
UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

Doble Grado en Ingenieŕıa Informática y Matemáticas

Trabajo de Fin de Grado

On the Relation Between Representations and
Computability

Autor: Juan Casanova Jaquete
Tutor: Simone Santini

JUNIO 2015

Abstract

Computability and decidability are intimately linked problems which have
interested computer scientists and mathematicians for a long time, especially
during the last century. Work performed by Turing, Church, Godel, Post,
Kleene and other authors considered the questions ”What is computable?”
and ”What is an algorithm?”. Very important results with plenty of implica-
tions were obtained, such as the halting theorem [12], the several solutions to
the Entscheidungsproblem [12, 5], the Church-Turing thesis [12] or Godel’s
incompleteness theorem. Further work was performed on topics which as of
today have remained purely theoretical but which have offered us a great
understanding of computability and related questions. Some of this work in-
cludes the one related to degrees of recursive unsolvability [1] [7] and Rice’s
theorem [11].

Several formalisms were described and compared, some of the most im-
portant ones being Turing machines and λ-calculus. These formalisms were
mathematical constructions which allowed the study of the concept of com-
putation or calculation and all of its related questions.

We have found that an often ignored detail and, as we show, important
aspect of computability is related to representation. In particular, we show
that the computability of an abstract problem can only be considered once
a choice of representation has been made. We inquire to what extent this
is essential and what effects it may have and in what manner. We offer a
wide discussion on its implications, a formalisation of these considerations
and some important results deriving from these formalisations. In particular,
the main result of the work is a proof that computably enumerable repre-
sentations cannot be strictly stronger or weaker than other representations.
We also discuss the Church-Turing thesis with particular interest, inquiring
about its deep meaning and the actual facts and false assumptions related
to it.

Furthermore, we consider the relationship between representation and the
so-called representation degrees and the degrees of recursive unsolvability de-
rived from the concept of oracle machine. We show that these two concepts
offer parallel hierarchies which are very similar in their construction but quite
different in their essential meaning and properties.

Keywords: Computability, Turing machine, Turing degrees, Turing hier-
archy, Representations

1

Resumen

La computabilidad y la decidibilidad son problemas estrechamente rela-
cionados que han interesado ampliamente a informáticos y matemáticos, es-
pecialmente a lo largo del último siglo. Los trabajos realizados por Turing,
Church, Godel, Post, Kleene y otros autores se planteaban las preguntas
”¿Qué es computable?” y ”¿Qué es un algoritmo?”. Se lograron muchos
resultados importantes con multitud de implicaciones, como el teorema de
la parada [12], la solución al Entscheidungsproblem [12, 5], la hipótesis de
Church-Turing [12] o el teorema de incompletidud de Godel. Gran cantidad
del trabajo posterior se realizó en relación a otros temas que han permanecido
hasta hoy en el campo de la teoŕıa pero que nos han permitido entender en
mayor medida la computabilidad y problemas relacionados. Por ejemplo, el
relacionado con los grados de indecibilidad [1] [7] y el teorema de Rice [11].

Varios formalismos fueron descritos y comparados, algunos de los más
importantes son las máquinas de Turing y el cálculo lambda. Estos formal-
ismos constitúıan construcciones matemáticas que permit́ıan el estudio del
concepto de computacion o cálculo y todas las preguntas relacionadas.

Un aspecto comúnmente ignorado y relevante de la computabilidad está
relacionado con la representacion. En particular, percatamos que la com-
putabilidad de un problema abstracto sólo puede ser considerada una vez se
ha producido una elección de representación. Nos preguntamos hasta qué
punto esto es esencial y qué efectos puede tener y de qué manera. Ofrecemos
una amplia discusión sobre sus implicaciones, una formalización de estas con-
sideraciones y algunos resultados importantes derivados de las mismas. En
particular, el resultado principal del trabajo es una demostración de que las
representaciones computacionalmente enumerables no pueden ser más fuertes
o más débiles que otras. Realizamos una discusion especialmente enfrascada
en relación a la tesis de Church-Turing, su significado más profundo y los
hechos y falacias que giran en torno a ella.

Además, consideramos la relación existente entre la representación y los
llamados grados de representacion, y los grados de indecibilidad derivados del
concepto de máquina oráculo. Demostramos que estos dos conceptos ofre-
cen jerarqúıas paralelas con una construcción muy similar pero notablemente
distintas en su significado esencial y sus propiedades.

Palabras clave: Computabilidad, Máquina de Turing, Grados de decidi-
bilidad, Jerarqúıa de Turing, Representaciones

2

Contents

1 Computability theory: Background 4
1.1 Computation formalisms . 4
1.2 Degrees of recursive unsolvability 7
1.3 Other related topics in theoretical computer science 9
1.4 State of the art in computability theory 10

2 Turing machine formalism 11
2.1 Turing machines . 11
2.2 Computable functions and sets of tapes 13
2.3 Degrees of recursive unsolvability 19

3 Representations 24
3.1 Church-Turing thesis . 24
3.2 Formalising representations 28
3.3 Relations between representations 30

4 Turing hierarchy and representations 36
4.1 Represented oracles . 36
4.2 Representation degrees . 38
4.3 Relations between represented oracles 39

5 Conclusions 40

List of Figures

List of Tables

3

1 Computability theory: Background

The concept of computability, with its many different facets and shapes, has
interested logicians and generally mathematicians long before physical com-
puters were even technically feasible; especially during the past century. Its
close relationship with decidability and logic has been known for a very long
time, and has been one of the main reasons (if not the main) for the interest
devoted to it. An approach to the general problem is posing the question
”What problems can be solved through mechanical procedures, that is, al-
gorithms?”. The dual version of this question in decidability terms could be
formulated as ”What mathematical truths can be proved?”. A second ques-
tion that arises naturally from the first one is ”What can be considered a
mechanical procedure?”, or its decidability version ”What can be considered
a proof?”. In these questions, ”problem” means often (but not exclusively)
”number theoretical problem”, and ”proofs” refers to proofs of theorems on
sets of integers.

In this work, we shall approach computability mainly from the first point
of view, namely, that of algorithms or (abstract) mechanical machines. More-
over, we shall focus on an often neglected aspect of computability: the rep-
resentation of the problem in such a way that the device or other chosen
formalism can work on it, and its possible influence on what the device can
compute. Before we do that, we shall present in this section some general
concepts and results on computability; and in the next one, the precise def-
initions and results in the adopted Turing machine formalism, all of which
forms the conceptual basis on which we shall build our work.

1.1 Computation formalisms

Turing machines

One of the first and most relevant mathematicians to formalise the con-
cept of computability was Alan Turing [12]. Turing gave a definition of com-
putability, by way of his Turing machines, which he then used to answer a
decidability question, known as the Entscheidungsproblem, one of Hillbert’s
problems. The Entscheidungsproblem asks for an algorithm that, given a
statement of first order logic, determines whether the statement is true or
not (or rather, if it is true in every structure satisfying a given set of axioms).
Turing’s answer to the problem is that it is impossible to build such an al-
gorithm. Despite the negative answer to the Entscheidungsproblem, Turing

4

machines have since then been one of the most widely used formalisms of
computation.

Turing machines were conceived as a mathematical representation of the
formal work of a mathematician working on a proof of a theorem. The overall
idea is that of a machine working on a tabulated tape written using a finite
alphabet, with a finite set of states and a finite set of transitions which, de-
pending on the current state and the symbol read on the current cell of the
tape, write a possibly different symbol on the cell and move to an adjacent
cell, changing the machine’s state on the process. The machine continues
this process iteratively, possibly coming to a halt, which represents the end
of the algorithm.

A formal definition of Turing machine is given in a following section.
There are plenty of introductory theoretical computer science books which
provide a wide and deep analysis of Turing machines and related matters,
in a way more similar to how they are understood today and arguably more
useful than the original Turing paper, such as [6] or [3]

Register machines

A more modern formalism based on Turing machines is that of Register
machines. Register machines consist of a finite number of registers (each
storing a variable number, a set of states), a set of transitions between those
states (based upon the current values of the registers) and a set of operations
(addition, substraction) that can alter the values of the registers on the dif-
ferent states. Register machines model the work of a modern computer much
more closely than the overly abstract Turing machine, and indeed most phys-
ical processors are based on them. They also give a simpler way of working
in theoretical computability theory, particularly when working on arithmetic
functions. However, the computational capabilities of Register Machines are
proven to be the same as that of Turing machines. We shall see that this
seemingly general statement is subject to certain conditions on the represen-
tations used. A precise definition and properties of register machines and the
related counter machines can be found in [6]

Lambda calculus

Contemporary to Turing, Alonzo Church, in collaboration with others
(from which Kleene deserves mention) developed the formalism known as λ-
calculus, which was shown by Turing [12] to solve the same problems as Tur-

5

ing machines. In particular, Church independently proved that the Entschei-
dungsproblem is unsolvable using this formalism [5]. Lambda functions are
typographical constructs which are ”evaluated” using a series of reduction
forms (namely, α-reduction, β-reduction and η-reduction), providing them
with properties which resemble general mathematical functions, but with a
much more restricted and, most importantly, constructive definition, in the
sense that their typographical declaration is their actual definition and, at
the same time, method of calculation. These characteristics make them a
useful means of defining computation in an arguably more mathematically
elegant form, but less powerful as a symbol of the actual physical process of
computation, than Turing machines.

Next to Turing machines, λ-calculus is arguably the most widely spread
formalism for computation, and a lot of common features and syntaxes of
modern programming languages, such as anonymous functions, are based
upon it. In fact, the family of programming languages known as functional
is explicitly derived from this theoretical model of computation.

A good overview of modern type-free λ-calculus (which is the one consid-
ered here), can be found at [2].

