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Systematic study of proton-neutron pairing correlations in the nuclear shell model
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A shell-model study of proton-neutron pairing in 2p1f shell nuclei using a parametrized Hamiltonian that
includes deformation and spin-orbit effects as well as isoscalar and isovector pairing is reported. By working in
a shell-model framework we are able to assess the role of the various modes of proton-neutron pairing in the
presence of nuclear deformation without violating symmetries. Results are presented for 44Ti, 45Ti, 46Ti, 46V, and
48Cr to assess how proton-neutron pair correlations emerge under different scenarios. We also study how the
presence of a one-body spin-obit interaction affects the contribution of the various pairing modes.
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I. INTRODUCTION

It is generally believed that proton-neutron (pn) pairing is
important in nuclei with roughly equal numbers of neutrons
and protons [1]. The standard technique for treating these
correlations is through the Bardeen-Cooper-Schrieffer (BCS)
or Hartree-Fock-Bogolyubov (HFB) approximation, gener-
alized to include the pn pairing field in addition to the
neutron-neutron (nn) and proton-proton (pp) pairing fields [1].
Questions arise, however, as to whether these methods can
adequately represent the physics of the competing modes of
pair correlations, without full restoration of symmetries [2].

Important insight into this issue was achieved recently in the
context of exactly solvable models that include these different
pairing modes. Analysis of the SO(8) model [3], in which
isoscalar and isovector pairing act in either a single active
orbital or a series of degenerate orbitals, suggests that isospin
restoration or equivalently quartet correlations are extremely
important, especially near N = Z [2]. More recent studies,
carried out for models involving nondegenerate orbitals [4],
reinforce earlier conclusions as to where isoscalar pairing
correlations should be most important [5,6]. Furthermore,
they make possible the description of deformation, as is
critical for systems with N ≈ Z, by treating the nondegenerate
orbitals as Nilsson-like. However, it is still not possible to
restore certain symmetries within these models, for example,
rotational symmetry.

As a consequence, there still remain many open issues
concerning the role of the different possible modes of pairing
in N ≈ Z nuclei. In this work, we report a systematic study of
pairing correlations in the context of the nuclear shell model,
whereby deformation can be readily included and symmetries
maintained throughout. In this way, we are able to address
many of the open issues on the role of the various pairing
modes in the presence of nuclear deformation.

An outline of the paper is as follows. In Sec. II, we briefly
describe our model and then in Sec. III describe selected
results. Finally, in Sec. IV we summarize the key conclusions
of the paper.

II. OUR MODEL

To address in a systematic way the role of pairing corre-
lations in the presence of nuclear deformation, we consider
neutrons and protons restricted to the orbitals of the 2p1f

shell outside a doubly magic 40Ca core and interacting via a
schematic Hamiltonian

H = χ

(
Q · Q + aP † · P + bS† · S + α

∑
i

�li · �si

)
, (1)

where Q = Qn + Qp is the mass quadrupole operator, P †

creates a correlated L = 0, S = 1, J = 1, T = 0 pair, and S†
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creates a correlated L = 0, S = 0, J = 0, T = 1 pair. The
first term in the Hamiltonian produces rotational collective
motion, whereas the second and third terms are the isoscalar
and isovector pairing interactions, respectively, whose matrix
elements can be found in Ref. [7]. The last term is the one-body
part of the spin-orbit interaction, which splits the j = l ± 1/2
levels with a given l.

We carry out shell-model calculations systematically as
a function of the various strength parameters. We begin
with pure SU(3) rotational motion [8] associated with the
Q · Q interaction and then gradually ramp up the various
SU(3)-breaking terms to assess how they affect the rotational
properties. This includes the isocalar and isovector pairing
interactions and the spin-orbit term.

We first consider the nucleus 44Ti, with Nn = Np = 2, and
then systematically increase Nn and Np to study the role of
the number of active neutrons and protons (e.g., whether there
is an excess of one over the other and whether the nucleus is
even-even, odd-mass, or odd-odd). The nuclei we have treated
are 44Ti (Nn = Np = 2), 45Ti (Nn = 2, Np = 3), 46Ti (Nn = 2,
Np = 4), 46V (Nn = 3, Np = 3), and 48Cr (Nn = 4, Np = 4).
Some of the observables we have studied are (1) the energies
and associated BE(2) values of the lowest rotational band,
(2) the number of isovector S† pairs, and (3) the number of
isoscalar P † pairs. In the following, we present selected results
that derive from these calculations.

