Tl
I
UNIVERSIDAD_AUTONOMA
[DEVADRD |

Biblos € arcnidei

Repositorio Institucional de la Universidad Autonoma de Madrid

https://repositorio.uam.es

Esta es la version de autor de la comunicacion de congreso publicada en:
This is an author produced version of a paper published in:

Software and Data Technologies: 4th International Conference, ICSOFT 2009,
Sofia, Bulgaria, July 26-29, 2009. Revised Selected Papers. Communications in
Computer and Information Science, Volumen 50. Springer, 2011. 218-230.

DOI: http://dx.doi.org/10.1007/978-3-642-20116-5 17

Copyright: © Springer-Verlag Berlin Heidelberg 2011

El acceso a la version del editor puede requerir la suscripcion del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/978-3-642-20116-5_17

Educational Resource Scheduling based on
Socio-inspired agents

Juan I. Cano'?, Eloy Anguiano®?, Estrella Pulido?, and David Camacho?*

! Instituto de Ingeniera del Conocimiento
2 Escuela Politcnica Superior - Universidad Autnoma de Madrid
3 Centro de Referencia Linux UAM-IBM
{inaki.cano,david.camacho, estrella.pulido, eloy.anguiano}Quam.es

Abstract. Scheduling a set of constrained resources is a difficult task,
specially when there is no clear definition of ‘optimal’. When the con-
straints depend not only on physical or temporal issues but also in human
desires or preferences the task gets harder. This is the case of educational
resources, for example when a set of students must be distributed into
a limited set of finite laboratories to attend to periodical, in this case
weekly, practical sessions. The preferences of the students may vary dur-
ing the process for reasons such as the number of people already in that
group. This paper presents a socio—inspired solution implemented as a
multiagent system. The agents enroll themselves in the lab sessions based
on their preferences and negotiate with other agents, using the resources
they already have, to obtain desired groups that were already full.

Keywords: Scheduling, Multiagent System, Multiagent Resource Al-
location, Constraint Satisfaction Problem, Socio—inspired, Complexity
Science

1 Introduction

Resource allocation has always been a huge concern for administrators. These
problems, from the family of constraint satisfaction problems, can be seen in
several domains, as for example the allocation of processing time to the users of
a mainframe [5] or the assignment of runways to planes in an airport [4]. Finding
a way to solve these problems efficiently is important as some of them appear in
time critical situations.

In general, in a resource allocation problem we have a set of resources that are
limited and a set of agents that need these resources in some specific way. The
nature and characteristics of these resources are very important when deciding
a solution as they define part of the constraints to take into account. The rest of
the constraints are defined by the agents or are imposed externally. A solution
of the problem is found when we can make a feasible allocation (every agent has

* This work has been partially supported by the Spanish Ministry of Science and
Innovation under grants TIN 2007-65989, TIN 2007-64718, and TIN2010-19872.

2 J.I. Cano, E. Anguiano, E. Pulido, D. Camacho

a resource assigned) or we find the optimal allocation. In the latter case we must
decide on a way to measure the optimality of a solution. Also, there are cases
where there is no possible solution.

This kind of problems have been treated in many different ways [3, 7]. One ap-
proach recently developed is MultiAgent Resource Allocation (MARA)[2], which
uses multiagent systems to solve the allocation problem. This approach comes
very natural as instead of programming an abstract algorithm we design a model
of the problem, create some behavior for the agents and let system evolve to a
solution. The key of this method is to capture the relevant aspects of the problem
and define some utility function for the agents.

In the first section of this chapter there is a precise description of the problem,
starting with an overview of the problem and then dealing with the relevant
details to build the solution. In the second section we explain the design of the
built system and why some decisions were made based on the description of the
problem. Next, we will try to analyze the system from a complexity science point
of view, identifying inputs, outputs, feedbacks and how they affect the system.
Finally, we will show some results and conclusions, and how this system could
be improved.

2 Description of the Problem

The problem to be solved was chosen for its familiarity and difficulty. Every
year, in our university, the students enroll in some courses, usually five per term.
The majority of this courses have two parts, one theoretical and one practical.
The theoretical part of the courses are usually not a problem when allocating
students, there are enough teachers and classrooms for the lectures, but for the
practical part of the courses the laboratory space is limited. Even if there were
huge computer labs, the relation between student and teacher is crucial for this
part.

