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Abstract. 

Resistivity,  (T), of as-grown and annealed Cu2ZnSnS4 films, obtained by flash evaporation, is 

investigated between T ~ 10  300 K. A correlation between the transport properties and the 

growth conditions of the thin films is also explored. The behavior of  (T) in the as-grown films 

exhibits a close proximity to the metal-insulator transition (MIT), whereas annealing shifts the 

material from the MIT towards an insulating side. This is attributable to an increased 

microscopic lattice disorder, which is substantiated by the analysis of the Mott variable-range 

hopping conductivity observed up to T ~ 220  280 K (120  180 K) in the as-grown (annealed) 

films. An increased width of the acceptor band, a decreased relative acceptor concentration, N/Nc  

and lower values of the mean density of the localized states, g, are obtained after annealing. 

 

Keywords: Cu2ZnSnS4, Kesterite, Hopping conductivity, Flash evaporation, Acceptor band, 

Solar cell. 

 

1. Introduction 

The thin film photovoltaic (PV) technologies are based on direct band gap materials, such as 

CuInSe2, CuIn1-xGaxSe2 and CdTe. However, due to the toxicity of Cd and Se and the availability 

issues of In and Te, the large-scale production of the PV devices based on these absorber layers 
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is limited. Cu2ZnSnS4 (CZTS) is a quaternary compound that has emerged as a promising 

absorber for thin film solar cells. This material has excellent optical properties, absorption 

coefficient  > 10
4
 cm

-1
 and a direct band gap energy that matches well the solar spectrum. 

Moreover, all the constituents of CZTS are low cost, non-toxic and earth abundant [1-2]. 

Katagiri et al. reported CZTS-based solar cells over 6.7 % efficiency for the first time. Since 

then, several groups are making important efforts to enhance the efficiencies of these devices [3]. 

The highest efficiency reported to date, 12.6 %, was obtained by depositing CZTSSe using a 

hydrazine-based pure solution approach [4].
 
An efficiency of

 
9.2% on 5 x 5 cm

2
–sized pure 

CZTS submodule has been achieved by the annealing of metal precursors by Solar Frontier [5]. 

Other physical and chemical techniques are being currently investigated to prepare CZTS thin 

films: thermal evaporation and subsequent annealing at atmospheric pressure achieving a 

performance of 8.4% [6], reactive pulsed dc magnetron co-sputtering of Cu-Zn-Sn-S in an 

atmosphere of H2S and subsequent annealing producing a 7.9%-CZTS solar cell [7], 

electroplating metal stacks converted into CZTS by high temperature sulfurization with a 7.3 % 

efficiency-device [8], thermal decomposition and reaction using a non-toxic sol-gel route 

producing 5.1 %-CZTS solar cells [9], single step sputtering, which has been shown as a facile 

and cost-effective preparation method [10], rapid thermal process of reactively sputtered 

precursors yielding 4.6 % efficiency for CZTS-devices [11], pulsed laser deposition followed by 

post-annealing achieving a 4.3 % CZTS-based device [12], etc. 

However, the performance of CZTS-based solar cells is still far away from the 20.8 % of the 

Cu(In,Ga)Se2 devices. A more intricate understanding of the fundamental properties of the CZTS 

material is still necessary for the improvement of the solar cells. Among other characteristics, the 

knowledge of the structure and transport properties of the absorber layer is fundamental for the 

design of high efficient PV devices. However, only the room-temperature resistivity [13-14] and 

minority carrier-diffusion length [4] have been determined so far for thin films prepared by 

different evaporation techniques.  

In the present work, the preparation, structural and transport characterization of CZTS thin films 

grown by the flash evaporation [15-16] and subsequent thermal treatment are reported. 

Temperature dependence of the resistivity of p-Cu2ZnSnS4 thin films is investigated between T ~ 

10  300 K. The purpose of this work is to investigate the conductivity mechanisms as well as 
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some details of the energy spectrum and other microscopic properties of the charge carriers. A 

correlation between the transport properties and growth conditions of CZTS films is established. 

