 3.5 shows, diagrammatically,

the elements comprising a Mission Plan.

As can be seen in the figure, a Mission Plan consists of a set of Objectives, each of them

composed of a set of Tasks. Each Task is assigned to the zone where it will be performed

(defined as an area), the list of sensors that a UAV needs to complete it and the specific

UAV that will perform it (assignation). So far, the simulator only works with 1-task

objectives, and does not treat any objective nor task time dependencies. In fact, as

described in 3.2.1.2, the only task type modeled DWR so far is the Surveillance task.

The simulator loads the Mission Plan as follows: For each Task, it gets the assigned

UAV and appends two waypoints to its flying path: The first one is located at the Task
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Figure 3.5: Mission Plan Data diagram. Classes and attributes are deeply detailed
in Appendix A

entry point, and marks the task beginning. The second one is located at the Task exit

point and marks the end of the task. When all tasks have been loaded, a final return

waypoint is added to the flying path of every UAV, so that they finish the mission in

the same point that they started it (usually an airport).

3.2.2.3 Incidents Plan

An Incidents Plan schedules, for a specific mission, all incidents that will appear during

the mission simulation. It is designed in order to test and train the skills of operators.

Figure 3.6 shows a UML data diagram for an Incidents Plan. An Incidents Plan is

composed of a list of incidents scheduled over the mission time. Appendix A contains

the information included in each of these incidents.

3.2.2.4 Targets definition

As was discussed in section 3.1, it is needed to introduce targets to detect into a simu-

lation as a way to challenge the operators. The number and description of these targets

is given by the targets definition entity, as showed in figure 3.7.

Basically, a targets definition entity is composed of a list of identified targets. Each

target is associated to an area inside the mission map. During the simulation, targets

will move randomly (controlled by the simulator), but they will never go outside its

associated area.
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Figure 3.6: Incidents plan data diagram. Classes and attributes are deeply detailed
in Appendix A

Figure 3.7: Targets definition data diagram. Classes and attributes are deeply de-
tailed in Appendix A

3.2.3 Output Data

Undoubtedly, retrieving data from simulations is a key factor in the design and develop-

ment of DWR. The experimentation made in this work (See chapter 4) needs a dataset

containing all relevant data extracted by the simulations run in DWR, so it is critical

to define the output data so that no information is missed throughout the execution of

the simulator.

Figure 3.8 shows a Entity Relationship Diagram (ERD) diagram containing the designed

output data scheme for DWR, which will be implemented in a database (See architecture
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in section 3.5). The data organization has been designed following an event-driven de-

sign pattern. Whenever an event occurs during a simulation run, we store the simulation

status in that moment, making what is commonly called a Simulation Snapshot. This

snapshot contains all relevant information of the current status of every element taking

part in the simulation (See appendix A), as well as a set of Drone Snapshots, represent-

ing the current status of each of the UAVs still participating in the mission (If a UAV

has been destroyed, it will have no associated Drone Snapshots after its destruction).

Storing the data in this way, we ensure that no data is lost, thus we obtain a complete

track of the simulation run and we are able to develop a robust analysis. In fact, we

could make a re-execution of a simulation inducted only by the data stored.

Simulation

_id ObjectId

name String

clientIP String

createdAt Date

missionID String

SimulationSnapshot

_id ObjectId

simulation Simulation*

simulationElapsedTime Number

realElapsedTime Number

simulationSpeed Number

event ObjectId *

Event

_id ObjectId

type EventType

params Any

EventType

key Enum

Description String

UserInput

key Enum

Description String

DroneSnapshot

_id ObjectId

simulationSnapshot SimulationSnapshot *

droneId Number

status Enum

remainingFuel Number

speed Number

position Position

Waypoint

_id ObjectId

droneSnapshotId DroneSnapshot *

position Position

plannedTime Number

Figure 3.8: Output ERD. Entities and attributes are deeply detailed in Appendix A

Each of the events causing a Simulation Snapshot in DWR has an associated Event

Type, indicating the reason why the event was generated. Appendix A contains the list

of all possible Event Types. Some of the most relevant ones are:
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• A UAV reaches a waypoint.

• An incident starts/end.

• A target is detected.

• A UAV is destroyed.

• A UAV starts/finishes an action.

• The operator performs an interaction over the simulation. This is the most im-

portant Event Type in terms of analyzing operator’s behavior, and therefore is

modeled as a specific entity: User Input (See figure 3.8). The operator control

interactions can be of several types, as detailed in Section 3.4.

Appendix A details deeper the attributes of each of the entities comprising the output

data.

3.3 Graphical User Interface

One of the most important aspects consider in order to achieve a balance between

usability and complexity in simulators is to design a good GUI, that arrange the mission

information neatly and clarify what actions can be done.

Figure 3.9 shows a general screenshot of the execution of a simulation. It is appreciable

that the GUI designed can be divided into multiple frames:

Figure 3.9: Simulator screenshot. Numbers represent the different parts of the GUI
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3.3.1 Main Screen

Displays graphically the Mission Scenario. It is the most important screen in terms of

visualization and control of the simulation. Below are detailed the simulation elements

represented in this screen.

Figure 3.10: Simulator GUI screenshot - Main screen

• UAVs: Represented by a UAV icon, wrapped by a yellow circle marking its radar

range. When a UAV is selected, the simulator displays its current flying path, as

a sequence of flags (waypoints) connected by straight lines. The color of a flag

indicates the waypoint type:

– Red Flags: Route waypoints

– Black Flags: Action waypoints (Refueling, Landing).

– Task waypoints (Surveillance).

• Task Zones: Represented by a green polygonal area.

• No Flight Zones: Represented by a red polygonal area.

• Airports: Represented by a H heliport icon, together with a label indicating the

name of the airport.
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• Refueling Station: Represented by a station icon, together with a label indicating

the duple (remaining fuel/fuel capacity).

In addition, in the upper-left of the screen, some additional simulation information is

displayed so that the operator can have a quick look at them: Current control mode (See

controls in Section 3.4), targets detected (if any), and remaining fuel for the selected

UAV.

3.3.2 Waypoints Panel

Figure 3.11: Simulator GUI screenshot - Waypoints Panel

Displays a table with detailed information about flying path of the selected UAV. For

each waypoint belonging to the UAV trajectory, the following attributes are showed:

• Selection: Shows whether this waypoint is currently selected or not (See controls

in Section 3.4).

• Order (#): Shows the order in which this waypoint will be reached.

• Position: Given in geodesic coordinates (Latitude, Longitude) or Cartesian coor-

dinates (x, y).

• Arrival time: See 3.2.1.1.

3.3.3 Simulation Time Panel

Figure 3.12: Simulator GUI screenshot - Simulation Time Panel

Displays a slide with information about the current simulation speed. The minimum

assignable value is 1 (SimulationT ime = Realtime) and the maximum is 1000 (SimulationT ime =

1000 ∗Realtime).
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3.3.4 UAV Information Panel

Figure 3.13: Simulator GUI screenshot - UAV Information Panel

Displays a table with information about all UAVs participating in the mission. This

information is updated continuously during the simulation execution. Below are detailed

the attributes shown in this table:

• Name (DRONE-1 in Figure 3.13).

• ID (Alphanumeric).

• Position: A duple (Latitude, Longitude) or (x, y).

• Altitude: Invariable during the simulation.

• Remaining Fuel (L): When it is less than 50 L, this label turns red to alert about

it.

• Fuel Capacity (L)

• Speed (Km/h)

As detailed in the controls section (See 3.4), this panel also offers interactive controls to

select/unselect a UAV.
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Figure 3.14: Simulator GUI screenshot - UAV Control Panel

3.3.5 UAV Control Panel

Displays the interactive widgets to control the selected UAV (if any selected). It features

a slide to adjust the UAVs speed, bounded by the UAVs min/max speed, and three

buttons to change the control mode, as detailed in the controls section (See 3.4).

3.3.6 Console Panel

Figure 3.15: Simulator GUI screenshot - Console Panel

Logs every event that happens during the simulation (events and operator interactions).

Each message is displayed together with the time it has been generated (measured from

the beginning of the mission). Depending of the level of the message, it is colored

differently. There are 4 types of message levels: Information (uncolored), Warning

(Orange-colored), Error (Red-colored) and Success (Green-colored).
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3.4 Controls

To achieve an intuitive and quick understanding of the different controls available in the

simulator, almost all of them have been designed to be activated by doing mouse clicks

on the Main screen. The interactions with the simulator can be divided into several

groups.

3.4.1 Basic controls

These controls do not alter any aspect of the simulation. They are useful for the operator

in order to monitor the simulation status easily. Table 3.1 lists all basic controls, and

how to perform them.

3.4.2 Control Modes

In order to interact with the Main Screen of the GUI in multiple ways, 3 control modes

are defined. Depending on the control mode chosen, the operator would be able to

perform different interactions in that screen. Table 3.2 lists all possible control modes

interactions, and how to activate them.

3.4.3 Waypoint controls

In terms of replanning a Mission Plan, the most important interactions to consider

during a simulation are those that create or modify the flying path of a UAV. Table 3.3

details all possible interactions with waypoints offered by the simulator.