III. RESULTS

A. An optimal Hamiltonian

Before turning to our results for specific nuclei, we first
ask whether the Hamiltonian (1) has sufficient flexibility to
realistically describe the nuclei under investigation. Without
making an effort toward an absolute fit, we note that the
choice χ = −0.05 MeV, a = b = 12, and α = 20 gives an
acceptable fit to the spectra of all the nuclei we have
considered.

We first show in Fig. 1 its prediction for 42Sc, in comparison
with the experimental spectrum. Other than its inability to
reproduce the low-lying Jπ = 7+, T = 0 state, the optimal

FIG. 1. Comparison of experimental spectra for 42Sc with the
calculated spectra obtained using the optimal Hamiltonian described
in the text. All energies are in MeV.

FIG. 2. Comparison of experimental spectra for 44Ti, 46Ti,
and 48Cr with the calculated spectra obtained using the optimal
Hamiltonian described in the text. All energies are in MeV.

Hamiltonian does an acceptable job in qualitatively describing
the features of the low-energy spectrum. The lack of an
acceptable description of the 7+ state reflects the fact that our
optimal Hamiltonian is missing the strong attraction between
f7/2 nucleons in the stretch configuration.

In Fig. 2, we show its predictions for 44Ti, 46Ti, and 48Cr. As
can be seen, the nonrotational character of 44Ti at low angular
momenta is reproduced by our calculations, as are the highly
rotational patterns seen experimentally for the heavier nuclei.
As we will see later, even the experimentally observed back-
bend in 48Cr is acceptably reproduced with this Hamiltonian.
We refer to the choice a = b in the optimal Hamiltonian as the
SU(4) choice, from the dynamical symmetry that derives from
this choice of parameters in the SO(8) model.

B. 44Ti

The first nucleus we discuss is 44Ti, with two active neutrons
and two active protons. In Fig. 3, we show the calculated energy
splittings E(I )-E(I − 2) associated with the ground-state
band as a function of the strength parameters a and b that define
the isoscalar and isovector pairing interactions, respectively.
For these calculations we assumed a quadrupole strength of
χ = −0.05 MeV and no spin-orbit interaction. As expected,
in the absence of a spin-orbit splitting the isoscalar and
isovector pairing interactions have precisely the same effect on
the properties of the ground-state rotational band. The same
conclusion derives when we consider the effect of isoscalar
and isovector pairing on other observable properties when no

FIG. 3. Calculated energy splittings E(I )-E(I − 2) (in MeV)
in the ground band of 44Ti as a function of the strength of the
(a) isoscalar pairing interaction and the (b) isovector pairing inter-
action, with no spin-orbit splitting. The strengths of the respective
pairing interactions are shown at the ends of the lines, as they are
elsewhere in the paper.
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FIG. 4. Calculated E2 transition matrix elements B(E2, I →
I − 2) in the ground band of 44Ti as a function of the strength of
the (a) isoscalar pairing interaction and of the (b) isovector pairing
interaction, with no spin-orbit splitting. The angular momentum I of
the initial state appears to the left of each line.

spin-orbit splitting is included. As an example, we show in
Fig. 4 results for the BE(2) values connecting the states in the
ground band, again as a function separately of the isovector
and isoscalar pairing strengths.

We next show in Fig. 5 the same results as in Fig. 2, but
now in the presence of our realistic spin-orbit strength α = 20.
Here we see that the effects of isoscalar and isovector pairing
are very different. In the presence of realistic single-particle
energies, isovector pairing produces a much more rapid loss
of rotational collectivity than isoscalar pairing.