 

2. Experimental details 

CZTS thin films were deposited by flash evaporation of ZnS, CuS and SnS binary compounds in 

powder form onto glass substrates at a nominal substrate temperature of 100º C. Salavati-Niasari 

et al. have synthesized ZnS [17], SnS [18] and Cu2S [19] nanostructures by chemical methods. In 

our case, and considering these previous works, CuS and SnS powders were synthesized in an 

evacuated quartz ampoule from the pure elemental constituents, while commercially available 

ZnS was used. A preferential re-evaporation of Zn was observed during the flash evaporation 

process. The same behavior was observed when thin films were deposited by flash evaporation 

of the pre-synthesized quaternary CZTS compound in powder form. This behavior was related to 

a preferential Zn re-evaporation due to its high partial vapor pressure [16]. Therefore, a precursor 

with excess of ZnS was used in our deposition procedure. Fig. 1 summarizes the different 

deposition processes and the composition of the thin films measured by Energy Dispersive X-ray 

spectroscopy (EDX) (Oxford instruments, model INCAx-sight) inside a Hitachi S-3000N 

scanning electron microscope. EDX measurements were carried out at 20 kV operating voltage, 

and the Cu K, Zn K, Sn L and S K lines were used for quantification. As follows in Table 1, the 

thin film composition depends on the crucible temperature used during the flash deposition. 

Lower crucible temperatures led to higher Cu concentrations [16]. Post-thermal treatments of the 

samples in Ar atmosphere (at pressures of 100 and 1000 Pa) under excess of S were carried out. 

For that purpose, the as-grown thin films were placed in a partially closed graphite box inserted 

inside a quartz tube furnace. In order to have an overpressure of S, 20 mg of elemental sulfur 

were also supplied into the graphite container. Parameters such as maximum temperature, Ar 

pressure and the heating rate were varied to obtain the CZTS material with the optimum 

structural and electrical properties. Details of the thermal treatments applied to the samples are 

also collected in Table 1. 

Grazing incidence X-ray diffraction (GIXRD) was performed to investigate the structural 

properties of the CZTS thin films. GIXRD data were collected with a PaNAlytical X´Pert Pro 

MPD diffractometer, using the Cu K radiation and a multilayer mirror. Detector scans with 

incident angles of 0.25º, 2º and 4º were carried out. The temperature dependence of the 
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resistivity,  (T), was measured between T ~ 10 - 300 K by the Van der Pauw method. To 

produce the contacts In soldered was used in the case of the annealed films, while In:Ga alloy 

was used for the as-grown films to avoid the sample heating. The sample was placed in a closed 

circle helium cryostat to control the temperature. The hot probe method showed that all the 

investigated thin films had p-type conductivity. 

 

3. Results and discussion 

The temperature dependence of the resistivity before and after the thermal treatments of the 

samples is shown in Fig. 1. The as-grown films exhibit a weakly activated behavior of  (T), 

accompanied with relatively low values of the resistivity. These features imply a close proximity 

of the material to the metal-insulator transition (MIT) on the insulating side of the MIT. 

However, as is shown in the middle panel of Fig. 1, the thermal treatment-1 (TT1) shifts the 

material from the MIT towards the insulating state, increasing the resistivity and the variation of 

 with T. 

The proximity of a system to the MIT is strongly influenced by the microscopic lattice disorder 

[20]. The behavior of  (T) in Fig. 1 suggests that thermal treatment TT1 leads, generally, to a 

lattice disorder increase. This is connected probably to a mix of kesterite and stannite CZTS 

structures. Indeed, the total energy of both structures is extremely close [21], allowing the 

generation of a mixed (disordered) phase [21, 22].  