The practical sessions take place once a week. At the beginning of each term,
the coordinator of the practical sessions for each course defines the number of
groups, who is going to teach each of them and when the practical session for
each group takes place. The group size is limited by space available in the lab.
Students can join any of these groups, but once they choose a group they are
required, unless there’s a good reason, to attend to that group until the end
of the term. This creates some conflict and competition among the students as
they have time restrictions and preferences over the teachers (see fig. 1), and
the group size limit makes that not every student is satisfied with her assigned
groups.

This gets even more complicated as they have more than one course, usually
five as mentioned earlier (see fig. 2). A student cannot join groups that overlap
in time and this adds a dynamic restriction to the problem: once a student is
assigned to a group, the time slot when the sessions take place are no longer
available for other course’s groups. This is a big problem from a CSP point of
view, what once was a feasible solution or even an optimal solution can change

Educational Resource Scheduling based on Socio-inspired agents 3

Fig. 1. Student preferences in a course with three groups. The whole square represent
the course, the vertical divisions the groups. White dots are available places, black dots
are occupied seats. The student in this figure preferes the first group, cannot assist to
sessions in the third group and shows herself indifferent about the second group.

after one assignment and become a terrible solution, and the other way around,
what once was a terrible solution can become an optimal solution.

Fig. 2. A student’s global situation. Each RS (Resource Set) represents a course, and
each course is divided as explained in fig. 1. The values between curly brackets represent
the preferences of the student. For example, {P,LF} means that the student prefers
the first group (P), is indifferent about the second group (I) and cannot assist to the
third group (F).

Once explained the problem in general terms, we can analyse it precisely
to build a solution. In the following description we are going to use Resource
Set (RS) for courses and Educational Resource (ER) for the groups. This way
ER; will be the course number one and RS;; will be the first group of the
first course. To address correctly the problem, it will be described by a set of

4 J.I. Cano, E. Anguiano, E. Pulido, D. Camacho

properties and characteristics (resource types, preference representation, social
welfare, allocation procedures, complexity, and simulation) from [2], which can
be used to characterize MARA systems and applications.

— Resource Type

e Discrete vs Continuous: The ER are discrete, they cannot be represented
with real numbers nor it can be divided.

o Diwsible or not: The ER are not divisible

e Sharable or not: Each ER can be assigned to more than one agent at the
same time, but they have limits (seats/places).

e Static or not: The ERs doesn’t change during the negotiation, they’re
not consumable nor perishable.

o Single—unit vs Multi—unit: Each ER is unique, it can’t be confused with
another ER.

o Resource vs Task: The ER is assigned as a resource, not as a task.

— Preference Representation

e Preference structure: Although our model distinguishes between three
different choices (Preferred (P), Indifferent (I), Forbidden (F)) of a par-
ticular educational item, and we could construct an ordinal preference
structure (where P > I > F), we use an evaluation function that trans-
lates the agent preference into an integer which is used later to obtain
a quantitative value, so a cardinal preference structure is the structure
used.

o Quantitative preferences: A utility function is used to map the bundle
of resources assigned to an agent into a quantitative value, which will be
later maximized.

e Ordinal preferences: Not applicable.

— Social Welfare
Our approach is based on Collective Utility Function (CUF) because the
alm is to maximize the average value of individual agent welfares. In the
egalitarian social welfare, the aim is to improve the agent with the lowest
welfare and in the utilitarian social welfare the aim is to improve the sum
of all welfares, whereas in our approach the global state of the whole agent
society by means of the average welfare is the aim of optimisation. Among the
different possibilities (pareto optimality, collective utility function (CUF),
leximin ordering, generalisations, normalised utility or envy—freeness) a CUF
has been selected that defines the utilitarian social welfare as the total sum
of agent cardinal values divided by the total number of agents.

— Allocation Procedures

o (Centralized vs Distributed: Our approach is fully distributed, since the
solution is reached by means of a local negotiation amongst agents and
there is not a global perspective of the ERA problem. An aggregation
of individual preferences is used and the agent preferences are used to
assess the quality of the global resource allocation.

o Auction protocols: No auction algorithm is considered.

Educational Resource Scheduling based on Socio-inspired agents 5

e Negotiation protocols: A simplified version of the Concurrent Contract—
Net Protocol (CCNP) has been implemented, where each agent can act
as a manager and a bidder in the simulation step[9].

o Convergence properties: Our negotiation algorithm needs a multilateral
deal, where any interested agent in a particular educational item can
negotiate with the manager (in our approach the agent who is trying to
obtain a specific allocation).