Next we consider the relative effect of the spin-orbit
interaction on isovector and isoscalar pairing properties in the
optimal SU(4) limit, where both modes of pairing contribute
with the same strength. This is addressed in Fig. 6, where we
show the average number of S† and P † pairs in the ground
band as a function of the strength of the spin-orbit force.
These are determined by considering 〈S† · S〉 and 〈P † · P 〉
and scaling them with respect to the results that would derive
from pure T = 0 and T = 1 pairing Hamiltonians (for a
system of two pairs in an � = 10 shell), respectively. While
the number of isovector pairs does not change substantially
with increasing spin-orbit strength, the isoscalar pair number
is reduced dramatically, especially for the lower angular
momentum states of the band. We conclude, therefore, that
the spin-orbit interaction suppresses isoscalar pairing, already
at N = Z. The mechanism whereby this suppression takes
place was discussed recently in Ref. [9].

Finally, in Fig. 7 we show the spectrum of 44Ti that derives
solely from turning on a strong spin-orbit force (i.e., with
no pairing present). We see that the spectrum is still highly
rotational, despite the fact that the resulting single-particle

FIG. 5. Calculated energy splittings E(I )-E(I − 2) in MeV in the
ground band of 44Ti as a function of the strength of the (a) isoscalar
pairing interaction and of the (b) isovector pairing interaction, with
the optimal spin-orbit term present.

FIG. 6. The number of (a) isocalar P † pairs and (b) isovector S†

pairs in 44Ti as a function of the strength of the spin-orbit interaction
α. All other Hamiltonian parameters are the optimal values.

energies are no longer SU(3)-like. To obtain the physical
spectrum with a nonrotational character, it is thus essential
to have pairing. It has been traditionally thought that it is the
non-SU(3) order of the single-particle levels that is responsible
for the nonrotational character seen in the experimental
spectrum [10], a conclusion that is not supported by our results.
It is pairing that is responsible for the nonrotational character
of 44Ti. This point was already suggested in Fig. 3, where
we we saw that for the physical pairing strengths a highly
nonrotational spectrum near the ground band emerged even in
the absence of a spin-orbit splitting. Further understanding of
this conclusion follows from the important role of quasi-SU(3)
[11] in producing deformation. Even though the spin-orbit
interaction breaks the SU(3) symmetry, it leaves quasi-SU(3)
symmetry approximately preserved.

C. 45Ti

Next we consider the odd-mass nucleus 45Ti, with one
additional neutron relative to 44Ti. For notational purposes,
we divide the results according to whether I − 1/2 is odd
(referring to this as the odd group) or whether it is even
(the even group). This reflects the fact that states within the
ground-state band decay by strong E2 transitions within their
own groups.

In Figs. 8 and 9, we present results for the calculated energy
splittings of the ground band in the odd and even groups,
respectively, as a function of pure isoscalar (panel a) and pure

FIG. 7. Comparison of the experimental spectrum of 44Ti with
those obtained using a pure Q · Q interaction and both a Q · Q

interaction and a spin-orbit term.
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FIG. 8. Calculated energy splittings EI -EI−2 in MeV within the
odd group of levels (see text) of the ground-state band of 45Ti as a
function of the strength of the (a) isoscalar pairing interaction and of
the (b) isovector pairing interaction, with no spin-orbit term present.

isovector (panel b) pairing, in both cases with no spin-orbit
force present. The results suggest that blocking due to an odd
neutron does not affect the symmetry between isoscalar and
isovector pairing when there is no spin-orbit force.

In Figs. 10 and 11, we show the corresponding results in
the presence of a spin-orbit force, with the optimal strength
α = 20. Now isoscalar pairing is suppressed and there is a
much more dramatic effect of isovector pairing.

D. 46Ti

Next we turn to 46Ti with two excess neutrons present. Here
too we compare the effect of the isoscalar and isovector pairing
interactions on deformation, showing the results in Fig. 12 with
no spin-orbit term present. Here the effect of isoscalar pairing
is strongly suppressed relative to isovector pairing, suggesting
that even without a spin-orbit term isoscalar pairing is very
strongly focused on those nuclei with N = Z with a slight
excess being sufficient to suppress this pairing mode.

E. 46V

We next consider 46V, an odd-odd N = Z nucleus. The
T = 1 states of 46V are, of course, precisely the same as those
already considered in 46Ti.