Raman spectroscopy has been used to analyze most of the samples [23]. The Raman spectra 

showed, not only the A-mode peak at 337-338 cm
-1

, characteristic of the ordered kesterite, but 

also a weak additional peak at 331 cm
-1

. This peak at 331 cm
-1

 is
 
 associated with the disorder in 

the cation lattice and with the formation of the CuZn and ZnCu antisites [23]. 

Nonetheless, thermal treatment TT2 leads to an opposite effect, transforming the activated 

dependence of  (T) into the metallic one (in the bottom panel of Fig. 1). The effect of the 

thermal treatment TT3 is similar to TT2, but is much weaker. This fact suggests an important 

role of the Ar pressure during the thermal treatment. As observed in Table 1, the Ar pressure has 

a significant influence on the composition of the final compound and this is reflected in the 

dramatic change in the resistivity. 

Fig. 2 displays the comparison of GIXRD spectra with GI = 4º for the thin film S1 before and 

after the different thermal treatments applied, resulting in S1-1, S1-2 and S1-3 respectively (the 
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second number refers to the thermal treatment applied). Two important features are observed in 

these spectra: (i) an enhanced crystalline quality after the annealing and (ii) the presence of Cu2S 

for the samples annealed following the TT2 and TT3 treatments, could be a reason for the 

apparent enhancement of the metallic properties of CZTS, as observed in Fig.1. Indeed, the 

resistivity down to ~ 710
4

  cm, achieved recently in CuxS films with x = 1  3 [24], is much 

smaller than the one observed in the as-grown samples. Therefore, even a relatively small 

fraction of the macroscopic inclusions of such phases may reduce the net resistivity of the 

inhomogeneous system (CZTS + Cu2S) substantially.  Such a behavior resembles the shift of the 

conventional homogeneous semiconductor towards the metallic side of the MIT. 

Further information on disorder and valuable microscopic parameters of charge carriers in our 

samples can be obtained by investigation of the Mott variable-range hopping (VRH) conduction 

[20, 25]. Such mechanism of the charge transfer has recently been established in CZTS single 

crystals [26] and films [27-29], as well as in Cu2ZnSiSe4 single crystals [30], belonging to the 

same family of compounds. The upper border of the VRH conduction in the above materials, 

lying close to the room temperature, reflects the high lattice disorder [26-30]. Indeed, such 

disorder stimulates the localization of the conduction electrons, favoring the hopping 

conductivity [20]. On the other hand, the VRH charge transfer is expectable when the Fermi 

level, , lies close to one of the edges of the impurity band (or the acceptor band (AB) in our 

case of the p-type semiconductor) [25]. This takes place for the cases of a weak (K << 1) or 

strong (1  K << 1) degree of the compensation, K, as it has been established in [26] and [30], 

respectively. Following the arguments in [26] and [30], we can assume one of the two cases, 

considering the proximity to the MIT given by the relatively small difference of |  Ec|, where 

+Ec and  Ec are the mobility edges [20]. Because the impurity states are extended within the    

( Ec, +Ec) interval around the center of an impurity band and are localized outside this interval, 

the position of  close to one of the AB edges or tails is consistent with the VRH conduction 

regime [20]. The DOS model discussed above is shown in Fig. 3(a), being used in the subsequent 

analysis below. 

The resistivity governed by the Mott VRH mechanism is given by the expression [20, 25]: 
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where A is a prefactor constant, T0 =  / [k a
3
 g (µ)] [14, 19] is the VRH characteristic 

temperature depending on the localization radius, a = a0 (1  N/Nc)


 [31], and on the density of 

the localized states (DOS), g (), at the Fermi level, and   21 is a numerical constant [25]. 

Here N is the concentration of acceptors, Nc is the critical concentration of the MIT, a0 is the 

value of a far from the MIT (i. e. at N << Nc) and   1 is the critical exponent [31]. 