— Complexity
Analysis of the models and assumptions, or the computational vs. commu-
nication complexity, used in our approach is not relevant for now.

— Simulation
A Multi-Agent Simulation Toolkit (MASON) has been used to deploy and
test our proposed solution [6, 8].

To summarize the restrictions of this problem, we have that each student
must have one, and only one, group assigned for each course with practical ses-
sions. The students have preferences over the groups and are limited by other
courses they are assisting, so the solution should maximize the student’s hap-
piness and can’t assign to a student groups that overlaps in time. To these
preferences we add that the groups must be evenly distributed and, by our in-
stitution requirement, courses from higher levels must have preference over the
rest.

3 The design of the system

The main objective of this work was to design a light system capable of solving
this problem efficiently. Another objective was to use ideas and concepts that
comes natural with the problem described. The multiagent approach let’s the
researcher use the problem terminology when constructing solution and the built
system can be said to be socially inspired.

While building the solution, we created a model of how students interact
between themselves when enrolling into groups. We observed that when signing
into a group’s list, students negotiate between them exchanging positions they
have for the ones they want to have. This process is very local as they only
contact friends and usually limit themselves to one subject or one group. In the
model created, students negotiate with every other student that have something
to offer. The exact negotiation process will be explained bellow.

Before explaining the negotiation, we need to understand how the students
perceive their status and evaluate the proposals. We define the student’s happi-
ness or utility function as a function that increases with the number of groups
assigned that they deem preferred. We have to maintain the groups balanced as
this is good for the students as it is for the teachers, so the student happiness
also varies with the occupation of the group in relation with the occupation of
the other groups of this course. The happiness function would have the following

form:
Yo (fi(RSi(a)) + f2(g, RSi(a)))

H(az) = n

6 J.I. Cano, E. Anguiano, E. Pulido, D. Camacho

In this equation we have RS;(a) that returns the group assigned to student
a in the RS;, q is the group’s ocupation, f; maps the student preference to an
integer value, fo represents how the student perceive the balance of the group
and n is the number of subjects the student has.

As explained in the above section, each student can assign one of three pref-
erence categories to each subject: P for Preferred, I for Indifferent and F for
Forbidden. The values of f; for each preference category is 5 for P, 3 for I and 1
for F. We chose this values so that P > I+ F and F is better than not assigning
a group.

The fy function assigns a value between 1 and 5 to the group occupation.
The maximum value is achieved when the group occupation is exactly the same
as the mean occupation of the groups, that is the number of students in a course
divided by the number of groups that course has. To enroll in an empty group is
always better than a full group, so full groups receive the minimum value. The
shape of the f; function can be seen in fig 3.

SE-
I
Low occupation—
High occupation >
1
>
ql q2 N

Fig. 3. Shape of the function that assigns a value to the occupation of a group. g1 and
g2 are mean occupation of the course, N is the total number of students in the course.
The slope of the function varies, depending on the number of students a course has.

This is the general version of the happiness function, during the execution of
the system there are some variations. The first variation is that, to enforce the
assignment of groups for the last year’s courses (as required by the institution),
when calculating the mean happiness this groups are valued double, we multiply
the values of f; and fo by two. The other variation is that, when negotiating
the students can ask once and again for the same group (we will see this later).
To avoid this situation, each time a student cannot get a group in a negotiation,
the happiness this group gives her will be reduced by a 10%.

The negotiation algorithm employed is a simplification of the Contract-Net
Protocol [9]. The negotiation only takes place when a student wants to enter
a group that is already full. In that case, the student interested in the group,
let’s call her the initiator, sends a list of groups she has already been assigned

Educational Resource Scheduling based on Socio-inspired agents 7

to to the students in that group, whom we will call the receivers. The list of
groups sent only includes the groups that, if changed for the group the initiator
is interested in, doesn’t decrease her current level of happiness. The first receiver
interested in an offered group, that is, his happiness is not reduced, swaps places
with the initiator. A pseudocode of the algorithm can be seen below.

offer := AssignedGroups(Initiator)
Filter(offer)

for all Receiver in Group do
if Receiver is interested in $ER_x \in$ offer then
Swap places
return true
end if
end for
return false

Before starting a negotiation, the student evaluates where would she be bet-
ter. With the list of courses and groups she has assigned, she evaluates which
group assignment can be improved. If changing one group for another can be
done, that is, the new group has enough space, the student swaps there directly.
If the new group is already full, the student starts a negotiation with the students
enrolled in that group. If there’s no one to negotiate with or there’s no group
we can offer because any change would decrease the happiness, a desist factor
is applied to that group. The happiness that group contributes to the student
happiness is reduced by a 10% and at some point the student will start asking
for a different group, possibly in a different course.