3.4.4 UAV controls

It is necessary to have control over the basic features of a UAV. Table 3.4 lists all possible

interactions of this type offered by the simulator.
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Table 3.1: Basic controls in DWR

Name Description How to perform it

Move Camera Moves the camera along the Main
Screen. This allows the operator
to see every point in the mission
map.

Arrow keys (Up, Down,
Right, Down)

Select a UAV At the beginning of the simulation
run there is no UAV selected. Se-
lecting a UAV allows the operator
to monitor and control the UAV
status and waypoints.

2 modes:

• Left-click over a
UAV in the main
screen.

• Left click on the
Select button of a
specific UAV in the
UAV information
panel.

Unselect UAVs Unselect UAVs in order to clear the
Main Screen vision and have a gen-
eral overview of the simulation.

Left-click over the Unse-
lect UAVs button in the
UAV Information Panel.

Unselect UAVs Unselect UAVs in order to clear the
Main Screen vision and have a gen-
eral overview of the simulation.

Left-click over the Unse-
lect UAVs button in the
UAV Information Panel.

Set simulation
speed

Increase or decrease the simulation
time speed. Normally, UAV mis-
sions last many hours, thus some-
times it is desirable to accelerate
the process. The minimum simu-
lation time speed is 1, what means
that it is equal to the real time.
The maximum value is 1000, which
means that it is 1000 times higher.

Left-click over the slider
on the Simulation Time
Panel.

3.5 Architecture

DWR has been developed using modern web development technologies from the

field of video games. The main advantages of these environments include:

• Portability of the developed application between both desktop and mobile systems.
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Table 3.2: Control Mode interactions in DWR

Name Description How to perform it

Set control mode:
Monitor

Sets the control mode of the se-
lected UAV to Monitor. This is the
default control mode and allows
the operator to see and edit the
UAVs waypoints, but not to add
new waypoints. When a new UAV
is selected or when a UAV reaches
a waypoint, this control mode is set
automatically.

Press the Monitor button
in the UAV control panel.
It is necessary to select
a UAV before performing
this interaction.

Set control mode:
Add waypoints

Sets the control mode of the se-
lected UAV to ”Add waypoints”.
This control mode allows the op-
erator to view and edit the UAVs
waypoints, and also to add new
waypoints at the beginning of
the UAVs flying path, maintaining
the rest of the waypoints un-
changed.

Press the ”Add way-
points” button in the
UAV Control Panel. It
is necessary to select a
UAV before performing
this interaction.

Set control mode:
Manual

Sets the control mode of the se-
lected UAV to Manual. This con-
trol mode allows the operator to
define a new path, deleting the
previous one.

Press the ”Manual” but-
ton in the UAV control
panel. It is necessary to se-
lect a UAV before perform-
ing this interaction.

• High Accessibility : Using any web browser with HTML5 capabilities, a user can

access the URL where the simulator is hosted and use it without installing any

additional software.

However, it is important to note the limitations of this type of technologies. The system

requirements on a UAV simulator are much higher than those of a common web appli-

cation, and current Javascript engines, despite being more and more powerful, yet have

notorious performance troubles when running compute-intensive jobs. This simulator is

an example of this kind of jobs in which the system usage must be taken into account.

Because of this, the simulator has been designed with a 2-level architecture (server-

client), based on the design patterns used in the development of multi-user real time

applications and video games. These design patterns divide the different components

conforming the application engine (or videogame engine) between the two levels of the

architecture [78].
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Table 3.3: Waypoint interactions in DWR

Name Description How to perform it

Add a waypoint Adds a new waypoint to the cur-
rent UAVs path. It is necessary
to select a UAV to perform this
action. Depending on the con-
trol mode selected, this interaction
change its behavior:

• Control mode “Mon-
itor”: It is not pos-
sible to add way-
points.
• Control mode “Add

waypoints”: The
waypoints added do
not change the pre-
vious UAVs flying
path.
• Control mode

“Manual”: The
waypoints added
define a new path.

With a UAV selected,
and the appropriate con-
trol mode set, click any
point in the Main Screen
to add a waypoint in that
position. Click anywhere
over the sea to create
Route waypoints. Click
over a refueling station
to create Refueling way-
points. Click over an air-
port to create Land (or re-
turn) waypoints.

Set waypoint posi-
tion

Set a new position for an existing
waypoint. It is necessary to select
a UAV to perform this interaction.
All the control modes are valid for
this interaction.

With a UAV selected,
drag any waypoint
across the Main Screen.

Increase waypoint
order

Increase by one the order of a way-
point. This interaction is not avail-
able for the first waypoint.

Select a specific waypoint
by clicking its associated
row in the Waypoints
Panel and pressing the
button Up.

Decrease waypoint
order

Decrease by one the order of a way-
point. This interaction is not avail-
able for the last waypoint.

Select a specific waypoint
by clicking its associated
row in the Waypoints
Panel and press the Down
button of the same table.

Remove waypoint Remove a waypoint from the cur-
rent UAVs path.

Select a specific waypoint
by clicking its associated
row in the Waypoints
Panel and by pressing
the Remove button of the
same table.
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Table 3.4: UAV interactions in DWR

Name Description How to perform it

Set UAVs speed Set the UAV speed. The new speed
value must be between the UAV
minimum and maximum speed val-
ues. It is necessary to select a UAV
to perform this action.

Mouse click over the slider
on the UAV control panel.

The server contains the logical core of the simulator. It is responsible for initializing

a new simulation every time a client asks for it, retrieve and process the mission data

loaded by the Data Entry Module (See Section 3.5.2), maintain and update the simula-

tion status, send it to the client periodically, process the user commands and store the

relevant information and events happened during the simulation time. The framework

used to implement the server is NodeJS [79], written in Javascript and highly supported

by the open source community.

The client (web browser) receives the simulation status sent by the server and is re-

sponsible for showing it on screen in real time. It is completely unconscious of the core

logic running in the server, and only knows how to display, graphically or textually, each

of the elements that compose the simulation status, according to the GUI described in

3.3. Moreover, the client is also responsible for catching the user interactions (keyboard

and mouse inputs), and sending the corresponding control commands to the server, that

will process them and change the simulation status appropriately. The client has been

implemented using multiple web-development frameworks: Phaser [80], to build the

main screen, and AngularJS [81], to manage the information and control panels (See

GUI description in 3.3).

Client-Server communication is achieved by the use of the Websockets communica-

tion protocol [82], which offers lower latency than HTTP, and is specially suitable for

real time data streams [83]. From a functional point of view, the architecture of this

simulator can be divided into 5 distinct modules, as shown in figure 3.16. Below are

described each of the 5 modules comprising DWR architecture.
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Figure 3.16: Architecture diagram of the designed simulator. Each of the five distinct
modules (boxes) is located in its corresponding architecture level (client-server).

3.5.1 Simulation Module (SM)

The Simulation Module (SM) represents the functional core of the simulator and all

the elements that compose it. It runs entirely on the server, and it is responsible for

managing the Simulation Status and sending it to the client periodically. All simulation

elements described in 3.2 are managed by this module.

3.5.2 Data Entry Module (DEM)

The Data Entry Module is responsible for loading into the simulator all data necessary

to start the simulation of a mission (See data input in 3.2.2). It runs entirely on the

server side, called by the Simulation Module whenever an user connects to the simulator

web page.
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Figure 3.17: General data flow (input/output) among the developed simulator
(DWR), and the Mission Planner utilized.

Although this module can load some test missions directly from Javascript Object No-

tation (JSON) files, normally the data source will be a set of databases implemented

using the Database Management System (DBMS) MongoDB [84]. These databases are

the same that uses the Mission Planner developed by Ramirez-Atencia et al. in [72–74],

and contain data concerned to the elements that compound a typical UAS. As shown

in figure 3.17, there are many databases from which the Data Entry Module loads the

input data:

• UAS Info: Contains the static information about the environment, which is shared

shared by all missions (No flight Zones, UAVs main features, Airports...).

• UAS Mission Input : Contains Mission Scenarios (See 3.2.2.1).

• UAS Mission Plan: Contains Mission Plans obtained by the Mission Planner (See

3.2.2.2).
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3.5.3 Visualization Module (VM)

The Visualization Module is responsible for displaying, both graphically and textually,

the Simulation Status in real time. It runs entirely on the client side of the architecture

(i.e, the web browser). None of the simulation logic elements are contained in this

module, its behavior only consists in receiving the Simulation Status periodically (sent

by the Simulation Module) and displaying each of its elements in a proper screen or

panel. The layout designed for visualizing the simulation data is detailed in the GUI

section (See 3.3).

3.5.4 Control Module (CM)

The Control Module catches, sends and processes the different interactions that an oper-

ator performs during a simulation run. In accordance with the developed two-level game

architecture, this module establish a link between the two levels of the architecture, since

it catches the operator inputs (keyboard and mouse events) on the client side, transmits

them (via Websockets), and finally processes them on the server side, changing the sim-

ulation status appropriately. Section 3.4 details the different interactions recognized by

this module.