As follows from Eq. (1), the plots of ln ( T
 1/4

) vs. T
 1/4

 in the interval of the Mott VRH 

conduction should be represented by linear functions. This is consistent with the behavior shown 

in Fig. 4 within the broad intervals of the temperature given in Table 2 by the upper (Tv) and 

lower (Tm) borders, yielding the values of T0 and A collected in Table 2. The semi-width of the 

AB evaluated with the expression W  0.5 (Tv
3
T0)

1/4
 [26, 30] is also displayed in Table 2, 

reflecting the enhanced disorder in the majority of the annealed films, where W exceeds the data 

of as-grown samples. In the approximation of the DOS with a rectangular shape, g ()  gav  

N/(2W), is valid [26, 30] in the next equation, yielding the values of the ratio N/Nc collected in 

Table 2. 
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The enhanced values of N/Nc in the as-grown films are consistent with their close proximity to 

the MIT, which takes place also for the annealed film, S3-1. The values of N/Nc ~ 0.1 for 

samples S1-1 and S2-1 indicate a strong insulating regime of these samples, when the difference 

of |  Ec| is large or the interval of extended states ( Ec, +Ec) in the AB does not exist at all. 

The broadness of the AB for S1-1 and S2-1 (Table 2), connected to the high lattice disorder, 

correlates well with the above conclusion, taking into account that the high disorder stimulates 

considerably the localization of the charge carriers [20]. Because the samples S1-1 and S2-1 

cannot be characterized by their close proximity to the MIT, they do not satisfy the conditions 

assumed above, and the microscopic data of the relative localized carriers cannot be found with 

the method used below, which has been proposed in [26, 30]. Therefore, the values of the ratio 

a/a0 = (1  N/Nc)


 can be calculated only for the rest of investigated CZTS films at  = 1, as 

collected in Table 2. 
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The value of a0 in doped semiconductors is close to the Bohr radius, aB [25], where both 

parameters are given by the expressions 

,)(and)2( 12
0

22/1
00

  meamEa B                                   (3) 

respectively [19]. Here, m  0.47 m0 is the mean hole mass of CZTS [21, 26], E0 is the energy of 

the DOS peak in the AB (see Fig. 3(a)) and 0 is the dielectric permittivity of the material far 

from the MIT [25]. The ratio of a/aB = (1  Ec/)


 [20, 25] can be evaluated by putting   W 

and using the expression Ec  W  V0
2
 / [ 4 (z  1) J ] [17], where V0  2W [24, 28] and J = J0 exp 

(R/aB) is the overlap integral [20, 25]. Here R  (4N/3)
1/3

 is the half of the mean distance 

between the acceptors, and J0 is a prefactor, J0  2e
2
R/(e10aB

2
) [25], where e1 = exp (1). The 

only unknown parameter for the evaluation of a/aB with these expressions is 0, which can be 

obtained by fitting the values of a/a0 in Table 2 to those of a/aB by minimizing the standard 

deviation (SD) [26, 30]. Such fitting was performed only for the as-grown films using the 

expression: 

  2/13

1

2

03
1 ])/()/[( 


i iBi aaaaSD ,                                      (4) 

where i is the sample number. The best fit yields 0 = 8.4 at SD = 0.066, and the values of a/aB 

are in a reasonable agreement with those of a/a0 (see Table 2, lines 1  3). Eventually, the values 

of E0  90 meV and aB  9.5 Å are obtained with Eqs. (3), which yields with the universal Mott 

criterion, Nc
1/3

aB  0.25 [20], the value of the critical concentration Nc  1.810
19

 cm
3

. The data 

of Ec and g () can be obtained with the above similar procedure, resulting in the values 

collected in Table 2. 

The corresponding values for the sample S3-1 are obtained by fitting a/a0 with a/aB separately, 

yielding 0  8.45, E0  89 meV, aB  9.5 Å and Nc  1.910
19

 cm
3

. The values of Ec and g () 

for this sample are given in Table 2. It can be observed that the data of 0, E0, aB and Nc obtained 

for the annealed sample S3-1 are quite close to those of the as-grown films, S1S3. 