To find a solution for the problem, we let this model evolve until an equilib-
rium state is achieved. This equilibrium state is the state where no student wants
to swap places with another student. The students start with no groups assigned
and have complete freedom to enroll any group that is not full. As we stated
before, MARA let’s the designer use terminology and ideas from the problem to
be solved with little abstractions needed.

4 Experimental Setup and Results

Once the system was built it needed to be tested. This section will detail the
datasets employed and how the system built responded. To deepen in the study,
the system was compared with a traditional CSP approach, as described in [1].

4.1 Data Sets

Several data sets, with incremental constraint—based complexity, have been con-
sidered. They have been generated by using real statistical information from
the Escuela Politcnica Superior at Universidad Autnoma de Madrid (UAM).

8 J.I. Cano, E. Anguiano, E. Pulido, D. Camacho

For each course, the number of laboratories available, students registered for
each course, capacity of labs, and time tables, has been considered. This data
has been used to generate a probability distribution of students/course and the
number /capacity of labs that students need to attend. A four year degree has
been considered (it corresponds to the current degree in Computer Engineering
at UAM). Table 1 shows the student enrollment distributions by course (only
those courses with laboratories are considered), the number of courses for which
students have enrolled and the distribution of students with this number of
courses.

Table 1. Distribution of labs by course.

Year No. Courses Percentage of Students
¥ 2 100%
2-3-4 20% - 50% - 30%
34 4-5-6 15% - 70% - 15%
4t 4-5-6 15% - 70% - 15%

2nd

Table 1 assumes that students from any year has at least one course from
that year and no courses from higher years. This means that a third year student
has at least one third year course and no fourth year courses. This can also mean
that a third year students can be enrolled in first and second year courses. To
simplify the tests, we limited this so that a student can only have courses from
one year and the immediatly below. The first and second year has a total number
of 2 courses with practical sessions, we don’t take into account theoretical-only
courses, while third and fourth year have 5 courses with practical sessions.

As an example of how to read the table, the second row represents the second
year students. This students can have 2, 3 or 4 courses, and some of them can be
from the first year, up to 2 as there are only 2 courses in the first year. From the
total number of second year students, a 20% have 2 courses, 50% have 3 courses
and 30% have 4 courses.

As mentioned above, students can have courses from one year below the
current year. In the second year, students with only 2 courses have both from
second year, students with 3 have 1 course from first year and students with
4 have 2 from first year. In Table 2 the fraction of courses from another year
are shown for the third and fourth years. The table shows the distribution of
courses of different years for each student. By examining the real data, it can be
noted that the number of students with at least one course from another year is
higher than the number of students that have courses only of their own year. In
addition, the number students with 6 courses of the same year are very low.

Based on the previous information, six data sets of 1000 students were gen-
erated. The synthetic restrictions for each student were also randomly generated
by using some historic data related to previous years. Table 3 summarizes the
basic features for each data set, where DsO considers only one Preferred group
per ER and StudentAgent (e.g. ((P,I,I),(P,I,1))), whereas Ds5 considers that

Educational Resource Scheduling based on Socio-inspired agents 9

Table 2. Distribution of labs for 3™ and 4" year courses.

No. enrolled All the same One course Two courses Three courses

courses year (%) from one from one from one (%)
year back (%) year back (%) year back (%)
4 20 60 20 0
5 10 40 50 0
6 5 40 40 15

30% of ERs are marked as Preferred and the rest (70%) are Forbidden. For exam-
ple, ((P,F,F),(P,F,F), (P, F,F)) makes a 30-70 distribution. The number of
Forbidden and Preferred constraints has been adjusted along different datasets
to cover different complexity situations.

Table 3. Student datasets.

