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RESUMEN 

El mercurio (Hg) y la mayoría de sus compuestos son altamente tóxicos para las 

personas y para los ecosistemas. Es considerado un contaminante global debido a su alta 

movilidad y extremada persistencia en el medio ambiente. Un factor muy importante de 

los efectos del mercurio en el medio ambiente es su capacidad para acumularse en 

organismos y ascender por la cadena alimentaria convirtiéndose en una seria amenaza 

para la población humana.  

El área minera de Almadén, situada al sur de España (Ciudad Real), ha sido durante 

siglos la zona de mayor producción de Hg a nivel mundial. El cese de la producción de 

Hg ha impuesto la necesidad de promover otras actividades económicas, tales como la 

agricultura y la ganadería las cuales se han visto debilitadas por el contenido de Hg en 

los suelos agrícolas de la zona. Por tanto, era importante evaluar el riesgo potencial para 

la salud humana y el medio ambiente considerando la absorción y distribución de Hg en 

cultivos que se adapten a las condiciones de la zona. En este sentido, se propuso el uso 

de la alfalfa (Medicago sativa) como cultivo alternativo y/o como planta para 

fitotecnologías en la comarca de Almadén, la cual podría ayudar a eliminar o estabilizar 

contaminantes evitando a su vez, erosión y pérdida de fertilidad en los suelos. No 

obstante, para la utilización de alfalfa en fitotecnologías es preciso conocer en detalle 

aspectos como la especiación y distribución de contaminantes dentro de la planta, para 

determinar el posible uso agronómico de éstas. Además, para favorecer la producción de 

biomasa y permitir una adecuada revegetación de los suelos contaminados es necesario 

determinar la influencia de la fertilización por nitrato (NO3
―

El Hg se acumuló principalmente en la raíz, concretamente en la fracción celular 

particulada, mayoritariamente de pared celular. Se determinó asimismo la especiación 

del Hg soluble mediante cromatografía líquida de alta resolución (HPLC) acoplada a un 

espectrómetro de masas de tiempo de vuelo (TOFMS), lo que nos permitió identificar 

fitoquelatinas (PCs) y homofitoquelatinas (hPCs) unidas a Hg en plantas tratadas con 

Hg 30 µM. Estos biotioles están considerados como uno de los más importantes 

mecanismos de defensa de las plantas frente a metales pesados, siendo sintetizados en 

las células vegetales a partir de glutatión (GSH) u homoglutatión (hGSH, existente en 

algunas leguminosas). La enzima que cataliza la reacción es la fitoquelatina sintasa, que 

se activa post-traduccionalmente por la acumulación del metal, y produce una familia de 

), principal nutriente 

limitante en los suelos problema, con respecto a la tolerancia a Hg. 

http://www.greenfacts.org/es/glosario/abc/bioacumulacion-bioacumular.htm�


Resumen 
 
péptidos con la estructura general (Glu-Cys)n

Para estudiar la localización de Hg a nivel de tejido se empleó micro Fluorescencia de 

Rayos-X con fuente Sincrotrón (µ-SXRF), estableciéndose que el Hg estaba localizado 

posiblemente en los conductos vasculares de raíz, tallo y hojas de alfalfa, de plantas que 

fueron crecidas en un medio hidropónico puro para aumentar la concentración y la señal 

de fluorescencia. Paralelamente se estudió la localización de Hg en plantas de marrubio 

(Marrubium vulgare) muestreadas en un suelo contaminado ubicado en una antigua 

planta metalúrgica, donde se obtenía Hg a partir del mineral cinabrio. Los resultados 

revelaron que si bien las plantas crecidas hidropónicamente absorbían el metal a través 

de los ápices de las raíces translocándolo a parte aérea, las plantas naturales presentaron 

un comportamiento exclusor, reteniendo el Hg en la raíz sin translocación a parte aérea. 

-Gly, donde n varía según el tiempo de 

exposición al metal y su dosis. Esta identificación también fue llevada a cabo en plantas 

de maíz y cebada para investigar posibles diferencias entre especies vegetales. Este éste 

sentido, se detectaron 11 nuevos complejos no descritos anteriormente, formados por 

Hg y metil-Hg unidos a PCs y hPCs. Para comprobar la importancia de estos biotioles 

en la detoxificación de Hg se utilizaron plantas mutantes de Arabidopsis thaliana 

deficientes en la producción de PCs, cad1-3, y en el nivel de GSH, cad2-1, 

apreciándose que la falta de formación de complejos Hg-PC disminuye la tolerancia a 

Hg. 