It is worth mentioning that the values of 0 = 8.4 and 8.45 obtained  for the samples S1S3 and 

S3-1 respectively, are quite close to the data determined from the capacitance spectra of the 

CZTS thin films (0  8) [32] or evaluated with first-principle calculations (0 = 9.1  9.7) [33] 

in Cu2ZnSnS4. This supports the validity of the microscopic parameter values obtained for these 

samples and collected in Table 2, being the values of N, Ec, a and g () in a reasonable 
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agreement with the corresponding data obtained for CZTS bulk [26] and film [27-29] samples, as 

well as for Cu2ZnSiSe4 single crystals [30]. 

Eventually, as can observed in the inset of the middle panel of Fig. 1, the plot of ln  vs.  

T
 1

 for the most insulating samples, S1-1 and S2-1, exhibits linear parts within a sufficiently 

broad temperature interval  T ~ 200  300 K to be interpreted with the law  = 0 exp (Ea/kT), 

with 0  0.389 and 0.293  cm, and Ea  70 and 71 meV, respectively. Because the values of Ea 

~ 70 meV are comparable to those of E0 ~ 90 meV, obtained above, a conductivity due to 

thermal activation of the holes from acceptor levels to the valence band is suggested. The 

difference of ~ 30 % between E0 and Ea could be related to two possible reasons. The first reason 

is the error in the E0 determination due to the use of the rectangular DOS shape in the analysis of 

the VRH conduction. However, a good agreement of 0 with the literature data indicates that 

such error should not be too large. The other reason is connected to the high temperatures ~ 200 

 300 K used, where the values of Ea have been obtained, and which leads to high enough 

concentration of the holes in the valence band when screening effects should be important. It is 

known that screening of impurities by itinerant band carriers reduces the values of the impurity 

levels [34]. Therefore, the value of E0 is addressed rather to a situation of T  0 and yields the 

mean energy of unscreened acceptors in CZTS. On the other hand, Ea represents the acceptor 

energy at finite T ~ 200  300 K, close to the room temperature, when the screening effect is 

expected to be strong. 

Additionally, comparing the values of W  117 meV and 140 meV for S1-1 and S2-1 samples 

(Table 2) and E0 ~ 90 meV, it is evident that the AB in S1-1 and S2-1 should overlap with the 

VB states at T  0. At finite temperatures such overlap should be even increased due to a 

reduction of the acceptor energies by the screening effects discussed above. Therefore, the near-

edge band structure of S1-1 and S2-1 is given rather by the plot shown schematically in Fig. 

3(b), where the majority of the acceptor states are localized due to the strong disorder, and the 

position of the single mobility edge, Ec, is close to the edge of unperturbed (or addressed to low 

disorder) valence band, Ev. 

 

4. Conclusions 
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The resistivity of as-grown and annealed CZTS films prepared by the flash evaporation method 

has been studied. The Ar pressure during the thermal treatment is shown as an important 

parameter to control the composition of the material and, consequently, its electrical properties. 

The as-grown samples exhibit low resistivity and a weak dependence of  with T, addressed to a 

close proximity of the material to the metal-insulation transition. However, the annealing shifts 

the material considerably towards the insulating side of the MIT. This can be attributable to the 

increase of the lattice disorder produced in the majority of the samples. Analysis of the Mott 

variable-range hopping conduction supports this conjecture, yielding an increase of the width of 

the acceptor band and a decrease of the acceptor concentration in the annealed CZTS films, 

typical of the enhanced disorder. The values of the microscopic parameters of the localized 

carriers, as well as details of the whole spectrum near the edge of the acceptor band are obtained 

in agreement with the literature data. 

 

Acknowledgments 

This research is supported by the People Programme (Marie Curie Actions) of the European 

Union’s Seventh Framework Program FP7/2007-2013/ under REA grant agreement 269167 

(PVICOKEST), the Spanish MINECO project (KEST- PV, ENE2010-21541-C03) and FRCFB 

13.820.05.11/BF project. RC acknowledges financial support from Spanish MINECO within the 

program Ramón y Cajal (RYC-2011-08521). 