Post canonical systems

Among other similar or equivalent formal language constructions, Post
canonical systems provide a formalism for specifying recursive and recur-
sively enumerable languages in an entirely syntactical way. Essentially, one
provides a set of string-transformating rules and a set of initial words or
axioms from which the rules are recursively applied. Unlike regular and
context-free languages, the potency of post canonical systems is equivalent
to that of the other formalisms described here.

Recursive and primitive recursive functions

Recursive functions (and their subset, primitive recursive functions) offer
yet another equivalent formalism of computation defined as a set of functions
on natural numbers. In particular, they are defined through a set of ini-
tial functions (namely, constant functions, successor function and projection
functions) and a set of operations between functions under which recursive
functions are closed (namely, composition, primitive recursion and minimisa-
tion). They provide a different formal approach (arguably more abstract, or
at least, algebraic; and thus less clumsy, but also less symbolic), with practi-

6

cal advantages and disadvantages and the same background idea as register
machines: Everything is essentially reducible to numbers.

Projection functions entail the ability to work with tuples, whereas com-
position means chaining computations, primitive recursion is the basic iter-
ation method (similar to for-loops) and minimisation is unbounded iteration
(while-loops) or, equivalently, what is understood as recursion in common
programming languages. Primitive recursive functions are a subset of recur-
sive functions which do not make use of the minimisation operation. A more
extensive introduction on recursive functions can be found on [3]

Given that in this work we are interested in the relations between repre-
sentation and computability, it is interesting to look briefly at these models
from this point of view. On that matter, it could be argued that, unlike
the other formalisms presented here, recursive functions and register ma-
chines are more limited due to being defined specifically for natural num-
bers, whereas Turing machines, λ-calculus and Post canonical systems work,
in principle, for any abstract set which can be represented on a tape, as a
lambda function or as a formal language. However, it is essential to un-
derstand that this difference is only apparent, in a double-edged sense. On
one hand, recursive functions can also compute more abstract concepts, by
representing them as numbers (such as Godel numbering). On the other
hand, the ability to represent becomes at the same time the need (or even,
responsability) to choose one representation over others, and this opens up
the question of up to what extent computability is independent of this choice,
which is the main concern of this work.

1.2 Degrees of recursive unsolvability

It is a well known result of computability theory that there exist problems
with a clear formulation and an unambiguous answer which cannot be re-
solved through mechanical procedures. The halting problem or the Entschei-
dungsproblem are some of the most well known examples of this. (A precise
formulation of the halting problem will be included in a following section.
For the current introductory discussion it is enough to know that there ex-
ist non-computable problems.) In fact, it can be easily shown through a
standard diagonalisation argument that the set of problems which cannot be
solved by any of the computation models previously mentioned (for instance,
Turing machines) is uncountable. There is no point in engaging in a deep
discussion about representations at this stage, but let us just point out that

7

we have not yet defined what it means to solve an abstract problem, and
that a choice of representation must be present in this definition.

Even though there has been so far no real implementation of anything that
could be considered a computer or a program with mathematically stronger
computational capabilities than those described by any of the computation
formalisms presented, it is interesting to ask what may happen if one ex-
tends the notion of computability. The theory of Turing degrees or degrees
of recursive unsolvability, introduced by Post in [10], considers the so-called
oracle machines, defines the degree of unsolvability of a problem using oracle
machines and considers the structure of the resulting set of degrees. A thor-
ough examination of the definitions and most important results of Turing
degrees will be presented in a following section. We shall, however, offer an
introductory discussion on the topic at this point.

An oracle machine is defined to be a Turing machine equipped with an
oracle, which is a purely theoretical artifact that can answer an otherwise
incomputable question (equivalently, decision problem). As the name sug-
gests, an oracle can be thought to be some magical object or person with
supernatural powers which can solve an otherwise unsolvable problem. It is
important to understand that the oracle can answer one and only one type of
questions. For example, one could consider an oracle which tells us whether
someone is lying or not, and is never mistaken. We can ask this oracle as
many times as we want for as many people as we want; however, this oracle
can only tell us if somebody is lying on any given question at this particular
time, and not whether this person has lied in the past, or how many times
has he lied or if he will lie in the future. One could consider different ora-
cles for these different questions, and they would absolutely make theoretical
sense, but they would not be the same oracle. The Turing machine can ”ask”
this oracle at any step of its computation, thus being able to solve problems
which would be otherwise unsolvable.

In a sense, given a problem X, a Turing machine with oracle X can solve
any problem which is reducible to X, that is, any problem whose solution is
contained in the solution of X. The set of problems reducible to X is called
the degree of X. However, there might exist (and there are) other problems
which are still unsolvable using an oracle for X. In particular, it is common
to consider the problem X ′ (usually called the Turing jump of X), which
takes as input a description of a Turing machine φX with oracle X and an
input tape τ for φX and answers whether φX(τ) halts or does not. This
generalised version of the halting problem is proven to always be unsolvable

8

with an oracle for X, independent on the choice of the set X. This fact shows
that the set of degrees of recursive unsolvability is infinite.

This theoretical construction has allowed us to understand the notion of
computability much better, and its full applications might be yet to be dis-
covered. In relation to this work, degrees of recursive unsolvability offer a
very interesting perspective, and we will show that the considerations intro-
duced by the representation problem are parallel and highly related to those
introduced by the Turing jump.

1.3 Other related topics in theoretical computer sci-
ence

Classically, computability and complexity have been highly related topics
with common bases, parallel results and similar techniques. As a general
description, complexity theory is the study of the variation of the size (in
its many different senses) of an algorithm’s execution as a function of the
size of the input. Here, ”size” may refer to execution time, memory usage
or other aspects of the algorithm execution. Complexity has shown to be
of extreme importance in almost all aspects of computer science, and it has
many and very important implications on the implementation of algorithms.
In particular, one of the most important contemporary unsolved problems
is the P vs. NP problem, which considers a class of problems, in terms of
complexity, known as NP (non-deterministic polynomial) problems, and asks
whether these problems are in fact P(polynomial) problems. No polynomial
algorithm has been found for an NP problem, and the general consensus is
that P and NP must be different classes of problems. However, no proof
of this fact has been found as of today. An introductory consideration on
complexity, the P vs. NP problem and related topics can be found on [6].

It seems clear that the representation used must affect complexity of al-
gorithms at least as much as it affects computability, and most likely more.
As an example, consider representing natural numbers by their prime factor
decomposition, expressing each prime number in binary. Obviously, given a
number in this representation, the algorithm that provides its prime factor
decomposition becomes trivial, and thus has very little complexity, whereas
in a standard binary representation, it is in fact an NP problem. On the other
hand, addition becomes a relatively complex problem on the new represen-
tation. The applications of complexity theory to new and unsolved problems

9

are very wide and extremely interesting; however, we have made no serious
considerations on these matters in this work, mainly due to its much bigger
difficulty. However, the study of the relation between representations and
complexity is a promising direction for future work.

Some other classical topics in theoretical computer science on which the
issue of representation might prove interesting are data structures, artificial
intelligence and machine learning. Data structures and storage considers the
problem of storing information in a computer system in a way that its read-
ing, modification and verification are as efficient as possible. In this area,
the idea of performing a purely theoretical and mathematical consideration
on how a choice of representation affects the qualities and capabilities of
databases is intruguing. For example, relational databases entail a partial
choice of representation of data, in the sense that they have been chosen
to be represented as tables with columns, and a full understanding, from a
mathematical point of view, on how this choice affects the possibilities and
all the different aspects of the database, in comparison to other database
systems, would be highly valuable. On the other hand, artifical intelligence
is the study of algorithms that perform what could be understood as in-
telligent tasks. In particular, machine learning considers somehow generic
algorithms which can, in some sense, understand data and perform an analy-
sis on it, extracting general invariants or summarized information about the
assumed real world origin of that data. In other words, algorithms with the
ability to learn. Once again, it might be very interesting to consider, from a
purely theoretical point of view, what are the implications of a choice of data
representation in an artificial intelligence system. Evidently, considerations
about the relation between representations and computability, complexity,
data storage and artifical intelligence are in no way a totally new perspective
or an unstudied problem. In fact, considerations on how things are repre-
sented are omnipresent in computer science topics. However, we feel that
a more abstract, generic and theoretical consideration on these topics has
never been attempted. Approaches usually take representations as a par-
ticular, technical and highly specific aspect of that particular problem, and
deem them uninteresting and effectless to the actual results on the topic be-
ing studied, once dealt with.

1.4 State of the art in computability theory

Computability theory was mostly developed as a continuation of Turing’s,
Church’s, Godel’s and other people’s work during 1930-1940. Most of the

10

latest work in computability revolves around degrees of recursive unsolvabil-
ity. In particular, Kleene and Post further studied the structure of this set
[7], showing that it is a joint semi-lattice. Similar studies showed that every
finite lattice is isomorphic to an initial segment of the set of degrees [8], and
that every initial element of an upper semi-lattice of size ℵ1 with the count-
able predecessor property occurs as an initial segment of the set of degrees
[1].The idea of limiting access to the oracle during computation to only cer-
tain points or situations has been studied in [9].

H. G. Rice studied the properties of sets of partial functions and algo-
rithms implementing them, and proved what has come to be known as Rice’s
theorem, which states that, given any non-trivial property of partial func-
tions (that is, a function which is not true or false for every partial function),
there is no algorithm which decides whether a given algorithm computes a
function with said property [11].

2 Turing machine formalism

In this section we consider the Turing machine formalism in more depth,
providing more precise and extensive definitions and theorems.

A small note on notation shall be included here. Let F be the set of
all functions defined on countable sets. Given a function f , we indicate
as usual with Dom(f) the set of elements for which f is defined and with
f(Dom(f)) = Rg(f) the set of elements that are the image of elements of
Dom(f). The restriction f|A of f to A ⊆ Dom(f) is the function defined on
A such that for all x ∈ A, f|A(x) = f(x).