Mediante la técnica de Absorción de Rayos-X (EXAFS) se identificaron los enlaces de 

coordinación en torno al Hg, cuando éste es absorbido por la planta. Este análisis, al 

igual que el de localización de Hg, se llevo a cabo en raíz, tallo y hoja de alfalfa y raíz y 

hoja de marrubio. Mientras que en alfalfa, más del 79% del Hg estaba unido a azufre 

orgánico (enlaces Hg-Cys), en el marrubio más del 60% del Hg estaba unido a azufre 

inorgánico, posiblemente de partículas de suelo adheridas al tejido. Además, se procedió 

a estudiar a nivel subcelular la distribución de Hg analizando muestras de alfalfa 

mediante Microscopia de Transmisión Electrónica (TEM), que permitió detectar 

depósitos densos, debido a la presencia de Hg, en la pared celular de raíces de la 

epidermis y xilema, lo que concuerda con los resultados de fraccionamiento subcelular 

realizados. 

Por último, se estudió la influencia de la fertilización nitrogenada sobre la absorción de 

Hg por la alfalfa y sobre parámetros de estrés como peroxidación de lípidos, contenido 

en clorofilas, actividad enzimática de enzimas glutatión reductasa (GR) o ascorbato 

peroxidasa (APX). El estudio se realizó previamente bajo condiciones controladas en 
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semihidropónico y posteriormente se llevó a maceta con suelo contaminado de 

Almadén, para aproximarse paulatinamente a condiciones reales de campo. En ambos 

casos, se observó que la fertilización con NO3
―

Un conocimiento preciso de los mecanismos de detoxificación y tolerancia de metales 

tóxicos es importante para optimizar las estrategias de descontaminación mediante 

fitorremediación. El trabajo de investigación que se presenta abre nuevas perspectivas 

hacia la aplicación de técnicas avanzadas para estudiar el comportamiento del Hg y su 

dinámica en plantas, con el objetivo último de poder aplicar estos conocimientos a 

fitotecnologías. En concreto, el empleo de plantas de alfalfa, podría permitir la 

estabilización de contaminantes, y facilitar la revegetación de suelos contaminados, 

evitando a su vez, erosión y pérdida de fertilidad como pueden ser el caso de Almadén. 

A su vez, es interesante destacar la importancia de una adecuada nutrición nitrogenada 

para mejorar la tolerancia a contaminantes, si bien ha de realizarse una monitorización 

de los cultivos para evitar el riesgo de introducir el Hg en la cadena trófica, y llegar a 

suponer un problema para la salud humana. 

 reducía el estrés oxidativo en las raíces. 

Sin embargo la fertilización con un abono NPK del suelo de Almadén hizo que la planta 

acumulara en la parte cosechable, niveles de Hg por encima de lo permitido legalmente, 

poniendo de manifiesto la importancia del estudio de la absorción de Hg para evitar 

riesgos en la salud humana. 
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CHAPTER 1 

Advances in the characterization of mercury speciation and 
distribution in plants using novel approaches 

ABSTRACT 

In this chapter we summarize the recent findings about the distribution, localization and 

speciation of mercury (Hg) in higher plants. Lately, state-of-the-art analytical 

techniques, such as mass spectrometry coupled with high performance liquid 

chromatography and X-ray fluorescence with a synchrotron light source, are paving the 

way for a better understanding of Hg dynamics in plants. The behavior of Hg in plants 

will also shed some light to characterize the phytotoxic mechanisms and detoxification 

tools available for improved phytoremediation of soils polluted with Hg. 

Mercury is a problem for human health and the environment 

Mercury is one of the most toxic and hazardous metals to the environment, capable of 

compromising seriously human health. The expression "mad as a hatter" was popular in 

England in the 19th century, which reflected the neurotoxic symptoms observed in hat 

makers who inhaled Hg vapours released from mercuric nitrate solutions to felt furs. 

