
Universidad Autónoma de Madrid

Escuela politécnica superior

Degree in Computer Science Engineering

DEGREE FINAL PROJECT

MUSIC SCORE CONVERSION FROM PAPER TO DIGITAL

FORMAT

Mónica Villanueva Aylagas

Tutor: Alberto Suárez González

June 11th 2015

ABSTRACT

Abstract

The goal of the present project is the design and development of an Optical Music Recognition
(OMR) system as a desktop application. This software is able to recognize musical symbols from
a scanned music score and convert them into an editable digital format.

The scope of the project covers the melodic line of the music including the detection and
recognition of staves, notes, rests and modi�ers such as accidentals and dots.

The algorithms used for this task are mostly unique designs based on techniques researched
from di�erent paper and available OMR systems. These algorithms have been tested with
potential users who have been taken into account due to the importance given to the usability
of the software.

Resumen

El objetivo del presente proyecto es el diseño y desarrollo de un sistema de reconocimiento
óptico de caracteres musicales (OMR) en forma de aplicación de escritorio. Este software es
capaz de reconocer símbolos musicales desde una partitura escaneada y convertirlos a un formato
digital editable.

El alcance del proyecto cubre la línea melódica incluyendo la detección y reconocimiento de
pentagramas, notas, silencios y modi�cadores como alteraciones y puntillos.

Los algoritmos usados para realizar esta tarea son mayoritariamente diseños únicos basados
en técnicas investigadas en diferentes artículos y sistemas OMR disponibles. Estos algoritmos
han sido probados con potenciales usuarios, que han sido tomados en cuenta debido a la impor-
tancia dada a la usabilidad del software.

1

Music score conversion from paper to digital format

2

KEY WORDS

Key words

Computer vision; Heuristics; Image processing; Music; MusicXML; OMR; Python; Score;

Palabras clave

Heurísticas; Música; MusicXML; OMR; Partitura; Procesamiento de imágenes; Python;
Visión por ordenador.

3

Music score conversion from paper to digital format

4

GLOSSARY

AOMR: Adaptive optical music recognition.

Bar line: Vertical line that separate measures.

Ledger: Additional lines added to a note when it is placed above or below the stave
because of it high or low pitch.

OMR: Optical music recognition.

Slur: Curve line that join notes.

Stave: Five long and equidistant horizontal lines in which the musical symbols are written.

Voice: Musical line played by a single instrument. There are some polyphonic instrument
that have assigned two voices, such as the piano or harp.

5

ACKNOWLEDGMENTS

First of all, I would like to dedicate this work to my parents, for providing me with the op-
portunity of study this degree and supporting me unconditionally in every problem and decision
faced.

I would like to thank Alberto Suárez for proposing this wonderful project and give me the
opportunity to develop it, for your guidance and your interest. Also, thanks to Daniel Garnacho
for advise me to use the library OpenCV and Gabriela Sandoval for the last revision of this
document.

I must not forget to mention the people who allow me to organize the di�erent workshops:
Coral Quevedo, Eduardo Lorenzo, Igor Nedeljkovic, Miguel Román and Adolfo Nuñez and de�-
nitely the invaluable help of the Vice Rector of Technologies, Sylvia Gil, for putting me in touch
with Miguel Román to coordinate the UAM workshop.

Finally, thanks to all my friends for being there and specially to the musicians for giving me
ideas and participate in the Arturo Soria workshop.

7

Music score conversion from paper to digital format

8

CONTENTS

Glossary 5

List of �gures 15

List of tables 17

1. Introduction 19

1.1. Motivation . 19

1.2. Aims . 20

1.3. Structure . 20

2. State of the art 21

2.1. Introduction . 21

2.2. Research on OMR . 21

2.2.1. OMR . 21

2.2.2. AOMR . 24

2.3. Software . 25

2.3.1. Proprietary software . 25

2.3.2. Open source . 26

3. Design: Problem approach 29

3.1. Introduction . 29

3.2. Project de�nition . 29

3.3. Design . 30

3.3.1. Stave identi�cation . 30

3.3.2. Symbol identi�cation . 31

9

Music score conversion from paper to digital format

4. Software 37

4.1. Introduction . 37

4.2. Agile software development . 37

4.3. Requirements elicitation . 37

4.3.1. Functional requirement . 38

4.3.2. Non-functional requirements . 39

4.4. Software design . 39

4.4.1. Programming language . 39

4.4.2. High level design . 40

4.4.3. Detailed design . 40

4.4.4. Test plan . 47

4.5. Development . 47

4.5.1. Gui . 48

4.5.2. Recognition . 48

4.5.3. Object . 49

4.5.4. Writer . 50

4.6. Validation suite . 50

4.7. Software management . 51

4.7.1. Documentation . 51

4.7.2. Code . 51

5. Tests and results 53

5.1. Introduction . 53

5.2. Tests . 53

5.2.1. Easy score . 53

5.2.2. Medium score . 54

5.2.3. Di�cult score . 55

5.2.4. Scanned . 55

5.3. Benchmarking . 56

5.3.1. Audiveris: Open source . 56

5.3.2. SharpEye: Proprietary . 57

5.3.3. PhotoScore: Proprietary . 57

5.4. Workshops . 58

5.4.1. Universidad Autónoma de Madrid . 58

5.4.2. Conservatorio Profesional de Música Arturo Soria 59

5.5. Results . 59

10 CONTENTS

Music score conversion from paper to digital format

6. Conclusions and future lines of work 61

6.1. Conclusions . 61

6.2. Future lines of work . 62

6.2.1. Developed functionality . 62

6.2.2. New functionalities . 63

6.2.3. Machine learning . 63

6.2.4. Target users . 63

Bibliography 64

A. Basic music theory 67

A.1. Introduction . 67

A.2. Structure . 67

A.2.1. Stave . 67

A.2.2. Time signature . 68

A.2.3. Key signature . 69

A.2.4. Clef . 69

A.3. Melodic line . 69

A.3.1. Notes . 69

A.3.2. Rests . 70

A.3.3. Modi�cations . 71

A.4. Annotations . 71

A.4.1. Tempo . 71

A.4.2. Ornaments . 72

A.4.3. Dynamics . 72

B. Comparative outputs 73

B.1. Introduction . 73

B.2. State of the art - Software output . 73

B.2.1. PhotoScore . 73

B.2.2. SharpEye . 75

B.2.3. Audiveris . 76

B.2.4. OpenOMR . 77

C. Surveys 79

C.1. Introduction . 79

C.2. Requirements survey . 79

C.3. Software survey . 81

CONTENTS 11

Music score conversion from paper to digital format

D. Users manual 85

D.1. Download . 85

D.2. Installation . 85

D.3. Getting started . 86

D.4. Contact . 90

E. Downloads 91

E.1. Introduction . 91

E.2. API . 91

E.3. MScrivener . 91

12 CONTENTS

LIST OF FIGURES

2.1. Di�erent techniques to deal with the stave [Sheridan and George (2004)] 22

3.1. Recognition process for a note . 31

3.2. Types of heads and notes . 32

3.3. Note duration . 33

3.4. Distinctive areas for each accidental . 33

3.5. Whole and half rests . 34

3.6. Distinctive features for small rests . 34

3.7. Position of a dot regarding the symbol . 35

4.1. Class diagram for prototype 1 . 41

4.2. Class diagram for prototype 2 . 42

4.3. Temporal planning for pre-development activities 42

4.4. Temporal planning for prototype 1 . 43

4.5. Temporal planning for prototype 2 . 43

4.6. Temporal planning overview . 43

5.1. Mozart input . 54

5.2. Mozart output . 54

5.3. Albinoni input . 54

5.4. Albinoni output . 54

5.5. Elgar input . 55

5.6. Elgar output . 55

5.7. Bach input . 56

5.8. Bach output . 56

5.9. Albinoni MScrivener . 56

13

Music score conversion from paper to digital format

5.10. Albinoni Audiveris . 56

5.11. Albinoni MScrivener . 57

5.12. Albinoni SharpEye . 57

5.13. Albinoni MScrivener . 58

5.14. Albinoni PhotoScore . 58

A.1. Choir score with brackets . 67

A.2. Piano score with braces . 68

A.3. Cut time . 68

A.4. Common time . 68

A.5. Six-eight time . 68

A.6. Order of sharps . 69

A.7. Order of �ats . 69

A.8. Used clefs . 69

A.9. Pitch depending clef . 70

A.10.Note duration . 70

A.11.Triplet example . 70

A.12.Rest duration . 70

A.13.Dots equivalence . 71

A.14.Dots equivalence . 71

A.15.Ornaments . 72

B.1. Input Caresse sur l'Ocean . 74

B.2. Output Caresse sur l'Ocean - PhotoScore . 74

B.3. Input Salut d'Amour . 74

B.4. Output Salut d'Amour - PhotoScore . 74

B.5. Input Caresse sur l'Ocean . 75

B.6. Output Caresse sur l'Ocean - SharpEye . 75

B.7. Input Salut d'Amour . 76

B.8. Output Salut d'Amour - SharpEye . 76

B.9. Input Carmen . 76

B.10.Output Carmen . 76

B.11.Input Caresse sur l'Ocean . 77

B.12.Output Caresse sur l'Ocean - Audiveris . 77

B.13.Input Caresse sur l'Ocean . 78

B.14.Output Caresse sur l'Ocean - OpenOMR . 78

C.1. Presurvey . 81

14 LIST OF FIGURES

Music score conversion from paper to digital format

C.2. Postsurvey . 83

D.1. Open a image . 86

D.2. Score display . 87

D.3. Start the recognition . 87

D.4. Set the time signature . 87

D.5. Set the key signature . 88

D.6. Choose head pattern . 88

D.7. Re-choose pattern . 89

D.8. Accept patter . 89

D.9. Choose head pattern . 89

LIST OF FIGURES 15

Music score conversion from paper to digital format

16 LIST OF FIGURES

LIST OF TABLES

3.1. Parameter nomenclature . 31

17

CHAPTER 1

INTRODUCTION

1.1. Motivation

The selection of this project among the long list of proposed works re�ects the love and
interest of the author for her two passions: computer science and music.

Traditionally, music scores have been written and copied by specialists, copyist, taking
amounts of time and e�ort to individually produce each copy. However, taking advantage of
the revolutionary invention of the printing press, Petrucci publish the �rst book of polyphony.
This invention and its later improvements helped spreading music scores among more and more
people.

Nowadays, most of the scores are in paper and its only digitalization is in image format.
This allows only to read music, but not to take advantage of the full potential of a music score.
The music �eld is in need of a way to convert sheet music to a more �exible format, like text
have with optical character recognition (OCR) systems.

In particular, musicians could have access to scores in an editable format from which multiple
functionality can be extracted. These types of software applications are optical music recognition
(OMR) systems. They are far less developed than their counterparts for text.

The potential use for this type of application is wider than it could be imagined at �rst:

Edition: A editable format interpreted by a music editor allows the correction of error in
scores, the addition of voices and the inclusion of arrangements for learners, for example.

Printing: The digital format allows the user to zoom in on a region of a complete score
without loosing quality. This would help musicians with vision problems.

Conversion to other formats: A fast conversion to other format such as MIDI can be
performed from the digitized version of a music sheet. MIDI �les are commonly used
for choirs with little knowledge of music so that the singers can hear each melodic line
separately.

Study of music: Libraries such as music21 can be used to extract information from scores
and gather statistics from authors and their work.

19

Music score conversion from paper to digital format

Storage and management: The storage of digitized scores is more comfortable regarding
space and resources and it can be safer through replication. Also, the databases can use
as search criteria the information acquired from the study in addition to the traditional
name and composer. This way the search become more dynamic.

These are some of the possible uses for the program. Inevitably, users of the software will
�nd further interesting applications.

1.2. Aims

The goal of this project is the design and development of a optical music recognition (OMR)
system that identi�es the main elements of a music score fed as a image to the program, and
converts them into MusicXML, a format compatible with most music editors. The score images
can be obtained by scanning a physical score or downloading scores from the Internet.

The symbols to be recognized by the system [see appendix A for description] is the minimal
set that allow to reconstruct the melodic line of the score: the stave, time and key signatures,
notes, rests and modi�ers such as accidentals and dots.

1.3. Structure

The present report has a structure designed to guide the reader through the process of
creation of the implemented OMR system.

The document has six chapters that describe the creation process and the system itself.
Technical details and supplementary information are included in the appendixes. There is also
included a bibliography section which contains the resources used to complete this work.

The current introduction expose the reasons to choose this project and its potential appli-
cation as well as the scope of the work and the structure of the report. The following chapter,
2, describes the research and software available for OMR applications.

The chapters 3 and 4 explain the logic of the OMR system developed. The �rst one presents
an overview of the functionalities and algorithms implemented. The second gives a technical view
of the implementation of the application. The later chapter also details the software engineering
steps followed in the development of the application.

The document ends with the evidence of the di�erent test performed and the results of them
and some �nal thoughts about the completed work and the future ideas for extend and improve
the software.

Before the appendixes, the reader can �nd the bibliographic reference used in the report.

Given the complexity of the �eld, a basic guide in music theory has been included in appendix
A for reference. For readers without experience in the �eld, reading this appendix is strongly
recommended.

Some technical details and images are presented in the remain annexes. Appendix B includes
images of original scores and outputs of the di�erent programs used. Appendix C contains the
graphics with the forms responses.

Finally, there is a user manual for the developed application and some links for downloading
useful extras such as the API.