The set of functions (A→ B) is defined by

(A→ B) = {f ∈ F
∣∣A ⊆ Dom(f) ∧ Rg(f) ⊆ B} (1)

We shall use a square bracket to indicate that a set coincides with the domain
or range of a function, so we shall define

[A→ B] = {f ∈ F
∣∣A = Dom(f) ∧ Rg(f) = B} (2)

with the obvious meaning for [A → B) and (A → B]. Note that, of course,
[A→ B] ⊆ (A→ B).

2.1 Turing machines

Given a finite alphabet Σ, and a symbol B ∈ Σ, called the blank symbol, a
Turing machine on Σ is usually thought of as a machine consisting on a finite

11

control and a tape, with a prescribed discrete operation over time (one in-
stant at a time). The tape is divided in cells, which are placed linearly, from
left to right, and is infinite on both sides. In each cell at each moment of the
computation there is a symbol written, and at each moment of the computa-
tion only a finite number of cells of the tape may have symbols distinct from
the blank symbol. This number needs not be bounded, though (the number
of cells distinct from the blank symbol might grow unboundedly over time,
but it must always be finite). The machine also has a head which points to
a specific cell on the tape, and which might move, each instant, one position
to the left or to the right. The finite control consists of a set of states, one
and only one of which is active at each instant of the computation, and a
transition function δ which takes as input the current state and the current
symbol read (symbol written in the cell where the head is positioned) and
outputs a new symbol to be written on such cell, a new state for the machine
and the movement of the head (left or right). If, during any step of the
computation, the machine reaches a state indicated as final, it halts.

More formally, a Turing machine is defined as follows.

Definition 2.1. A Turing machine is a 6-tuple Φ = (Q,Σ, δ, q0, B, F),
where:

• Q is a finite set, called the set of states

• Σ is a finite set, called the alphabet

• δ ∈ [Q × Σ → Q × Σ × {left, right}) is any function defined on the
specified set, called the transition function

• q0 ∈ Q is called the initial state

• B ∈ Σ is called the blank symbol

• F ⊂ Q is called the set of final or accepting states

Defining possible input tapes as functions τ ∈ [Z→ Σ) such that the set
W ⊂ Z of cell positions w where τ(w) 6= B is finite, and letting T be the set
of possible input tapes, it is possible to derive a function Φ ∈ [T × N→ T)
from the Turing machine which, given (τ, i), provides the state of the tape
Φ(τ, i) on the i-th instant of the computation of the machine Φ given input
tape τ .

12

A Turing machine Φ is said to halt with input tape τ if Φ reaches a final
state during its computation with input τ . We will write Φ(τ)↓ to indicate
that Φ stops with input τ , and Φ(τ)↑ to indicate that it does not. If Φ(τ)↓,
then there exists i0 ∈ N such that for all i ≥ i0, Φ(τ, i) = Φ(τ, i0). In that
case, we will write Φ(τ) = Φ(τ, i0). This is the common idea of Φ(τ) being
the result of the computation of Φ with input τ .

Based on the definition of Turing machine, it is common to do a few con-
siderations, additional definitions and useful tools when working with Turing
machines, such as a transition diagram representation of a Turing machine.
However, this is not interesting for the topics considered in this work and
will thus be skipped. A much more thorough explanation can be found in [6].

2.2 Computable functions and sets of tapes

While it is true that we are using the Turing machine formalism for this
work, a more mathematically flexible approach is somehow taken by consid-
ering Turing computable functions and their properties instead of the basic
mechanical properties of Turing machines, arguably harder to reason over. In
this section we explore this approach and give the most essential and widely
known results which allow us to better comprehend the structure of the sets
of computable functions.

Thought of as an implementation of a function, a Turing machine (an
algorithm) takes an input, performs a series of calculations on it and returns
a result. Thus, even though any Turing machine could possibly take any tape
as input and do something with it, when considering computable functions,
we will consider partial functions, as it is common and necessary to restrict
the possible inputs to those which are valid for said function. An example
of this is that of the square root, which can only be calculated on positive
numbers.

Definition 2.2. Let P,Q ⊂ T . Then, a function f ∈ [P → Q) is computable
if there exists a Turing machine Φ such that for every τ ∈ P ,

Φ(τ) = f(τ) (3)

The previous definition implies trivially that if f is computable, then for
all τ ∈ P , Φ(τ)↓.

13

We shall indicate with M the set of computable functions, and with a
doubly pointed arrow the fact that a specific function is computable, that is,
f ∈ [P � Q] entails that f is computable, that is:

[P � Q] = M ∩ [P → Q] (4)

whenever such an arrow appears in a diagram, the diagram will be said to
commute if, for each doubly pointed arrow there is a computable function
that makes the diagram commute in the traditional sense.

Computability is closed under composition.

Theorem 2.1. Let f ∈ [P � Q) and g ∈ (Q � R], Q′ = Rg(f) ∩ Dom(g),
P ′ = f−1(Q′) and R′ = g(Q′), then the restriction of g◦f to P ′ is computable:

(g ◦ f) ∈ [P ′ � R′] (5)

In the following, we shall often be in the situation of having to represent
different tapes on a single tape and on having to perform certain operations
on these tapes. To this end, we consider a tape bijection:

〈 , 〉 : T × T → T (6)

such that the following operations are computable:

Duplicate: δ : τ 7→ 〈τ, τ〉
Swap: σ : 〈τ, τ ′〉 7→ 〈τ ′, τ〉
Projection: π1 : 〈τ, τ ′〉 7→ τ
Partial application: α1[f] : 〈τ, τ ′〉 7→ 〈f(τ), τ ′〉

It is a well known result that, using a proper representation, such a bi-
jection exists. It is also possible to see, even though the proof will not be
included here, that given any two such bijections, there exists a computable
function which transforms one into the other.

The projection and application on the second element of a bijection can
be defined in terms of the basic operations and the composition

π2 = π1 ◦ σ (7)

α2[f] = σ ◦ α1[f] ◦ σ (8)

Other functions that we shall need later on can be defined in terms of the
basic ones. In particular:

14

i) The constant insertion
ι1[q] : τ → 〈q, τ〉

is defined as
ι1[q] = α1[φq] ◦ δ (9)

where φq is a Turing machine that produces the constant tape q; the
constant insertion in the second element, ι2[q] is defined in the obvious
way using the swap.

ii The left rotation
ρl : 〈τ, 〈τ ′, τ ′′〉〉 7→ 〈〈τ, τ ′〉, τ ′′〉

is defined as
ρl = α2[π2 ◦ π2] ◦ α1[α2[π1]] ◦ δ (10)

iii) The right rotation

ρr : 〈〈τ, τ ′〉, τ ′′〉 7→ 〈τ, 〈τ ′, τ ′′〉〉

can be obtained from the left one.

iv) The embeddings
ε1 : 〈〈τ, τ ′〉, τ ′′〉 7→ 〈τ ′′, τ ′〉

defined as:
ε1 = σ ◦ α1[π2] (11)

and
ε2 : 〈〈τ, τ ′〉, τ ′′〉 7→ 〈τ, τ ′′〉

Another useful and common tool used in computability are the yes and
no tapes, that is, any two fixed, constant and different tapes, ν, o ∈ T such
that ν 6= o, which represent ”yes” and ”no”.

As explained in the introduction, computability of functions and decid-
ability of sets are essentially the same problem. In fact, in computability
theory it is common to avoid the choice of one of the two particular ap-
proaches but rather consider both at the same time, granting us the useful
aspects of both. In that sense, it is possible to express decidability as a par-
ticular problem on the computability of a function.

15

Definition 2.3. The characteristic function χA ∈ [T → T) of a set A ⊆ T
is the function

χA(τ) =

{
ν if τ ∈ A
o if τ 6∈ A

(12)

Definition 2.4. The set A ⊆ T is computable if χA is computable.

A highly important class of sets which is closely related to computable
sets are computably enumerable sets. There are two common definitions of
a computably enumerable set, at first glance different, but equivalent after
all. We offer both definitions here, as they are both useful.

Definition 2.5. A set of tapes A ⊆ T is computably-enumerable-A if the
restriction of χA to A, χA|A ∈ [A → {ν}] is partially computable, that is, if
there is a Turing machine φ such that

τ ∈ A⇒ φ(τ) = ν

τ 6∈ A⇒ φ(τ)↑
(13)

Definition 2.6. A set A ⊆ T is computably-enumerable-B if there is a
partially computable function f ∈ [A → A] and a tape τ0 ∈ A such that
for each τ ∈ A there is i ∈ N such that τ = f i(τ0); the function f is called
the iterator or enumerator of the set.

Theorem 2.2. A set A ⊆ T is computably-enumerable-A iff it is computably-
enumerable-B

The proof of this theorem is rather technical and tedious, and uninterest-
ing for the purpose of this work, and will therefore not be included here. It is
however simple in its concepts and a standard known result in computability
theory. Because of this theorem, we can call sets with these properties simply
computably enumerable, or c.e.

The following properties of computable and computably enumerable sets
are known and easily derivable:

Lemma 2.1. Let A1 ⊆ T and A2 ⊆ T , then:

i) if A1 is computable, then A1 is c.e.;

ii) if A1 and A2 are c.e. then so are A1 ∪ A2 and A1 ∩ A2;

iii) if A1 and A2 are computable then so are A1 ∪ A2 and A1 ∩ A2;

16

iv) if A1 is computable, then T \A1 is computable;

Theorem 2.3. If A ⊆ T and T \A are both c.e., then they are both com-
putable.

Proof. Let φ′ be the Turing machine that decides A as in definition 2.5, and
φ′′ the machine that decides T \A. Since A and T \A partition T , for any
tape τ , one and only one of the computations φ′(τ) and φ′′(τ) will stop. A
machine φ that simulates φ′ and φ′′ by interleaving steps can detect which
one stops and consecuently decide whether τ ∈ A.