Data Set Preferred groups (P) Forbidden groups (F)

Test 100% 0%
Ds0 1P/(RS,agent) 0%
Dsl 30% 0%
Ds2 1P/(RS,agent) 20%
Ds3 30% 20%
Ds4 1P/(RS,agent) 50%
Dsb 30% 50%
Ds6 1P/(RS,agent) 70%
Ds7 30% 70%

The difference between the percentage of P and F is the precentage of L.
This way, the most restrictive datasets are DS6 and DS7 because the number
of I is reduced and in some cases, many cases, there will be no I in the student
preferences.

4.2 Results

Two systems were tested using these datasets, a CSP [1] and the multiagent
system described in the previous section. Tables 4 and 5 show the results obtained
for both systems. Since the happiness functions were obtained by using different
preference values, they are not comparable across systems but they give a good
estimation of their performance with different restrictions. The key values for
the comparison are the percentage of P, I, and F in the final allocation.

As seen in Table 4, the CSP gives a good result for the first datasets, but when
the restrictions are increased the overall happiness decreases and the percentage
of F assigned is very high. Altough the execution time was not registered, it was
comparatively high when comparing with the MARA approach. While MARA
took only a few seconds, the CSP approach need hours to do the assignment.

10 J.I. Cano, E. Anguiano, E. Pulido, D. Camacho

Table 4. CSP experimental results for datasets considered.

Data Mean Happiness Mean Distribution P’s I's F’s
Set Happiness Deviation Distribution Deviation (%) (%) (%)

Test 9.85 0.07 81.5 0,66 100 0 O
Ds0 9.69 0.15 81.3 21.8 86.913.1 0
Ds1 9.78 0.1 81.2 15,2 942 58 0
Ds2 9.32 0.25 81 17.7 89.8 1.07 9.19
Dsb 7.82 1.09 80.6 17.9 61.3 15.6 23.1
Ds6 7.03 1.12 80.8 15.8 66 8.2 25.8
Ds7 6.02 1.59 80.9 19.5 71.9 0 28.1

For datasets 3 and 4, it took so long that it was stopped before completion, after
6 hours of execution.

Table 5. MAS experimental results for datasets considered.

Data Mean Happiness Mean Distribution P’s I's F’s
Set Happiness Deviation Distribution Deviation (%) (%) (%)

Test 9.85 0.07 81.5 0,66 100 0 0
Ds0 9.3 0.29 81.3 4.21 85.3 14.7 0
Ds1 9.7 0.14 81.4 0.64 94 6 0
Ds2 9.4 0.24 81.1 4.36 86.9 12.75 0.35
Ds3 9.8 0.12 80.4 2.04 95.8 3.67 0.49
Ds4 9.2 0.33 80.8 6.94 85.7 12.5 1.8
Ds5 9.7 0.19 81.0 0.89 95.5 2.42 2.05
Ds6 9.1 0.43 81.0 5.92 86.0 11.1 2.9
Ds7 9.7 0.29 80.9 0.91 958 0 4.2

The results obtained for the MAS model are shown in Table 5. This method is
able, by using the negotiation-based approach, to maintain the global happiness
of the solutions found. Although “happiness” values cannot be directly compared
between CSP and MAS solutions (because their equations are different), the
percentage of allocated F can be compared. In the worst situation (DS7) only
the 4% of the students needs to be assigned to a forbidden ER (F), and the
96% of student teams are satisfactory allocated. Finally, the low variation of
the happiness among the different datasets can be remarked compared to the
variation of this value for the CSP solutions. This is due to the facility (given
by the Multi-agent approach) to change preference values, or to exchange the
current ER allocation with other agent in the system.

5 A Complexity Science View

Although there is no agreement on a definition of complex, we will use its ety-
mological definition. The word comes from latin complexus: com- (“together”)

Educational Resource Scheduling based on Socio-inspired agents 11

and plectere (“to weave, braid”). If we refer to its etimology, something complex
should have at least two elements and have some intricate relationship between
its elements. Thus, a complex system should be a system with different elements
and a mesh of relationships among them.

In this system we can identify two sources of complexity. On one hand we have
the problem itself. The courses and groups are related to each other, and also are
the students. The relationships between the different parts of the problem makes
it a complex environment and if we introduce some change in it, e.g. change a
group’s time slot or the student preference, the reaction is unpredictable as we
can’t determine how other students will react or how the constraints will change
during a simulation, among other things.