20 CHAPTER 1. INTRODUCTION

CHAPTER 2

STATE OF THE ART

2.1. Introduction

One of the �rst issues addressed in early stages of the project was the need for a novel
application for conversion of sheet music to digital format. In this line, the author began an
investigation covering any research in this matter, in form of articles and technical reports,
as well as any commercial product that covered this functionality. What follows is a detailed
reference of the resources found in both �elds.

2.2. Research on OMR

In contrast to standard Optical Character Recognition (OCR), Optical Music Recognition
(OMR) is a two dimensional problem in which the vertical dimension represent the note pitch
and the horizontal one, the duration.

However, through the length of the years, the problem has developed from the problem of
recognizing musical characters to try to learn from mistakes or adapt itself to the hand-script
of a non printed score.

2.2.1. OMR

There are multiple algorithms that can be used to detect the di�erent elements of a score.
Following, there is a brief summary of the techniques described in Arshad et al. (2006) and other
works. These represents the traditional work in the area.

Preprocessing

The starting point of most of the OMR systems is the binarization of the image. This process
is computationally expensive. However, it reduces the complexity of the recognition algorithms
by decreasing the amount of information to be processed.

The main two methods for binarization are �xed thresholding and adaptive thresholding.

21

Music score conversion from paper to digital format

Fixed thresholding: Uses a precalculated threshold to discriminate between black and
white pixels. It can be used in stable illuminated and controlled environments only. Its
advantage is the reduced computational time needed to calculate the threshold.

Adaptive thresholding: When the image has di�erent lighting conditions, the threshold is
calculated locally for small areas. There are a wide range of methods whose success rates
depend on the original image. Some of these techniques [OpenCV (2014)] are Adaptive
Mean Thresholding, Adaptive Gaussian Thresholding, Otsu's Thresholding [Vigliensoni
et al. (2013)] or Niblack's Thresholding.

Rotation correction is another common preprocessing method, since most of the systems
require that the image not be skewed. There are multiple techniques to determine the rotation
degree that is used to correct the slant of the score. In this work it is assumed that this
correction is not needed. In his thesis, Carretero de la Rocha (2009) describes three examples
of transforms that can be used to solve this problem: Hough Transform, Fourier Transform and
Radon Transform.

Stave line identi�cation

The above mentioned transforms can be used also to detect the stave lines. Other algorithms
that can be used for this purpose are Horizontal Projection [Sheridan and George (2004)], Cor-
relation, Frequency Count [Fujinaga (1997)] and Template Matching.

Horizontal Projection: This is the most common technique. It counts the number of black
pixels in a row and creates a histogram with the data. The peaks observed correspond to
the lines of the stave.

Correlation: In this method, an ideal stave is compared with the original image. The space
between lines is progressively increased until an optimal value is reached. It does not �nd
the stave itself, but the gap between lines. Its drawback is that it is computationally
complex algorithm.

Frequency Counting: As in Correlation, it is used to �nd the value of the space between
stave lines. It counts the number of consecutive white pixels. The highest frequency is
selected as the sought value. It generally has a similar accuracy as Correlation. Moreover,
it is more e�cient.

Template Matching: it compares the original image with a pattern of reduced area. The
pattern is moved over the original one pixel at a time calculating the di�erences of the
window.

There are also other more complex methods based on graph theory.

There are many di�erent strategies to deal with the stave once it has been recognized. Most
authors advocate for its removal to reduce the complexity of the subsequent processing. Others
claim that it introduces modi�cations in the symbols that remain, so they just ignore the stave
lines [Sheridan and George (2004)].

Figure 2.1: Di�erent techniques to deal with the stave [Sheridan and George (2004)]

22 CHAPTER 2. STATE OF THE ART

Music score conversion from paper to digital format

Musical object location

The algorithms described here are base on the premise that the stave lines are remove. They
locate objects that are recognized by the methods described in the following section.

Bounding Box Analysis: In this method a rectangle is drawn to encapsulate each remaining
object after the stave has been removed. The boxes can be combined into one using
heuristics that compare their positions.

Flood Fill: The goal of this method is to determine the region connected to a given pixel.
It can be used to locate symbols more or less complex. It must be used once the stave is
removed, otherwise the objects will not be isolated, but linked by the stave lines. These
objects can be primitive elements such as an accidental or high level symbols such as a
group of eighth notes.

Symbol identi�cation

This is the most creative and diverse area of the OMR problem. The number of algorithms is
almost as varied as the symbols to recognize. Di�erent authors have proposed diverse approaches
for the same problem. Here is a brief description of some of them:

Slicing: In this method the number of transitions between black and white pixels in a
chosen section (row or column) is counted to identify an object. It is useful to recognize
accidentals.

Connectivity Analysis: This technique is used to �nd beams and slurs by locating paths
that link two points.

Vertical Projection: This algorithm is similar to Horizontal Projection. Running the two
algorithms together creates a signature for a symbol that can be matched with signatures
of symbols that have already been recognized.

k-Nearest Neighbor (kNN): This method calculates the type of an object using a database
of patterns and a de�ned metric for distances. Each object is characterized by the values
of a set of features. Similarity between objects are quanti�ed by a distance function.

Neural Networks: It is possible to train a Neural Net to classify the objects. The recogni-
tion is fast, but there is a cost associated to training the net.

Signature Analysis: This technique is based on calculating the relative distance between
the symbol and one of the edges of its bounding box. It is used to recognize accidentals,
rests, and clefs.

Character Pro�les: This algorithm uses the relative width and/or height of the symbol as
a mean of recognition. It is used to identify accidentals, key signatures, beams, dots and
rests.

Some of the algorithms described in the previous section such as Template Matching, Hough
Transform or Bounding Box Analysis can also be used for recognizing symbols too.

CHAPTER 2. STATE OF THE ART 23

Music score conversion from paper to digital format

Recognition of semantics of music notation

Graph Grammars, derived from the studies of Chomsky, can be used to correct recognition
mistakes. The primitive elements that have recognized are arranged in a graph to create high
level symbols; the use of context symbols and grammar rules can verify the validity of the
recognition process.

2.2.2. AOMR

kNN and genetic algorithms

In this section it is presented a review of the contribution made by Ichiro Fujinaga to Adapta-
tion Optical Music Recognition (AOMR) in his doctoral thesis in 1996, published the following
year [Fujinaga (1997)]. In this work, Fujinaga explains what is an adaptive system and its
advantages as well as a description of his implementation and used algorithms.

For Fujinaga, an adaptive system is that that can overcome modi�cations in the usage and
learn and improve the success of recognition of both known and new objects. To do so, in the
score are located objects and compared to those stored in a database. The processed data is
used as training data that is used for recognition of the symbols in the score. The learning
algorithms used to implement this system are k-Nearest Neighbor (kNN) classi�cation and a
genetic algorithm. Other techniques described earlier such as Horizontal and Vertical Projection
are also used.

Given an unknown object, the kNN is used to compare it with the stored symbols by means
of their feature vector. The genetic algorithm is used to accelerate the speed of �nding a near-
optimal set of weights.

Years later, Fujinaga and other researchers developed a "toolkit for the creation of domain-
speci�c structured document recognition applications by domain experts with limited program-
ming experience" [MacMillan et al. (2002)].

Ensembles

Another attempt to use learning methods in the task of adaptive OMR is the approach
developed by Byrd and Schindele (2006). The method used here is the construction of a classi-
�cation ensemble using PhotoScore 3.10, SmartScore 3.3 Pro, and SharpEye 2.63. as black-box
classi�ers. The argument is that using di�erent classi�ers, the error made by one of them can
be compensated by the success of the others.

The authors studied the accuracy of each of the tools in di�erent �elds (pitch, duration,
lose of information...) in order to develop rules for the triangulation of the multiple-recognizer
OMR. However, the system has not been implemented yet. Relatively small improvement was
expected from the use of these technique.

Logistic regression

The last research found in this area [Ben-Dayan and Giloh (2013)] is a system whose goal is
to reproduce music at the same time that a composer is writing it, reading this score through a
camera. Most of the recognition steps implemented for this solution are described in the section
on OMR.

24 CHAPTER 2. STATE OF THE ART

Music score conversion from paper to digital format

The most interesting ideas applied in the project are the capture of video frames and the
techniques used to detect duration and non-notes symbols. The orientation of the score is
calculated using a kind of QR code in the corners of the page. The learning machine is actually
a one vs all Logistic Regression classi�er previously trained. This simple and e�cient technique
is preferred over a neural network because of the realtime nature of the video based system.

2.3. Software

After a extensive and exhaustive search on the Internet, three di�erent types of software
for OMR were found: desktop applications, mobile applications and services. The last two are
outside the scope of this project, so they will not be described. Following is a summary of the
di�erent desktop software and some examples of their usage.

Comparisons between images can be found in a annex [B.2] to lighten the reading of critical
information.

2.3.1. Proprietary software

In the following sections the reader can �nd the description and output of two proprietary
applications for OMR. This kind of software does not allow the modi�cation or redistribution
of the code without the agreement of its author. In most cases the applications are distributed
with pay per use licenses.

PhotoScore

This software for optical recognition of musical characters is available both for Windows and
for Mac OS. The editor Sibelius includes a lite version of this program.

The program is developed by Neuratron and can be purchased for the price of 299e in their
website http://www.neuratron.com/index.htm. A free trial version with reduced features can
also be downloaded from this site.

PhotoScore accepts TIFF, PDF, bitmap and PhotoScore �les as an input. Di�erent output
formats are available: PhotoScore �les, PhotoScore �les for Sibelius, MIDI, MusicXML, NIFF
and WAV.

Some testing has been done to check the reliability level of the program.

1. Simple score
The example shows the digitization of a simple score, the minimum that the application
should read, in the view of the author. The chosen score is a musical arrangement of an
original music score of the 2004 �lm The Chorus called Caresse sur l'Ocean.

The outcome, as it can be appreciated in the �gure B.2, is almost perfect. It also recognizes
many of the pencil annotations. Nevertheless, these are precisely the origin of the few �aws
that can be seen.

2. Complex score
The second example is a scanned version of Salut d'Amour by Edward Elgar. This score is
more complex not only because of its extension but for the types of notations that includes:
piano defects in a violin particella, ornaments, and strings notations, for instance.

CHAPTER 2. STATE OF THE ART 25

http://www.neuratron.com/index.htm

Music score conversion from paper to digital format

The software detects multiple errors and warns if the printed score option is wrong and
needed the handwritten one. Nevertheless, despite the �aws found, the program does dig-
itize.

The recognition accuracy is de�cient in general. Nevertheless, there are some passages
in which the melodic line can be followed [see �gure B.4].

The study of this program done by Byrd and Schindele (2006) conclude that PhotoScore is
the most accurate software of the three researched for text annotations.

SharpEye

Music scanning program available for Windows 95 or later versions of the Windows operative
system.

The software is developed by the company Visiv and can be purchased for 162.07e in their
web site http://www.visiv.co.uk. The complete version is available for a 30-day free trial.

SharpEye can process a scan of the score or read input �les with the formats BMP and TIFF.
The output can be saved as MIDI, NIFF, MusicXML or a SharpEye File.

1. Simple score
The recognition is perfect. As PhotoScore, it recognizes the pencil symbols. Furthermore,
it does not introduce foreign elements. This can be due to the lack of letters in the
digitization with this software (title, composer...) [see �gure B.6].

2. Complex score
The errors made in this score are quite similar to the ones made by PhotoScore. The
overall output is unsatisfactory [see �gure B.8] and even worse than with PhotoScore.

In the paper written by Byrd and Schindele (2006), SharpEye is also studied. They conclude
that this software is the most accurate among those considered in their assessment. Their claim
is that SharpEye is the most accurate program in all tested features except for duration. It has
problems recognizing beams, which eventually lead to misinterpretation of duration.

2.3.2. Open source

Audiveris and OpenOMR are two open source tools that recognize music characters. Open
source applications allow the user to modify and/or redistribute the software completely free and
without the explicit permission of the author, provided some conditions are met, which depend
on the license.

Audiveris

Open source tool for optical music recognition, written in Java and published as free software
under the terms of the GNU General Public License. It is available for free download from:
https://audiveris.kenai.com/

Audiveris accepts bitmap, GIF, JPG, PNG, TIFF and PDF formats as input. Possible
outputs formats are MusicXML and PDF. It includes plugins for Finale, Finale Notepad and
MuseScore.

26 CHAPTER 2. STATE OF THE ART

http://www.visiv.co.uk
https://audiveris.kenai.com/

Music score conversion from paper to digital format

1. Proposed sample
The score of the opera Carmen by Bizet, L'amour est enfant de bohème, was included in a
collection of samples in the software distribution. However, the results are not completely
satisfactory, as can be seen from �gures B.9 and B.10.

The errors appear mainly in the �rst two staves. The ones in the following staves are
related with annotations, glissandi and 8va, for instance.

2. Simple score
The pitch digitization is acceptable but not entirely satisfactory [see �gure B.12]. The time
signature does not match and there are multiple overlapping symbols, as well as modi�ers
that do not appear in the original score.

3. Complex score
For this example, numerous errors are present. Unlike PhotoScore, Audiveris outputs a
failure message and does not continue processing.

OpenOMR

Open source optical music recognition (OMR) tool for printed music scores. It is also written
in Java and published as free software under the terms of the GNU GPL.