Corollary 2.1. Let P = {A1, . . . , An} be a finite partition of T . If all Ai
are c.e., then they are computable.

Proof. Pick one of the Ai; let’s assume, without loss of generality, that we
pick A1. The set is c.e. On the other hand, T \A1 = A2 ∪ A3 ∪ · · · ∪ An is
the union of a finite number of c.e. sets and, by point ii) of lemma 2.1 is also
c.e. Therefore, by theorem 2.3, A1 is computable.

Applying the same argument to all the Ai we obtain the corollary.

A very interesting question in computability is whether any injective al-
gorithm can be effectively inverted. The answer is yes, provided that the
domain is computably enumerable. The proof of this fact essentially consists
on, given an element of the range, iterating over the domain (since it is com-
putably enumerable) and executing the forward algorithm, until we find the
element we were trying to invert. We then know that the left element that
gave birth to it is its inverse image.

Theorem 2.4. If f ∈M and Dom(f) is c.e. then Rg(f) is c.e. Furthermore,
if f is injective, then f−1 ∈ [Rg(f) � Dom(f)] is computable.

Proof. Since f is computable, there is a Turing machine φf that, given τ ∈
Dom(f), stops with f(τ). Applying definition 2.6 to Dom(f), there is a
machine φD that generates all elements of Dom(f) in a given order. Then,
using 2.1 we can define a Turing machine that generates f(τ) for each τ ∈
Dom(f). This proves that f(Dom(f)) is c.e.

To prove that f−1 is computable, assume that we want to compute f−1(τ),
with τ ∈ Rg(f). The tape contains initially τ ; let τ0 be the initial tape
mentioned in definition 2.6. The idea is to start with τ0 and apply the
function f to all the tapes until we obtain τ as a result; the tape τ ′ such that
τ = f(τ ′) is clearly f−1(τ). This algorithm can be implemented iterating a

17

basic operator on tapes:

τ
ι2[τ0]7−→ 〈τ, τ0〉

α2[δ]7−→ 〈τ, 〈τ0, τ0〉〉
α2[α1[f]]7−→ 〈τ, 〈f(τ0), τ0〉〉

ρr7−→ 〈〈τ, f(τ0)〉, τ0〉
(α1[eq] tells us if we are done)

α1[π1]7−→ 〈τ, τ0〉
α2[φD]7−→ 〈τ, φD(τ0)〉

(14)

Note that the function f−1 is computable only on Rg(f): the theorem
doesn’t guarantee that this set be computable.

It is obvious that the set of tapes T is countable. What is more in-
teresting, but trivial to verify (using definition A), is that it is computably
enumerable. This enables us to specify a particularly interesting numeration
of tapes. Thus, given the iterator E ∈ [T � T] and an initial tape τ0, for a
given tape τ , define #τ = n (n ∈ N) if τ = En(τ0).

In the following theorem we shall avoid the laborious and cumbersome
construction of the Turing machines using the basic tape operations; most of
the constructions that we shall use have already been used in the proofs of
the previous theorems.

Turing machines are also countable. However, it is important to under-
stand that, since they are not tapes, considering whether the set of Turing
machines is computably enumerable would first require a choice of a repre-
sentation of Turing machines (for example, the classical tuple description),
which we will forgo. However, it is possible to arbitrarily numerate them
without resorting to a representation of natural numbers. Thus, given a
Turing machine φe, e ∈ N, define

We = {τ ∈ T |φe(τ)↓} (15)

We indicate with We,n, e, n ∈ N the set of tapes that φe accepts after n steps.

Theorem 2.5. A set A ⊆ T is c.e. iff A = ∅ or A is the range of a
computable function.

Proof. Assume A 6= ∅ (if A = ∅ the theorem is trivially true).

18

Note that, by the definition, A is c.e. iff A = We for some e ∈ N.

Suppose A = Rg(f), with f computable. Build a Turing machine φe
that, given an input τ , enumerates all tapes using E and, for each one,
checks whether f(τ ′) = τ ; if such a tape is found, then φe writes ν and stops.
Clearly A = We.

Assume now that A = We for some integer e. Find the tape τ0 with the
smallest value of #τ0 such that τ0 = 〈τ01, τ02〉 and τ01 ∈ We,#τ02 . Define the
computable function f as

f(〈τ1, τ2〉) =

{
τ1 if τ1 ∈ We,#τ2+1 −We,#τ2

τ01 otherwise
(16)

Clearly Rg(f) ⊆ We. Let τ ∈ We; choose τ̂ such that #τ̂ is the least integer
for which τ ∈ We,#τ̂+1. Then f(〈τ, τ̂〉) = τ . Therefore We ⊆ Rg(f).

2.3 Degrees of recursive unsolvability

Halting problem

The halting problem has possibly become the most most famous com-
putability problem of all. This achievement is not due to casuality nor unjus-
tified, for the halting problem has the properties of answering a very natural
question (Can it be checked whether an algorithm ends or not before exe-
cuting it, to avoid infinite executions without mistaking any finite but long
execution for an infinite one?), it is a paradigmatical example of how and why
problems may fail to be computable and most of all, its definition implies a
notion of self-understanding and recursion which is fascinating and a great
source of interesting questions. The most common version of the halting
problem states that it is not possible to build a Turing machine which, given
a description of any other Turing machine and any input tape, determines
correctly whether the given machine halts when given the tape as input or
it does not. The question that the halting problem poses is well defined, in
the sense that for every Turing machine and every input tape, the machine
either halts or it does not when given the input tape, and it never does both.
However, no Turing machine can correctly answer this question.

For a fully detailed and technical analysis, the original and commonly
taught formulation of the halting problem and its proof are too heavy in
explanations given in natural language, unexplicit assumptions and ambigu-
ous reasonings. Therefore, a more sterile and straightforward version of the

19

halting problem and its proof is given in the following theorem. We hope
this allows us to better perform our following discussion without technicism
or the lack of it clouding it.

Theorem 2.6. Let K = {τ |φ#τ (τ)↓}. Then, K is not computable.

Proof. Suppose K has a computable characteristic function χK ; define

f(τ) =

{
E(φ#τ (τ)) if χK(τ) = ν

o if χK(τ) = o
(17)

then f ∈ M. Thus, we know that there exists τ0 such that for all τ ∈ T ,
f(τ) = φ#τ0(τ) but, for all τ , f(τ) = E(φ#τ (τ)) 6= φ#τ (τ). In particular,
f(τ0) 6= φ#τ0(τ0). This contradiction proves that K must be not computable.

Let us consider what the halting theorem actually states and what as-
sumptions does it make. The halting problem asks if there is a Turing ma-
chine H that, given any other Turing machine φ and any input tape τ ,
determines whether φ(τ) ↓. However, for this hypothetical Turing machine
H to work on this problem, the input Turing machine φ must be codified
in the cells of the input tape for H, as a Turing machine works on symbols
written on tapes and has no ability to interpret an abstract mathematical
concept such as that of Turing machine without writing it down as sym-
bols in a tape. Thus, what H really receives is a tape, τH , such that the
information about φ and τ is in some way contained in τH . In this process
of representation of the Turing machine φ and the tape τ as a tape τH , a
choice on how to represent them must be made. The most common way of
dealing with this is representing φ by a series of tuples which represent all
the possibilities of the transition function δ. That is, a series of quintuples
(s0

i, σ0
i, sf

i, σf
i, left/right), where s0

i and σ0
i are the initial state and sym-

bol read, sf
i, σf

i are the next state and the written symbol, and left/right
means whether the head moves left or right. We will call this representation
r0(φ, τ).This representation is very natural, it is in fact useful in defining the
universal Turing machine and it generally produces no discomfort when used
in the halting problem’s proof.

However, we see no way in which someone could argue, in technical terms,
that another representation choice would be less valid. More importantly, re-
alise that the process of taking the mathematically abstract concept of the
Turing machine φ and writing down its quintuples must be done by an exter-
nal human; or, more formally, must be done outside of the Turing machine

20

formalism, for if we were to consider another Turing machine T translating
the Turing machine φ into its quintuple representation, we would once again
need φ to be represented as a tape τT for T to be able to work on it, creating
a circular argument.

Thus, any representation choice, so long as it allows us to distinguish
between different inputs is in principle equally valid, independent of how the
process of representing φ using this representation is performed. For exam-
ple, consider that, knowing that in fact either φ(τ)↓ or φ(τ)↑, then a possible
representation r1(φ, τ) for the Turing machine φ and the tape τ is

r1(φ, τ) =

{
〈r0(φ, τ), ν〉 if φ(τ)↓
〈r0(φ, τ), o〉 otherwise

(18)

However, in this representation, the halting problem in its more unprecise
formulation is trivially computable (the function π2 is a computable function
implementing it). This does not mean that the halting theorem is false or
mistaken, it merely means that it is missing hypotheses on the representa-
tion which r0 fulfills and r1 does not. We will not engage in a long discussion
about in what way the proof fails if these hypotheses are not met, such as in
the case of r1. Let us just point out that the most common proof assumes
that at one point one can, from a representation of a Turing machine, copy
it and hand it over as its own input. This is not a computable step in the
representation r1.

It is more interesting, from a technical point of view, to consider in what
way does the previously proven formulation of the theorem fail, if it does. The
answer is that the halting problem as considered when using representation
r1 does not fill the hypotheses of theorem 2.6, since theorem 2.6 only proves
that K is not computable when K is defined using the numeration of tapes
#τ explained before, and using the fact that this enumeration corresponds
to the computable enumerator E. The set of tapes K does not correspond
to the representation, through r1, of the set of Turing machines and tapes
which halt, and thus theorem 2.6 does not proof that in representation r1
the halting problem is not computable, because in fact it is computable.