We first address in Fig. 13 the manner whereby the
symmetry between isocalar and isovector pairing in the
absence of a spin-orbit force is reflected in 46V. In the absence
of isoscalar and isovector pairing, the J = 1+ state and
the J = 0+ state form a degenerate ground-state doublet.

FIG. 9. Calculated energy splittings EI -EI−2 within the even
group of levels (see text) of the ground-state band of 45Ti as a function
of the strength of the isoscalar pairing interaction (left panel) and of
the isovector pairing interaction (right panel), with no spin-orbit term
present.

FIG. 10. Calculated energy splittings E(I )-E(I − 2) in MeV
within the odd group of levels (see text) of the ground-state band of
45Ti as a function of the strength of the (a) isoscalar pairing interaction
and of the (b) isovector pairing interaction, with the optimal spin-orbit
term present.

When only isoscalar pairing is turned on (panel a), the J = 1+
state is pushed down below the J = 0+ state. When only
isovector pairing is turned on (panel b) the reverse happens
and the J = 0+ is pushed down and becomes the ground state.
In the SU(4) limit (panel c) with equal isovector and isocalar
pairing strengths, the degeneracy reappears.

In Fig. 14, we show what happens in the presence of
the physical spin-orbit interaction, for equal isovector and
isoscalar pairing. Now the degeneracy is broken and the
0+ state emerges as the ground state, as in the experiment.
The experimental splitting is 1.23 MeV, whereas our optimal
Hamiltonian produces a splitting of 1.05 MeV.

We should note that the first excited state in 46V experimen-
tally is found to be a 3+ state, at 801 keV. In our calculations
the lowest 3+ state occurs at significantly higher energy, at
1.89 MeV. This may be related to the schematic nature of our
Hamiltonian.

F. 48Cr

Lastly, we turn to 48Cr, which again has N = Z, but now
with two quartet structures present. Here we assume as our
starting point both the optimal quadrupole-quadrupole force
and the optimal one-body spin-orbit force and then ramp up
the two pairing strengths from zero to their optimal values.
The results are illustrated in Fig. 15, for scenarios in which
we separately include isoscalar pairing, isovector pairing, and
SU(4) pairing with equal strengths.

FIG. 11. Calculated energy splittings E(I )-E(I − 2) in MeV
within the even group of levels (see text) of the ground-state band of
45Ti as a function of the strength of the (a) isoscalar pairing interaction
and of the (b) isovector pairing interaction, with the optimal spin-orbit
term present.
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FIG. 12. Calculated energy splittings E(I )-E(I − 2) in MeV in
the ground band of 46Ti as a function of the strength of the (a) isoscalar
pairing interaction and of the (b) isovector pairing interaction, with
no spin-orbit term present.

As a reminder, the experimental spectrum for 48Cr shows
a backbend near I = 12, which as noted earlier is reproduced
by our optimal Hamiltonian. The results of Fig. 15 make clear
that (a) the backbend cannot be reproduced with pure isoscalar
pairing, but requires isovector pairing as well, and (b) there is
no significant difference between the results obtained with
pure isovector pairing and SU(4) pairing.

The backbend in 48Cr was discussed extensively in the
context of a shell-model study with a fully realistic Hamil-
tonian in Ref. [7], where it was first shown to derive from
isovector pairing. Our results are in agreement with that earlier
conclusion. To see these points more clearly, we show in
Fig. 16 the numbers of isovector S† and isoscalar P † pairs as
a function of angular momentum for the optimal Hamiltonian.
As in our treatment of 44Ti (see Fig. 6), the pair numbers are
obtained by evaluating 〈S† · S〉 and 〈P † · P 〉 and scaling them
with respect to the results that would derive from pure T = 1
and T = 0 pairing Hamiltonians, respectively. [Now, however,
the analysis is carried out for a system of four pairs in an
� = 10 shell.] As in Ref. [7], the contribution of isovector
pairing in the J = 0+ ground state is much larger than the
contribution of isoscalar pairing. As the system cranks to
higher angular momenta, the isovector pairing contribution

FIG. 13. Calculated energies in MeV of the lowest J π = 0+ and
J π = 1+ states of 46V with no spin-orbit term present. Panel (a) shows
the results of pure isoscalar pairing, panel (b) shows the results of pure
isovector pairing, and panel (c) shows the results of SU(4) pairing.