It can be downloaded freely from the o�cial website http://sourceforge.net/projects/

openomr/

OpenOMR di�ers from the rest of the analyzed software in the output. It allows a user to
scan a music score and play it through the computer speakers.

The result of the recognition is di�cult to match with the original score because of the
numerous error and the output format.

CHAPTER 2. STATE OF THE ART 27

http://sourceforge.net/projects/openomr/
http://sourceforge.net/projects/openomr/

Music score conversion from paper to digital format

28 CHAPTER 2. STATE OF THE ART

CHAPTER 3

DESIGN: PROBLEM APPROACH

3.1. Introduction

The purpose of this chapter is to explain in a clear and complete way the algorithm designed
to recognize the symbols in a music score, independently of whether the reader is a musician or
an engineer.

The structure followed de�nes the problem and speci�es the scope of the project taking into
account the limited time and resources available for the work. Following, there is a complete
depiction of the di�erent steps performed for recognizing music symbols.

3.2. Project de�nition

The goal of this project is to automatically recognize the symbols in a musical score and
generate a digitized version compatible with most music editors.

The process usually starts with a printed score. In order to feed it as the program input, it
is necessary to convert it into an image by scanning it. Another way of obtaining suitable scores
as input is to download scores from the Internet. In both cases, the accepted formats are images
such as .bmp, .pgm, .sr, .jpeg, .png or .ti� formats. An important clari�cation is that it does
not admit PDF as an input format. The reason is that the library used to convert the �le into
an array of pixels does not allow to process images stored as PDF �les.

After the processing is complete, the result or output obtained is an XML (Extensible Markup
Language) that is the digital transcript of the input score. The XML used is MusicXML [Make-
Music (2011)], which is an standard compatible with most music editors currently available. The
goal is that this output, once interpreted by a editor, should be equivalent to the original score.

Both input and output descriptions must be clari�ed at some point: not every image is
suited as an input. The output can also exhibit some variability in some cases. Images should
be straight, that is, they must not have any skew. Furthermore their quality should be su�ciently
high so that they can be successfully recognized; tests were made using at least 300 dpi (dots per
inch) or downloading scores from the MuseScore database. The similarity between the original
input and the output is delimited by the scope of the project. In this case, the main goal is to
retrieve the basic structure of the score; a monophonic melodic line.

29

Music score conversion from paper to digital format

An additional and important requirement is that the software produced should be easy to use
by anyone, regardless of their skill. The application developed should run on di�erent platforms
and operating system.

The scope of the project includes recognizing the stave, notes, rests and modi�ers, namely
accidentals and dots. The user provides the parameters that structure the music, namely time
and key signatures. The implemented solution is not designed to recognize complex rhythms,
polyphonic music, annotations and another important features of sheet music. These are left as
objectives for future development and improvements of the application.

3.3. Design

The score is loaded into the program as a grayscale image. Each pixel in the image takes
a value between 0 (black) and 255 (white). The value of a pixel can di�er depending on the
quality of the original input. The technique used to discriminate black from white pixels needed
for running the rest of the recognition is binarization; however, it is not used as a typical
preprocessing. In order to reduce the computational e�ort, the score is not completely binarized.
Instead, it compares the value of a certain pixel with a threshold when needed.

The recognition process consist of the following steps: �rst of all, the stave is recognized.
Then the symbols are identi�ed. These include notes, rests and modi�ers, which can be acci-
dental or dots. With all the information gathered, the writing can take place.

Once the recognition is completed, the output is printed in one batch into the XML �le
in order to keep coherence. If the information were written as it is acquired, the notes would
not allow modi�ers. This approach has the drawback that if something goes wrong during a
recognition and the process cannot �nalized, no partial output could be obtained.

To meet the portability and usability requirements, the software is packaged as a standalone
application that can be distributed and run without the necessity of installing any library or
changing to a di�erent operative system.

3.3.1. Stave identi�cation

The initial step in most optical music recognition (OMR) processes is the recognition of the
stave [A.2.1].

The project has used a Horizontal Projection algorithm [2.2.1], like the one described in the
state of the art, with some adaptations. Instead of adding all the black pixels along the horizontal
direction and creating a histogram, it compares the normal length of the detected horizontal
line with the size of the image and decides whether it is a stave line or not. To complete the
stave recognition, this process is repeated until the end of the image is reached. The distance
between the last line of a stave and the �rst one of the following is divided in two and equally
distributed among the two areas. Each one of these areas is taken as the Bounding Box of the
stave and it includes a stave and above and below, half of the additional space between staves.

Taking advantage of the complete processing of the staves in the image, some parameters are
calculated for later use as relative distances. These parameters are the average thickness of the
stave line (henceforth t), the average distance between stave lines (henceforth d) and for each
area, the position of the upper line (henceforth u).

30 CHAPTER 3. DESIGN: PROBLEM APPROACH

Music score conversion from paper to digital format

Parameter nomenclature

d Average distance between stave lines.

t Average thickness of a stave line.

u Relative position of the upper line of the stave on a given stave area.

Table 3.1: Parameter nomenclature

The stave lines, contrary to the common practice in literature, are not erased. Instead,
they are used later for reference. In this manner the problem of destructing or deforming the
remaining music symbols is avoided. The stave Bounding Boxes are also stored for further
analysis of these glyphs.

3.3.2. Symbol identi�cation

The following step in the processing of the score is the location and recognition of the symbols
written on the stave. Di�erent algorithms are used to identify the di�erent types of symbols.

The location procedure �nds the symbols in the stave area and creates Bounding Boxes
around them to isolate them. These delimited areas are the regions later analyzed for its recog-
nition. Their common feature is that their areas are not stored unlike the stave area, because it
is assumed that their Bounding Box is su�ciently adjusted so that nothing inside them is part
of another glyph.

The recognizing process is constituted by two stages: the spatial location of the symbol and
the recognition of their features.

Notes

The procedure to recognize notes starts with the location of heads using patterns chosen
by the users. For notes [A.3.1], the features to recognize includes pitch and duration. With
the position of the head the pitch can be acquired while for identifying durations the strategy
involves �nding the stem and recognizing how may beams of �ags has attached. The beams and
�ags are identi�able because they are divergences from the stem that are thicker than the stave
lines.

Figure 3.1: Recognition process for a note

The head notes have an oval shape of height equal to d and they are of three di�erent types.
Whole notes are white and do not have stems, half notes are also white but do have a stem.
Finally, quarter notes and smaller ones have black heads and a stem. The number of divergences
(beams or �ags) of the stem identify the type of note with black head.

CHAPTER 3. DESIGN: PROBLEM APPROACH 31

Music score conversion from paper to digital format

Figure 3.2: Types of heads and notes

The technique used for the location of notes is Template Matching [2.2.1]. First, it is nec-
essary to identify a pattern to match each head. There are �ve possible note heads in a score:
whole notes on a line and on a space, half notes on a line and on a space and black headed
notes. However, the Template Matching algorithm used, accessible through the library OpenCV
[Bradski (2000)], admits the use of a threshold of similarity that can be adjusted to reduce the
number of patterns to three: whole, half and black heads.

The application forces the user to select patterns for the di�erent types of notes heads. To
do so, the user clicks on the center of the head, and the program creates a Bounding Box which
contains it. This area is a square that has a side length of 3d, that is a bit larger than the head
of the note. In a later step the application tries to adjust this area �nding the limits of the head
[see number 1 in �gure 3.1] .

The storage of the pattern selected by the user allows the use of the Template Matching
algorithm to search all the occurrences of the pattern, within a given similarity, along the
complete score. Even though the area is not kept, the coordinates of the head are stored for
additional study.

Other methods such as Vertical Projection [2.2.1] could be used to perform this task. They
were �nally dismissed because the former algorithm was already implemented by a library, and
the previous one could lead to a more complex recognition since the Vertical Projection does not
only locate notes, but it can also identify other symbols, such as accidentals. Furthermore, the
pattern selection allows the user to run the application for a completely di�erent end: algorithmic
composition. This is a new �eld in music that uses rules for composition to create structures of
great complexity, for example. In this case, the user can play with the patterns and di�erent
parameters to modify a traditional score.

Concerning the recognition of the characteristics, for notes it is necessary to discover both
pitch and duration. Using the Template Matching algorithm with di�erent patterns for whole
and half notes removes the necessity to run an algorithm to identify its duration. For black
headed notes, however, it is required to distinguish between quarter notes, and smaller ones.

To do so the software �nds how many divergences there are along a stem, ignoring stave
lines, whose t has been previously estimated. The stem [see number 2 in �gure 3.1] is found
using a variation of the Vertical Projection algorithm in both sides of the head. The divergences
[see number 3 in �gure 3.1] are discovered searching around the stem identifying patches of
consecutive black pixels. If the thickness of these patches of black pixels is greater than the
stave line, a �ag or beam is located. The duration it is derived from the maximum number or
beams associated to the stem of the note [see �gure 3.3].

Every note, regardless their duration, has also a pitch that has to be recognized. Using the
calculated values of u, d and t, and the coordinate for the Y axis of the head center, it is possible
to deduce the position of the note respect to the stave and from here its pitch value.

32 CHAPTER 3. DESIGN: PROBLEM APPROACH

Music score conversion from paper to digital format

Figure 3.3: Note duration

Once these features have been recognized, the information is stored. The Bounding Box
around the note (not only its head) is deleted from the stave area to avoid interferences and
noise in the recognition of other type of symbols. The goal is limited to recognizing melodic
lines, assuming that no more notes are in the same column, that is to say the application is
not capable of recognize chords. This is the reason why the area is adjusted horizontally to its
width, but not vertically.

Modi�ers: Accidentals

The recognition of accidental [A.3.3] types is reduced to the most commonly used ones leaving
the less used symbols such as double accidentals or microtonal notation for future work.

The area around the head center of the detected notes is a region in which accidentals are
likely to be found. Their grammar location is preceding a head note. If in a gap of size d before
the head noise is detected, an accidental is located and the recognition process begin.

There are three types of accidentals recognized: sharps, �ats and naturals. Each one of them
is di�erenced by an algorithm based on its Character Pro�le [2.2.1]. Each type of accidental has
a unique shape that can be used to identify them; in this case, the recognition of the type of the
accidental is based on the relative distance from the right side of the symbol to its Bounding
Box. Sharps have black lines above and below the center of the symbol. Naturals have a single
line going down and �ats have none.

Figure 3.4: Distinctive areas for each accidental

The information obtained from this recognition is included in the note data. The accidental
area is the cropped and discarded from the stave area to avoid future mistakes.

The Bounding Box around the accidental is adjusted using the same principles as in the
recognition of note symbols. Accidentals can be located using Vertical Projection, but it seems
slower computationally to use this technique since the position of the note heads are already
known and grammatically the accidental position is right next to it.

CHAPTER 3. DESIGN: PROBLEM APPROACH 33

Music score conversion from paper to digital format

Rests

Rests [A.3.2] receive the same treatment as notes: the area is discarded, but the coordinates
of their center are stored for additional study.

Next in order, rest of di�erent duration are recognized. Determining the location of rests is
more complicated than that of notes, because the lack of templates to match and the variety of
shapes. The algorithm designed for this task is a mixture of a Signature Analysis [2.2.1] (based
on the relative width of the symbol) and of Character Pro�le [2.2.1] (based on the relative
position), and di�erent strategies are used to recognize long rests and short rests.

Long rests include whole and half rest because of their similarity. Their shape is that of a
rectangular black box. The di�erence between them is the position in the stave where they are
found.

Figure 3.5: Whole and half rests

The general method to �nd these kind of rests is looking for their relative width, which is
greater than d, but not much larger that twice that size, depending on the score printer. To
identify whole rests, the consecutive black pixels must be found below the fourth stave line while
the half rest is placed above the third line.

Short rests include quarter, eighth and smaller rests. Since there are no long rests, because
they have been removed from the stave area, any accumulation of black pixels less than 2d and
greater than d/2 is likely to be a rest. These values have been estimated empirically. To really
discriminate the duration of the rest is critical to examine the second space: quarter rests are
wider, eighth rests are thinner and from the sixteenth rests to smaller ones, the pattern detected
in the third space is repeated in di�erent spacings.

Figure 3.6: Distinctive features for small rests

Rests are described in the literature to be recognize through Character Pro�le [Carretero
de la Rocha (2009)] or Signature Analysis [Chung and Lee (1995)]. The described algorithm has
a good overall performance, and it is an approach designed by the author herself mixing this
ideas.

34 CHAPTER 3. DESIGN: PROBLEM APPROACH

Music score conversion from paper to digital format

Modi�ers: Dots

The �nal step of the recognition process is the dots [A.3.3], which are used to increase 50%
the duration of a note. As for accidentals, their position is known by music grammar. Dots are
located at the right side of the symbol at the height of the head of a note or the center of the
rest (usually the third space).

Figure 3.7: Position of a dot regarding the symbol

Once a possible dot is detected, the way of determining it is really a dot is to calculate its
height or width (in this case it should not matter which) that would have to be a relative value
between the half and a third of d. These values have proved to be the most successful in the
tests performed.

The presence of a dot is registered as additional information associated to the symbol (note
or rest) it modi�es. Once more, the width of the Bounding Box of the glyph adjusted to the
width of the symbol but covers the complete stave height. As in the other cases, the dot area is
remove from the original stave area.

This algorithm is based on the Signature Analysis technique read on Arshad et al. (2006)
reducing the area of search by means of the grammatical position of the dot regarding the symbol
it modi�es.