3.5.5 Data Storage Module (DSM)

The Data Storage Module (DSM) is responsible for storing all the necessary data from

the execution of a simulation. This module is essential for the purposes of this work,

since the data sets retrieved here serve as a starting point for the experimentation made

in the next chapter. To store the data, a MongoDB database is used (See Figure 3.17,

UAS SIMULATIONS ). The data stored is event-organized as described in 3.2.3. Due

to this, this module works asynchronously as an event listener. Whenever an event

occurs during the simulation run, the DSM stores the simulation status in that moment,

taking a Simulation Snapshot. As was discussed before, the data obtained this way

represents a simulation robustly.





Chapter 4

Experimentation and Analysis of

Simulation Data

The purpose of this chapter is to show the experiments carried out using the simulator

DWR, in order to prove that this platform, and specially the data extracted from it, is

suitable to analyze the behavior and performance of UAV operators during a training

session.

First of all, the simulator will pass a load test to ensure that it is able to maintain

multiple users simultaneously. Then, the real experiments made for extracting data from

the simulator will be introduced, detailing the data source and the processes followed

to obtain it. Once we have a robust dataset, we will explain how the performance of a

user is evaluated and, based on this evaluation, how we create and group user profiles

in order to create clusters that indicate similar user behaviors. Finally, those clusters

will be analyzed and interpreted in the context of this experiment.

4.1 Software load test

The web architecture described in the previous chapter (See 3.5), and used to im-

plement DWR, is the basis for allowing a low-cost multi-UAV simulation environment,

where operators, and more generally, users, are able to train their monitoring, planning

and replanning skills without the need for a powerful machine or a specific software

installation (just a web-browser).

47
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To ensure the proper functionality and scalability of the designed architecture, it is

necessary to carry out some load tests in each of the architecture levels (server, client,

communication). To test the client, some basic experiments have been made in order

to show that client requirements are very low, hence any modern computer can run and

visualize a simulation correctly. The simulator has been executed (i.e, accessed via web

browser) using different platforms (desktop and laptops), operative systems (Windows,

Linux, MacOS...) and HTML5-browsers (Chrome, Safari, Firefox, Internet Explorer).

All of them have run all the test missions designed for this experimentation (See 4.2),

performing a constant 30 Frames Per Second (FPS) rate. Smart-phones, tablets and

other mobile devices cannot execute the developed simulator.

In this section we focus on testing the server side of the architecture, evaluating its

capacity to host multiple simulations simultaneously. The server host machine, whose

specifications are showed in Table 4.1, is responsible for both serving the simulator web

GUI to the client (doing the works of a web server), and for maintaining a real-time

communication with it, sending the simulation status periodically. It also contains the

database that will store the simulation data retrieved by the Data Storage Module (See

3.5.5).

Table 4.1: Specifications of the server host machine used for the load test.

Parameter Description

CPU AMD64 - 4 cores (1.6 GHz)

RAM 8 GB

OS Linux (Debian)

Instead of using real users for analyzing the server load, an automatic test-bed has been

created. This test-bed connects to the server, every 2 seconds, a new virtual player to a

total of 2000 players. Every time a new connection is received, the server begins to load,

process, and send data of a new simulation. Virtual players behave passively : They keep

the connection with the simulator opened, but they do not send control commands to

interact with it. This is the behavior that an operator would have if he only monitors

and observes a mission, without performing any interaction.

The mission loaded as input data for every simulation in this load test is the same. A

brief summary of the mission parameters is shown in Table 4.2. As it can be appreciated,
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the complexity and load of this mission is low, since it only features one UAV performing

a unique Surveillance task to watch one target.

Table 4.2: Summary of the mission parameters used in the load test.

Parameter Value

Map dimensions 440x160Km

# UAVs 1

# Targets 1

# Incidents 2

# Surveillance Tasks 1

# Planned waypoints 11

# No flight Zones 1

# Refueling Stations 1

# Planned Refueling Actions 2

In order to analyze the server, a performance profiler is used. This profiler measures

the status of several server components at one minute intervals. In this test, the following

metrics are taken into account:

1. Number of players: This metric is taken from the amount of simultaneous connec-

tions kept by the server at a specific time (See Figure 4.1, players).

2. CPU Time: It measures, in milliseconds, how much CPU time has been consumed

by the server during the minute in which this metric was taken. The maximum

possible value is 60000 ms, which means that the server has consumed the whole

CPU time during a specific minute (See Figure 4.1, CPU time).

3. Use of Memory : It measures, in MB, the amount of RAM used by the server

during the minute in which the metric was taken (See Figure 4.1, memory).

The results of this test are shown graphically in Figure 4.1. From these results, three

server states can be distinguished:

1. Light Load State: In this state, the server use of memory keeps constantly low,

because the amount of data processed in each of the connections (simulations) is

not too high. However, increasing the number of players affects directly to the
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Figure 4.1: Metric comparison for analyzing the server load versus the number of
users connected to the simulator DWR

CPU time metric, which reaches its maximum value (60000 ms) shortly before

connecting 500 players (See Figure 4.1, green area).

2. Heavy Load State: When the CPU time metric reaches its maximum value, the

arrival of new players (connections) requires an increasing in the use of mem-

ory in order to host, load an process the simulation of each connection. During

this state, the process of updating the simulation status begins to suffer some de-

lays, causing an increase in the response time to the client (See Figure 4.1, yellow

area).

3. Saturation State: When the server hosts around 1000 connected virtual players, the

CPU collapses and the large increase on the use of memory result in an excessive

delay in the computing of each simulation, and an inability to maintain some player

connections. Therefore, as it can be appreciated, some connections are closed, and

the server response time is too high to offer a real-time communication (See Figure

4.1, red area).

The three server states obtained by this load test suggest that it would be necessary

to enable a second server to host simulations when the amount of users connected
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simultaneously gets close to 1000 users. Thanks to the high portability of the designed

architecture, this could be done quite easily. However, in the experiments carried out in

this work, and described in the following sections, a unique server was enough to host

all users correctly.

4.2 Experimental dataset

Once we have ensured that the designed simulator architecture is valid for being used

by hundreds of users simultaneously, the next step is to use the simulator with real

users, in order to extract knowledge about their behavior in a multi-UAV simulation

environment.

For this purpose, the simulator was deployed into a server located at Autonomous Uni-

versity of Madrid (UAM), with the system specifications detailed in Table 4.1. The

testers of the simulator were Computer Engineering students of the same university

(UAM), all of them coursing the last year of the degree. Although the experiment was

conducted in two different days, all users received the same tutorial before using the sim-

ulator, so, a priori, it makes no sense to distinguish the students by the day when they

were tested. All data extracted during these two days is therefore treated uniformly.

The experiment was conducted as follows: for each of the days, the students (testers)

were given a brief explanation about: the basic concepts of multi-UAV missions, the goal

they had to reach using the simulator, and the list of all possible interactions they were

able to perform during a simulation. At the same time, since each student had a personal

computer, they were asked to access the simulator web page and follow the tutorial by

their own, to get a better understanding of the GUI and the controls. When the tutorial

ended, they were asked to use the simulator freely during 30 minutes approximately.

When a user entered the simulator web page, he did not start a simulation immediately

but was prompted with a mission selection screen, as shown in Figure 4.2.

This screen shows, for each available mission, a brief summary of the mission content

(Number of targets, UAVs, no flight zones...) and a little description explaining the goal

of the mission. Table 4.3 summarizes the main features for each of the 4 test missions
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Figure 4.2: Mission Selection Screen prompted to the students taking part in the
experiment conducted for this work

designed for this experiment. As it can be appreciated, there is an increasing order in

terms of the challenge that suppose a mission:

1. TestMission01 : This test mission features one UAV performing one Surveillance

task. It starts with a pre-loaded Mission Plan and presents several incidents during

the simulation (See Figure 4.3).

2. TestMission02 : This mission is similar to TestMission01 except for the Mission

Scenario (See Figure 4.4).

3. TestMission03 : This test mission features three different UAVs performing Surveil-

lance tasks to detect multiple targets in multiple areas. Each UAV begins with

a preloaded flight-plan. The mission presents several incidents during the simu-

lation, affecting both the environment and the UAVs involved in it (See Figure

4.5).

4. TestMission04 : This test mission loads exactly the same Mission Scenario, In-

cidents Plan and Targets Definition as TestMission03. The main difference lies
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Table 4.3: Specification summary for the test missions (T.M) designed in the experi-
ment.

T.M.01 T.M.02 T.M.03 T.M.04

ID 0 1 3 4

Map extension (Km) 440x160 430x500 800x500 800x500

UAVs 1 1 3 3

Tasks 1 1 4 0

Targets 1 1 4 4

Incidents 2 2 4 4

No Flight Zones 1 2 4 4

Refueling Stations 1 3 4 4

in the fact that there is no pre-loaded Mission Plan, hence the operator

must plan each UAV manually before starting the simulation (See Figure

4.5).

The dataset resulted of extracting data from this experiments is composed of 127 dis-

tinct simulations, played by a total of 27 users. This is a great amount of data if

we take into account that the conducted experiments were simple and relatively short

in terms of duration. This fact proves the potential of the developed simulator when

trying to collect data massively.

Before starting the user performance analysis, it is interesting to analyze if the users have

generally used the simulator progressively. To do this, we must check the order in which

the students have run the four available test missions. Figure 4.6 shows the evolution

of the 27 users in the dataset. Each user is identified by the day when he participated

in the experiment (05 or 07, corresponding to the fifth and seventh of November) plus

the three last digits of the IP address from the computer he/she was using.