(M
eV

)

FIG. 14. Calculated energies in MeV of the lowest J π = 0+ and
J π = 1+ states of 46V as a function of the equal strength of isoscalar
and isovector pairing, with the optimal spin-orbit term (α = 20)
present.

falls off with angular momentum very rapidly eventually
arriving at a magnitude roughly comparable with the isoscalar
pairing contribution at roughly Jπ = 10+. As the angular
momentum increases even further we see a fairly substantial
increase in the isovector pairing contribution at Jπ = 12+,
which according to Fig. 15 is where the backbend becomes
prominent. After the backbend, both isoscalar and isovector
pairing contributions decrease to near zero as alignment is
achieved.

We have also studied the properties of the lowest excited
(yrare) band that emerges from the same calculation, a K = 2+
band. The energies of this band are illustrated in Fig. 17,
together with those of the ground (yrast) band. From this figure,
we conclude that the backbend in 48Cr does not derive from
level crossing.

In Fig. 18, we show the number of isocalar and isovector
pairs in the excited yrare band, to be compared with the results
for the yrast band of Fig. 16. In the backbend region, the

(MeV) (MeV)

(MeV)

FIG. 15. Calculated energy splittings E(I )-E(I − 2) in MeV in
the 48Cr ground band, for (a) isovector, (b) isoscalar, and (c) SU(4)
pairing, respectively, as described in the text. The optimal spin-orbit
term is included.
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FIG. 16. (Color online) Calculated numbers of isovector S† pairs
and isoscalar P † pairs in the ground (yrast) band of 48Cr for the
optimal values of the Hamiltonian parameters.

numbers of isoscalar and isovector pairs are found to behave
differently in the two bands. Whereas the numbers of isoscalar
and isovector pairs are roughly the same in the yrast band
(Fig. 16), there are substantially fewer isoscalar pairs than
isovector pairs in the yrare band (Fig. 18). We believe that this
is an interesting observation worthy of further study.

IV. SUMMARY AND CONCLUDING REMARKS

In this work, we have reported a systematic shell-model
study of proton-neutron pairing in 2p1f shell nuclei using a
parametrized Hamiltonian that includes deformation and spin-
orbit effects as well as both isoscalar and isovector pairings.
By working in a shell-model framework we are able to assess
the role of the various pairing modes in the presence of nuclear
deformation without violating symmetries.

We first showed that our parametrized Hamiltonian has
enough flexibility to provide a reasonable description of the
evolution of nuclear structure properties in this region. We then

(M
eV

)

FIG. 17. (Color online) Calculated excitation energies of the
ground (yrast) band and the first excited (yrare) band in 48Cr for
the optimal values of the Hamiltonian parameters.

FIG. 18. (Color online) Calculated numbers of isovector S† pairs
and isoscalar P † pairs in the first excited (yrare) band of 48Cr for the
optimal values of the Hamiltonian parameters.

probed the role of the various modes of pairing on deformation
with and without a spin-orbit term. We did this as a function
of the number of neutrons and protons, so as to assess the role
both of a neutron excess and of the number of active particles.

Some of the conclusions that emerged are (1) in the absence
of a spin-orbit term, isoscalar and isovector pairing have
identical effects at N = Z, but isoscalar pairing ceases to have
an appreciable effect for nuclei with just two excess neutrons;
(2) the nonrotational character of 44Ti cannot be explained
solely in terms of spin-orbit effects, but requires pairing for its
understanding; (3) in the presence of a spin-orbit interaction,
isoscalar pairing is suppressed even at N = Z; (4) the fact that
the ground state of 46V has Jπ = 0+ T = 1 derives primarily
from the spin-orbit interaction and its effect of suppressing
isoscalar pairing; (5) the known backbend in 48Cr has its origin
in isovector pairing and does not derive from level crossing;
and (6) in the region of the 48Cr backbend, the numbers of
isoscalar and isovector pairs behave quite differently in the
yrast and yrare bands.
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