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ABSTRACT. Thin film solar cells based on Cu2ZnSn(S,Se)4  are very promising due to the 

fact that they contain earth-abundance elements and show a high absorptivity. However, the 

performance of these solar cells needs to be improved in order to reach efficiencies as high as 

that reported for Cu(In,Ga)Se2 –based devices. Here we investigate the potential of band-gap 

engineering of Cu2ZnSn1-xGexS4 single crystals grown by chemical vapour transport as a 
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function of the [Ge]/([Sn]+[Ge]) atomic ratio. The fundamental band gap E0 is found to 

change from 1.59 to 1.94 eV when the Ge content is increased from x = 0.1 to 0.5 as 

determined from spectroscopic ellipsometry measurements. This knowledge opens a route to 

enhance the performance of kesterite-based photovoltaic devices by a Ge-graded absorber 

layer. Furthermore, the formation of GeO2 on the surface of the as-grown samples was 

detected by X-ray photoelectron spectroscopy, having an important impact on the effective 

optical response of the material. This should be also taken into account when designing 

photovoltaic solar cells.  
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1. Intoduction 

Cu2ZnSn(S,Se)4 (CZTSSe) is a very promising material for the absorber layer of thin film 

solar cells due to its earth-abundant composition, excellent optical properties and outstanding 

performance. A 12.6 % efficiency has been recently achieved for CZTSSe solar cells 

performed using a hydrazine-based pure solution approach [1].
 
Other different chemical and 

physical methods have been used for the preparation of CZTSSe thin films [2-11].
 
Among 

them, an efficiency of
  

9.2% has been reported on 5 x 5 cm
2
–sized Cu2ZnSnS4 (CZTS) 

submodule by annealing of metal precursors [6] and 8.4 % for pure CZTS grown by thermal 

evaporation at 150º C and subsequent 570º C hot-plate annealing at atmospheric pressure [7]. 

However, the highest efficiency is still below the physical Schockley-Queisser limit of about 

31 % efficiency under terrestrial conditions [12].
 
Moreover, the highest 12.6 % performance 

is also far away from the 20.8% achieved for CuIn1-xGaxSe2 (CIGSe) thin film solar cells 

[13].
 
 

The ability to adjust the optical band-gap energy of the absorber layer is critical for 

optimizing the performance of photovoltaic devices. The success of CIGSe solar cells is 

mainly based on the absorber band-gap engineering [14]. A Ga gradient through the absorber 

layer has been shown as a key issue to enhance the photovoltaic parameters of CIGSe cells 

[15-16]. A similar strategy can be applied to the CZTSSe material by alloying with Ge. 

CZTSSe compound has a crystal structure similar to that of CIGSe, with direct optical 

transition and p-type semiconductor behaviour [17]. From first principles calculations it has 

been shown that for Cu2ZnSnS4 (CZTS) (Cu2ZnGeS4 (CZGS)) and Cu2ZnSnSe4 (CZTSe) 

(Cu2ZnGeSe4 (CZGSe)) the conduction band minimum (CBM) is mainly formed by anti-

bonding Sn (Ge) s and anion p hybrid orbitals, while the valance band maximum (VBM) 

mainly involves the hybridization of Cu d and anion p orbitals [18-19]. Therefore, replacing 

Sn with smaller Ge atoms should strengthen the s-s and s-p level repulsion between Ge and 
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S/Se atoms that would result in an increased anti-bonding character of the CBM. Therefore, it 

is expected an increase of the fundamental band gap energy value by replacing Sn by Ge. 

Guo et al. [20] have reported an enhancement of the performance of CZTSSe solar cells, 

from 7.2 % to 8.4 %, by partial substitution of Sn by Ge. This improvement was mainly due 

to a higher open circuit voltage, Voc, and fill factor, FF. Moreover, the higher band-gap 

energy obtained by adding Ge also offers the possibility of using CZTGS as absorber layer of 

a top cell for a tandem device. 

The goal of this work is to investigate the fundamental gap and the different energy 

transitions of Cu2ZnSn1-xGexS4 (CZT1-xGxS) single crystals with different Ge contents (x = 

[Ge]/([Ge]+[Sn] = 0.1, 0.5) by means of spectroscopic ellipsometry. We consider this point 

very important to design the appropriate Ge-graded depth profile to achieve an enhancement 

of the CZTGS solar cell performance. Moreover, the surface material composition is studied 

by X-ray photoelectron spectroscopy (XPS), and its influence on the optical performance is 

determined.  