Such symptoms probably inspired the well known Mad Hatter character in Lewis 

Carroll's Alice in Wonderland. In more recent times, there have been several cases of 

human intoxication, frequently occurring after the ingestion of food contaminated with 

methyl-Hg, one of the most toxic chemical form of Hg. One of the worst episodes of Hg 

poisoning occurred in Minamata Bay and the Agano River (Japan) in 1956 as a 

consequence of a continuous spillage of Hg from a chemical factory. Mercury 

accumulated in phytoplankton, shellfish and fish as methyl-Hg, which contaminated 

those animals feeding from them. Domestic and wild-life animals showed erratic 

behaviour and nervous tremors, anteceding the tremendous effects on the local 

population, which suffered severe neurologic, renal and hepatic diseases and death 

(Naito, 2008). Another massive intoxication with Hg occurred in Iraq in the early 

1970s, owing to the consumption of 95,000 tons of seeds treated with organomercurial 

fungicides that were used for bread baking (WHO, 1976). It has also been detailed that 

exposure to methyl-Hg may occur in some crops cultivated under anoxic (flooded) 

conditions, such as rice (Feng et al., 2008; Zhang et al., 2010). Thankfully, poisoning by 
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Hg is quite rare nowadays. In United State the only reported cases in the past 35 years 

involved a family that consumed the pork meat of animals fed with a methyl-Hg 

fungicide, and a professor of Chemistry in Dartmouth College (New Hampshire, USA) 

was accidentally exposed to a few drops of dimethyl-Hg during her experiments in the 

laboratory, causing her death (Nierenberg et al., 1998). 

Because the referred data and other examples, Hg is considered a very hazardous and 

potent pollutant, with high potential to bio magnify in the food chain, characteristics 

that prompted a drastic reduction in its usage and trade in several countries. The 

Provisional Tolerable Weekly Intake (PTWI) of Hg recommended by the Joint 

FAO/WHO Expert Committee on Food Additives (JECFA) is 5 μg kg-1 and the EPA 

has established a limit of 0.002 mg L-1 for mercury in drinking water. Regarding forage 

use, the accepted maximum Hg concentration is 0.1 mg kg-1 of feeding mass (EC 

Directive, 2002). In 2005, the European Union (EU) drew up a strategy called 

“Community Strategy concerning Mercury” that was 

Toxic effects of mercury in plants 

accompanied by specific actions, 

aimed mainly at reducing the quantity and the circulation of Hg within the EU and 

throughout the World as well as human exposure to this substance. This strategy is 

based on six objectives: (1) limiting Hg emissions, (2) reducing the supply and demand 

of Hg, (3) managing and controlling existing amounts of Hg used in manufactured 

products or kept stored, (4) protecting against its exposure, (5) improving understanding 

of Hg dynamics and toxic effects to implement solutions, and (6) promoting action on 

Hg at an international scale (European Commission, 2005). 

Mercury accumulates in the roots of higher plants with a higher extent than in above 

ground tissues, indicating that the translocation to shoots is generally low (Wang and 

Greger, 2004; Israr et al., 2006). Mercury has not know biological activity in plants, and 

at relatively low concentrations can cause several phytotoxic effects, similarly as other 

non-essential heavy metals like Cd or Pb (Van and Clijters, 1990). Growth inhibition is 

one of the typical toxic effects that appear shortly after Hg exposition (Rellán-Álvarez 

et al., 2006b; Zhou et al., 2007; Israr et al., 2006; Cargnelutti et al., 2006; Patra and 

Sharma, 2000). For example, alfalfa seedlings growth was inhibited by 25% when 

treated with 3 µM HgCl2 for 6 h (Ortega-Villasante et al., 2005). Mercury inhibits water 

uptake via Hg-sensitive aquaporins on plasma membranes and consequently affects the 

transpiration (Zhang and Tyerman, 1999; Savage and Stroud, 2007; Cárdenas-



Sandra Carrasco Gil 

 

3 

Hernández et al., 2009). Exposure to Hg can also alter the levels of some nutrients due to 

changes in membrane integrity and transport processes (Godbold et al., 1991; Shieh and 

Barber, 1973; De Filippis, 1979). Furthermore, it has been reported that Hg decreases the 

levels of photosynthetic pigments like chlorophylls and carotenoids, and inhibits 

photosynthetic electron transport chain (Cargnelutti et al., 2006; Cho and Park, 2000; 

Bernier and Carpentier, 1995; Bernier et al., 1993). 