CHAPTER 3. DESIGN: PROBLEM APPROACH 35

Music score conversion from paper to digital format

36 CHAPTER 3. DESIGN: PROBLEM APPROACH

CHAPTER 4

SOFTWARE

4.1. Introduction

In the following sections, the reader will �nd a technical description of the steps reached for
the design, development and deployment of the OMR software developed in this project.

The project meets the results of the requirements, the programming language and the limited
time and workload esteemed by 12 ETCS.

4.2. Agile software development

The problem addressed is fairly complex. In fact none of the commercial application for
OMR [2.3] or researchers [2.2] have accomplished satisfactory results. Given the complexity and
the uncertainties associated with the project, an agile development methodology was chosen.

The agile development is characterized by short iterations with adaptive cycles in which
any part of the development process can be a�ected, from requirements, to testing through
design and codi�cation. There is a special relevance in the incremental development, continuous
integration and powerful and e�ective testing process to the detriment of extensive amounts of
intermediate documentation, which does not make much sense in a ever-changing development.

The bene�ts of this option meet with several requirements, such as the extension of the
project, with the change at any moment of the requirement elicitation, the "deliver of working
software frequently" [Beck et al. (2001)], that is, having at any moment functional prototypes
to show the client (in this case, both musicians and the tutor).

The resulting structure of this project was the development of two totally functional proto-
types with a preliminary phase of analysis and a design and coding stage mingled with minor
unit testing and a more extensive epoch before the �nal release of the prototype in which the
integration tests were executed and ultimately, system testing checked by the author before the
workshops and the �nal users at them [5.4].

4.3. Requirements elicitation

37

Music score conversion from paper to digital format

Taking advantage of the expertise of the author, the scope of the work was determined before
consulting any of the potential users.

The main goal, and with it the metric to evaluate the system, was minimization of errors.
Therefore, the extension of the work covered a reduce area of score recognition, maximizing
the e�ectiveness. Also, in a early stage, a survey [C.2] was designed and distributed among
musicians in order to gather information about what they believe would be useful in an OMR
application. Their answers were taken into account in the �nal design.

4.3.1. Functional requirement

Functional requirements are referred to requirements that explain what the system must
accomplish to meet the expectations of the �nal user.

In this case, the functional requirements have been growing with the consecutive prototype
iterations. A complete list of the functional requirements, sorted by modules is below.

Interface: Module in charge of the interaction of the user with the application.

FR.1. The software must provide a way to open the score:

FR.1.1. Chose directory.

FR.1.2. Chose �le name.

FR.2. The software must provide a way to save the output:

FR.2.1. Chose directory.

FR.2.2. Chose �le name.

FR.3. The software must allow to set global score parameters:

FR.3.1. Time signature.

FR.3.2. Key signature.

FR.4. The software must allow to choose patterns of notes:

FR.4.1. Whole note head.

FR.4.2. Half note head.

FR.4.3. Black head (quarter note or shorter value).

FR.5. The software must have a help button.

Recognition: Module that reads the score and recognizes its musical elements.

FR.6. The software must accept image formats. At least PNG and JPG.

FR.7. The software must recognize staves.

FR.8. The software must recognize notes:

FR.8.1. Pitch.

FR.8.2. Simple rhythms (e.g. tuplets are excluded).

FR.8.3. Accidentals.

FR.8.4. Dots.

FR.9. The software must recognize rests.

FR.9.1. Simple rhythms.

FR.9.2. Dots.

Writing: Module that converts the recognized elements into MusicXML, which is com-
patible with most music score editors.

FR.10. The output must have a format that is compatible with mos music editors.

38 CHAPTER 4. SOFTWARE

Music score conversion from paper to digital format

4.3.2. Non-functional requirements

Non-functional requirements establish restrictions on how the system will perform the func-
tional requirements. The main goal was to be as user friendly as possible so as not draw back
any potential user because of the complexity of the software. To do so, the priority requirements
were:

NFR.1. Portability: The application can run on di�erent platforms with di�erent operating sys-
tems.

NFR.2. Usability: This application is easy to use and the way of operation is intuitive.

The aim of turning the work into a open source project in order to keep developing it in the
future has given rise to further non-functional requirements:

NFR.3. Maintainability: Measures the e�ciency with which a system can be �xed after a failure,
or after a bug has been reported.

NFR.4. Extensibility: The functionality of the system can be increased with a reasonable e�ort.

NFR.5. Documentation: Explanatory documents will be used throughout all the development
process, both for the requirements an the code.

4.4. Software design

In this section will be specify the design process for the software, including a high level view
of its structure as well as its detailed design. Accompanying the software design, it will also
appear the test plan and a time schedule for its development.

4.4.1. Programming language

Before starting to design, it was necessary to set a programming language, or at least, a
paradigm to focus properly the design. Regarding this, it was as �ne a moment as any other to
choose a language.

Initially the thought was using Python because of its unfamiliarity as a school-learned lan-
guage and its appeal in the labor market as a way of standing out. Following, there are exposed
some features that make this language �t for this project.

General

On the one hand, its learning curve can be reduced by the Java knowledge acquired in
subjects during the degree, and likewise Java, is portable so it meets with this requirement
[NFR.1.]. Also, as a pro to its use, Python has a great number of IDE's that can help with it
coding and management, as Eclipse, which is a common one at the school.

It has also been taken into account the programming speed, to obtain frequent functional
prototypes, following the agile methodology chosen [4.2]. It is esteemed that "Python code
is typically 3-5 times shorter than equivalent Java code, it is often 5-10 times shorter than
equivalent C++ code" [Python (1997)]

In case of deciding to turn the project into a open source one, the legibility of the code thanks
to its compulsory indentation makes it much easier to understand to outside programmers.

CHAPTER 4. SOFTWARE 39

Music score conversion from paper to digital format

Speci�c

Image processing: The best libraries for this task are written for MATLAB. The fall down
of this language is that it is not free, to use it you must purchase a license. Other language
with good libraries is C++, though is not very agile for developing, which is bad for
trying new ideas and the compromise with an agile methodology, here. Python is the
middle ground between them both. It allows the programmer to use MATLAB style for
numerical computing with libraries like numpy and scipy and have binding to libraries like
OpenCV.

MusicXML: The only libraries found that automates writing MusicXML are MusicXML
Library and music21. The �rst one is written for C++ and the second one for Python,
which proves the language election a good one.

4.4.2. High level design

In order to keep the software maintainable and extensible, it has been divided into four
modules, three of which coincide with functional requirements.

The GUI module contains classes that manage the graphical user interface. It creates the
di�erent windows with which the user interacts and manage the call back methods for each
action. It is also in charge of calling other modules in the recognition process per se, that is, it
plays the role of the main.

The recognition module is conformed by a set of classes that recognize each element of the
score. These classes are independent from one another, so that it is possible to change, remove
or create one without interfering with the rest. In this version of the program, the recognition
classes are bound to distinguish staves, notes, accidentals, rests and dots.

Finally, the writer module is the unit that sees to get all the collected information written
into MusicXML [MakeMusic (2011)], the standard way of writing digital music sheets.

The module no speci�cally requested in the functional requirements is the object module. Its
classes are storage structures for notes and rests, an intermediate step between the recognition
of all symbols, that can modify the element, and their actual writing.

4.4.3. Detailed design

Diagrams

A UML diagram helps with the design and the understanding of the system. Here the class
diagrams generated for each one of the prototypes is presented. The modules and methods are
explained in the following sections.

40 CHAPTER 4. SOFTWARE

Music score conversion from paper to digital format

Figure 4.1: Class diagram for prototype 1

CHAPTER 4. SOFTWARE 41

Music score conversion from paper to digital format

Figure 4.2: Class diagram for prototype 2

In order to control the time variable, a potential risk to all project and a special one to this, a
Gantt diagram was design, and included here to show the temporal planning. The actual usage
of time and with it the deviation from the planning is presented below.

For the sake of clarity, the Gantt diagrams are displayed in four sections: Initial tasks; design,
coding and testing for both prototypes; and a whole overview.

Figure 4.3: Temporal planning for pre-development activities

42 CHAPTER 4. SOFTWARE

Music score conversion from paper to digital format

Figure 4.4: Temporal planning for prototype 1

Figure 4.5: Temporal planning for prototype 2

Figure 4.6: Temporal planning overview

The symbols in the shape of speech bubbles are marks to indicate weekly meetings with the
tutor. The diamond shaped marks point out the end of a iteration in the �rst prototype and
the workshops dates in the second one.

The unit testing does not appear explicitly because it occurs at the same time that each of
the developments.

CHAPTER 4. SOFTWARE 43

Music score conversion from paper to digital format

Gui

The software was designed as a desktop application. In the �rst prototype the interaction
was made through the terminal and the patterns were given as preedited images. A complete
GUI was developed in the second iteration of the development process.

The gui module is conformed by two classes, one creates the graphic interface, and the other
one functions as the application �ow controller.

CreateGUI: The constructor allows to generate the main window and initialize the asso-
ciated parameters. This class also contains auxiliary methods and callback methods. The
former includes a method that calculate useful values or change the display.

• calcPosition: Recalculates a given coordinate taking into account the window scroll.
It is used to determine the position of a click on the image that displays the score.

• changeImgCanvas: Changes the image in display in the main windows canvas. It is
used to present graphically a new score when the user opens a �le.

• adjustArea: Tries to adjust an image area so that it is as close as possible to the head
of a note. If it detects that the resulting area is smaller than the estimated size of a
note head, it does nothing.

The later consist of methods that have to be executed when interacting with the interface
or that are called inside other callback methods.

• help: Opens a dialog giving some help.

• askopen�lename: Opens a window to search for the input �le. Once chosen, saves
the path and opens the image.

• asksaveas�lename: Opens a window to choose how to save the output �le.

• click: Captures the click event.

• unclick: Captures the unclick event.

• run: Callback method that is executed when the user wants to start the recognition. It
creates a wizard that will guide the user through the process of retrieving parameters
and patterns.

• next: Changes the wizard to the next window.

• next2: Changes the wizard to the window after the next one. It is used to skip the
windows that ask for a pattern if the pattern is no needed.

• prev: Changes the wizard to the previous window.

• move: Changes the wizard window and establishes the new buttons and messages to
display.

• saveTimeSig: Saves the time signature from the spinner boxes in order to pass it later
to the writer.

• saveKeySig: Saves the key signature from the spinner box in order to pass it later to
the writer.

• nextPattern: Indicates that the current pattern is not needed.

• noBlack: Special case for the previous method. In case that there is no need of the
black head pattern, as it is the last pattern required, the recognition process shall
begin.

44 CHAPTER 4. SOFTWARE

Music score conversion from paper to digital format

• savePattern: Save the pattern chosen so that it can be used in the recognition process
later.

• choosePattern: Hides the wizard and activates the click and unclick callbacks to get
ready for the user interaction that will lead to the acquisition of the pattern area.

• reChoosePattern: In case the user decides that the pattern is not suitable, it discard
the current pattern and calls the method choosePattern again.

ScoreGUI: Its constructor receives some information from CreateGUI that will be needed
through the class, like the main window (from where other widgets can be accessed) or the
image that wants to be digitized and recognizes the staves in order to get thickness and
distance between the stave lines. Save for the constructor, the class only has two methods,
that are used by CreateGUI:

• getStaveParams: Getter in order to reach the thickness and distance parameters of
the stave. These parameters are needed to adjust the pattern area around the note
head.

• start: Calls for the di�erent classes and its methods acting like a main in the recog-
nition process. In order to add or remove functionality, this is the method that will
have to be edited.

Recognition

This, and the following modules appear in the project since the beginning, though some of
their classes were not. The recognition module has as many classes as individual symbols want
to be recognized. The goal of the �rst prototype of the software is to obtain the melodic line.
In this regard, the classes that were designed then were only Staverecog and NoteRecog and
the �rst part of RestRecog. The remaining rests and alterations were included in the second
iteration.

All of the recognition classes possess a �nd method. This is the main method called to
recognize the symbol. They may also have auxiliary methods to determine within a certain
symbol, their kind.

The symbols are divided between those who will create an object and those that are modi�ers.
The recognition classes of symbols that will create an object have public attributes such as the
areas in which they appear and their vertical center.

StaveRecog: Recognizes the position of the di�erent staves along the image and calculates
and/or stores some useful parameters such as the line thickness, the distance between lines
or the position of the upper line in a stave and also a list of stave areas to analyze later.

• �ndStave: Detects staves in an image using the auxiliary method isLine. It also cal-
culates the thickness and distance parameters as an average value of all the gathered
information.

• �ndUpper: Calculates the position in which the upper line of a complete score or
stave area is situated. It is useful to provide the program with a context in later
stages.

• isLine: Identi�es stave lines.

NoteRecog: Recognizes the position of di�erent notes along a stave. It saves into variables
the image area for further analysis and the head centers (horizontal and vertical). With
this class information, the program will create an intermediate representation of a note in
which accidental and dotted rhythms will modify its content before the writing.

CHAPTER 4. SOFTWARE 45

Music score conversion from paper to digital format

• �ndHead: Searches for the di�erent pattern repeats, saves its area and deletes the
image from it in order to avoid noise afterward.

RestRecog: Recognizes the position of di�erent rests along a stave. It saves into variables
the image area for further analysis and the head centers (horizontal and vertical) as well
as the duration of the rest. For rests there will also arise an intermediate representation.
In this case, rest will not be modify by accidentals, but only by dots.