 

References 

[1] M.P. Suryawanshi, G.L Agawane., S.M Bhosale., S.W Shin., P.S. Patil, J.H. Kim, A.V 

Moholkar., Materials Technology 28 (2013) 98-109. 

[2] H. Katagiri, Thin Solid Films 481 (2005) 426-432. DOI: 10.1016/j.tsf.2004.11.024. 

[3] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, 

 Appl. Phys. Express 1 (2008) 041201 (2 pp). DOI: 10.1143/APEX.1.041201. 

[4] W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. 

Energy Mater. 2013, DOI: 10.1002/aenm.201301465. 

[5] T. Kato, H. Hiroi, N. Sakai, S. Muraoka, H. Sugimoto, Characterization of front and back 

interfaces on Cu2ZnSnS4 thin film solar cells, in: 27
th

 EPSEC, Frankfurt (2012), pp. 2236-2239. 



10 
 

[6] B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S. Jay Chey, S. Guha, Prog. Photovolt: Res. 

Appl. 21 (2013) 72-76. DOI: 10.1002/pip.1174. 

[7] J.J. Scragg, T. Kubart, J.T. Wätjen, T. Ericson, M.K. Linnarsson, Ch. Platzer-Björkman, 

Chem. Mater 25 (2013) 3162-3171.DOI: 10.1021/cm4015223. 

[8] S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, Adv. Energy 

Mater. 2 (2012) 253-259. DOI: 10.1002/aenm.201100526. 

[9] Z. Su, K. Sun, Z. Han, H. Cui, F. Liu, Y. Lai, J. Li, X. Hao, Y. Liu, M.A. Green, J. Mater. 

Chem. A 2 (2014) 500-509. DOI: 10.1039/C3TA13533K. 

 [10] J. Wang, S. Li, J. Cai, B. Shen, Y. Ren, G. Qin, J. Alloys Compd. 552 (2013) 418-422. 

DOI: 10.1016/j.jallcom.2012.11.082. 

[11] J.J. Scragg, T. Ericson, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, T. Kubart, M. 

Edoff, C. Platzer-Björkman, Prog. Photovolt: Res. Appl. 22 (2014) 10-17. DOI: 

10.1002/pip.2265. 

[12] A.V. Moholkar, S.S. Shinde, G.L. Agawane, S.H. Jo, K.Y. Rajpure, P.S. Patil, C.H. 

Bhosale, J.H. Kim, J. Alloys Compd. 544 (2012) 145-151. DOI: 10.1016/j.jallcom.2012.07.108. 

 [13] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Sol. Energy 

Mater. Sol. Cells 65 (2001) 141-148.  

[14] C. Shi, G. Shi, Z. Chen, P. Yang, M. Yao, Mater. Letters 73 (2012) 89-91. DOI: 

10.1016/j.matlet.2012.01.018. 

[15] J.M. Merino, M. León, F. Rueda, R.Díaz,  Thin Solid Films 361-362 (2000) 22-27. 

[16] R. Caballero, V. Izquierdo-Roca, J.M. Merino, E.J. Friedrich, A. Climent-Font , E. Saucedo, 

A. Pérez-Rodríguez, M. León, Thin Solid Films 535 (2013) 62-66. DOI: 

10.1016/j.tsf.2012.10.028. 

[17] A. Sobhani, M. Salavati-Niasari, M. Sobhani, Mater. Science in Semicond. Process. 16 

(2013) 410-417. DOI: 10.1016/j.mssp.2012.09.002. 

[18] M. Salavati-Niasari, D. Ghabari, F. Davar, J. Alloys Compd. 492 (2010) 570-575. DOI: 

10.1016/j.jallcom.2009.11.183. 