On the other hand we have the built system. As cyberneticists say, the best
way to deal with a complex system is with another complex system. The built
system is completely based on the problem, each part of it is a model of some
aspect or aspects of the problem. This makes the built system to be adaptive
and flexible: after a solution is found, we can translate any change in the original
environment into the system and let it find a new solution. This adativity and
flexibility is not available in other methods as, for example, backtracking. If we
want to introduce a change in the problem, we would need to run the backtrack-
ing algorithm from the begining because some branches that where not useful
before can lead to solutions now.

The built system is composed of different agents, each one of them can be
differentiated from the others by the courses they have and the preferences over
the groups in each course. The interaction between the agents is local, they
can only communicate with a limited part of the system. At most, an agent
can establish communication with other agents in the same courses it has, but
normally they will communicate with only a subset of these agents. Although
this communication is local, we have a global situation that the agents are not
aware of.

The outcome of the system, the stable state, cannot be traced back to its
agents. We can say that agent X enrolled in a group she can’t attend, i.e. has an
F for that group in her preference vector, because the group she wanted was full
and no one there is interested in other groups she has. But then we need to go
back and see why nobody is interested or why she couldn’t enter the group in
the first place because everyone had an equal chance to get into it. This causal
chain is long, complicated and full of suppositions and, although we could find
some probabilities over the links, we cannot fully explain why the resulting state
is the one it is.

Complex self-organizing systems have feedback mechanisms. Feedback mech-
anisms defines how outputs are related to inputs, positive feedback increases the
effect of an input while negative feedback reduces this effect. Before defining
inputs and outputs we must define where are the borders of the system, in other
words, what is part of the system and what is part of the environment. As we
don’t expect changes in the courses or groups, we define the system as the group

12 J.I. Cano, E. Anguiano, E. Pulido, D. Camacho

of agents and the environment as the courses and groups. This way we have that
the problem defines an environment with the following variables:

— List of courses

— Number of groups for each course
— Size of the groups

Groups’ hours

Number of agents

Enrolled courses for each agent

— Preference vectors for each agent

This variables can be understood as how the agent models its environment
and its goals, they belong to both, the environment and the system, but they are
not fed into the system nor they are extracted from it. Previously we discussed
the adaptivity of this kind of systems and how we could change the environment
while the system is running. This stays true after this separation, what changes
is how we introduce these modifications.

The rest of variables depends directly on the agents and they can modify
them as they wish. From this variables we will define as an output, i.e. variables
that the system shows to its environment, the assigned groups for each agent,
and the only input would be the distribution of students in groups. To define
the state of an agent we use the list assigned groups, the number of time it has
attempted to enter a group and its happiness.

To recapitulate, we have that the problem is defined by variables that de-
termine the courses and groups and their relationship with the agents. We can
consider this variables as immutable and part of the agents’ internal representa-
tion of the world. The list of groups assigned, the number of times an agent has
attempted to enter a group and its happiness are the only variables necessary to
determine the agents state. The system constantly receives information about
the state of the groups, meaning that it knows what students are already in a
group or if a group is full. In exchange, the system informs about changes it
makes in the groups.

We can see clearly that there is a feedback loop, the state of the groups is
fed to the agents and the agents inform about any changes in them. This loop
doesn’t determine by itself if it is a positive or negative feedback, it depends
on how the system treats this information. In our case, this loop is managed in
two ways: with the insistence factor and the f function, both in the happiness
equation.

The insistence factor is applied when the agents try to enter any group more
than once without any success. The relation with the feedback is a little difficult
to see, first the agent receives the status of the groups for the courses it has
enrolled. The agent evaluates if there is a group that would increase its happiness
and, if the group is full, it tries to negotiate with other student to enter. It is
possible that the list of groups an agent receives doesn’t change from one attempt
to the next and the agent finds that the group that improves it happiness is the
same full group each turn. To dissuade the agents, the insistence factor is applied.

Educational Resource Scheduling based on Socio-inspired agents 13

This makes the feedback loop negative as it turns the output to be, after some
time, the same as the input, whatever the input is, and the agents to stop trying
to change groups.

For the other way to manage feedback, the fy function, it is clearer that it
affects the feedback, but wether it does in a positive or negative way is hard to
decide. When a group is below what was defined as the optimal occupancy this
function encourages the agents to enroll this group. Once this quota is filled, the
function dissuades agents from entering and sending them to other groups that
are less full by reducing very fast the happiness this group can provide.