• �ndRest: Scans looking for all the rests, whatever their type. Following the example
given in the previous class, it saves its area and deletes it from the original score.

• �ndWholeHalf: Auxiliary method that distinguishes between whole rests and half
rests. It is called by �ndRest.

• �ndQuarterOrSmaller: Auxiliary method that distinguishes between quarter and
smaller rests. It is called by �ndRest.

AccidentalRecog: Recognizes if there is an accidental for a note, and if so, its type is
determined. This class can be extended in a future to recognize double accidental.

• �ndAccidental: Scans the area next to a head note in order to conclude if it is modify
by an accidental or not.

• recogType: Once the accidental is found, this method resolve its kind. It is called by
�ndAccidental.

DotRecog: Recognizes if there is a duration alteration, namely a dot. This class can be
extended in a future to recognize chained dots.

• �ndDottedRhythm: Scans the area next to a head note so to determine if the note
has a dot.

Object

All the classes have a data structure that has to be �lled and that has to be able to be
edited. Each class has a duration and dot variables which are their common features. For notes
in particular, it has a pitch and accidental variable too.

As explained in the previous module, both classes were present in the �rst iteration of the
life cycle, though not completed.

NoteObj: Creates an note type object, characterized by its pitch and duration and modi�ed
or not by accidentals or dots. The constructor initializes the structure values.

• recogPitch: Recognizes how high is the note head placed in the stave and translate
this into a pitch, storing the value.

• recogRhythm: This method is only used for black headed notes, because for whole
notes and half note, it is already known which is the duration through the pattern
used.

• isStave: Auxiliary method that distinguishes a stave line from other symbols. It is
used by recogRhythm.

RestObj: Creates a rest type object characterized by its duration and modi�ed or not by
dots. Its values can be modify via its public attributes since it has no methods save the
constructor.

46 CHAPTER 4. SOFTWARE

Music score conversion from paper to digital format

Writer

This module has only one class in charge of writing all the necessary information. The need
of an actual output made this module and class critic and it is the reason why it appears in the
project almost since the very beginning.

MusicXML: It is the only class of the module. Its constructor initializes values that control
how many notes are and must be within a measure.

• write: Dumps all the stored data into a MusicXML �le, that will be the output of
the software.

• headerWriter: Set the meta-data and structure information for the score: name,
composer, time signature and key signature.

• �nalBarlineWriter: Writes a �nal barline at the end of the score.

• objWriter: Writes the objects obtained in the previous module into the score.

• keySigAlteration: Keeps in mind the accidentals established by the key signature and
the other modi�ed notes in the same measure to add an implicit accidental to a note.

4.4.4. Test plan

Even though the testing phase is interlocked with the design and the codi�cation primarily,
the structure and planning is clear: There are three stages in the testing process, the �rst one
is the unit testing, that will prove that the code is correct; the second one is the integration
testing, that will con�rm that the modules work together; and lastly the system test will verify
that the software runs in multiples platforms and environments.

Unit testing: During the development of each class, and even for each method, small proves
are tested to check every thing works as intended. Some of the unit tests designed are
obtaining the number of staves (StaveRecog), notes (NoteRecog) and rests (RestRecog) in
a score; the getting the pitch and duration of all notes in a stave (NoteObj) or reading the
output with a music editor (MusicXML).

Integration testing: This is really an incremental integration testing. The addition and
testing of di�erent modules is done gradually, so in case of a failure, delimit the error. The
�rst test are based on terminal written output and once the MusicXML class is functional,
they can be switched to human comparison between the original image and the XML open
by a music editor.

System testing: With the last prototype completed, it is necessary to test if the software
can be run in di�erent operating systems, without the libraries nor Python installed. The
�rst system test is having place at the some computers to which the author has access and
the �nal test will be with real users and their machines.

4.5. Development

This section will describe module by module the libraries and algorithms behind the imple-
mentation of the software, keeping in mind that the solution implemented is based on heuristics
devised by expertise.

CHAPTER 4. SOFTWARE 47

Music score conversion from paper to digital format

4.5.1. Gui

The requirement of user friendliness [NFR.2.] forced the development of a graphical interface
that could be easily used by any musician no matter how versed in computer science. The idea
was that even the most computer fearing users could install and use the software. To accomplish
this, the disposition of menus and the design of the wizard was as standard as possible.

The library used to develop the GUI is the Python's de-facto standard GUI, Tkinter. This
allow us to hope that the library is not prone to disappear or fall o� maintenance.

CreateGUI: Uses the library to create a window with a menu and a status bar. In the
center of the window there is a canvas that changes with the score election of the user.
Almost all of the widgets are data attributes, owned by the class so that the Python
garbage collector does not eliminate them. The opening of images is done through another
Python library, PIL, compatible con Tkinter.

Tkinter does not have a special widget to create wizards. To accomplish the task, an
auxiliary window is created, and its content stored in an array. Every time that the
wizard moves forward or backward, the window content is updated depending on the page
it is supposed to be in. Some pages of the wizard also have a image attached, that can be a
example of the pattern intended or the actual pattern chosen. In the �rst case, the images
are stored withing the program and merely loaded into the window. In the second case,
the user is force to select the pattern. To do it, the methods that respond to click events
are bound and unbound as soon as the pattern is selected. The wizard is hidden and the
user can select their patterns. Then, the program will adjust it taking into account the
head size. Having ended the wizard guide, the recognition process can begin calling the
start method of ScoreGUI.

ScoreGUI: Its constructor uploads the image to analyze and locates the status bar that
will update the information for the user. Then �nds the staves in the score and shows its
number through the status bar. The algorithms used for the recognition will be explained
in the following module, here will only be explained the information �ow and call order.

The other main method in this class is the start method. It is in charge of calling the rest
of the modules as follow: con�gure the writer using the class MusicXML and the time and
key signature obtained through the GUI. Then the recognition begins. For every stave,
it �nds any note, distinguishing between whole, half and back by means of the patterns
gathered. For each note, it identify its pitch and duration, though for the two �rst types
this is trivial. Until the second iteration this was all the recognition that took place,
followed by its writing.

In the �nal product the note recognition was followed by the accidental one, that modi�es
only noteObj's, and then rests and dots, that modi�es notes and rests alike. Given the
non-sequential behavior of the note recognition, at this point it is necessary to sort the
objects before calling to the MusicXML method objWriter. The last step to �nalize the
process is to add a �nal bar to the score and dump it into a �le stored in disk.

Its development has taken around 30 clock hours and last almost 4 months, since the begin-
ning of the second iteration till its end.

4.5.2. Recognition

The base of the recognition module has two pillars, one is the chosen image processing library,
OpenCV [Bradski (2000)], and the other one is the series of developed algorithms explained

48 CHAPTER 4. SOFTWARE

Music score conversion from paper to digital format

in the previous section [3]. Once the symbol is recognized, it either creates an intermediate
representation of it, or modi�es an existent one.

StaveRecog: The �nding of the stave is based in the algorithm Horizontal Projection
[3.3.1], read in the literature. The space between the stave is equally distributed among
the two areas and at the end of the recognition the thickness and distance between the
stave lines is calculated as an average taking all the values observed.

The subareas where the stave can be found are stored into a list to loop through in order
to �nd the rest of the symbols in it. The upper variable is calculated for each stave area
according to the same algorithm.

NoteRecog: This class has only one method in charge of �nding all occurrences of a given
pattern. This is achieved by using the Template Matching algorithm provided by OpenCV.
It has a threshold of similarity set to a empirical value that avoid the �aw of �nding only
the exact match.

All the matches are stored in lists, saving its area and head center coordinates. The
algorithm does not work sequentially, so these values will be used, among other things, to
sort the objects later. The occurrence of a note is remove from the original stave area in
order to eliminate potential noise of successive recognitions.

AccidentalRecog: This class owns two methods, the �rst one discovers accidentals, and the
second one discriminate them by their kind. The early one, is based on the knowledge that
an accidental only appears before a head note. So, if searching that area (contextualized
by the head center coordinates and the size of the head), noise is found, the recogType
method can be called.

In this case, a Character Pro�le algorithm type, read in the literature, is used and explained
with detail in another chapter [2.2.1]. It su�ces to know at the moment that the type of
the accidental is stored to modify the noteObj next.

RestRecog: The main method of this class seeks along a stave area in places where the
possibility of �nding rests is higher. If an important amount of black pixels is found, the
method calls its auxiliary functions and if they are really rests, ful�lls the same routine as
noteRecog, that is, saves its area and centers, but also the duration of the rest.

The recognition of rests is implemented via a Signature Analysis and a Character Pro�le
algorithms.

DotRecog: Works under the same principle as AccidentalRecog, without the second part.
If a dot is found, it a�ects the object to its left, either note or rest.

The whole approximation of real work has taken 28.5 hours, an average of more than 4h per
class, but for RestRecog, that was divided into smaller and grater rests, taking more than this
average each one. The development process of this module lasted for 7 months divided into two
prototypes, the �rst one since September to January and the second one from January to May.

4.5.3. Object

This module works simply as a storage structure, closer to the music21 representation. In
the note case, it is also necessary to �nd out its pitch and duration if unknown.

CHAPTER 4. SOFTWARE 49

Music score conversion from paper to digital format

NoteObj: As a structure, it stores the pitch and its modi�ers, accidentals, and its duration
and modi�ers, dots. But before, there is the need of identify both the pitch and the
duration.

The pitch is determined using the upper line of the stave and the head center of the note;
the relative position of the head in the stave provides the program with the information
sought.

The duration, on the other hand, is found using an expertise based algorithm. The note
stem is identi�ed and searched around to try to �nd divergences that are not the line
staves.

RestObj: The rests duration are already identify in the previous module, so this class is
only a storage structure that saves its duration and modi�cations, dots, if any.

The whole module was codi�ed in 8 hours, being the RestObj time negligible. It took 12
days.

4.5.4. Writer

Module that has only one class, MusicXML, that encapsulates the music21 library making
its use more comfortable. Its methods help converting information to music21 library objects
and dump its content into a real �le in disk. It also deals with the amount of notes and rests
stored into a measure and the number of accidentals in the key signature in order to ensure
consistency. The methods that handle this are keySigAlteration and objWriter.

The �rst one receives a note and extract its pitch. With it, compares to the key signature and
returns if the note is a�ected by it. The second one converts the object to a music21 object and
then depending on the time signature, it keeps on adding objects until the measure is complete;
when it is, it changes to a new one. An accidental within a measure a�ects all the notes with
the same pitch, so it is necessary to hold a record of all the measure accidentals and check if a
note is a�ected by them.

The MusicXML conversion, dealing with the music21 library was solve in around 10 hours.
The extension of the work took almost all the project, around 7 months, since the writing of the
�rst note to the resolution of the last symbols.

4.6. Validation suite

In order to run the tests, it is necessary to have a validation suite. The idea of this suite is
to have �ve levels of complete scores plus a initial stave are to test at the beginning excluding
the last one, this is the validation suite chosen. The �rst three sets are referred to ideal scores,
taken from a database or from the user owned digitized scores.

Easy: Simple scores with no accidentals, rests, dots, nor anything out of the �rst prototype
scope.

Medium: Scores more complicated but without annotations nor time/key signatures changes.

Di�cult: Any complete score.

Scanned: If all the previous tests have been successful, then the di�culty of the score is
out of concern. The idea of the suite is deal with low quality images, skew and similar
problems.

50 CHAPTER 4. SOFTWARE

Music score conversion from paper to digital format

Handwritten: The last and more complicated examples are the handwritten ones. They
have the scanned documents problems but also a new one, that is learning from the actual
symbols drawn by each person. This set will not be tested, because is out of the scope of
this work, but is interesting to keep it in mind.

This suite is not only chosen for the current project, but also for the future work to do.
Examples of this scores can be found in the results section [5.2] along with its digitalization.

4.7. Software management

In order to maintain the project a "systematic, disciplined, quanti�able approach to the
development, operation, and maintenance of software" [IEEE (1990)], it was necessary to track
all the process. For this particular project, it has been used the following methods and software
to help them.

4.7.1. Documentation

Though using an agile development where the documentation was not the central pillar, the
author thought it important for the open source ambition. It was also important in order to
describe the process in this report.

To design a time plan and also to keep a record of the time spent in the di�erent tasks, an
online platform was research so that in any computer at any time the access was possible. To this
avail, the selected platform was clockingit [Simonsen and Simonsen (2003)], a free application
of project management that allows multiple access and communication for a whole work team,
even though in this case it was not necessary.

Although this platform already has a Gantt chart feature, it is not as complete as it seems, so
this particular diagrams [4.3] were build by another online tool, Tom's planner [Toms Planner
(2009)], also collaborative and free. Additionally, it has a clean and straightforward way of
picturing the information, which helps to its understanding.

For the design of the software and the construction of the UML diagram [4.1] the chosen
application was StarUML, familiar to the author because of it previous use.

In the development stage, the IDE used has been Eclipse with the plugin PyDev for Python
development. Another important issues during this stage is the code documentation, and as a
result of this, there is a whole API of the program generated by Doxygen in HTML and LATEX.

Finally LATEX was also chosen to write this report because of its typographic quality and as
a new tool to learn and out stand in the labor market. The platform used for writing LATEX is
Overleaf (former WriteLaTeX) [Writelatex (2011)], a collaborative writing and publishing system
that allows you to view the result of your typing in real time.