 

2. Experimental 

2.1. Single crystal growth 

The crystals were grown by chemical vapour transport (CVT) of the elements using iodine as 

a transport agent [21]. Before the CVT growth, the CZTGS compound was synthesized by a 

modified Bridgman method. For the CVT process, a quartz ampoule was filled with the 

ground compound adding 5 mg/cm
3
 of Iodine. The ampoule was placed in a two-zone 

furnace, in a way that reaction zone temperature was around 80 K higher than that of the 

crystallization zone. Afterwards, temperature was increased up to 1053 K (≈ 973 K in 

crystallization zone) and was maintained there for 8 days.  
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Three samples were studied: one sample with x approximately of 0.1, CZT0.9G0.1S-1, and 

other two with x  0.5 but with different Zn and Cu contents, CZT0.5G0.5S-1 and -2. There 

were no significant differences between the precursors used for the growth processes 1 and 2. 

Small temperature variations ( 10 K) during crystal growth could explain the different 

composition for the samples CZT0.5G0.5S-1 and -2. As a minor effect, a small deviation in 

Iodine concentration could also take place ( 2 %). 

 

2.2. Single crystal characterization 

The crystals were investigated by X-ray diffraction (XRD). Powder XRD difractograms were 

recorded in a X´Pert PRO Ө-2Ө equipment operating in Bragg-Brentano geometry using Cu 

Kα radiation.  Laue X-ray back reflection was used to confirm the high quality of the single 

crystals (not shown here). In addition, Micro-Raman spectroscopy measurements were 

performed to obtain deeper information about the structure of the crystals. Raman spectra 

were obtained at room temperature in a Horiba Jobin Ivon T64000 spectrometer. The laser 

wavelength was adjusted to 514.5 nm with a spot size of 0.7 μm of diameter. The 

measurement of the spectroscopic ellipsometry parameters ψ and δ of the crystals was carried 

out with a variable angle spectroscopic ellipsometer (Woollam VASE) at room temperature at 

three incidence angles of 60º, 65º and 70º, in the photon energy range from 0.75 eV to 4.5 eV 

using 0.025 eV steps. XPS measurements were performed with a Perkin-Elmer PHI 5400 

spectrometer equipped with a Mg Kα excitation source (hν = 1253.6 eV). The beam size was 

of 1 mm diameter. The different photoemission contributions have been fitted by Voigt 

functions and a linear background. 

The composition of the samples was measured by Energy Dispersive X-ray (EDX) (Oxford 

instruments, model INCAx-sight) inside a Hitachi S-3000N scanning electron microscope. 

EDX measurements were carried out at 25 kV operating voltage and the Cu K, Zn K, Sn L, 
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Ge K and S K lines were used for quantification. Table 1 shows the composition of the 

samples investigated. As shown in Table 1, the main difference between the last two samples 

is the Cu, Zn and S contents. The results shown in Table 1 are an average of five 

measurements in different points of the samples. The relative error of the concentration 

values is of maximum 1 %. 

 

3. Results  

The efficiency of CZTS solar cells is also determined by the structural feature of this 

material. This compound can be formed in two crystallographic structures, kesterite (space 

group I 4) and stannite (space group I 42 m), which present different band gap energies [17]. 

Here the structure of the CZTGS single crystals has been investigated by XRD and Raman 

spectroscopy. Figure 1 displays the XRD spectra of CZT0.9G0.1S-1 and CZT0.5G0.5S-1 single 

crystals. JCPDS reference data for tetragonal kesterite CZTS (01-075-4122) and tetragonal 

stannite CZGS (04-012-7580) are also shown. Both crystals show a tetragonal structure. 

Figure 2 shows the Raman spectra of the same samples. In both XRD and Raman spectra, it 

is observed a shift of several diffraction peaks towards higher angles and Raman modes 

towards higher wavenumbers when Ge content increases. This fact evidences the structural 

compositional changes. 

Different optical properties of CZTS [22] and CZGS [23] bulk crystals have been already 

investigated, but so far there is no information on the dielectric function of the CZTGS solid 

solution. As explained in [24], the preparation of a good quality surface of the material is 

extremely important in order to minimize the surface roughness and oxide formation effects. 