This discussion is the central point of this work. However, in order to
develop it in its full magnitude, more concepts must be introduced. For now,
let us grab three main and undeniable ideas from the halting theorem. First,
that there exist uncomputable problems. Second, that the halting problem,

21

in its precise formulation, is one of these. Finally, that the deep reason for
which this problem fails to be computable is its self-referencing properties:
It is because of the numeration #τ , associated with the computable enumer-
ator E, that we can link Turing machines to tapes in a one-to-one and, in
some informal and merely intuitive sense, computable way. From these ideas,
we shall develop the concepts of oracle machine, Turing jump and degrees
of recursive unsolvability in a little bit more of detail. This labour can be
performed in a similar fashion to the previous subsection, considering only
sets of tapes inside the Turing machine formalism and thus avoiding the need
to pay attention to implications about representations just yet.

Oracle machines and Turing degrees

Given a set of tapes Q, an oracle for Q is the characteristic function for Q.
A Turing machine with oracle Q, φQe is a Turing machine with one additional
operation which can be used at any point of the computation: given a tape
τ , the operation produces ν if τ ∈ Q, and o if τ 6∈ Q. Note that it is easy
to implement Q as an additional infinite tape that in the position #τ has a
”1” if τ ∈ Q and a ”0” otherwise. However, this tape would not belong to
our set of admissible tapes as it would have, in general, an infinite number
of non-blank symbols. It is simply an artifact used to better understand the
way to work with an oracle.

All the definitions from the previous subsection can be automatically ex-
tended to computable functions and sets with oracle Q, substituting Turing
machine for Turing machine with oracle Q. In particular, the concepts of a
computable function with oracle Q, a computable set with oracle Q and a
computably enumerable set with oracle Q are defined in the obvious way. It
is common to write that a set N is computable in Q if it is computable with
oracle Q. Furthermore, the concept of computable function, computable set
and computably enumerable set are a particular case of computable function,
computable set and computably enumerable set with oracle O, where O is
any computable set (for example, O = T). We will write MQ to refer to the
set of functions computable with an oracle for Q.

Clearly, all Turing machines are also Turing machines with oracle Q, for
any set Q. However, because the definition of Turing machine with oracle is
constructive, it is clear that the set of Turing machines with oracle Q is still
countable. It is also clear that Q is computably enumerable with oracle Q.

22

Lemma 2.2. Q is computably enumerable with oracle Q.

Proof. Let Q ⊂ T . We know that E is a computable function that enumer-
ates T . Thus, E is also computable with oracle Q. Build a Turing machine
with oracle Q which iterates over T using E and, for each iterated tape τi,
uses the oracle for Q to verify whether τi ∈ Q. If it is, stop. If it is not,
continue iteration. This Turing machine with oracle Q enumerates Q.

We will call this enumerator EQ. Once again, EQ provides an ordering
for the tapes q ∈ Q, and we will write #Qq to refer to the numbering, under
this enumeration, of the tape q. This enumeration can be used to enumerate
Turing machines with oracle Q. Thus, writing φQ#Qτ has the obvious mean-
ing, and all Turing machines with oracle Q can be enumerated in such way.

Theorem 2.6 can be extended to Turing machines with oracles. This is
called the Turing jump.

Definition 2.7. Let Q ⊂ T be an infinite countable set of tapes. The Turing
jump of Q is

Q′ =
{
τ ∈ Q|φQ#Qτ (τ)↓

}
(19)

Theorem 2.7. Q′ is not computable in Q.

Proof. Suppose Q′ has a computable characteristic function with oracle Q,
χQ′

Q; define

fQ(τ) =

{
EQ(φQ#Qτ (τ)) if χQ′

Q(τ) = ν

o if χQ′
Q(τ) = o

(20)

then fQ ∈MQ. Thus, we know that there exists τ0 such that for all τ ∈ Q,
fQ(τ) = φQ#Qτ0(τ) but, for all τ , fQ(τ) = EQ(φQ#Qτ (τ)) 6= φQ#Qτ (τ). In
particular, fQ(τ0) 6= φQ#Qτ0(τ0). This contradiction proves that Q′ must be
not computable in Q.

This allows us to give a formal definition for Turing degrees.

Definition 2.8. We shall say that P ≤ Q if P is computable in Q, and that
P ≡ Q if P ≤ Q and Q ≤ P . This is an equivalence relation. We define

deg(Q) = [Q]≡ = {P |P ≡ Q} (21)

23

and this induces an order relation in the degrees. deg(P) ≤ deg(Q) if and
only if P ≤ Q.
Also, we recursively define

∅(n) = {τ ∈ ∅(n−1)|φ∅(n−1)

#∅
(n−1)

τ
(τ)↓} (22)

where ∅(0) = ∅ is a computable set. Also, set

000(n) = deg(∅(n)) (23)

Clearly, 000(0) ≤ 000(1) ≤ · · · ≤ 000(n) · · · .

3 Representations

3.1 Church-Turing thesis

We started this work introducing computability as the theory built around
the question ”What can be done by an algorithm?” and ”What can be de-
fined as an algorithm?”. The computation model provided by formalisms
such as Turing machines or λ-calculus is broadly accepted to be a good def-
inition of what can be defined as an algorithm. The idea that the notion of
computability corresponds to that defined by Turing machines is called the
Church-Turing thesis. Church-Turing thesis’ name is due to Turing’s work
on providing evidence that this thesis was most likely true. More precisely,
Turing provided a proof in his classical paper [12] that Turing machines and
λ-calculus (as defined by Church) were equivalent.

However, there is a reason for which the Church-Turing thesis is thus
named. The Church-Turing thesis talks about the intuitive notion of com-
putability, and thus it is not a mathematical statement which can be proven.
One can only provide evidence that suggests that any reasonable model of
computability is equivalent to Turing machines. Despite this undisputed
fact, the almost unanimous view is that the equivalence of specific compu-
tation formalisms, for instance Turing machines and λ-calculus, establishes
that the notion of whether a specific function is computable or not is inde-
pendent of the formalism used, and that this is a proven and mathematically
true fact. This is a perfectly compatible view with the acceptance that the
Church-Turing thesis is unprovable, but in this work we will, however, pro-
vide a rather unorthodox discussion on this other matter. More precisely,
Church-Turing thesis itself talks about the intuitive notion of computability,
and is thus unprovable. On the other hand, the specific equivalences between

24

specific models of computation can and are proved. A common idea derived
from this equivalence is that Turing machines and λ-calculus define the same
functions to be computable, we will argue that this is not the case.

Assume it is a mathematically proven fact that Turing machines and
lambda-calculus make the same functions computable. Then, it must have a
mathematically precise and unambiguous formulation. We will progressively
suggest possible formulations of this fact, and argue about their properties.

Statement 3.1. For every Turing machine φ, there exists one and only one
lambda function f such that for all x, φ(x) = f(x).

This first attempted statement is clearly false, or rather, incorrectly for-
mulated. Some of its problems are that Turing machines work on tapes, and
lambda functions on other lambda functions; or the detail that it does not
consider the cases of a Turing machine not halting or a lambda function not
having a normal form.

Note: For this discussion, we will write f(g)↓ to indicate that a lambda
function f when provided g as argument has normal form (that is, it can be
correctly reduced in a finite number of steps), and f(g)↑ to indicate that it
does not.

Statement 3.2. There exists a bijection θ ∈ [T → Λ] between the set of
possible tapes of a Turing machine, T , and the set of lambda functions, Λ,
such that for every Turing machine φ, there exists one and only one lambda
function f such that for all τ ∈ T

1. φ(τ)↓ if an only if f(θ(τ))↓.

2. If φ(τ)↓, then θ(φ(τ)) = f(θ(τ)).

This statement is also false. The problem now bears with the hypothesis
that the equivalent lambda function is unique, and viceversa. Many Turing
machines can implement exactly the same behaviour, and the same goes for
lambda functions. In fact, it is easy to show that for every Turing machine
(respectively, lambda function), there are infinitely many different Turing
machines (respectively, lambda function) which implement exactly the same
behaviour. The formulation can be corrected.

Statement 3.3. There exists a bijection θ ∈ [T → Λ] between the set of
possible tapes of a Turing machine, T , and the set of lambda functions, Λ,
such that for every Turing machine φ, there exists a lambda function f such
that for all τ ∈ T

25

1. φ(τ)↓ if an only if f(θ(τ))↓.

2. If φ(τ)↓, then θ(φ(τ)) = f(θ(τ)).

and viceversa (that is, for every lambda function f , there exists a Turing
machine φ fulfilling the properties).

This statement is true, and it is what Turing proved in [12]. Furthermore,
the following corollary can be proved.

Corollary 3.1. Let θ1, θ2 ∈ [T → Λ] be two correspondences between tapes
and lambda functions for which the above properties hold. Then, the function
θ2
−1 ◦ θ1 ∈ [T → T] must be computable.

Proof. Assume θ2
−1 ◦θ1 was not computable. We know that for every Turing

machine φ, there exists a lambda function f , and transitively another Turing
machine φ such that

1. φ(τ)↓ if and only if f(θ1(τ))↓ if and only if φ(θ2
−1 ◦ θ1(τ))↓.

2. If φ(τ)↓, then θ1(φ(τ)) = f(θ1(τ)), and then θ2
−1 ◦ θ1(φ(τ)) = φ(θ2

−1 ◦
θ1(τ)).

And we have that φ = (θ2
−1 ◦ θ1)−1 ◦ φ ◦ (θ2

−1 ◦ θ1), where φ and φ are
implemented by Turing machines. It is clear that this bears a contradiction.