4.7.2. Code

About code management, the �rst idea when the project was thought to be a partnership
with another student was to use GIT as a version control software. But given the �nal decision
to turn it to a single project and the di�culty of �nding a good private repository lead to decide
for a Dropbox management eventually. Each version of the project was handled like a commit,
with the number of version and some comments.

CHAPTER 4. SOFTWARE 51

Music score conversion from paper to digital format

52 CHAPTER 4. SOFTWARE

CHAPTER 5

TESTS AND RESULTS

5.1. Introduction

In this section are presented the results of the validation suite [4.6] and a comparison between
the results achieved by the developed software versus the applications researched in the chapter
State of the art [2.3]. A concise description of the workshops conducted is also presented before
a summary of the results.

5.2. Tests

Following the structure set for the validation suite, in the next pages the reader can �nd the
actual output for a example of each one of the score levels with a description of the pros and
cons compare to the original input.

The original scores come from the MuseScore database as ideal example of scores. This
scores do not have skew issues, or noise related to the scanning process.

5.2.1. Easy score

As explained before, this is the validation test objective for the �rst prototype, and the
representative score used to test it is Variations on "Ah vous dirai-je, Maman" by Mozart, also
known as the famous Twinkle, Twinkle, Little Star. The version used is found in a book for
beginners called Suzuki Method [Suzuki (1978)].

As can be observed in the �gures below, the recognition is complete according to the started
scope. The only non recognized symbols that appear are the instrument �ngerings, which are the
small numbers above some notes, and the small dots placed above certain notes called staccato.

53

Music score conversion from paper to digital format

Figure 5.1: Mozart input
Figure 5.2: Mozart output

5.2.2. Medium score

It is di�cult to �nd real scores that include the symbols to recognize leaving out the ones
outside the scope of the project. Taking this into account, the solution given was to �nd scores
with few non-covered symbols and avoiding to take into account those mistakes in the evaluation
of the results.

Figure 5.3: Albinoni input Figure 5.4: Albinoni output

The score chosen here is the Adagio in G minor by Albinoni, better known as the Albinoni's
Adagio. The test proves that the recognition is complete. In this case, the di�erences (but not

54 CHAPTER 5. TESTS AND RESULTS

Music score conversion from paper to digital format

errors) are due to complex rhythms, not covered by neither prototype and editable once the user
has the output.

5.2.3. Di�cult score

These scores have no limitations except that they have to be ideal, that is, downloaded for
the MuseScore database or obtained from a MusicXML �le. This way the original score will not
be skewed or have defects from the scanning process. The set is designed so that testing it in
the �nal prototype, its error are apparent and also, to asses the performance of future releases
of the software once some of the future lines of work [6.2] are solved.

The score selected for this test is Salut d'Amour by Edward Elgar. As it can be appreciated
from the �gures, recognition is quite faithful. There are minor problems with some extremely
high notes and some noise mistaken for rests. The remaining di�erences are due to uncovered
functionality, such as annotations or harmonics (measure 37), because they are not half notes.

Figure 5.5: Elgar input Figure 5.6: Elgar output

5.2.4. Scanned

The application has di�culties with scanned documents because the recognition algorithm is
based on the horizontality of the stave lines. For this reason, parts of the score can be correctly
digitized while the others may be higher or lower in pitch and have duration problems.

The example showed in �gures 5.7 and 5.8 is an excerpt from the Concerto in D minor for

two violins by Bach. In it the reader can see that the score is well recognized by fragments. In
some places, there are rests that are simply noise in the scanned score.

CHAPTER 5. TESTS AND RESULTS 55

Music score conversion from paper to digital format

Figure 5.7: Bach input

Figure 5.8: Bach output

5.3. Benchmarking

This section is meant to see the di�erences between the studied software and the developed
one with the complexest and better recognized score, in this case, Albinoni's Adagio. The
comparison is structured using free software �rst and the proprietary one later; since the last
one works better, the similarity of outputs should grown until the possible perfection of the
PhotoScore example, that would distance the resemblance again.

5.3.1. Audiveris: Open source

Figure 5.9: Albinoni MScrivener Figure 5.10: Albinoni Audiveris

56 CHAPTER 5. TESTS AND RESULTS

Music score conversion from paper to digital format

The recognition mistakes committed by this software are exactly the ones tried no to repro-
duce in the developed application, namely try to recognize too much confusing symbols.

MScrivener identify notes and durations better than Audiveris. The reader can appreciate
the di�erence examining measure number eight (recognize two notes) or �fty seven (the measure
is not even complete).

It is true that Audiveris has a wider recognition, including ties and annotations. An example
of both of them can be found in the �rst measure.

5.3.2. SharpEye: Proprietary

Figure 5.11: Albinoni MScrivener Figure 5.12: Albinoni SharpEye

This program is better than the previous one; as analysed before, the propriety software
works better than the open source project available right now.

As a whole, the SharpEye seems to work perfectly, but looking more closely, it can be spotted
a minimum loose of information, as in the seventh measure or the sixty fourth.

5.3.3. PhotoScore: Proprietary

PhotoScore seems to be the best option regarding notes and durations, though the rest of
the annotations appear more cleanly in SharpEye.

The comparison between the developed software and this one makes no sense as such, but
only as a future reference.

CHAPTER 5. TESTS AND RESULTS 57

Music score conversion from paper to digital format

Figure 5.13: Albinoni MScrivener Figure 5.14: Albinoni PhotoScore

5.4. Workshops

To test the application in a real environment and retrieve data from real users, some work-
shops were organized in di�erent surroundings. The users invited to participate in these work-
shops have similar, but di�erent needs. The following sections describe the process and responses
of the users in each workshop.

5.4.1. Universidad Autónoma de Madrid

On April 22, 2015 two workshops were carried out at the UAM. The �rst one, in the morning,
was held with music teachers. The second one, in the afternoon, was imparted to a class of their
students.

Both talks had the same structure. First a presentation of the project, explaining its mo-
tivation and possible uses, a brief description of the algorithms used and illustration of the
functionality of the application a limitation through examples. At this point, during the work-
shop with students, the author conducted an experiment: letting a volunteer use the software
without any help, to discover if the tool was really usable. The result of this experiment showed
that the original mechanism for identi�cation of pattern unnatural. This procedure required
the user to draw a rectangle around the head dragging the mouse from a corner to its opposite.
For this reason, the selection process was changed to a more natural one before the talk at the
conservatory. This method consist in clicking in the center of the head as explained in 3.3.2.

The initial plan was to have the attendants to use the software and �ll out a survey about
the workshop. Unfortunately computers at the laboratory in the teaching faculty have problems

58 CHAPTER 5. TESTS AND RESULTS

Music score conversion from paper to digital format

with portable executables, which made it impossible. Instead, the software was distributed
among the participants under the promise that the would try it at home and �ll the form.

The most attractive feature of the application was the possibility of using if free of charge and
with almost the same functionality as the commercial software. Although what really interested
them was its potential to recognize hand-written scores, reducing the time needed to digitize
them in order to use them in the classroom.

The complete responses can be found in the appendix C.3. A brief summary of the outcome
is that all users were knowledgeable with music editors, though not all of them were familiar
with OMR's. Everyone agreed that the software was easy to retrieve, execute and use, despite
the fact that it is written in English. As their fundamental use was edition, they found the
parameter and pattern selection awkward.

No bugs were reported. Some of the polled admitted that they probably will use the tool in
future.

5.4.2. Conservatorio Profesional de Música Arturo Soria

The talk at the conservatory took place on May 7th. The structure was the same as the one
used in the UAM workshop. The students used their own computers in the practical part of the
workshop.

In this environment, there were two suggestions for improvement: the further development
of the composition tool and a possible modi�cation to extend the recognized symbols in order
to cover special notation for �amenco guitar.

As before, the results of the survey are available in the same appendix [C.3]. The conservatory
lecturers and students are acquainted with both editors and OMR applications. There was overall
agreement in the ease of use of the software. In this case, the parameter and pattern request is
useful and appreciated because of the interest in algorithmic composition.

Once again, no bugs were reported. All of the surveyed at the moment of writing this report,
expressed their willingness to use the software.

5.5. Results

The overall results of the project are fairly satisfactory. Te assessment of the suite of test
scores shows that the original goals have been ful�lled. The comparison with available software
both commercial and open source is favorable within the scope of functionalities. Finally the
workshops highlight the users interest and satisfaction on the developed application.

The test by itself only proves that the functional requirements [4.3.1] are cross-validated. On
the other hand, the benchmarking show how and where would be the software in the market,
which are its strengths and what is the way forward to improve the tool. A proposal for future
developments and improvement can be found in the next chapter [6.2].

At this point following the application developed is better that even proprietary software
in some areas and could be competitive depending on the objective of the recognition. It also
have the compositional aspect that not one of these applications consider: changing the patterns
selected as heads or modifying the signatures from the real value can alter a original score into
something di�erent.

Finally, the experience with potential users have con�rmed the original idea that the target
public is not really large, supported by the number of people that have actually �lled the survey.

CHAPTER 5. TESTS AND RESULTS 59

Music score conversion from paper to digital format

Either way, the event showed that the non-functional requirements [4.3.2] have been met, in the
same way the test suite validated the functional ones.

60 CHAPTER 5. TESTS AND RESULTS

CHAPTER 6

CONCLUSIONS AND FUTURE LINES OF

WORK

6.1. Conclusions

The project started a year ago as a vague idea put forward by the tutor, and worked out
through a summer of research in the �eld. The expertise of the author and the combined e�orts
of the tutor and author meeting by meeting turned a nebulous project into the reality of what,
today, MScrivener is.

It is far from a closed project. However, the work and result achieved is positive. Here,
notions learned throughout the degree have been used, some that may be named are the ability
to manage a software development project, taking into account the limitations and possible risks,
designing one or more solutions, codifying them in a clear a e�cient way and testing them. It
has also been an enriching process where the author has learned more advanced things such as
doing research or writing a technical report properly shaping (in a non native language) the �ow
of thoughts into written words.

As a musician herself, the author, this project was not just another work to hand over, it was
something personal: build a software with application for musicians, composers, conductors and
any amateur that could be interested. Despite the advice of many to make the software private,
the decision of making it completely free and open source was made. The main reason was
that in this manner, it is accessible to anyone, regardless of their economic situation. Without
marketing support, its impact and dissemination will be grater if the application is free of charge.
It also is easier to receive help being an opens source project.

The solution achieved in the �rst prototype was already promising. The main problems were
resolved and a simple melodic line was recognized and written in MusicXML. With this �rst
prototype as a prove-of-concept and some more development, the author organized a workshop
in the Conservatorio Profesional de Música Arturo Soria and with music professors and students
at the Universidad Autónoma de Madrid. With the second prototype �nished and the software
turned into a stand-alone executable under Windows and Linux the workshops were held with
a more successful outcome than imagined. The participants ware enthusiastic with and its
potential.

61

Music score conversion from paper to digital format

The endeavor and hard work hours have unfolded an endless amount of lessons whose learning
will pay o� for a lifetime. It is worth mentioning the following:

Learning new skills: It includes competences intrinsic to the project, such as the grasp of
di�erent optical recognition techniques and the usage of diverse libraries, but also other
abilities that will be useful in the labor market, like the learning of a new programming
language, Python, and LATEX as a way of generate clean an professional reports or research
papers.

Devise multiple solutions: For each challenge it was usual to design more than one possible
solution in case that one of them was not successful or had poor performance. Some of
these solutions were complex given the scope of the project. Some were relegated to future
lines of work, but were never given up on as impossible.

Reconcile with classes and work: While the development of the project, the author had
to reconcile it with classes and work. This will be useful as a mean of balance work and
private life in the future, as well as receive an idea of what could be to develop a personal
project while working.

As a whole, the project is considered a success.

6.2. Future lines of work

The time constraint was the most important variable to take into account in the development
of the project. Since the aim was to achieve a functional tool for musicians, the application was
focused to minimize failures, gradually adding new functionality.

The high complexity of OMR has made it impossible to cover everything. Nevertheless, some
of the challenges have already been analyzed and partially or completely addressed.

6.2.1. Developed functionality

There are some issues that are not completely solved. They can result in small disagreements
with the original score: anacruses, double bars and skew in the image. All of these problems are
already designed and coded, but are not integrated nor tested. This is the reason they have not
been included in the �nal prototype.

The anacrusis, also known as a pickup, is an incomplete measure that can appear at the
beginning of a score. The solution used for this issue is based on �nding the �rst barline and
changing the measure for the next symbols found. The algorithm used to �nd barlines is based
on the Vertical Projection algorithm described in section 2.2.1.

The detection of double bars is similar to the one before, except that the algorithm must
�nd the second line. It can also be applied to discover repeated bars if the algorithm also �nds
the associated dots.

The last problem encountered was the skew of the scanned scores. The complication is
caused by imperfect paper alignment in printers and scanners. To scan a score, it must have
been printed before. Both printers and scanners introduce can a skew. This is the only problem
that it is not coded yet. Nevertheless some research has been made. To �x the skew of the
image, OpenCV has certain functions that can be used, such as the Hough transform or the
Fourier transform, as described in the literature [Carretero de la Rocha (2009)].

62 CHAPTER 6. CONCLUSIONS AND FUTURE LINES OF WORK

Music score conversion from paper to digital format

6.2.2. New functionalities

There are some new functionalities that were requested by participants in the di�erent work-
shops but have not been developed yet: automatic recognition of the key, changes in the time
signature, complex rhythms and scores with more than one part.