Therefore, to obtain the effective dielectric functions, the samples were thoroughly polished 

by using a colloidal silica polishing suspension (Mastermet). After this treatment, the real and 

imaginary parts of the dielectric function () = 1() + i2() have been obtained from the 
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measured ellipsometric parameters ψ and δ, assuming a two-phase (substrate-ambient) model 

as reported elsewhere [25].  

Figure 3 shows the experimental spectra dependence with energy of the dielectric functions 

for the polished samples. The structures observed in the () spectra are attributed to 

interband critical points (CPs) which can be analyzed in terms of standard analytic line 

shapes:  

mi iEAeC )()(             (1) 

where A is the amplitude, E is the energy threshold,  is the broadening and  is the excitonic 

phase angle. These parameters are determined by fitting the numerically obtained second 

derivative spectra d
2
()/d

2
 of the experimental (). The exponent m takes the value -1/2 

for 1D, 0 (ln(-E+i)) for 2D and ½ for 3D CPs. From them, direct information on the 

energy separation of the VB and CB can be obtained [25].
 
The spectra exhibit several CPs 

structures E0, E1A and E1B, as reported for CZTS [22], CZGS bulk crystals [23] and CZTS 

thin films [26]. 

To determine the CP energies, the  spectra were smoothed with fast Fourier transform 

filtering before fitting d
2
()/dE

2
. Second derivatives of complex dielectric function of the 

polished samples as well as the fittings obtained from the analytical model are represented in 

Figure 4. These fits agree well with the experimental results and have been obtained 

considering CPs of 3D-type in the E0 region and of 2D-type for E1A and E1B regions. The 

fundamental absorption edge E0 = Eg, the second E1A and third E1B energy thresholds for all 

the polished crystals are given in Figure 4.  

As we mentioned above, the samples were polished to minimize the effects of surface 

roughness and oxide formation on the determination of the dielectric function. Nevertheless, 
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the characterization of the surface properties of the as-grown samples is also important to 

understand how the performance of the solar cells could be affected. Therefore, in order to 

clarify the chemical nature of the surface of the single crystals, XPS measurements were 

carried out. Figures 5.a. and 5.b. display the spectral region of Ge 3d photoemission peak of 

the samples CZT0.9G0.1S-1 and CZT0.5G0.5S-2. The Ge 3d was fitted using two peaks by Voigt 

functions and a linear background. Figures 5.a. and 5.b. show a clear contribution of GeO2 at 

EB = 32.2 and 32.7 eV for the samples with x = 0.1 (46.9 % of the area) and 0.5 (17.7 % of 

the area) respectively [27]. The main contribution to the Ge 3d photoemission peak, at EB = 

30.9 and 31.1 eV for x=0.1 and 0.5 respectively, is assigned to Ge-S bonds in GeS2, which 

appears plausible when considering CZTGS as a quaternary Cu2S-ZnS-SnS2-GeS2 system. 

However, these binding energies are a little bit higher than those reported in [27], which 

could be explained by different oxidation states of the Ge in CZTGS and GeS2. Moreover, no 

ZnO, only very little amounts of Cu2O and oxidized sulphur (most likely sulphate) were 

observed. There was no clear evidence of the presence of SnO/SnO2. In order to clarify the 

last issue, SnS2 bulk compound was synthesized in our laboratory. Figure 6 shows the Sn 3d 

photoemission peak for the SnS2 bulk compound, CZT0.9G0.1S-1 and CZT0.5G0.5S-2 single 

crystals. As shown, the binding energy of Sn 3d is different for each compound, decreasing 

with the increased Ge content. A contribution at EB = 487.4 eV is only measured for the 

sample with higher Ge content, and it can be attributed to SnO2 [27] .The oxygen 

concentration for the samples with x = 0.1 and 0.5 was 25.2 at % and 19.9 at % respectively, 

as measured by XPS. A higher concentration of GeO2 was found for the sample with lower 

Ge content. This could have been caused by Ge segregation and/or clustering that in turn may 

lead to an increase of the amount of GeO2 

The optical properties of the as-grown samples (before polishing) were also measured and the 

results of the corresponding effective dielectric functions are shown in Figure 7. As it can be 
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seen, they are substantially different from those of the polished samples (Figure 3). In 

principle, the different dielectric functions lead to corresponding different fundamental band 

gap energies of the semiconductor, which is very important for the future photovoltaic 

device. Nevertheless, it is known that the presence of overlayers can also originate these 

differences.  