As can be appreciated, the general trend for the users that have run more than one

simulation is to go from the first two missions (TestMission 01,02), which served as a

tutorial during the experiment, to the last ones (TestMission 03-04), which were played

when the students used the simulator freely.

In order to achieve a robust analysis of the data extracted, we must clean the dataset

by removing those simulations which can be considered as useless. Since the simulator
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Figure 4.3: Test Mission 01 screenshot.

is running in a web-environment, a user can “restart” (or abort) a mission simulation

by doing a page refresh in his web browser. Due to that, we must remove from the

dataset those simulation which have been aborted prematurely. In this work, we

consider that a simulation is useless if it has been aborted before 20 seconds. From the

127 simulations composing our students dataset, only 102 of them are considered useful

simulations, and will be used in the data analysis process.

4.3 User performance metrics

The main goal of this experimentation is to analyze the user performance when running

missions in the designed simulator. That lead us to the necessity of defining a way to

measure the performance of a user in a specific simulation.
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Figure 4.4: Test Mission 02 screenshot.

To achieve this, five performance metrics have been defined: Agility (A), Consumption

(C), Score (S), Attention (At) and Precision (P). All of them are numeric values in the

range [0, 1], where 0 represents the worst performance for that metric, and 1 represents

the best. It is remarkable that the metrics have been designed so that none of them is

dependent of some other. Below are detailed the implementation of each of the metrics.

4.3.1 Agility

Agility (A) measures the average speed with which the user has interacted with the

simulator. All interactions defined in Section 3.4 are taken into account. Let I(s) the

set of interactions performed during a given simulation s, the Agility metric is computed

as:

A(s) =

∑
i∈I(s)

simulationSpeed(i)
MAX SPEED

|I(s)|
(4.1)

where MAX SPEED = 1000 and simulationSpeed(i) gives the speed in which the sim-

ulation was running in the moment when the interaction i was made. As was explained

in Section 3.4, the user can manipulate the simulation speed using a slider, giving values
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Figure 4.5: Test Mission 03-04 screenshot. Note that these two missions share the
same Mission Scenario

from 1 to 1000. A user is considered agile if he can interact when things are happening

fast.

Figure 4.7 shows the distribution of this metric on the students dataset (removing useless

simulations). As can be seen, the metric tends to obtain low values in this

dataset, which means that the students have usually run the simulator slowly and

carefully. This makes sense when taking into account the fact that the students are

novice users, using the simulator for the first time. Therefore, when analyzing user

performances, a high agility value (higher than the mean, which is 0.29) should be

considered as discriminating.

4.3.2 Consumption

The Consumption metric measures the fuel consumed throughout the simulation time.

Given a specific instant (also called snapshot) sh of a simulation s, we can compute the

global remaining fuel (rf) at that instant as

rf(s, sh) =
∑

u∈U(s)

rf(u, sh) +
∑

r∈R(s)

rf(r, sh) , (4.2)
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Figure 4.6: Evolution of the test missions played per user. ID(TM01)=0,
ID(TM02)=1, ID(TM03)=3, ID(TM04)=4

where U(s) is the set of UAVs participating in the simulation s and R(s) is the set of

refueling stations taking part in the Mission Scenario of simulation s. The remaining

fuel value for both UAVs and refueling stations can be retrieved from the information

contained in the simulation snapshots taken during a simulation. When a UAV u is

destroyed during the simulation, it is considered that rf(u, sh) = 0 for every instant sh

after the UAV destruction.

To calculate the consumption over a simulation s, we compare the remaining fuel at the

end of the simulation (last snapshot, or lSh) with that at the beginning (first snapshot,

or fSh):

C(s) =
rf(s, lSh(s))

rf(s, fSh(s))
(4.3)
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Figure 4.7: Density distribution for the metric Agility. The dashed line represents
the mean value.

High values of this metric indicate that the remaining fuel at the end of the mission is

high, so the consumption is considered low. On the other hand, low values mean high

consumption rate.

Unlike the case of the Agility metric, Figure 4.8 shows how the distribution of the

Consumption metric for the dataset used in this experiment tends to concentrate on

very high values, obtaining a mean value of 0.848. This could lead us to conclude that

the users usually make a good use of the resources available in a mission, but this seems

confusing providing that the dataset is entirely composed of novice users in the field.

If we analyze deeper the consumption equation defined in Equation 4.3, we see that the

value obtained is inversely proportional to the duration of the simulation. Short

missions will likely obtain high consumption rates, and viceversa. Since a simulation can

be aborted at any time by the user, we can conclude that this metric distribution is really

indicating that users in this dataset have generally run short simulations, prob-

ably because they were inside a trial and error process in which the mission objectives

were not taken into account.
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Figure 4.8: Density distribution for the Consumption metric. The dashed line repre-
sents the mean value.

However, in terms of the general information that a variable is potentially able to offer

for ranking and grouping users, this metrics performs the worst values of all, since it

features an extremely low variance (0.01812) and a short range of values ([0.43, 1.00]).

4.3.3 Score

The Score (S ) metric gives a global success/failure rate of a simulation. As was discussed

in Section 3.2, the main goal for a user (operator) monitoring a simulation in DWR is

to capture the maximum number of targets, minimizing the resources consumed and

returning all UAVs to an airport at the end of the mission. Given that, we can divide

the general goal into 3 sub-goals:

1. Detecting targets.

2. Minimizing resource loss.

3. Returning the UAVs to an airport to finish the mission.
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Based on this description, we define the score of a simulation s as:

S(s) =
1

3

[
|targetsDetected(s)|

|T (s)|
+

(
1− |destroyedUAV s(s)|

|U(s)|

)
+

UAV sInBase(s, lSh(s))

|U(s)|

]
,

(4.4)

where U(s) is the set of UAVs participating in the mission and T (s) the set of mission

targets. Note that UAV sInBase(s, lSh(s)) queries how many UAVs were positioned on

an airport at the last instant (last snapshot lSh) of the simulation.
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Figure 4.9: Density distribution for the Score metric. The dashed line represents the
mean value.

Figure 4.9 proves that the Score metric obtains a well-balanced density distribution

for our dataset. This means that there is not a general tendency for this metric, and

therefore it can be used robustly to compare the user performance in a general way.
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Table 4.4: Statistics summary for the metrics defined in the analysis.

Metric Min. 1st Qu. Median Mean 3rd
Qu.

Max. Var.

Agility 0.00100 0.06777 0.24560 0.28890 0.44170 0.97920 0.06359

Consumption 0.4307 0.7847 0.8728 0.8486 0.9620 1.0000 0.01812

Score 0.0000 0.1806 0.3333 0.4025 0.5556 1.0000 0.08684

Attention 0.2929 0.7226 0.8143 0.7657 0.8737 0.9219 0.02157

Precision
(Missions
1-2-3)

0.02083 0.04762 0.18330 0.36620 0.50000 1.00000 0.13691

Precision
(Mission 4)

0.01351 0.01887 0.03333 0.16670 0.29170 1.00000 0.07215

4.3.4 Attention

The Attention (At) metric rates globally the user intensity in terms of the interactions

he has performed during a simulation. Given a simulation s, the Attention is defined as:

At(s) = 1− 1

1 +
√
|I(s)|

(4.5)

where I(s) is the set of all interactions performed during simulation s. A square root is

introduced in the equation in order to avoid a fast convergence to 1.

The density distribution of the Attention metric, showed in Figure 4.10, shows a general

tendency very close the Consumption distribution. The mean value is close to 1, and

the minimum is located at 0.29. This means that this metric will result useless in terms

of ranking and grouping users, since the range of values it takes ([0.29, 0.92]) is short

and its variance (0.02157) is too low.

4.3.5 Precision

The Precision (P) metric measures the replanning skills of a user on a simulation, rating

how he has reacted to the mission incidents. The design of this metric is based in the

following assumption: A precise operator should only perform replanning interactions

(add/edit/remove waypoints) when an incident occurs. Therefore, the waypoints added

when no incident has happened should penalize the precision rate. Based on this, we
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Figure 4.10: Density distribution for the Attention metric. The dashed line represents
the mean value.

can divide the precision computation into two parts: The precision in times of incidents

(Incident Precision, PI) and the precision when nothing is altering the simulation, i.e,

the operator must only monitor the simulation status (Monitoring Precision, PM ).

P (s) =
PI + PM

2
(4.6)

The Incident Precision, PI , supposes that every waypoint added/edited/removed during

a specific interval time (10 seconds for this experiment) since the beginning of an incident

is placed in order to avoid that incident, so it is considered as a precise interaction. Let

In(s) be the set of incidents happened during the simulation s, we can compute a

incident precision average as follows:

PI(s) =

∑
i∈In(s) pI(i, s)

|In(s)|
(4.7)

, where pI(i, s) gives the precision for an specific incident i, computed as:

pI(i, s) = 1− 1

1 + |W i(s)|
(4.8)
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In this last equation, Wi(s) is the set of all waypoint interactions (add/edit/remove)

performed since the incident i started until 10 seconds after (i.e, interactions within the

interval [startT ime(i), startT ime(i) + 10]). The more waypoints are changed during

that interval, the more the precision increases for that incident.