The last one is the easiest one. In a score written for more than one voice there is a name
at the beginning of the stave; counting the number of staves that has a name before them will
give the information needed. In the stave analyzing loop there has to be a data structure that
stores each part separately depending on the iteration and number of voices.

Complex rhythms and time signature changes demand the digital recognition of digits. In the
�rst case, these numbers appear above the notes or rest, so it is know which parts are a�ected.
In the second case, the changes in the time signature appear at the beginning of a measure.
Searching those areas is the optimal way to �nd them. Besides, it is important to choose an
appropriate recognition technique: Template Matching for notes having samples stored inside
the software or using a Neural Network.

The key recognition can be implemented using any of the methods just described.

6.2.3. Machine learning

The idea of using machine learning in the project has a large potential. For instance, a
neural network can be trained to recognize any of the musical symbols of a score.

Another use is learning from past errors. It would be necessary to develop a new module
that shows the score as a music edit does. Once the score has been digitized, ask the user to
give feedback about the errors in transcription. That way the software itself can learn from its
errors. Also, the data could be sent through the Internet in order to reach all the users, so that
it can learn faster and from a wide rage of examples, and not be biased by particular users.

As in OCR, a Neural Network can be used to train the program so that it can understand
had-written symbols [Ganis et al. (1998)]. The pattern selection technique can be used to ease
the di�culty of the training for a novice user.

6.2.4. Target users

In the workshops, two separate types of target users were discovered: editors and composers.
In order not to distract the previous with the parameter and pattern choosing or limit the work
of the later eliminating them, the best solution is to divide the application and specialize each
one of them separately.

In a more or less distant future, with both tools develop, it can be possible to devise a
social network to share converted scores, or new creations composed with this second program,
managed by a sort of online library in which the scores Id can be a QR code. That way, if a
user came across a digitized score, it can access the original scanning the QR.

These are not unique solutions to these problems, but they are a good approach for the work
yet to do.

CHAPTER 6. CONCLUSIONS AND FUTURE LINES OF WORK 63

BIBLIOGRAPHY

Arshad, Q.-A., Khan, W. Z., and Ihsan, Z. (2006). Overview of algorithms and techniques for op-
tical music recognition. Department of Computer Science-COMSATS Institute of Information

Technology, Wah Cantt, Pakistan.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning,
J., Highsmith, J., Hunt, A., Je�ries, R., Kern, J., Marick, B., Martin, R. C., Mallor, S.,
Shwaber, K., and Sutherland, J. (2001). The Agile Manifesto. Technical report, The Agile
Alliance.

Ben-Dayan, B. and Giloh, I. (2013). Optical Music Recognition.

Bradski, G. (2000). The opencv library. Dr. Dobb's Journal of Software Tools.

Byrd, D. and Schindele, M. (2006). Prospects for improving omr with multiple recognizers. In
ISMIR, pages 41�46.

Carretero de la Rocha, D. (2009). Sistema de reconocimiento de partituras musicales.

Chung, Y.-C. and Lee, G. C. (1995). Recognition of Printed Sheet Music Using Hough Transform

And Morphology Operations. PhD thesis, Master thesis, National Taiwan Normal University,
Taiwan.

Fujinaga, I. (1997). Adaptive optical music recognition.

Ganis, M., Wilson, C. L., and Blue, J. L. (1998). Neural network-based systems for handprint
ocr applications. Image Processing, IEEE Transactions on, 7(8):1097�1112.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Technical report.

MacMillan, K., Droettboom, M., and Fujinaga, I. (2002). Gamera: A python-based toolkit for
structured document recognition. In Tenth International Python Conference. Citeseer.

MakeMusic, I. (2011). O�cial musicxml website. Accessed July 2014. http://www.musicxml.
com/.

OpenCV (2014). Image thresholding. Accessed July 2014. http://docs.opencv.org/trunk/
d7/d4d/tutorial_py_thresholding.html.

Python, S. F. (1997). Comparing python to other languages. Accessed July 2015. https:
//www.python.org/doc/essays/comparisons/.

65

http://www.musicxml.com/
http://www.musicxml.com/
http://docs.opencv.org/trunk/d7/d4d/tutorial_py_thresholding.html
http://docs.opencv.org/trunk/d7/d4d/tutorial_py_thresholding.html
https://www.python.org/doc/essays/comparisons/
https://www.python.org/doc/essays/comparisons/

Music score conversion from paper to digital format

Sheridan, S. and George, S. E. (2004). Defacing music scores for improved reognition. In Pro-

ceedings of the Second Australian Undergraduate Students' Computing Conference. Citeseer.

Simonsen, E. and Simonsen, E. (2003). O�cial clockingit website. Accessed October 2014.
http://www.clockingit.com/.

Suzuki, S. (1978). Suzuki violin school: violin part, volume 1. Summy-Birchard Inc.

Toms Planner, N. (2009). O�cial tom's planner website. Accessed May 2015. http://www.
tomsplanner.com/.

Vigliensoni, G., Burlet, G., and Fujinaga, I. (2013). Optical measure recognition in common
music notation. In ISMIR, pages 125�130.

Writelatex, L. (2011). O�cial overleaf website. Accessed July 2014. https://www.overleaf.
com/.

66 BIBLIOGRAPHY

http://www.clockingit.com/
http://www.tomsplanner.com/
http://www.tomsplanner.com/
https://www.overleaf.com/
https://www.overleaf.com/

APPENDIX A

BASIC MUSIC THEORY

A.1. Introduction

This annex is meant for readers who do not have a deep knowledge of music theory or score
reading. The goal is not to cover all of the symbols that can be found in sheet music, but to
understand the problems posed by their recognition. The appendix is also used as a glossary of
the musical terms employed in the report.

A.2. Structure

This section is devoted to those symbols that parametrize the score and its possible variations.

A.2.1. Stave

A stave is a set of �ve horizontal lines around which the score is written. Certain symbols,
such as notes or signatures are located inside it, while others are placed above or below it.

A system is a set of staves joined by a bracket ("["). It represents that all those staves have
to be played at the same time. Each one of the staves included in a system correspond to a
di�erent instrument. It is used in orchestra scores, for instance.

Figure A.1: Choir score with brackets

67

Music score conversion from paper to digital format

For polyphonic instruments, that have more than one stave assigned to them, the way of
represent it is with braces ("{"). Some instruments that use this notation are piano and marimba,
for example.

Figure A.2: Piano score with braces

A.2.2. Time signature

A time signature is represented as a mathematical fraction at the beginning of a score, and
set the number of notes of each type that can �t into the same measure. It is written before any
note and after the key signature, if any.

The numerator indicates the number of notes of the type set by the denominator that �t into
a measure. The denominator number is mapped to a certain type of note (duration) as follows:

2 corresponds to a half note. For example 3/2 corresponds to three half notes per measure.
The 2/2 time signature has a especial name and symbol, it is called a cut time or cut-
common.

4 corresponds to a quarter note. With this denominator there is also a time signature with
a special name, the 4/4, called common time.

8 corresponds to a 8th note, and so on.

Figure A.3: Cut time Figure A.4: Common time Figure A.5: Six-eight time

The time signature choosing changes the character of the music, e.g. a 3/4 is used for waltzes
while the 2/4 is used for military marches.

The time signature can change in the midst of a score, usually (but not always) after the
occurrence of a double bar.

Measure

The measure is the basic unit of rhythm, equivalent to the number of beats indicated by
the time signature. If a measure is incomplete at the beginning of a score or phrase, it is called
anacrusis.

68 APPENDIX A. BASIC MUSIC THEORY

Music score conversion from paper to digital format

A.2.3. Key signature

The key signature is written a the beginning of a score, between the clef and the time
signature. It represents the tonality of a score and indicates which pitch must be played higher
or lower than its default sound.

The key signature must be composed by the same kind of symbols, in a �xed order. The
sharps order is: F, C, G, D, A, E, B; and the �ats order is the opposite one: B, E, A, D, G, C,
F.

Figure A.6: Order of sharps

Figure A.7: Order of �ats

The key signature can also change along a score, but always after a bar. If the composers
want to change a pitch sound during a measure, they use accidentals.

A.2.4. Clef

A clef is a music symbol written at the beginning of each stave that indicates the pitch of a
note. It is used to avoid ledger lines for instruments that use higher of lower pitches. There are
three symbols (G-clef, F-clef and C-clef) that can be used as di�erent clefs depending on their
situation on the stave. Nowadays, there are only four common-used clefts:

Figure A.8: Used clefs

A.3. Melodic line

The symbols that conforms the melodic line of a piece of music, the sounds, or the lack of
them are notes and rest.

A.3.1. Notes

Notes conforms the sound in a score. They appear inside measures and have two features,
its pitch and its duration.

APPENDIX A. BASIC MUSIC THEORY 69

Music score conversion from paper to digital format

The pitch can be described physically as the frequency of the sound. Today a A note situated
in the second space using the G-clef must be at a frequency of 440-442 Hz. In the score, the
pitch is decided by the position of the head in the stave and the clef.

Figure A.9: Pitch depending clef

The duration is relative to the tempo and the time signature. The di�erent duration are
name after the fraction of a beat that last: whole, half, quarter, 8th, 16th, etc.

Figure A.10: Note duration

The rhythms so called complex during the report are really called tuplets or irrational
rhythms. They are groups of nots that have a di�erent value that their supposed one. An
example of this is a triplet, that is three notes with the same duration that have to �t into a the
duration that would have two of them. The notes a�ected by this special rhythm are grouped
with a bracket and signed by a number.

Figure A.11: Triplet example

A.3.2. Rests

The rests are similar except that they don not have a pitch, since they are sound absences.

Figure A.12: Rest duration

70 APPENDIX A. BASIC MUSIC THEORY

Music score conversion from paper to digital format

A.3.3. Modi�cations

Both notes and rest features can be modi�ed. In case of notes, it can be altered the pitch
and the duration whether for rests, the only variation possible is the duration.

Dots

Dots are duration modi�cations, which can a�ect notes and rests alike. They add the equiv-
alent value of half the previous value. For example, if there is a half note, and a dot is added,
the �nal value of the note is three beats, two from the half note plus 1/2 x 2 = 1 from the dot.

The dots can appear chained. In this same example, if the �rst dot had a value of 1 beat,
the second one have a value of 1/2 x 1 = 0.5

Figure A.13: Dots equivalence

Accidentals

Accidentals are pitch modi�cations, which can a�ect notes but not rests. There are three
main types of accidentals. Sharps rise the pitch half a tone, �ats lower the pitch half a tone and
naturals erase any pitch alteration, including the key signature.

Figure A.14: Dots equivalence

Its e�ects applies to any note with the same pitch within the measure unless cancelled by
another accidental.

A.4. Annotations

Although the explained symbols are enough to get sounds, the real music need annotations
that tell the musician how to play those sounds. Here are a brief description of some of them.

A.4.1. Tempo

Tempo are Italian words that suggest the speed of the score. It can vary within the same
piece of music and it is usually placed above the stave. It can also appear as a equality between
a duration and a number.

APPENDIX A. BASIC MUSIC THEORY 71

Music score conversion from paper to digital format

Some examples of Italian words with its equivalent in beats per minute (BPM) are:

Larghissimo: 24 BPM and under

Largo: 40-60 BPM

Adagio: 66-76 BPM

Andante: 76-108 BPM

Allegro: 120-168 BPM

Vivace: 168-176 BPM

Prestissimo: 200 BPM and over

A.4.2. Ornaments

As the own name indicates, these annotations are not part of the main melodic line, but
exist to decorate and make the melodic line more interesting.

There are a number of these symbols that are a shorter way of writing a �xed rhythmic-
melodic scheme.

Figure A.15: Ornaments

A.4.3. Dynamics

Dynamics are symbols or Italian words that refer to the loudness of the sound. There are
diverse kinds of dynamics, the absolute value of the sound, gradual changes, and attacks on a
note. They appear below the stave or below the note they want to modify.

The absolute value tells how loud a note must be play. The main annotations are pianissimo
(pp), piano (p), mezzo-piano (mp), mezzo-forte (mf), forte (f) and fortissimo (�), from softer to
louder.

The gradual changes can be from softer to louder, called crescendo (cres.) and represented
by a "<" or the other way around, called diminuendo (dim.) and represented by a ">".

Finally, there are symbols that describe how to attack a note, e.g. sforzando (sfz).

72 APPENDIX A. BASIC MUSIC THEORY

APPENDIX B

COMPARATIVE OUTPUTS

B.1. Introduction

The aim of this annex is the discharge of images from the body of the report, to help the
reading and provide a secluded section in which the reader can found the content preciously
referred.

B.2. State of the art - Software output

This section is destined to those symbols that parametrize the score and its possible varia-
tions.

B.2.1. PhotoScore

1. Simple score
The example shows the digitization of a simple score, the minimum that the application
should read, in the view of the author. The chosen score is a musical arrangement of an
original music score of the 2004 �lm The Chorus called Caresse sur l'Ocean.

The outcome, as it can be appreciated in the �gure B.2, is almost perfect. It also recognizes
many of the pencil annotations. Nevertheless, these are precisely the origin of the few �aws
that can be seen.