However, Turing’s theorem does not imply that a function’s computabil-
ity is independent of the computation formalism. To see this, reconsider one
of the adaptations we had to make to the statement to make it become true
(statement 3.2). We had to include a bijection between tapes and lambda
functions because Turing machines work on tapes and lambda functions work
on other lambda functions. A function’s computability cannot be indepen-
dent of the computation formalism because computable functions in different
computation formalisms are different functions defined on different sets. At
least two objections could be made to this conclusion. First, it could be
argued that when we consider Turing machines and lambda functions as an
implementation of the same abstract function in a different set (for instance,
a function in natural numbers g ∈ [N→ N)) then this theorem implies that
the function will be computable in one formalism if and only if it is com-
putable in the other formalism. Second, it could be argued that the proven
corollary ensures that if we ”adapted” lambda functions to work on tapes,

26

then they would inevitably be equal to the Turing machine formalism. Both
of these objections rely on false assumptions, and to see this we will refer
to the discussion on the halting problem, in which we showed that different
representations of the problem changed the computability of the problem.

A more abstract and algebraic analysis, which might be more enlighten-
ing, goes as follows. Mathematically talking, objects can only be compared
in regards to some common structure. It makes no sense, for instance, to con-
sider an isomorphism between a group and a vector space. There are groups
which are also vector spaces, and thus are isomorphic to other vector spaces;
but this comparison will only make sense once we have a common structure
on both sides. Moreover, it is imprecise to say that a group is also a vector
space. It would be much more formal to state that we can give the underlying
set of this group a vector space structure which relates to the group structure
in a specific way. A common and somehow philosophical question in abstract
algebra asks what is the difference between equality and isomorphism. The
most correct answer is that, as far as that structure (group, vector space,
computation formalism...) goes, they are the same. However, when granted
additional structures, they might not be the same. An important point on
this discussion is that mathematical objects don’t have underlying structures
which must be somehow discovered, it is after granting them a structure that
we can make considerations on them; or rather, mathematics talk only about
the structure we had previously granted them, or even, about empty struc-
tures which can then be applied to ”real world objects”. This does not mean
that, for example, the group and manifold structures of a Lie group are un-
related. But they are only a Lie group so long as these structures are related
in a specific way. Any manifold can also be made a group, and viceversa,
but they will only be a Lie group so long as there exists a link between both
structures, granting them a more complex structure than the simple addition
of the two independent structures (Lie group structure).

Bringing this idea back to computability, considering whether Turing ma-
chines and lambda functions make the same functions computable ”in some
sense” only becomes meaningful so long as we precise what that sense is.
From the theorem on the equivalence of both formalisms provided by Tur-
ing we can extract that the structure they share (computation model) does
not specify what functions shall be computable, only their relative structure
(closed through composition, constant functions being computable, etc). As
an example, consider the function 1 ∈ [T → {ν, o}) which outputs ν if the
symbol on the initial head position is a blank symbol, and o if it is not.
From a structural point of view, outside of the Turing machine formalism,

27

this function is isomorph to the halting problem’s function. They both have
an image of size 2 (halt, don’t halt), the preimage of both elements in the
image is infinite (there are infinite tapes which have a blank symbol on the
starting position, and infinite tapes that don’t; and there are infinite Turing
machines that halt and infinite Turing machines that don’t). However, in
the Turing machine formalism, 1 is computable and the halting problem is
not. This could be deemed similar to the realisation that in the integers ring,
−1 has an inverse and 2 does not. We could relabel all numbers or (from a
different point of view) grant the set a different ring structure, in which 2
behaved like −1 and viceversa (that is, 2·2 = 1 and 1+1 = −1), and this new
ring would be isomorph to integers. Once again, −1 and 2 are mathematical
objects and thus do not refer to some specific and fully detailed reality, −1
only means ”the opposite of the neutral element through multiplication” and
2 only means ”the number obtained by adding the neutral element through
multiplication with itself”, and it does not matter if we label them as −1
and 2 or as potatoe and carrot. A further and enlightening example of this
situation comes when we consider i and −i in the complex field C. It is com-
mon knowledge that there is no mathematical difference between these two
elements, except that they must be two different ones; but selecting one to be
the positive and the other one to be the negative is an absolutely arbitrary
choice with no consequences.

3.2 Formalising representations

What we hope to have achieved through the discussion performed so far is
to justify a need to consider the question of representation in computation
and what its implications are. From this point onwards, we offer what we
feel is a rational formalisation of representations and some interesting results
derived from this formalism. These results can be found in [4].

Definition 3.1. A representation of an abstract set A into the set of tapes
T is an injective function a ∈ (A→ T)

The image of A under a is the set of tapes a(A) ⊆ T . Note that if a
is a representation of A and A′ ⊆ A, then a is also a representation of A′

but its properties as a representation of A might be quite different from its
properties as a representation of A′. For example, the set a(A) might be c.e.
while a(A′) may fail to be. As we’ll see in the following, this fact has quite
far-reaching consequences.

28

The set T is countable and, since representations are required to be in-
jective, the abstract set A is also countable: we can’t represent any set with
cardinality higher than ℵ0.

Definition 3.2. Given a function f ∈ [A → B] and two representations a
and b of A and B, respectively, a representation of f is the function fab :
[a(A)→ b(B)] such that the following diagram commutes

A
f //

a
��

B

b
��

a(A)
fab
// b(B)

If fab ∈M, then we say that f is computable in the pair of representations
a, b. We shall indicate with M(a, b) the set of functions computable in (a, b).

Note that even if A = B we don’t assume necessarily that a = b: the
same set can be represented in two different ways as arguments and as result
of the function. If A = B and a = b, we can abbreviate M(a, a) as M(a).

The representation of a function is always defined: a is injective in a(A)
and therefore invertible, so we have fab = b ◦ f ◦ a−1. The representation,
however, may fail to be computable.

We assume that the representation has certain minimal properties that
allow us to work with tuples of elements of A. In particular, let

〈 , 〉 ∈ [A× A→ A] (24)

be a bijection.

Definition 3.3. A representation of a set A is well founded if the duplicate,
swap, projection, partial application are computable in it, and it allows the
definition of the eq machine (see p. 14).

If we need to iterate the use of this bijection, we shall use the shortcuts

(n1, . . . , nk) = (n1, (n2, (. . . , (nk−1, (nk, o))) . . .)

πi = π1 ◦ π2 ◦ · · · ◦ π2︸ ︷︷ ︸
i−1

(25)

Let a, a′ be two representations of A and b, b′ two representations of B.
Let f ∈ [A → B] and fab, fa′b′ be the two corresponding representations of

29

f . We then have

a′(A)
fa′b′ // b′(B)

A

a′

OO

a
��

f // B

b′

OO

b
��

a(A)
fab // b(B)

The compositions x = a′ ◦ a−1 and y = b′ ◦ b−1 are endorepresentations:
representations of T into T : fxy is a representation of fab

1. Note that if
f ∈M(a, b) and f ∈M(a′, b′), then fab ∈M(x, y). The reverse is also true:
if f ∈M(a, b) and fab ∈M(x, y), then f ∈M(a′, b′).

Computability is not an immediately transferred property. Consider two
functions f1, f2 ∈ [A→ B] in M(a, b), and assume that f1 ∈M(a′, b′). This
doesn’t entail that f2 ∈ M(a′, b′). To see this, consider that constant func-
tions are computable in all representations.

Definition 3.4. The domain of the Turing machine φe in a representation
x is

W x
e = {a|a ∈ A ∧ φe(x(a))↓} (26)

Computability and enumerability of sets are extended in the obvious way
through the computability of their characteristic functions.

3.3 Relations between representations

One of the most interesting ways to study representations is by comparing
them. That is, considering what abstract functions become computable in
different representations and what properties of representations might be
linked with these changes in computation power.

Definition 3.5. Let x and y be two representations of a set A: x is (computa-
tionally) transformable in y (y � x) if there is a function f ∈ [x(A) � y(A)]

1Formally fxy = fa′b′ , a function from a′(A) to b′(B). Nevertheless, we use two dif-
ferent symbols because the interpretation of the two functions is not the same: fa′b′ is a
representation of f , while fxy is a representation of fab.

30

such that y = f ◦ x, viz. such that

x(A)

f

����

A

x
==

y !!
y(A)

(27)

commutes.

This corresponds to the intuitive idea of being able to translate from
one representation to the other. However, this only comes after an initial
representation has been settled, that is, abstract concepts cannot be compu-
tationally translated.

If we drop the computability requirement, then the function f always ex-
ists and is unique in [x(A)→ y(A)], since the representations are one-to-one
and onto. The previous definition, therefore, is tantamount to requiring that
y ◦ x−1 ∈M.

Definition 3.6. Two representations x and y are transformationally equiv-

alent (x
t∼ y) if x � y and y � x.

Transformability is transitive, as can be seen from the commutativity of
the following diagram and by the fact that M is closed under composition.

x(A)

f
����

g◦f

����

A

x
==

x′ //

x′′

!!

x′(A)

g
����

x′′(A)

(28)

Therefore
t∼ is an equivalence relation. Moreover, � induces a partial order-

ing on the equivalence classes.

Theorem 3.1. Let x, y be representations of a set A. If y � x and x(A) is

c.e., then y
t∼ x.

31

Proof. Since y � x, there is a transformation f ∈ [x(A) � y(A)] and since
x(A) is c.e., by theorem 2.4, there is f−1 ∈ [y(A) � x(A)] (also computable).

Therefore x � y and x
t∼ y.

This theorem gives us some indications on the hierarchy induced by the
relation �; it tells us that all representations whose range is c.e. are at the
bottom of the hierarchy: they are computationally transformable only in
relations equivalent to them. This is no longer the case if we drop the c.e.
requirement.

Example I:
We provide here a formalisation of the issue with representations in the case
of the halting problem.

Let c be the standard representation of N, in which a number n is repre-
sented by a string of n+ 1 symbols ”1” followed by a ”0”. Build a represen-
tation y as follows. Define the function f(n) as

f(n) =

{
1 if φn(c(n))↓
0 if φn(c(n))↑

(29)

Define
y(n) = 〈c(n), c(f(n))〉 (30)

in the sense of coding multiple tapes onto one on the standard way, or any
other which allows us to compute the basic operations considered at the
beginning of the text, for that matter.
It is clear that y(N) is not c.e. and that c � y, since c = π1 ◦ y and π1 is

computable in y. On the other hand, it is not c
t∼ y, as in y one can compute

f(n) simply as

y(n) 7→

{
〈c(0), c(f(0))〉 if π2(y(n)) = c(0)

〈c(1), c(f(1))〉 if π2(y(n)) = c(1)
(31)

while in c this is not possible (as proved by the undecidability of the halting
problem).