The Monitoring Precision, PM , is conceptually contrary to the Incident Precision, in

the sense that it penalizes the waypoint interactions performed during monitoring time,

so the less interactions here, the more precision obtained. It is computed as

PM (s) =
1

1 + |WM (s)|
, (4.9)

where WM (s) is the set of all waypoint interactions performed during monitoring time.

This can be seen as the complementary of all waypoint interactions made to avoid

incidents, i.e:

WM (s) =
⋃

i∈In(s)

Wi(s) (4.10)

To analyze the distribution of this metric, we must note that in our dataset, de-

tailed in Section 4.2, there are two type of missions: Replanning missions (TestMis-

sion01,TestMission02,TestMission03), in which the UAVs started with a pre-loaded Mis-

sion Plan, and Planning Missions (TestMission04), in which the user had to build a

Mission Plan from scratch at the beginning of the simulation. The reason why we must

divide the precision metric depending on the type of mission is that, in the case of plan-

ning missions, the user is forced to add/edit/remove waypoints in order to design a valid

Mission Plan, so the incident/monitoring precision cannot be evaluated in the same way

we evaluate a replanning mission, where, a priori, an operator is asked to act only when

it is needed.

Figure 4.11 compares the distribution of the Precision metric for these two type of

missions in the dataset. Obviously, the values for the planning mission are lower than

the same for replanning missions, but still, the last are not too high (The mean value is

0.3662). This indicates clearly that the users in this experiment are not expert in the

field, since they have made lot of replanning interactions when nothing happened, which

can be very costly in the real world.

Although the Precision metric has been designed focused on replanning missions, it can

also give secondary information about skills in planning missions. On the one hand,
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Figure 4.11: Density distribution for the Precision metric, comparing the results in
replanning missions against the results in planning missions. The dashed lines represent

mean values.

lower values of precision indicate that the operator (user) has designed a complex and

efficient Mission Plan, good enough to avoid some incidents only by the way it was built.

On the other hand, medium/high values of precision here may tell us that the user has

designed a poor initial plan and he has needed to make lot of changes to it during the

simulation time.

4.4 Experimental Setup

As was introduced at the beginning of this chapter, the final goal of the experimentation

made in this work is to detect and analyze performance patterns among operators using

the developed simulator, DWR.

The performance profile of a simulation s is defined by the tuple:

PPr(s) = (A(s), C(s), S(s), At(s), P (s)),



Chapter 4. Experimentation and Analysis of Simulation Data 65

and based on that, we can define, for a given user u, the user performance profile,

UPP (u), as tuple obtain averaging all its performance profiles, i.e:

UPP (u) =

∑
s∈S(u) PPr(s)

|S(u)|
(4.11)

where S(u) is the set of simulations executed by user u.

Computing UPP (u) for all users in our dataset results in a 5-dimensional metric space,

on which we can apply clustering methods to group together users which have similar

performance profiles. Since the test missions designed for this experiment are divided in

two types (replanning, planning), we must compute two different performance profiles

for each user u, defined as UPPR(u), in the case of replanning, and UPPP (u), in the

case of planning:

UPPR(u) =

∑
s∈SR(u) PPr(s)

|SR(u)|
, UPPP (u) =

∑
s∈SP (u) PPr(s)

|SP (u)|
, S(u) = SR(u)∪SP (u)

(4.12)

To extract the similar User Performance Profiles (UPP), we make use of five clustering

algorithms from the state of the art: Hierarchical, K-means, DIANA, Model-based clus-

tering and PAM. All of them are tested against both the set of observations UPPR(U)

and UPPP (U), where U is the set of distinct users in our dataset.

For internal validation of the User Performance Profile groups, we selected three vali-

dation measures from the state of the art that reflect the compactness, connectedness,

and separation of the cluster partitions:

• Connectivity : Returns a value between zero and ∞ and should be minimized.

• Dunn index : Lies in the interval [−1, 1] and should be maximized.

• Silhouette width: Returns a value between zero and ∞ and should be maximized.

All these clustering algorithms are tested using Cluster k values from 2 to 8. To perform

this iterative execution and validation process, we make use of the R library clValid [48].
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4.5 Experimental Results

As was explained in the previous sections, although the main goal of every simulation

is always the same, in this experiment two type of test missions have been designed:

Replanning missions (default type), in which the UAVs start with a pre-loaded Mission

Plan, and Planning Missions, in which the operator has the extra task of constructing

an initial plan for each UAV. Thus, the results obtained in the clustering experiment

must be analyzed separately.

4.5.1 Results for Replanning Missions (TestMission 01-02-03)

Figure 4.12 shows the plots of the connectivity, Dunn index, and Silhouette width re-

sulted from executing and validating the five clustering algorithms with the replanning

dataset of UPPs. Recall that the connectivity should be minimized, while both the

Dunn index and the silhouette width should be maximized. Apparently, the only metric

that follows a tendency, regardless of the clustering algorithm, is the connectivity, which

seems to be directly proportional to the number of clusters evaluated, reaching the min-

imum in 2. Here it is also appreciable that hierarchical clustering outperforms the other

clustering algorithms. It is remarkable that Model based Clustering does not perform

well on any of the measures. In fact, if we remove it from the plot, it seems clearer that

the silhouette width decreases over the number of clusters, reaching the maximum in 2.

For the Dunn index the best choice for the number of cluster is less clear.

Table 4.5: Optimal results for the clustering of User Performance Profiles on replan-
ning missions (TestMission01,TestMission02,TestMission03).

Metric Score Method N. Clusters

Connectivity 8.7254 Hierarchical 2

Dunn 0.5050 Hierarchical 7

Silhouette 0.3816 Hierarchical 2

The numerical results for the clustering algorithms validation are given in Table 4.6.

If two or more algorithms achieve the best score for a specific measure, we choose the

most popular one as optimal. Thus, from this table we can extract the optimal scores

for each validation measure. The results, shown in Table 4.5, prove that Hierarchical
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Figure 4.12: Plots of the connectivity measure, the Dunn index, and the Silhouette
width against the fixed number of clusters when running each of the five clustering

algorithms to the UPPR dataset.

Clustering stands as the best algorithm for all validation measures, with 2 and

7 as chosen number of clusters.

Thus, we must check how the clusters are arranged for the Hierarchical Clustering ex-

ecution with k = 2 and k = 7. A common dendrogram for both number of clusters is

given in Figure 4.13. In the next section we will inspect and give sense to these clusters.

4.5.2 Results for Planning Missions (TestMission04)

Analogously to the analysis made above, Figure 4.14 shows the evolution of the clustering

validation metrics against the number of clusters, for each of the algorithms tested on
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Table 4.6: Clustering results for the User Performance Profiles on replanning missions
(TestMission01,TestMission02,TestMission03). Bolded cells represent the best results

obtained for each cluster validation metric

Clustering
Method

Validation
Metric

k=2 k=3 k=4 k=5 k=6 k=7 k=8

Hierarchical

Connectivity 8.725 10.037 19.326 21.593 25.561 32.650 34.883

Dunn 0.275 0.275 0.355 0.355 0.392 0.505 0.505

Silhouette 0.382 0.331 0.299 0.277 0.304 0.287 0.285

K-Means

Connectivity 8.725 18.015 23.638 25.630 25.760 32.650 34.883

Dunn 0.275 0.355 0.255 0.255 0.492 0.505 0.505

Silhouette 0.382 0.310 0.294 0.271 0.338 0.287 0.285

DIANA

Connectivity 9.353 17.955 21.459 21.876 24.719 27.395 32.178

Dunn 0.278 0.313 0.355 0.355 0.360 0.456 0.485

Silhouette 0.356 0.314 0.295 0.292 0.268 0.235 0.197

M-Clustering

Connectivity 23.600 28.164 21.605 31.528 34.689 38.922 43.826

Dunn 0.200 0.184 0.295 0.359 0.359 0.359 0.275

Silhouette 0.179 0.187 0.264 0.263 0.258 0.268 0.236

PAM

Connectivity 8.725 17.170 21.683 27.508 29.119 31.352 35.012

Dunn 0.275 0.310 0.287 0.221 0.321 0.321 0.321

Silhouette 0.382 0.303 0.329 0.272 0.289 0.278 0.253

the UPPP dataset. Connectivity and silhouette width, as it happened previously, seems

to be dependent on the number of clusters whatever the algorithm used, while Dunn

index is apparently free of a clear general tendency. On the one hand, Model base

clustering does not perform well on any of the measures, so we can conclude that it is

not appropriate for this type of problem. On the other hand, Hierarchical clustering and

DIANA achieve good results, and it is remarkable that they get similar results almost

for every case. K-means obtain good results too, specially for the Dunn index, where it

gets the maximum score at k = 7.

Comparing this plot with the same of the above section (results for replanning missions),

we can see that, regardless of the validation measure, the best score achieved when

clustering the UPPP dataset is better than the one achieved in the UPPR dataset.

Table 4.7 proves this by showing the [min,max] ranges obtained in each measure and

dataset. This result may be caused simply because the size of the UPPP data set (16
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Figure 4.13: Plot of the dendrogram for hierarchical clustering with k=2, k=7 on the
UPPR dataset.

user profiles) is less than the one in UPPR (25 user profiles), and hence the clustering

process is likely to perform better.