[19] M. Mousavi-Kamazani,, M. Salavati-Niasari, M. Sadeghinia, Superlattices and 

Microstructures 63 (2013) 248-257. DOI: 10.1016/j.spmi.2013.08.023. 

[20] N. Mott, E.A. Davies, Electron Processes in Non-Crystalline Materials, ed. Clarendon, 

Oxford, 1979; N.F. Mott, Metal–Insulator Transitions, ed. Taylor and Francis, London, 1990. 



11 
 

[21] C. Persson, J. Appl. Phys. 107 (2010) 053710 (8 pp). DOI: 10.1063/1.3318468. 

[22] S. Schorr, Thin Solid Films 515 (2007) 5985-5991. DOI: 10.1016/j.tsf.2006.12.100. 

[23] R. Caballero, E. Garcia-Llamas, J.M. Merino, M. León, I. Babichuck , V. Dzhagan, V. 

Strelchuck, M. Valakh, Acta Materialia 65 (2014) 412-417. DOI: 

10.1016/j.actamat.2013.11.010. 

[24] J. Santos Cruz , S.A. Mayén Hernández, J.J. Coronel Hernández, R. Mejía Rodríguez, R. 

Castanedo Pérez  G. Torres Delgado, S. Jiménez Sandoval , Chalcogenide Letters 9 (2012) 85-91. 

[25] B.I. Shklovskii , A.L. Efros, Electronic Properties of Doped Semiconductors, ed. Springer, 

Berlin, 1984. 

[26] K.G. Lisunov, M. Guk, A. Nateprov, S. Levcenko, V. Tezlevan, E. Arushanov, Sol. Energy 

Mater. Sol. Cells 112 (2013) 127-133. DOI: 10.1016/j.solmat.2013.01.027. 

[27] J.C. González, G.M. Ribeiro, E.R. Viana, P.A. Fernandes, P.M.P. Salomé, K. Gutierréz, A. 

Abelenda, F.M. Matinaga , J.P. Leitão, A.F. da Cunha, J. Phys. D: Appl. Phys. 46 (2013) 155107 

(7 pp). DOI: 10.1088/0022-3727/46/15/155107. 

[28] V. Kosyak, M.A. Karmarkar M A, M.A.  Scarpulla, Appl. Phys. Lett. 100 (2012) 263903 (5 

pp). 

[29] M.A. Majeed Khan, S. Kumar, M. Alhoshan, A.S. Al Dwayyan, Optics & Laser Technology 

49 (2013) 196-201. DOI: 10.1016/j.optlastec.2012.12.012. 

[30] K.G. Lisunov, M. Guc, S. Levcenko, D. Dumcenco, Y.S. Huang, G. Gurieva, S. Schorr, E. 

Arushanov, J. Alloys Compd. 580 (2013) 481-486. DOI: 10.1016/j.jallcom.2013.06.156. 

[31] T.G. Castner, Hopping conduction in the critical regime approaching the metal−insulator 

transition, in: M. Pollak, B. Shklovskii (Eds.), Hopping Transport in Solids, North-Holland, 

Amsterdam, pp. 1−49. 1251991; K. Lisunov , E. Arushanov, Ch. Kloc, U. Malang, E. Bucher, 

Phys. Stat. Sol. b 195 (1996) 227-236. DOI: 10.1002/pssb.2221950125.  

[32] O. Gunavan, T. Gokmen, C.W. Warren , J.D. Kohen, T.K. Todorov, D.A.R. Barkhouse, S. 

Bag, J. Tang, B. Shin, D.B. Mitzi, Appl. Phys. Lett. 100 (2012) 253905 (4 pp).  

[33] J. Paier, R. Asahi, A. Nagoya, G. Kresse, Phys. Rev. B 79 (2009) 115126 (8 pp). DOI: 

10.1103/PhysRevB.79.115126. 

[34] V.L. Bonch-Bruevich, S.G. Kalashnikov, Physics of Semiconductors, Nauka, Moscow, 

1977. 