 

4. Discussion 

The energy threshold of the fundamental absorption edge E0 = Eg may correspond to a direct 

transition from the VBM to the CBM. An increase in the E0 value is clearly observed when x 

is increased from 0.1 to 0.5. Moreover, a higher E0 has been also determined for the 

CZT0.5G0.5S-2 sample with lower Cu and Zn contents. Theoretical works suggest that Zn does 

not play an important role for the determination of the band gap energy [18]. Therefore, this 

E0 increase could be mainly associated with the decrease in the Cu content. As mentioned 

above, the Cu-S d-p coupling determines the VBM level and the Cu-poorer material shows a 

higher band gap primarily caused by a lowering of the VBM [28-30].
  

A similar behaviour 

has been observed in the CIGSe chalcopyrite technology. The formation of a “vacancy 

compound” for Cu-poorer material has played an important role in high-efficiency solar cells 

by favourably adjusting the band line-up at the CISe/CdS (p-n) interface [31]. Therefore, the 

combination of a Ge-graded layer and a Cu-poorer composition could lead to an enhanced 

efficiency of the photovoltaic devices. In addition, the highest efficiency reported is based on 

Cu-poor stoichiometry CZTSSe thin films [1]. 

Following the theoretical calculations, direct band gaps for quaternary germanium (CZGS) 

kesterite and stannite-type are 2.27 [18]/2.46 [19] eV and 2.06 [18]/2.14 [19] eV  

respectively. Therefore according to the experimental E0 values reported in Fig. 4 for our 
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samples it is most likely that they show a dominant kesterite structure. Indeed, this is 

confirmed by X-ray diffraction and Raman spectroscopy measurements for the sample with x 

= 0.1. As shown in Fig. 2, the Raman peaks observed for x = 0.1 are all related to the 

kesterite structure. All these peaks are shifted towards higher frequencies in comparison to 

those observed for the CZTS structure [32-33]. This is due to the partial substitution of Sn by 

Ge [34]. Therefore, the main vibrational A1 symmetry modes typical for the kesterite 

structure are detected at 289 and 339 cm
-1

 for x = 0.1 (at 287-288 and 337-338 cm
-1

 for 

CZTS) [32-33, 35]. For the case of the CZT0.5G0.5S-1 the Raman spectrum shows an 

additional peak at 354 cm
-1

. A similar peak centered at 360 cm
-1

 was found in orthorhombic 

stannite CZGS [36].  This new peak may be related to the stannite phase. Therefore for the x 

= 0.5 sample the kesterite and stanite phases co-exist. It seems that a transition from kesterite 

to stannite takes place when the Ge concentration increases. Moreover, a decrease in the 

intensity of the 112 diffraction peak, characteristic of the kesterite structure, for the sample 

CZT0.5G0.5S-1 at around 2 = 28.5º has been noted (see Fig. 1), which agrees with the 

possible structure transition. 

The second E1A energy threshold appears in the region of 2.75 eV and at around 2.91-3.08 eV 

for x = 0.1 and 0.5 respectively, while E1B appears in the region of 4.09 eV and 4.11-4.30 eV 

for x = 0.1 and 0.5 respectively (see Figure 4). Levcenko et al. [22] assigned the E1A and E1B 

transitions to those at the N point in the Brillouin zone, assuming that the origin of these 

interband transitions in Cu2ZnSnS4 is the same as in CuInS2. Later, from first principles 

calculations [18] and experimental values [23], E1A and E1B have been attributed to 

transitions at the high CPs N(A): 2/a(0.5 0.5 0.5) and T(Z): 2/a(0 0 0.5) of the first 

Brillouin zone for the CZGS compound. Band structure calculations are necessary to identify 

the energy transitions observed experimentally for the alloying CZTGS, but the same 

behaviour could be expected. 