The value for the insistince factor and the shape of the f; function must
be chosen carefully and with a goal in mind. This two mechanisms reduce the
agent activity and drives the system to a stable state. The insistence factor is
negative in nature as it forces the students to stop their activity. The f> can
have a positive and negative effect, depending if the occupancy of the group is
below the optimal or over it. This function also increases the variety of options,
as agents does not only search for preferred group but also for groups that are
not overcrowded.

As we can see, the built system is complex and self-organizes. This gives great
flexibility when finding a solution, but makes the system hard to control. By
introducing mechanisms to control the feedback we can ensure that the system
will come to an equilibrium where the agents would stop searching, but a fine
tuning of the system or proving that it will find the optimal solution are very
difficult tasks if not impossible.

6 Conclusion

Scheduling problems are always difficult to solve. The elements of the problems
usually have intrincated relations between them and usually, as in our case study,
this relations makes the restrictions to vary during the process of solution. Tradi-
tional approaches as backtracking and related prove to be very accurate finding
the solutions, but the cost in time and computional power is very high. Also,
they are not easily comprehensible and cannot adapt to changes in the initial
conditions.

The use of multiagent systems to solve this kind of problems overcomes these
obstacles, as the agents can be simple computationally speaking and their behav-
ior can be easily explained using the problem terminology. The concurrent and
distributed nature of multiagent systems makes them very robust and adaptive.

The problem with the multiagent approach is the design process, as small
perturbations in the agents behavior can result in very different behaviors of
the system as a whole. One way to deal with this is to design the system as a
model of some natural or social system that solves the same problem or a similar
one. In this case, the agents are modelled as the students of the university that
negotiate with each other for the groups they want.

The models considers three characteristics of the students: their preferences,
the search for a group that is not empty nor full and the fatigue from trying

14 J.I. Cano, E. Anguiano, E. Pulido, D. Camacho

to enter a group without success. With these three characteristics included in
the model, the results are very good in comparison with an implementation of
a backtracking algorithm.

For a successful implementation of a system like the one presented, it is
needed to understand the roles of positive and negative feedback. Positive feed-
back makes a system more controllable but unpredictable, because small inputs
can render big changes. The system can be moved to another state, but the new
state is not predictable. On the other hand, negative feedback makes the sys-
tem uncontrollable but predictable as even big inputs cannot change the system
state. A balance between these two feedback mechanisms can drive a system to
self-organize.

To sum up, when trying to solve a complex problem it is useful to adopt
ideas from natural and social systems that solve similar problems. The use of
multiagent systems is highly recommendable as they can be, if well constructed,
resilient and adaptive. Taking into account the interplay of positive and negative
feedback in the design process is important for self-organization, giving indepen-
dence to the agents and not considering this mechanisms can lead to disastrous
outcomes as the system can never get to a stable state or get there too soon.

References

1. Cano, J.I., Sanchez, L., Camacho, D., Pulido, E., Anguiano, E.: Allocation of ed-
ucational resources through happiness maximization. In: Proceedings of the 4th
International Conference on Software and Data Technologies (2009)

2. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Pad-
get, J., Phelps, S., Rodriguez-Aguilar, J.A., Sousa, P.: Issues in multiagent resource
allocation. Special Issue: Hot Topics in European Agent Research II Guest Editors:
Andrea Omicini 30 (2006)

3. Choueiry, B., Faltings, B., Noubir, G.: Abstraction methods for resource allocation.
Tech. Rep. TR-94/47, Département d’informatique, Institut d’informatique fonda-
mentale IIF (Laboratoire d’intelligence artificielle LIA) (1994)

4. Gilbo, E.: Optimizing airport capacity utilization in air traffic flow management
subject to constraints at arrival and departure fixes. IEEE Transactions on Control
Systems Technology 5(5) (1997)

5. Jain, R., Chiu, D., Hawe, W.: A quantitative measure of fairness and discrimination
for resource allocation in shared computer systems. DEC Research Report TR-301
(1984)

6. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: Mason: A new multi-agent
simulation toolkit. In: Proceedings of the 2004 SwarmFest Workshop (2004)

7. Modi, P., Jung, H., Shen, W., Tambe, M., Kulkarni, S.: A dynamic distributed
constraint satisfaction approach to resource allocation. Lecture Notes In Computer
Science 2239 (2001)

8. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms:
review and development recommendations. Simulation 82(9) (2006)

9. Smith, R.G.: The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on Computers (1980)