73

Music score conversion from paper to digital format

Figure B.1: Input Caresse sur l'Ocean Figure B.2: Output Caresse sur
l'Ocean - PhotoScore

2. Complex score

Figure B.3: Input Salut d'Amour Figure B.4: Output Salut d'Amour -
PhotoScore

The second example is a scanned version of Salut d'Amour by Edward Elgar. This score is

74 APPENDIX B. COMPARATIVE OUTPUTS

Music score conversion from paper to digital format

more complex not only because of its extension but for the types of notations that includes:
piano defects in a violin particella, ornaments, and strings notations, for instance.

The software detects multiple errors and warns if the printed score option is wrong and
needed the handwritten one. Nevertheless, despite the �aws found, the program does dig-
itize.

The recognition accuracy is de�cient in general. Nevertheless, there are some passages
in which the melodic line can be followed [see �gure B.4].

B.2.2. SharpEye

1. Simple score
The recognition is perfect. As PhotoScore, it recognizes the pencil symbols. Furthermore,
it does not introduce foreign elements. This can be due to the lack of letters in the
digitization with this software (title, composer...) [see �gure B.6].

Figure B.5: Input Caresse sur l'Ocean Figure B.6: Output Caresse sur
l'Ocean - SharpEye

2. Complex score
The errors made in this score are quite similar to the ones made by PhotoScore. The
overall output is unsatisfactory [see �gure B.8] and even worse than with PhotoScore.

APPENDIX B. COMPARATIVE OUTPUTS 75

Music score conversion from paper to digital format

Figure B.7: Input Salut d'Amour Figure B.8: Output Salut d'Amour -
SharpEye

B.2.3. Audiveris

1. Proposed sample

Figure B.9: Input Carmen Figure B.10: Output Carmen

76 APPENDIX B. COMPARATIVE OUTPUTS

Music score conversion from paper to digital format

The score of the opera Carmen by Bizet, L'amour est enfant de bohème, was included in a
collection of samples in the software distribution. However, the results are not completely
satisfactory, as can be seen from �gures B.9 and B.10.

The errors appear mainly in the �rst two staves. The ones in the following staves are
related with annotations, glissandi and 8va, for instance.

2. Simple score
The pitch digitization is acceptable but not entirely satisfactory [see �gure B.12]. The time
signature does not match and there are multiple overlapping symbols, as well as modi�ers
that do not appear in the original score.

Figure B.11: Input Caresse sur
l'Ocean

Figure B.12: Output Caresse sur
l'Ocean - Audiveris

B.2.4. OpenOMR

1. Simple score
Several mistakes can be appreciated in the analyzed score [see �gure B.14]. An extra stave
is recognized, and the program misidentify the time signature for note heads. It also seems
to have problems recognizing white headed notes.

APPENDIX B. COMPARATIVE OUTPUTS 77

Music score conversion from paper to digital format

Figure B.13: Input Caresse sur
l'Ocean

Figure B.14: Output Caresse sur
l'Ocean - OpenOMR

78 APPENDIX B. COMPARATIVE OUTPUTS

APPENDIX C

SURVEYS

C.1. Introduction

The importance of retrieving data as both requirements and feedback is crucial for developing
a software that will be use for musicians exclusively. This fact force the application to be
extremely easy to learn and use if the program wants to be useful.

In the present situation, the recovery of information is di�cult because of the limited public
for the software. Therefore, the followed strategy it has been the design of surveys and their
distribution among conservatory students and teachers, and university students and professors
of music.

In the next sections the reader can �nd the questions proposed for each survey and it results.
The images represent the answers at the moment of the writing of this report, but the link
contains the real time outcomes. The open answers question are not included in the �gures to
avoid its extension, but can be consulted through the provided link.

C.2. Requirements survey

This form was released on July 28 as a �rst approach of potential users, their interest and
their needs.

The results show that there are people interested in the project that use music editors but
nearly half of them does not use any OMR system. Their preferred platform is a computer and
they are quite demanding with the functionality.

Most of the surveyed are indi�erent to pattern choosing and they do not really understand
the input/output idea, since they asked for both PDF format.

The complete results are accessible on: goo.gl/gxl91e

79

goo.gl/gxl91e

Music score conversion from paper to digital format

80 APPENDIX C. SURVEYS

Music score conversion from paper to digital format

Figure C.1: Presurvey

C.3. Software survey

This form was released on April 20 as a way of receiving feedback from the workshops
attendant.

Even though the quantity of results is low, the main idea is clear. The participants are users
of editors but not all of them are familiar with OMR systems. They are interested in the idea
and understood the functioning of the logic of the software.

Regarding the application itself, they think it is user-friendly and depending on their future
objective, found the pattern choosing annoying or not.

The complete results are accessible on: goo.gl/HxJs4K

APPENDIX C. SURVEYS 81

goo.gl/HxJs4K

Music score conversion from paper to digital format

82 APPENDIX C. SURVEYS

Music score conversion from paper to digital format

Figure C.2: Postsurvey

APPENDIX C. SURVEYS 83

Music score conversion from paper to digital format

84 APPENDIX C. SURVEYS

APPENDIX D

USERS MANUAL

D.1. Download

The software will be free of charge, and �ndable for the moment at a Dropbox account, so
you can download it by clicking any of the links below.

The link will redirect you to a Dropbox download page in which you will have to choose
between download it to your computer or save it into you Dropbox account. In around a
minute, you will own your copy of the software.

Linux/Ubuntu

The Linux/Ubuntu version of the program is reachable from:
https://www.dropbox.com/s/i9v8t4ivyhby9fv/MScrivener_Linux.zip?dl=0

Windows

The Windows version of the program is reachable from:
https://www.dropbox.com/s/9zvvmwil9a4sivs/MScrivener_Windows.rar?dl=0

D.2. Installation

Once you have downloaded the compressed �le, you will have to decompress it in a directory
of your choice. The program is portable, so you do not have to do anything else: The software
is ready to use.

To run the program, follow the steps detailed for you distribution.

Linux/Ubuntu

Open a terminal and access the directory in which you have unzip the compressed �le.
Reproduce the following commands:

85

https://www.dropbox.com/s/i9v8t4ivyhby9fv/MScrivener_Linux.zip?dl=0
https://www.dropbox.com/s/9zvvmwil9a4sivs/MScrivener_Windows.rar?dl=0

Music score conversion from paper to digital format

cd MScrivener
. / MScrivener

Windows

Open the directory in which you have decompressed the �le and open the directory MScrivener
inside it. To run the program, you only have to double click on the �le MScrivener.exe.

D.3. Getting started

The program usage is the same for both operating systems. The recognition process includes
selecting an image, inserting several parameters and choosing some patterns.

Input/output

The �rst step you have to take is select the score you want to digitize. The program accepts
as input any image format, being the most common JPG, PNG and BMP. If you have a PDF
you want to recognize, you can convert it using services as http://pdf2jpg.net/, for instance.
Notice that you must choose the higher quality in order to obtain the best result.

To open an image, you have to click on the menu: File => Open...

Figure D.1: Open a image

Then, navigate your computer and choose the image you want to recognize. Once you open
it, it will be display automatically. The size of the image depends on the resolution and it can
not be resized.

86 APPENDIX D. USERS MANUAL

http://pdf2jpg.net/

Music score conversion from paper to digital format

Figure D.2: Score display

By default, the output �le will be save with the same name and in the same folder as the
input �le, but if you desire to change the location or �le name, click on the menu: File => Save
as...

After you have your score loaded into the program, you only have to run the recognizer. To
do this, click on the menu: Tools => Start recognition.

Figure D.3: Start the recognition

Parameters

The program will open a wizard that will help you during the recognition process. The �rst
parameters you have to set are the time signature and the key signature. Both of them work
with spinners so to �x the numbers, click the arrows to increase or decrease the amount inside
the box.

The time signature value is direct, as you can see in the image below.

Figure D.4: Set the time signature

APPENDIX D. USERS MANUAL 87

Music score conversion from paper to digital format

For the key signature though, you have to keep in mind that sharps are positive values and
�ats are negative values. That way, if you want to set the key signature for A major, you will
have to choose +1, whether if you seek c minor, you will have to establish the parameter to -3.

Figure D.5: Set the key signature

Immediately after setting these parameters, the program will recognize the staves in the
score, which can take some time. Then you will be asked to select some patterns.

If the number of staves it is not what expected, the software will not be able to digitize your
image. You can try to obtain a better quality image out of your score or wait until a new version
of the program is release.

Patterns

The wizard will guide you now to the head pattern selection. It will ask you if there are
whole, half and shorter notes in your score. In each case, if so, you will be allowed to choose the
head pattern.

Let us see a practical example: If we are being asked about black heads (quarter notes or
shorter value) and our score has one or more of this type of heads, click on the Yes button. The
wizard will disappear and we will have to click in the center of the head, like this:

Figure D.6: Choose head pattern

The program will try to auto-adjust the area around the head. In any case, it will show you
the area elected in case it is not what you wanted.

88 APPENDIX D. USERS MANUAL

Music score conversion from paper to digital format

Figure D.7: Re-choose pattern Figure D.8: Accept patter

The accepted pattern will have to be as close to the head as possible, without interfering
with any other symbols. The pattern selection is really important, it will determine the quality
of your output.

Having selected all necessary patterns for your score, you will click on the Finish button and
wait for the recognition to end.

Recognition

The status area will inform you of the recognition process. The program analyze stave by
stave the score, so you will know at any time the recognition state.

Figure D.9: Choose head pattern

The information sequence will be as followed:

1. Analyzing stave 1/X

2. Analyzing stave X/X

3. Writing XML

4. Done!

Once the process is completed, you can search for your digitized score and open it with any
music editor, such as MuseScore, Sibelius, Finale, Encore...

APPENDIX D. USERS MANUAL 89

Music score conversion from paper to digital format

D.4. Contact

Please, take a few minutes �lling this survey:

https://docs.google.com/forms/d/1kWY3NNiTbrf3HH5itAPjUbcz6K3oVBvngJ183Y5-QYE/

viewform

It is completely anonymous and it will help the author to get your feedback and �x any bug
reported.

If you want to contact the author, do not hesitate and write to:

monica.villanueva@estudiante.uam.es

90 APPENDIX D. USERS MANUAL

https://docs.google.com/forms/d/1kWY3NNiTbrf3HH5itAPjUbcz6K3oVBvngJ183Y5-QYE/viewform
https://docs.google.com/forms/d/1kWY3NNiTbrf3HH5itAPjUbcz6K3oVBvngJ183Y5-QYE/viewform
mailto:monica.villanueva@estudiante.uam.es

APPENDIX E

DOWNLOADS

E.1. Introduction

This section is dedicated to centralizing download links of additional material, such as the
Application Programming Interface (API) of the developed system, or the application itself.

The links will redirect you to a Dropbox download page in which you will have to choose
between download its content to your computer or save it into you Dropbox account.

E.2. API

The code is documented using Doxygen annotations, which helped creating a dynamic API
in HTML that can be navigated in a browser in a local way.

This API is accessible on the following link: https://www.dropbox.com/s/f73wpyf6ws14c86/
Doxygen_html.zip?dl=0

E.3. MScrivener

The software is distributed for two platforms. Choose the one that �ts better with your
operative system.

Linux/Ubuntu

The Linux/Ubuntu version of the program is reachable from:
https://www.dropbox.com/s/i9v8t4ivyhby9fv/MScrivener_Linux.zip?dl=0

Windows

The Windows version of the program is reachable from:
https://www.dropbox.com/s/9zvvmwil9a4sivs/MScrivener_Windows.rar?dl=0

91

https://www.dropbox.com/s/f73wpyf6ws14c86/Doxygen_html.zip?dl=0
https://www.dropbox.com/s/f73wpyf6ws14c86/Doxygen_html.zip?dl=0
https://www.dropbox.com/s/i9v8t4ivyhby9fv/MScrivener_Linux.zip?dl=0
https://www.dropbox.com/s/9zvvmwil9a4sivs/MScrivener_Windows.rar?dl=0

	Glossary
	List of figures
	List of tables
	Introduction
	Motivation
	Aims
	Structure

	State of the art
	Introduction
	Research on OMR
	OMR
	AOMR

	Software
	Proprietary software
	Open source

	Design: Problem approach
	Introduction
	Project definition
	Design
	Stave identification
	Symbol identification

	Software
	Introduction
	Agile software development
	Requirements elicitation
	Functional requirement
	Non-functional requirements

	Software design
	Programming language
	High level design
	Detailed design
	Test plan

	Development
	Gui
	Recognition
	Object
	Writer

	Validation suite
	Software management
	Documentation
	Code

	Tests and results
	Introduction
	Tests
	Easy score
	Medium score
	Difficult score
	Scanned

	Benchmarking
	Audiveris: Open source
	SharpEye: Proprietary
	PhotoScore: Proprietary

	Workshops
	Universidad Autónoma de Madrid
	Conservatorio Profesional de Música Arturo Soria

	Results

	Conclusions and future lines of work
	Conclusions
	Future lines of work
	Developed functionality
	New functionalities
	Machine learning
	Target users

	Bibliography
	Basic music theory
	Introduction
	Structure
	Stave
	Time signature
	Key signature
	Clef

	Melodic line
	Notes
	Rests
	Modifications

	Annotations
	Tempo
	Ornaments
	Dynamics

	Comparative outputs
	Introduction
	State of the art - Software output
	PhotoScore
	SharpEye
	Audiveris
	OpenOMR

	Surveys
	Introduction
	Requirements survey
	Software survey

	Users manual
	Download
	Installation
	Getting started
	Contact

	Downloads
	Introduction
	API
	MScrivener