Table 4.7: Comparison of [min,max] ranges for the clustering validation on UPPR

and UPPP datasets.

Metric Range in UPPR dataset Range in UPPP dataset

Connectivity [8.725, 43.826] [2.929, 33.817]

Dunn [0.184, 0.505] [0.182,0.610]

Silhouette [0.162, 0.382] [0.113,0.482]

As done in the previous case, we show the complete set of validation results in Table 4.9,

and extract from it the optimal scores for each metric, shown in Table 4.8. The results
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Figure 4.14: Plots of the connectivity measure, the Dunn index, and the silhouette
width against the number of clusters when running each of the five clustering algorithms

to the UPPP dataset.

in the number of clusters to use are the same (2 and 7), but this time Hierarchical

clustering does not impose on the rest of the algorithms completely, since K-means

outperforms it for the Dunn Index, with k=7.

In order to check which are the clusters resulted from the execution of the optimal algo-

rithms, we plot them: Figure 4.15 shows a dendrogram with the results of Hierarchical

Clustering with k=2, and Figure 4.16 represents graphically the clusters, projected into

a 2-dimensional composed of the two principal components from our 5-dimensional space

(named as Component1 and Component2 in the plot). To do this projection, a Principal
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Table 4.8: Optimal results for the clustering of User Performance Profiles on planning
missions (TestMission04).

Metric Score Method N. Clusters

Connectivity 2.9290 Hierarchical 2

Dunn 0.6099 K-means 7

Silhouette 0.4825 Hierarchical 2

Table 4.9: Clustering results for the User Performance Profiles on planning missions
(TestMission04). Bolded cells represent the best results obtained for each cluster vali-

dation metric

Clustering
Method

Validation
Metric

k=2 k=3 k=4 k=5 k=6 k=7 k=8

Hierarchical

Connectivity 2.929 5.969 12.811 21.051 23.504 25.129 28.204

Dunn 0.571 0.522 0.307 0.446 0.506 0.506 0.589

Silhouette 0.483 0.308 0.276 0.294 0.266 0.224 0.213

K-means

Connectivity 2.929 16.743 15.893 21.051 25.618 27.243 30.969

Dunn 0.571 0.314 0.397 0.446 0.527 0.610 0.456

Silhouette 0.483 0.222 0.258 0.294 0.285 0.257 0.263

DIANA

Connectivity 2.929 5.969 12.812 21.051 23.504 26.579 28.204

Dunn 0.571 0.522 0.307 0.446 0.506 0.527 0.589

Silhouette 0.483 0.308 0.276 0.294 0.266 0.230 0.213

M-Clustering

Connectivity 11.702 20.604 21.587 25.693 27.281 29.715 31.743

Dunn 0.225 0.233 0.283 0.328 0.399 0.487 0.4563

Silhouette 0.233 0.122 0.226 0.197 0.260 0.260 0.257

PAM

Connectivity 13.744 16.028 18.490 21.051 23.504 25.129 27.654

Dunn 0.198 0.253 0.336 0.446 0.506 0.506 0.506

Silhouette 0.205 0.212 0.297 0.294 0.266 0.224 0.222

Component Analysis (PCA) algorithm is used. Next section will discuss the results ob-

tained by this optimal clustering algorithms, and how we can extract some meaningful

patterns from them.
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Figure 4.15: Plot of the dendrogram for hierarchical clustering with k=2, using the
UPPP dataset.

4.6 Discussion

In this last section, once we have validated and extracted the optimal algorithms for

both UPPR and UPPP datasets, we must analyze the clusters obtained in order to give

a sense to them, and to define which behavior patterns have been found among the users

participating in the experiment. Due to the small number of users in this experiment,

we can do this manually by analyzing one by one the user profiles in every cluster.

As was done in the previous section, the cluster analysis will be separated into 2 parts,

depending of the dataset being analyzed (UPPR or UPPP ).
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Figure 4.16: K-means clusters for k=7, using the UPPP dataset.

4.6.1 Replanning Profiles Patterns

In the previous section we proved that the dataset composed of User Performance Pro-

files (UPPs) in replanning missions (TestMission01,02,03), also called UPPR(U), was

optimally clustered by a Hierarchical algorithm with 2 and 7 clusters. That means that

we can distinguish two general behavioral patterns, and those can be broken down into

seven more specific patterns.

4.6.1.1 UPPR Clusters for Hierarchical Clustering, k=2

Below are detailed the explanation and behavioral patterns extracted from each of the

clusters obtained by the Hierarchical Clustering algorithm with 2 clusters. Figure 4.17

show these results graphically.

1. UPPR elements: (1,2,11,15,19); Users: (05 112, 05 113, 05 129, 05 135 y 07 115):

This cluster is specially representative for having high levels of precision. Some-

what surprisingly, the score level does not perform well on any user of the cluster

despite the high precision level. If we check the secondary features (Consumption,
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Figure 4.17: Replanning User Performance Profile Clusters, resulted from the execu-
tion of Hierarchical Clustering with k=2.

Agility, Attention), we can conclude that these are slow users who have played

short simulations, making not too much interactions, but precise ones. They will

be labeled as Impatient with potential (See Figure 4.17, red UPPs).

2. Rest of the users: The variety obtained in this cluster makes difficult to extract

a pattern from it, so we must analyze the subgroups obtained by a deeper cut in

the hierarchical tree (See Figure 4.17, blue UPPs).
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4.6.1.2 UPPR Clusters for Hierarchical Clustering, k=7

Below are detailed the explanation and behavioral patterns extracted from each of the

clusters obtained by the Hierarchical Clustering algorithm with 7 clusters. Figure 4.18

show these results graphically.
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Replanning UPP Clusters (Hierarchical, k=7)

Figure 4.18: Replanning User Performance Profile Clusters, resulted from the execu-
tion of Hierarchical Clustering with k=7.

1. UPPR elements: (11), Users: (05 129): This cluster comprises only one user. The

user stands out because he obtains the biggest profile area of all users, reaching

maximum levels of precision and consumption, but low score levels. He repre-

sent an impatient user which performed very fast and precise interactions. Their
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behavior can be labeled as Fast Impatient with replanning potential (See

Figure 4.18, purple profiles).

2. UPPR elements: (15), Users: (05 135): This cluster comprises only one user.

Its performance profile can be labeled as Slow impatient with replanning

potential, due to the low agility level it features and the shortness of his missions.

Probably he played missions until the first incidence appeared, then slowed down

the simulation speed and tried to avoid them, with bad results, which caused him

to abort the mission (See Figure 4.18, gray profiles).

3. UPPR elements: (1,2,19), Users: (05 112, 05 113, 07 115): This cluster repre-

sents a soft version of the previous one (Element 15). Users here are cautious due

to its slow level of agility, and its precision/score/attention balance says that they

tried to avoid the incidents making a complex incident replanning (which gives

them high precision), but lost the focus on the mission targets (which gives them

low scores). Its behavior could be labeled as focused on avoiding incidents

(See Figure 4.18, red profile).

4. UPPR elements: (5,18,20,21,22), Users: (05 121, 07 112, 07 116, 07 118, 07 119):

If we look at the distribution of each UPP metric in table 4.4, we can conclude

that this cluster represents an average UPPR profile. This means that users in this

cluster are a representative sample of the general behavior of the students in our

dataset. Precision is low, as well as agility, and the consumption is not excessively

high, which indicates that the missions have not been prematurely aborted. This,

together with the high rate of attention and the variable score values lead us to con-

clude that users in this cluster tend to feature restless behaviors, aggressive,

more focused on detecting targets than avoiding incidents efficiently.

This makes sense given that students are novice users all of them (See Figure 4.18,

yellow profiles).

5. UPPR elements: (3,4,9,10,12,13,14), Users: (05 117, 05 118, 05 127, 05 128,

05 130, 05 131, 05 134): This cluster stands out for its precision-attention bal-

ance. The rest of the metrics maintain expected values with respect to their

distributions, but in all cases, the precision is very low and the attention exceeds
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the average. This is clearly associated to a reckless and aggressive behav-

ior, focused on detecting targets as soon as possible, ignoring the effects of the

incidents (See Figure 4.18, blue profiles).

6. UPPR elements: (6,8,23,24), Users: (05 122, 05 125, 07 124, 07 125): This clus-

ter clearly represents a bad UPPR profile, undesirable for anyone looking for

good operators. This is because the score metric performs extremely low values,

and recalling the score equation (See Section 4.3.3), this means that not only none

of the targets have been detected, but also the UAVs have been destroyed (See

Figure 4.18, green profiles).

7. UPPR elements: (7,16,17,25), Users: (05 123, 05 136, 07 110, 07 127): Users in

this cluster share a high level of agility, above the average. The rest of the metrics

revolve around the average values, which lead us to conclude that these users can

be trained to respond quickly to unknown situations. They could be labeled as

agile users (See Figure 4.18, brown profiles).