 

11 

By using the information given by XPS, we studied in more detail the optical response of the 

as-grown samples. For this purpose a three-layer model was considered, i.e. 

substrate/overlayer/ambient. The overlayer thickness was assumed to be in the 10 nm range 

and the effective dielectric constants of the overlayer were modelled using an effective 

medium approximation (EMA). The composition of the layer was varied in order to fit the 

experimental ellipsometric spectra of the unpolished samples. For the substrate, i.e. the bulk 

sample, we have used the dielectric constants (ε) shown in Figure 3. Figure 7 shows the good 

agreement that is obtained between experimental and calculated values using the EMA model 

based on a mixed of different layers: bulk compound corresponding to the polished sample, 

55% GeO2, 5% SnO2/Cu2O and 40 % voids on the surface. To achieve the fit, the optical 

constants of GeO2 [37], SnO2
 
[38] and Cu2O

 
[39]

 
were introduced in the model. Note that also 

a void fraction is included to take into account the sample roughness. Different EMA models 

were used and compared for the sample CZT0.5G0.5S-2 (see Figure 7.b.). They show two 

important features: (1) the main oxide phase present is GeO2, although the fit is improved 

slightly when a small amount of SnO2 is also considered, (2) the roughness of the samples 

plays an important role in the ultraviolet region for energies higher than 2.5 eV 

approximately. Nevertheless, the latter does not affect the spectra in the region of the 

fundamental band gap, and thus it does not affect the evaluation of the E0 value. 

 

4. Conclusions 

Cu2ZnSn1-xGexS4 (x = 0.1, 0.5) single crystals were synthesized by chemical vapour 

transport. This work shows the potential of the band-gap engineering of Cu2ZnSn1-xGexS4 as 

a function of the Ge concentration. The modification of the energy transitions of CZTS 

alloying with Ge opens an interesting perspective for the enhancement of the transport and 
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collection of photo-generated carriers of CZTGS-based solar cells. Moreover, the increased 

E0 for Cu-poorer CZTGS shows a possible way to adjust the p-n alignment of the 

photovoltaic devices.  On the other hand, the formation of GeO2 on the surface of these 

compounds has been demonstrated by XPS measurements. This should be taken into account 

when designing and fabricating solar cells since it modifies the values of the effective 

transition energies. This fact stresses the relevance of the surface preparation of the CZTGS 

material, which is extremely important to enhance the p-n heterointerface of the solar cell 

devices.  
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Figure Captions 

Figure 1. Powder X-ray diffraction of the CZT0.9G0.1S-1 and CZT0.5G0.5S-1 compounds. 

CZTS and CZGS JCPDS references are shown for comparison. 

Figure 2. Raman spectra of CZT0.9G0.1S-1 and CZT0.5G0.5S-1 single crystals. Lorenztian fits 

and a linear background have been carried out to determine the Raman peaks position. 

Figure 3. Dielectric functions of polished CZTGS single crystals. The spectra exhibit three 

CPs structures E0, E1A and E1B. 

Figure 4. Second derivative spectra of the experimental real and imaginary dielectric 

functions and the fits based on the Eq. (1) to deduce the transition energies. 

Figure 5. Ge3d photoemission peak of the samples (a) CZT0.9G0.1S-1 and (b) CZT0.5G0.5S-2. 

MgK excitation is used. 

Figure 6. Comparison of the Sn3d photoemission peak of SnS2 bulk compound, CZT0.9G0.1S-

1 and CZT0.5G 0.5S-2 single crystals. MgK excitation is used.  

Figure 7. EMA models used to fit the real and imaginary dielectric functions of the 

unpolished (a) CZT0.9G0.1S-1 and (b) CZT0.5G 0.5S-2 samples. 
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Table 1. Composition of the single crystals measured by EDX. 

Sample Cu 

(at%) 

Zn 

(at%) 

Sn 

(at%) 

Ge 

(at%) 

S 

(at%) 

Cu/(Zn+

IV) 

(Cu+Zn)

/IV 
x 

 

S/M 

CZT0.9G0.1S-1 24.77 13.13 11.29 1.04 49.77 0.97 3.07 0.08 0.99 

CZT0.5G0.5S-1 24.29 12.68 6.18 6.14 50.72 0.97 3.00 0.50 1.03 

CZT0.5G0.5S-2 22.11 11.11 6.63 5.58 54.28 0.94 2.72 0.46 1.19 

Note: M= Cu + Zn + Sn + Ge; IV = Sn + Ge 
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Figure 1 
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Figure 2a 

 

Figure 2b 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

 