One question that comes naturally is whether the transformability hier-
archy corresponds to an effective increase in computing power. In order to
answer this question, we introduce a second relation among representations.

Definition 3.7. Let x and y be two representations of a set A; x is compu-
tationally stronger than y (written y ⊆ x) if M(y) ⊆M(x).

32

That is, x is computationally stronger than y if all functions computable
in the representation y are also computable in the representation x. This in-
duces, of course, another equivalence relation and a partial ordering among
equivalence classes.

Definition 3.8. Two representations x and y are computationally equivalent
(x

c∼ y) if x ⊆ y and y ⊆ x.

Definition 3.9. Two representations x and y are incomparable (x||y) if nei-
ther x ⊆ y nor y ⊆ x.

It could maybe seem somehow insubstantial to consider an actual increase
in computing power produced merely by a change in representation, consid-
ering that computable functions in tapes are always the same and unaffected
by representation. Notice, though, that on one hand, representations not
only map abstract concepts into tapes, but they also restrict the set of tapes
which are considered a valid representation. That is, any tape with only a
finite number of non-blank symbols is a valid tape, but for certain represen-
tations, some other invariants might be necessary, such as having delimiter
characters, starting on a blank symbol or having a bounded number of written
symbols. These restrictions or invariants allow us to build Turing machines
which assume them and work as if they were granted. These Turing ma-
chines, if applied to tapes which did not fulfill these invariants, would most
likely not halt or at best, produce an irrational result. However, as a partial
function on the represented set, they might be able to perform computations
otherwise impossible if these invariants where not met. On the other hand,
infinite sets are differentiated from finite sets mainly by their ability to con-
tain proper subsets which are bijective to them. As such, even if we restrict
the set of tapes, allowing Turing machines to work in a different way as they
used to before, since representations only require to be injective, we might be
able to represent equally big sets in a ”smaller” tape set, gaining invariants
which enhance the computation power, without losing representation power.

Example II:

Consider the function c ∈ [N × N → N) such that c(n,m) = if n =
m then 1 otherwise 0. A comparator of numbers. Consider now a represen-
tation b of pairs of natural numbers in which they are coded one to the left
of the initial head position (least significant digit closer to the initial head
position), one to the right of the initial head position, in binary code; with

33

no additional information. Consider, on the other hand, another representa-
tion of pairs of natural numbers in which they are coded as well one to the
left, one to the right, but in unary code (to code n, we would write n ”1”’s,
followed by zeroes).

Lemma 3.1. c is not computable in b.

Proof. Assume it was computable. Then cb ∈ M, and is thus implemented
by at least one Turing machine φcb . Let n ∈ N be any natural number. If
we execute φcb(b(n, n)), it halts with a positive result after a finite number
of steps. Write sn ∈ N for the number of steps φcb executes when given
b(n, n). Now consider any natural number m ∈ N such that m 6= n and
m = n mod 2sn , that is, m and n have the same least significant sn binary
digits. An infinite amount of such numbers exist. If we execute φcb(b(n,m)),
in the first sn steps it will only be able to read at most sn tape positions, and
since machines move one position at a time, it would never be able to read
any digit of n or m other than the sn least significant digits. Since they are
equal, this execution would be exactly the same as the one performed when
running φcb(b(n, n)) and would thus halt with a positive result, indicating
that n = m, which is incorrect. Thus, φcb does not correctly implement c.

However, in x, c is trivially computable. Intuitively, the machine just runs
both directions at the same time until it encounters a 0. If it encounters a 0
on both sides, they are equal. Otherwise, they are not.

The following lemma is a direct consequence of the definition of equiva-
lence by transformability

Lemma 3.2. Let x and y be two representations of A; if x
t∼ y then x

c∼ y.

Note, however, that equivalence is necessary here. It is generally not true
that if x � y then x ⊆ y. The intuitive idea is that transformability gives us a
one way translation capability, but in order to compute we need to translate
both ways, to represent before the computation and to interpret after the
computation.

We have delimited the implications on one direction between the two
defined hierarchies (transformability hierarchy and computational strength
hierarchy). We know that two transformationally equivalent representations
must be computationally equivalent, and that it is not necessary that a rep-
resentation transformable into another is neither computationally stronger

34

nor weaker. We now ask if any implications on the opposite direction can be
made. Must computationally stronger or equivalent representations imply
anything about their transformability? A very satisfactory answer to this
question, which also answers some yet unformulated questions, arises when
we add the additional hypothesis that the represented sets be c.e.

Theorem 3.2. Let x and y be two representations of a set A, with x ⊆ y.
Then, if x(A) is c.e. so is y(A).

Proof. Let x|A ∈ [A→ x(A)]; note that x is injective and therefore x−1 exists
in x(A). The set x(A) is c.e., therefore there are e′ ∈ [x(A) � x(A)] and
τ0 ∈ x(A) such that for each τ ∈ x(A) there is k such that τ = e′k(τ0).

Consider now the function q = x−1 ◦ e′ ◦ x|A ∈ [A → A]. It is obvious
that given u0 = x−1(τ0) and u ∈ A it is u = qk(u0) where k is the number
such that x(u) = e′k(t0). That is, q is an enumerator of A and e′ = qx is its
computable representation.

By a similar argument, it can be seen that e = y ◦ q ◦ y−1 = qy is an
enumerator of y(A) and, since q is computable in x and x ⊆ y, q is also
computable in y, that is, e is a computable function. Therefore y(A) is not
only c.e., but also with the same enumeration function (in A) as x(A).

This theorem is even stronger than it looks at first sight. The fact that y
is not only computably enumerable, but also with the exact same enumera-
tion as x yields us an immense power, summarized in the following theorem.

Theorem 3.3. Let x and y be two representations of a set A. If x ⊆ y and

x(A) is c.e. then x
t∼ y

Proof. From theorem 3.2 we know that y(A) is also c.e. and that there is
an enumerator e of A that is computable in both representations, that is,
e ∈M(x) ∩M(y).

Let us begin by showing that y � x; in order to do this, we must find
a computable function f such that y = f ◦ x. Let a ∈ A, and x(a) its x-
representation. If a0 is the start value of e, initialize two tapes with x(a0)
and y(a0), then simulate the two Turing machines that compute ex and ey
until we reach an iteration i such that eix(x(a0)) = x(a), then ei(a0) = a, and
eiy(y(a0)) = y(a), that is, on the second tape we have the y-representation of
a. We therefore have a Turing machine that computes f .

In a similar way we can build a Turing machine that computes g such
that x = g ◦ y.

35

We can reformulate these results to show all of its implications.

Theorem 3.4. Let x and y be two representations of A; if x(A) or y(A) are

c.e. then either x
t∼ y or x||y.

The proof of all these properties boils down in practice to the possibility
of computing an enumerator of A. We can therefore formulate the previous
result in the following guise:

Theorem 3.5. Let A be a set with an enumerator e, and let x and y be two

representations of A; then if e ∈ M(x) or e ∈ M(y), it is then either x
t∼ y

or x||y.

4 Turing hierarchy and representations

The hierarchy induced by the computationally stronger relation and the Tur-
ing hierarchy seem, at first sight, to be somewhat related. When we presented
oracle machines, we explicitly defined them to be an increase in computing
power. On the other hand, while oracle machines are an extension of Tur-
ing machines, we have shown that representations are something necessary
in order to be able to use the Turing machine formalism to consider com-
putability on abstract sets, and thus it would seem inappropriate that they
happened to implement the same situations. In this section we consider the
relationships between both hierarchies.

4.1 Represented oracles

We will first extend the ideas of oracle machines to represented sets. Given
a set A, a representation x of A, and a set N ⊆ A, an x-oracle for N is a
function that, given the tape x(n), produces ν if n ∈ N , and o otherwise; that
is, it is an oracle for x(N). The Turing machine φNe with oracle N is defined
in the obvious way. We shall indicate with MN(x) the set of functions in A
computable with an x-oracle for N .

Definition 4.1. Given two sets B,C ⊆ A and a representation x of A, B is
x-computable in C if χB |A ∈MC(x).

We will now provide an analogue definition of Turing jump and Turing
degrees for represented sets. For this, a computable enumeration is needed.
Consider x a representation of a set A such that x(A) is computably enumer-
able. Then, C is trivially computable using an x-oracle for C, and as such,

36

it is computably enumerable using an x-oracle for C. Use this enumerator
to provide a standard numbering #x

C of C. Note that even if C is always
computable using an x-oracle for C, it need not be computably enumerable
if A is not computably enumerable. In general, a represented set which is
computable need not be computably enumerable if the representation is not
computably enumerable. This provides further evidence that representations
which are not computably enumerable do not seem very appropriate.

Definition 4.2. Let A,C be two infinite countable sets with C ⊂ A. Let x
be a computably enumerable representation of A. The Turing jump of C in
the representation x is

C ′x =
{
c ∈ C|φ#x

Cc(x(c))↓
}

(32)

Theorem 4.1. C ′x is not x-computable in C.

Proof. Let EC ∈ [C → C] be the enumerator of C. Suppose C ′x has a
computable characteristic function with x-oracle C, χC′x

C ; define fC ∈ [C →
C] such that

fC x(x(c)) =

{
EC

x(φ
C
#x

Cc(x(c))) if χC′x
C(c) = ν

o if χC′x
C(c) = o

(33)

then fC ∈MC(x). Thus, we know that there exists c0 such that for all c ∈ C,
fC x(x(c)) = φC#x

Cc0
(x(c)) but, for all c, fC x(x(c)) = EC

x(φ
C
#x

Cc(x(c))) 6=
φC#x

Cc(x(c)). In particular, fC x(x(c0)) 6= φC#x
Cc0

(x(c0)). This contradiction
proves that C ′x must be not x-computable in C.