4.6.2 Planning Profile Patterns

As was said above, the main difference when analyzing planning profiles (UPPP ) with

respect to the analysis of replanning profiles (UPPR) lies in the meaning of the

precision metric. As was defined in Section 4.3.5, this metric focuses on rating how

the users change a plan only when it is needed, i.e, only when incidents happen. Thus,

in planning missions this metric is expected to perform very low values, because users

are forced to build a mission plan at the beginning of the simulation. However, in this

cases the precision can give us additional information: Low values will be associated to

complex and wise initial plans, and high values will be related to an impatient behavior.

In the previous section we proved that the dataset composed of User Performance Pro-

files (UPPs) in planning missions (TestMission04), also called UPPR(U), was optimally

clustered by a Hierarchical algorithm with 2 clusters and a K-means algorithm with 7

clusters. Thus, we shall analyze those clusterizations separately.
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4.6.2.1 UPPP Clusters for Hierarchical Clustering, k=2

Below are detailed the explanation and behavior patterns extracted from each of the

clusters obtained by the Hierarchical Clustering algorithm with 2 clusters. Figure 4.19

shows these results graphically.
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Figure 4.19: Planning User Performance Profile Clusters, resulted from the execution
of Hierarchical Clustering with k=2.

1. UPPP elements: (6), Users: (05 125): This cluster comprises only one user,

clearly distinguished by having the maximum level of precision (P = 1), in a

mission in which it is expected to have low precision values (The average precision

value is around 0.16, as shown in Table 4.4). This means that this user has

not created a beginning plan, but has run the simulation until the incidents
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appeared, and based on those incidents, he made a precise plan to avoid them.

This is actually a wrong way of playing this mission, and thus will be labeled as

tricky planner (See Figure 4.19, blue profiles).

2. Other profiles: The rest of the profiles in this clusterization share all of them low

levels of the precision metric, which mean that they have played the planning

mission correctly. However, it is needed a deeper sub-clusterization in order to

group these profiles more specifically (See Figure 4.19, red profiles).

4.6.2.2 UPPP Clusters for K-means, k=7

Below are detailed the explanation and behavior patterns extracted from each of the

clusters obtained by the K-means algorithm with 7 clusters. Figure 4.20 show these

results graphically.

1. UPPP elements: (6), Users: (05 125): This is the tricky planner cluster ex-

plained above. It was also obtained by the Hierarchical Clustering algorithm with

k=2 (See Figure 4.20, brown profiles).

2. UPPP elements: (2,4), Users: (05 117, 05 119): This cluster features profiles

close to the average values for all the metrics. The precision performs above

the mean value for this type of mission, which indicates, together with the high

consumption and the low attention, that the initial plans created by these

users were simple, and aborted prematurely. It could be labeled as Simple

and unfinished plans (See Figure 4.20, gray profiles).

3. UPPP elements: (5, 11), Users: (05 123, 07 109): This cluster stands out for

having a really low profile balance, specially in terms of score. The precision and

attention rates may tell that the created plans here are complex, and thus efficient,

but it seems that nothing was done to avoid the incidents, and hence all UAVs

were destroyed. This plans could be labeled as destructive (See Figure 4.20,

green profiles).

4. UPPP elements: (13), Users: (07 118): Undoubtedly, this cluster, which com-

prises only a user, represents the best performance of all analyzed profile. Not

only it gets the maximum score, but also its precision value is minimum, which
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Planning UPP Clusters (K−means, k=7)

Figure 4.20: Planning User Performance Profile Clusters, resulted from the execution
of K-means with k=7.

indicates that the initial plan designed was so good that it scarcely needed to be

replanned. Thus, this user is labeled as best performance (See Figure 4.20, red

profiles).

5. UPPP elements: (14), Users: (07 119): This cluster comprises only a user, and

it features, as explained above, a precision-attention balance proving a wise and

complex initial planning. Also, the low levels of agility and consumption make

clear that the user executed its initial plan and trusted it to avoid the incidents and

detect the targets. Unfortunately, the plan did not perform well score rate, hence

probably this user should have made a small replanning during the simulation. It
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could be labeled as complex and unsuccessful plan (See Figure 4.20, purple

profiles).

6. UPPP elements: (10, 12, 15, 16), Users: (05 136, 07 110, 07 124, 07 127): This

cluster stands out for its high values on the agility metric. Plans created by these

users were initially simple and grew during the simulation time. Thus, this cluster

can be labeled as intense replanning (See Figure 4.20, orange profiles).

7. UPPP elements: (1, 3, 7, 8, 9), Users: (05 113, 05 118, 05 127, 05 134, 05 135):

Users in this cluster feature a consumption rate lower than the rest of clusters in

this clusterization, as well as minimum values of precision. This means that they

have build wise, complex and long plans from the beginning of the mission, and

the have executed them without aborting the mission nor making many changes

in them. They also feature medium agility values, which lead us to conclude that

they were actively monitoring their mission plan execution. Scores in this cluster

do not get significant values, but still, these users could be labeled as complex

planners (See Figure 4.20, blue profiles).





Chapter 5

Conclusions and Future Work

5.1 Conclusions

This work has presented the design and development of a lightweight multi-UAV sim-

ulator, focused on retrieving data from the interactions of UAV operators in a simple

and accessible way. The high degree of expansion of UAV operations has resulted in

an increasing requirement of qualified UAV operators to supervise the missions. This

new demand of operators has created the need for new, open and simple simulation and

training platforms where a inexperienced user is able, on the one hand, to familiarize

with the world of Human-Supervisory Control in unmanned systems, and on the other

hand, to train its skills in order to become a potential UAV expert operator.

Due to that, the simulator, which has been named as Drone Watch And Rescue, has

been created following the criteria of simplicity and accesibility. The main features in

the development of this simulator include: gamification elements, as dynamic incidents,

mobile targets and scores, introduced to challenge the operator skills during a simu-

lation; simple interface and controls, to allow an easy learning curve of the simulator

mechanisms; a 2-level web architecture, which allows any user in the world to access

and use the simulator using just a modern web browser, and a complete and robust data

extraction, which catches all events and interactions happened during a simulation and

permit complex and effective analysis of the resulting data.

Once the simulator development is finished, we have created a load test to ensure that

the designed architecture is able to host simulations from hundreds of users at the same

83
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time. Then, the simulator has been deployed and used to carry out an experiment with

inexperienced students at the Autonomous University of Madrid.

The goal of the experiment is to extract and discover behavioral patterns from the

performance of each of the users participating in the experiment, and detect the type

and expertise of the user using the simulator. To achieve this, three main steps have been

followed: First, five performance metrics have been designed in order to measure the

quality of the user interactions during a simulation. Then, based on those metrics, each

user is associated to a user performance profile, calculated by averaging the performance

profile of all his/her simulations. Finally, the user profiles are introduced into several

clustering algorithms, to discover some groups or patterns in the user performance. The

clusterizations obtained by the algorithms are validated, optimized and analyzed to

extract the behavioral patterns hidden among the user profiles. The results show that

the metrics and profiles created for this experiment characterize well the low expertise

and novice behavior of the users in the experiment.

5.2 Future Work

Since this work is clearly divided into two parts (Development & Analysis), there are

different lines of future work depending on where we focus.

On the one hand, regarding to the development of Drone Watch And Rescue, we can

set multiple developing lines to improve the platform:

• Although the simulator is not focused on achieving high fidelity in terms of physics

and UAV technical issues, it is needed to improve the simulation mechanisms and

interface of DWR, to bring it closer to the functionality of a real GCS. Achieving

this without losing the essence of simplicity and accessibility is a big challenge,

but it would reduce the gap between expert operators and normal users.

• In order to make DWR become a complete UAV mission training platform, it

is necessary to extent the tool so that not only it is able to simulate specific

missions, but also offer complete training exercises, with different difficulty levels.

This would allow a deeper analysis of the user evolution through the successive
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exercises, assessing their learning curve and their potential in a more objective

manner.

On the other hand, in terms of the performance analysis made in this work, there are

also many improvements and extensions that can be applied:

• It is desirable to improve the designed performance metrics in many ways. First,

we must ensure that all of them offer valuable information. In the experimentation

made in this work, we saw that some metrics, as consumption and attention, re-

sulted in density distributions featuring a very-low variance value. This is usually

undesirable for the purposes of data analysis, thus we must improve the metrics

to perform better variance values. Besides, in order to bring this simulation envi-

ronment closer to a real scenario, the performance metrics should be adapted to

become more sophisticated and appropriate to the related state of the art in the

field [36].

• Apart from the internal validation measures used to validate the clustering algo-

rithms applied in the experimentation of this work, it would be interesting to add

some stability measures to the analysis, as the Average proportion of non-overlap

(APN), the Average distance (AD) or the Figure of Merite (FOM) [48]. These

metrics compare the results from clustering based on the full data to clustering

based on removing each column (feature), one at a time [56]. These measures work

especially well if the data are highly correlated, and help us to decide if all the

features that we are choosing for clustering are relevant.

• The cluster analysis made in the experimentation of this work consisted of man-

ually assigning behavioral “tags” to each group, based on the shape of the user

profiles in the group cluster. A big improvement to this experimentation would be

to do this analysis in an automatic way.

• As was described in the state of the art, some of the most relevant works in the

field of analyzing behavioral patterns in UAV operators use unsupervised Hidden

Markov Models as a way of modeling the different cognitive states of the operator

[25, 26]. An interesting future research line would include using that type of

modeling technique, and comparing it with the clustering methods used in this

work.