 



12 
 

Figure Captions 

Fig. 1. Temperature dependence of the resistivity of the investigated CZTS films. Top panel: as-

grown samples; middle – annealed with thermal treatment TT1; bottom – annealed at different 

conditions for the sample S1. Inset: Plot of ln  vs. 1/T for samples S1-1 and S2-1 (shifted by 3 

Ω cm for convenience). 

 

Fig. 2. Grazing incidence X-ray diffraction of the sample S1 before and after different thermal 

treatments. JCPDS files of CZTS and Cu2S compounds are shown as references. 

 

Fig. 3. Schematic representation of the DOS in the acceptor band near the edge of the valence 

band, Ev for (a) as-grown samples and S3-1 and (b) for samples S1-1 and S2-1. The intervals of 

the localized states are hatched. 

 

Fig. 4. The plots of  ln ( / T 
1/4

) vs. T 
1/4

 in the investigated CZTS films. Top panel – as-grown 

samples;  bottom – annealed samples by using TT1 thermal treatment. Some plots are shifted 

along the vertical axis for convenience. Straight lines are linear fits. 
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Table 1. Growth process conditions and composition of the CZTS thin films. The composition of 

the samples was measured by EDX. 

Sample 
Flash 

evaporation 
TT 

Cu 

(at%) 

Sn 

(at%) 

Zn 

(at%) 

S 

(at%) 
Cu/(Sn+Zn) Zn/Sn S/M 

S1 
Tcrucible = 1100º C, 

+20 % excess ZnS 

-  22.26 11.63 13.96 52.15 0.87 1.20 1.09 

1  21.64 12.14 13.52 53.25 0.82 1.11 1.14 

2  24.21 8.02 16.89 50.87 0.97 2.12 1.04 

3  21.97 11.81 14.24 51.97 0.84 1.21 1.08 

S2 
Tcrucible = 1100º C, 

+10 % excess ZnS 

-  22.55 14.65 11.45 51.36 0.87 0.78 1.06 

1  22.11 12.43 11.05 54.41 0.94 0.89 1.19 

S3 
Tcrucible = 1075º C, 

+20 % excess ZnS 

-  25.29 9.31 14.99 50.40 1.04 1.62 1.02 

1  23.97 10.50 13.00 52.54 1.02 1.24 1.11 

 

TT  thermal treatment. TT1: T = 600º C, 1000 Pa, 21º C/min, 30 min 

             TT2: T= 600º C, 100 Pa, 21º C/min, 30 min 

                                       TT3: T=550º C, 100 Pa, 10º C/min, 30 min 
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Table 2. The temperature borders of the VRH conduction (Tv and Tm), the characteristic VRH 

temperature (T0), the prefactor VRH constant (A), the width of the acceptor band (W), the relative 

acceptor concentration (N/Nc) and the relative values of the localization radius (a/a0 and a/aB), the 

mobility edge (Ec) and the DOS g (). 

Sample 

No. 

Tv 

(K) 

Tm 

(K) 

T0 

(K) 

A 

( cm K1/4) 

W 

(meV) 

N/Nc a/a0 a/aB Ec 

(meV) 

g () 

(1017 meV1 cm3) 

S1 220 150 1.81104 2.08103 28 0.75 4.0 4.2 22 2.4 

S2 260 180 8.88102 3.41103 15 0.88 8.5 8.5 13 5.3 

S3 215 140 5.65104 2.93105 37 0.68 3.1 3.0 25 1.7 

S1-1* 145 67 1.79107 1.94107 117 0.13     

S2-1* 177 76 2.01107 8.6110-8 140 0.14     

S3-1* 123 31 7.05105 3.32104 46 0.41 1.7 1.7 19 0.8 

* S1, S2 and S3 samples after TT1. 
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Figure 2 
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Figure 3 
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Figure 4 

 

 

 

 

 