Definition 4.3. Let A be a set and x a computably enumerable representation
of A. We shall say that P ≤x Q if P is x-computable in Q, and that P ≡x Q
if P ≤x Q and Q ≤x P . This is an equivalence relation. We define

degx(Q) = [Q]≡x = {P |P ≡x Q} (34)

and this induces an order relation in the degrees. degx(P) ≤x degx(Q) if and
only if P ≤x Q.
Also, we recursively define

∅(n)x = {a ∈ ∅(n−1)x |φ∅
(n−1)
x

#x
∅(n−1)
x a

(a)↓} (35)

where ∅(0)x = ∅ is a x-computable set. Also, set

000(n)
x = degx(∅(n)x) (36)

Each representation x induces a hierarchy

000x ≤x 000′x ≤x 000′′x ≤x · · · ≤x 000(n)
x ≤x · · · (37)

37

4.2 Representation degrees

In the following, we shall indicate with c the standard representation of N,
that in which the number n is represented as n+ 1 symbols ”1” followed by
one ”0”.

The connection between Turing degrees and representations comes through
the so-called representation degrees, which apparently mimic Turing degrees,
achieving the capacity to compute new functions through representation in-
stead of oracles. In particular, we use the same general construction used in
the presented alternative halting theorem representation. That is, we some-
how include the answer to a specific problem we would like to compute in
the very same representation.

Let χ
(n)
x be the characteristic function of the set ∅(n)x , and c the standard

representation. Define the class of representations u(k) : N→ T as

u(k)(n) = 〈c(χ(k)
c (n)), . . . , c(χ′c(n)), c(n)〉 (38)

We have u(k−1) = π2 ◦ u(k), therefore u(k−1) � u(k); on the other hand, χ
(k)
c is

computable in u(k), but not in u(k−1), so u(k) 6 t∼ u(k−1). We can consider the

equivalence classes [u(k)] t∼. Clearly, if x
t∼ y it is M(x) = M(y), so the set

M([u(k)] t∼) is well defined. We call this the representation degree of u(k):

u(k)u(k)u(k) = rdg(u(k)) = M([u(k)] t∼) (39)

Lemma 4.1.
u(k)u(k)u(k) ⊆ ∅(k)∅(k)∅(k) (40)

Proof. Let f ∈ u(k)u(k)u(k); then there is a Turing machine φ such that, for each
n ∈ N, (u(k) ◦ f)(n) = (φ ◦ u(k))(n). Consider a tape with the representation
c(n). Since (trivially) χ(k) ∈ ∅(k)∅(k)∅(k), there is a Turing machine with oracle ∅(k)
that can compute c(χ(k)) and, by the transitivity of the relation ≤c, there are
Turing machines with oracle ∅(k) that can compute ∅′, . . . , ∅(k−1); the bijection

〈,〉 is also computable, therefore there is a Turing machine φ∅(k) with oracle

∅(k) that, given c(n) can compute u(k)(n). Applying φ∅(k) followed by φ we
can compute f with oracle ∅(k).

The following property derives trivially from the observation that χ(k) ∈
u(k)u(k)u(k), but χ(k) 6∈ ∅∅∅(k−1)

Lemma 4.2.
u(k)u(k)u(k) −∅∅∅(k−1) 6= ∅ (41)

38

So, there is a hierarchy of representations that in a sense mirrors the Tur-
ing hierarchy. One question that comes naturally is whether this hierarchy
corresponds to an effective increase in computing power.

4.3 Relations between represented oracles

Consider the two representations u and u′: they are representations of N,
which is c.e. under u, and they are not equivalent, since χ′c is computable
in the latter but not in the former. Therefore, by theorem 3.5, it must be
u||u′–that is, in order to gain the possibility of computing χ′c, we must give up
the computability of some of the functions that are computable in u. Specif-
ically, we lose the possibility of computing the iterator itself: given u′(n) =
〈c(χ′c(n)), c(n)〉, we can’t compute u′(n+ 1) = 〈c(χ′c(n+ 1)), c(n+ 1)〉.

On the other hand, the theorem doesn’t tell us anything about the other
degrees of the hierarchy, since none of the range u(k)(N), k ≥ 1 are c.e. and
none of them allows the computation of the iterator. This leads to the idea
of relativizing the properties seen so far through the use of Turing machines
with oracles.

Definition 4.4. A representation y is R-better than x (x ⊆
R

y) if MR(x) ⊆

MR(y); the equivalences x
c∼
R
y, x

t∼
R
y and the incomparability x||

R

y are defined

in the obvious way.

The following theorem can be proved in the same way as the preceeding
theorems, simply by replacing all Turing machines with a Turing machine
with the suitable oracle.

Theorem 4.2. Let x and y be two representations of a set A with x ⊆
R
y; if

x(A) is R-c.e. then:

i) y(A) is R-c.e.;

ii) x
t∼
R
y;

iii) x
c∼
R
y.

From this we derive

39

Theorem 4.3. Let x and y be two representations of a set A, then

i) if x(A) or y(A) are R-c.e., then either x
c∼
R
y or x||

R

y;

ii) if A is R-c.e. with enumerator e, ex ∈MR(x) or ey ∈MR(y), then either

x
c∼
R
y or x||

R

y.

Consider now the representations u(k) and u(k+1); note that χ(k+1) ∈
M∅k(u(k+1)), but χ(k+1) 6∈ M∅k(u(k)), so u(k) 6 c∼

∅k
u(k+1). On the other hand

the enumerator of ∅(k) is computable in both representations, therefore, by
theorem 4.3, it must be u(k) ||

∅k
u(k+1).

5 Conclusions

In this work we have paid attention to the fact that in order to answer the
question of what is computable, one must create a computation formalism
and must decide a way to represent the abstract elements on which the com-
putability question was asked into the formalism. We have shown that this
choice is not trivial, we have formalised this notion and considered and an-
swered several questions regarding up to what point and in what manner
this choice affects computability notions. In particular, the essential result
of this work proves that representations which allow the computation of an
enumerator of the set can never be strictly better or worse than any other
representation, they must either be equivalent or incomparable.

We have also shown that any problem can be made computable by maing
the right choice of representation, but in doing so, other problems may be-
come incomputable. Consequently, we argue that a more rational approach
than asking about the computability of a problem is asking about the co-
computability of several problems (that is, what problems can be simul-
taneously computed in the same representation). In particular, the main
result of the work can be thought to say that enumerators have unique co-
computability. That is, given an enumerator, any representation which allows
its computation will allow the computation of exactly the same problems.

The classic degrees of recursive unsolvability, one of the main topics of
study in computability theory, are built on the idea of oracle machines, and
offer a rich and deeply studied algebraic structure which we have shown to
be mirrored, but not reached, by what we have called representation degrees.

40

In particular, there is an analogue hierarchy of representation degrees, to-
tally included inside the original Turing machine formalism, which are built
by forcing the same incomputable problems to be computable. However,
while degrees of recursive unsolvability do not lose any computation power
in the process, thus creating strictly greater degrees, representation degrees
lose some computational power when forcing new problems to be computable.

An idea which goes one step further in relation with representation de-
grees and co-computability is the study of computability of functions and
their relationship to representations (or, alternatively, co-computability with
other functions) from a fully algebraic point of view. This point of view,
unexplored in this work, might consider the definition of an abstract and
precise concept of computational model and derive general results in a sim-
ilar fashion to the study of groups, rings or vector spaces. For example, we
believe that there exists some kind of duality between the specification of a
representation and the choice of some basic functions (like the enumerator) to
be computable, in the sense that the choice of one or the other are essentially
the same thing, even when one is a specification on the basic symbols used
and the other is a specification on the operations performed with those sym-
bols. Therefore, the results presented in this work and the results in favour
of the Church-Turing thesis could all be contained under the same general
theory. We believe that research on these ideas would be highly valuable and
would allow for a better scaffolding of computability theory that would make
different points of view and different problems reunite and allow for a better
overall understanding of the concept of computability.

Another highly interesting related topic of study is the effects of repre-
sentation on complexity. This possible future work could as well be made
on a common basis such as the algebraic definition suggested in the previous
paragraph. We believe that, at least, this would allow for a better and more
centralised understanding of these topics, and possibly help in the resolution
of some of today’s most challenging problems in theoretical computer science.

References

[1] U. Abraham and R. A. Shore. Initial segments of the degrees of size ℵ1.
Israel Journal of Mathematics, 53(1):1–51, 1986.

[2] H. P. Barendregt. The lambda calculus, its syntax and semantics. 1984.

41

[3] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computabil-
ity and logic. 1974.

[4] Juan Casanova and Simone Santini. On the relation between repre-
sentations and computability (submitted). International workshop on
Mathematical foundations, 40, 2015.

[5] Alonzo Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58:345–363, 1936.

[6] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages and Computation. 2002.

[7] S. C. Kleene and Emil L. Post. The upper semi-lattice of degrees of
recursive unsolvability. Annals of Mathematics, 59(3):379–407, 1954.

[8] M. Lerman. Initial segments of the degrees of unsolvability. Annals of
Mathematics, 93:365–89, 1971.

[9] P. Odifreddi. Reductibilities. In E. R. Griffor, editor, Handbook of
Computability Theory, pages 89–119. Amsterdam:North-Holland, 1999.

[10] Emil L. Post. Recursively enumerable sets of positive integers and
their decision problems. Bulletin of the American Mathematical Society,
50(641–2), 1944.

[11] H.G. Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, 74:358–
366, 1953.

[12] Alan Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Soci-
ety II, 43:230–265, 1936.

42