Appendix A

DWR Dataset

This appendix shows the entire dataset used to save the data from a simulation executed

by the simulator Drone Watch And Rescue. The Data Base Management System used

to store this dataset is MongoDB, and hence the data is organized into collections.

Below are detailed the collections of each database created for DWR, as well as the

Enumeration Data Types needed to save some data.

A.1 UAS SIMULATION Database

The UAS Simulations database contains a set of collections storing the results of every

simulation executed in DWR. The relation between each collection in this database is

detailed in Section 3.2.3, and displayed graphically into an ER-Diagram in Figure 3.8 of

that section. Tables A.1,A.2,A.3,A.4 detail the attributes of each of these collections.

A.2 UAS MISSION Database

The UAS Mission database contains the set of collections defining the essential com-

ponents of any input mission in DWR, i.e, the Mission Scenario and the Mission Plan.

The data from these collections is shared with the works of Ramirez-Atencia et al. in

[72]. See this work for details of the attributes contained in this database.
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Table A.1: Simulations collection.

Name Format Description

id ObjectId MongoDB unique identifier

name String Optional. Identifies the user running
the simulation.

clientIP String IP address of the device running the
simulation.

createdAt Date Indicates the exact moment when the
simulation started.

missionPlanId ObjectId*-
Reference to
(UAS MissionPlans,
Plans)

Foreign key identifying the mission
plan loaded in this simulation.

A.3 UAS SCENARIO Database

The UAS Scenario database contains a set of collections comprising the gamification

elements of a mission in DWR, as detailed in Section 3.2.2. Tables A.5,A.6,A.7,A.8

Table A.2: Simulation snapshots collection.

Name Format Description

id ObjectId MongoDB unique identifier

simulation ObjectId*-
Reference to
(UAS Simulations,
Simulations)

Foreign key identifying the simulation
instance to which this snapshot be-
longs to.

simulationElapsedTime Number Time when this snapshot was taken,
in milliseconds, measured in the sim-
ulation time line since the beginning
of the mission.

realElapsedTime Number Time when this snapshot was taken,
in milliseconds, measured in the real
time line since the beginning of the
mission.

simulationSpeed Number Simulation Speed at the time when
the snapshot was taken. This value
lies in the interval [1, 1000]

cause EventType
(Enum)

Identification of the Event Type caus-
ing this snapshot. See A.9,A.10
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Table A.3: Simulation snapshots collection.

Name Format Description

id ObjectId MongoDB unique identifier

simulationSnapshot ObjectId*-
Reference to
(UAS Simulations,
SimulationSnap-
shots)

Foreign key identifying the simulation
snapshot instance to which this snap-
shot belongs to.

UAVId String Identifier of the UAV associated to
this snapshot.

status UAVStatus(Enum) Current status of the UAV at the time
when the snapshot was taken. See
Table A.11.

remainingFuel Number Current remaining fuel (L) at the
time when the snapshot was taken.

speed Number Current UAV speed (Km/h) at the
time when the snapshot was taken.

position (Number,Number) Current UAV position
(Latitude, Longitude) at the time
when the snapshot was taken.

detail the attributes of each collection comprising this database.

A.4 Enumerations

The term Enumeration in this work refers to a closed data structure, which only can have

a finite set of values. However, some of these enumerations admit the use of parameters.

Tables A.9,A.10,A.11,A.12,A.13,A.14 detail all possible values for each enumeration in

DWR.
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Table A.4: Waypoints collection.

Name Format Description

id ObjectId MongoDB unique identifier

droneSnapshot ObjectId*-
Reference to
(UAS Simulations,
DroneSnapthots)

Foreign key identifying the drone
snapshot instance to which this way-
point belongs to.

position (Number,Number) Position in which the waypoint
is located, in geodesic coordinates
(Latitude, Longitude).

type WAypointType(Enum) Waypoint Type. See Table A.14.

plannedTime Number Time in milliseconds, measured from
the beginning of the simulation time-
line, in which it is expected to reach
this waypoint.

Table A.5: Incidents Plan collection.

Name Format Description

id ObjectId MongoDB unique identifier

mission ObjectId*-
Reference to
(UAS MissionInput,
MissionInput)

Foreign key identifying the Mission
Scenario associated to this Incidents
Plan.

incidents Array Lists the incidents comprising this in-
cidents plan. See Table A.6
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Table A.6: Incidents collection.

Name Format Description

id ObjectId MongoDB unique identifier

type IncidentType(Enum) Identifier of the incident type. See
Table A.12.

level IncidentLevel(Enum) Identifier of the incident level. See
Table A.13.

message String Optional. Text describing the inci-
dent cause.

startTime Number Time in milliseconds, measured from
the beginning of the mission (time 0),
when the incident will be triggered.

endTime Number Optional. Time in milliseconds, mea-
sured from the beginning of the mis-
sion (time 0), when the incident will
finish.

Table A.7: Targets definition collection.

Name Format Description

id ObjectId MongoDB unique identifier

mission ObjectId*-Reference
to (UAS Mission,
MissionInput)

Foreign key identifying the Mission
Scenario associated to this Targets
Definition.

targets Array Lists the targets comprising this tar-
gets definition. See Table A.8

Table A.8: Targets definition collection.

Name Format Description

id ObjectId MongoDB unique identifier

type TargetType(Enum) Identifier of the Target Type. Cur-
rently there is only one type of target
in DWR (“Enemy” targets). Thus,
this attribute is useless.

position (Number,Number) Initial position of the target.

speed Number Target speed (constant).
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Table A.9: Event Types Enumeration.

ID Key Description Params

0 USER INPUT This Event Type includes
all possible operator interac-
tions in DWR.

See Table A.10.

1 DRONE REACH
WAYPOINT

A UAV has reached a way-
point.

• UAVId
• Waypoint

Identification

2 INCIDENT
STARTED

A new incident starts
• IncidentID
• IncidentType

3 INCIDENT
ENDED

An incident ends (either be-
cause the operator opposed it
or because it had an sched-
uled end time).

• IncidentID
• IncidentType

4 TARGET DE-
TECTED

A UAV detects a target.
• detectorId
•

targetPosition

5 DRONE DE-
STROYED

A UAV is destroyed UAVId

6 ACTION
STARTED

An action or task begins.
• UAVId
• ActionId
• ActionType

7 ACTION ENDED An action or tasks ends.
This event is not always
linked to the event ACTION
STARTED, since there are
times that a UAV starts an
action but is not able to fin-
ish.

• UAVId
• ActionId
• ActionType

8 CONTROL
MODE
CHANGED

The control mode was au-
tomatically changed by the
simulator.

ControlModeId
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Table A.10: User inputs enumeration.

ID Key Description Params

0 SELECT DRONE The operator selects a UAV UAVId

1 SET DRONE
SPEED

The speed of a specific UAV
is changed

UAVId

2 SET SIMULA-
TION TIME
RATIO

The simulation speed is
changed by the operator.
The value set can be seen
in the Simulation Snapshot
associated to this event.

3 ADD WAYPOINT Not used. Included in
the input CHANGE DRONE
PATH

4 CHANGE DRONE
PATH

The flying path of a UAV is
changed by an operator, ei-
ther because a new waypoint
has been added, edited or re-
moved.

UAVId

5 SET WAYPOINT
SELECTION

Indicates if a waypoint has
been selected/unselected in
the Waypoints panel of the
GUI

Selected(True if it is a
selection, False if it is
an unselection)

6 SET CONTROL
MODE

The control mode is changed
by an operator.

ControlModeId

Table A.11: UAV Status enumeration.

ID Key Description

0 LOITER The UAV has no waypoints in his flying path.

1 CRUISE The UAV is flying without performing any
task.

2 REFUELING The UAV is charging its fuel in a fuel station.

3 DEAD The UAV has been destroyed during the sim-
ulation.

4 TASK The UAV is performing a task.
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Table A.12: Incident Type enumeration.

ID (String) Description Params

“DangerArea” A new No Flight Zone appears
during the execution of a mis-
sion. If a UAV overflies one of
these areas, it will be destroyed.

• Area object, con-
taining an array of
(lat, lon) vertices de-
scribing a polygon.
• End Time (required)

“PayloadIncident” The UAV sensors are broken for
a limited/unlimited interval of
time

• Identifier of the af-
fected UAV
• End Time (optional)

Table A.13: Incident Level enumeration.

ID (String) Key Description

“ADVISORY” ADVISORY The incident will not cause any UAV
to be destroyed, and the mission suc-
cess will not be threatened.

“CAUTION” CAUTION The incident will not cause any UAV
to be destroyed, but the mission suc-
cess is threatened.

“WARNING” WARNING The incident may cause the destruc-
tion of one or many UAVs

Table A.14: Waypoint Type enumeration.

ID Key Description

0 ROUTE Common waypoint used to fly between tasks.

1 ACTION Located at the entry point of the mission
tasks. Marks the start of a new task, what-
ever its type (Currently only Surveillance
tasks are supported).

2 REFUELING Located exclusively on fuel stations. Always
have a “Refueling” action associated.

3 LAND Located exclusively on airports. Always have
a “Landing” action associated.
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