Although the precise mechanisms of toxicity are not known in detail, the high affinity of 

Hg for sulfhydryl groups (–SH) of proteins could explain its high reactivity. Once Hg is 

bound to proteins, their native structure is disturbed losing their function (Clarkson, 

1972). However, so far there are few proteins identified that interact specifically with 

Hg in higher plants, apart from the already mentioned plasma membrane aquaporin-1 

(Murata et al., 2002). 

The root cell wall is directly in contact with metals in soil or nutrient solution, thus the 

proteins that are in cell wall and at the surface of the plasma membrane are the first 

targets for heavy metal toxicity. The role of the cell wall as a mechanism of Hg 

tolerance is support by the fact that more than 90% of the Hg up taken by plants is 

accumulated in the cell wall of root cells (Valega et al., 2009; Carrasco-Gil et al., 2011). 

Exposition of Hg may stimulate the production of intermediate free radicals and 

peroxides called reactive oxygen species (ROS), that may damage  and membrane  

resulting in oxidative stress (Ortega-Villasante et al., 2005; Rellán-Álvarez et al., 

2006b; Sobrino-Plata et al., 2009). It has been reported that after the addition of 

diphenyleneiodonium chloride (DPI), which is an inhibitor of the enzyme NADPH 

oxidase, the H2O2 production was reduced in Medicago sativa seedling treated with Hg. 

This enzyme is present in the plasma membrane and is involved in H2O2

Plants have developed a defence system composed of antioxidant enzymes and 

antioxidant metabolites, that help to maintain the redox balance of the cell interrupting 

the cascades of uncontrolled oxidation (Foyer et al., 1997). The toxic action of Hg may 

also be related to an alteration of this antioxidant enzyme activities such as superoxide 

dismutase (SOD), ascorbate peroxidise (APX) or glutathione reductase (GR) (Ortega-

Villasante et al., 2005; Sobrino-Plata et al., 2009; Zhou et al., 2007; Elbaz et al., 2010). 

Glutathione is a tripeptide constituted by glutamic acid, cysteine and glycine (γglu-cys-

 generation 

after metal exposition (Ortega-Villasante et al., 2007). To this end, an analysis of Hg 

localization is very important to elucidate what cellular process may be altered. 
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gly) which is considered as one of the most important antioxidant metabolite involved 

in the defence against ROS. It is present mainly in reduced form (GSH), localized in all 

cell compartments: cytosol, endoplasmic reticulum, vacuole, mitochondria, chloroplast, 

peroxisomes and apoplast (Mittler and Zilinskas, 1992; Jimenez et al., 1998). The 

balance between GSH and GSSG in the ascorbate-glutathione cycle is the key for 

maintaining cellular redox state (Foyer and Noctor, 2005). However, Hg may alters this 

balance in plants as was observed with diminution in the cellular concentration of 

reduced glutathione (GSH) versus its oxidized form (GSSG; Rellán-Álvarez et al. 

2006a; Ortega-Villasante et al., 2007; Sobrino-Plata et al., 2009). Moreover, GSH is the 

substrate for the biosynthesis of phytochelatins (PCs) which play an important role in 

Hg tolerance as we will discuss below. Therefore, the presence of a high GSH 

concentration increases the ability of plants to support metal-induced oxidative stress as 

it was observed with plants exposed to Cd (Metwally et al., 2005; Sun et al., 2007). 

Chemical species of mercury in the environment 

Mercury has three oxidative states: elemental or metallic (Hg(0) or Hg0), monovalent 

(mercurous, Hg(I), Hg2
2+) or divalent (mercuric, Hg (II), Hg2+). The properties and 

chemical behavior of Hg strongly depend on their oxidative state. Hg0 is normally 

present in the atmosphere and may also be present in aqueous media, although Hg0 

species is very rare in aquatic natural ecosystems. The vapor pressure of Hg0 depends 

strongly on temperature, and it is vaporizes readily under ambient temperature in most 

natural ecosystems in some seasons. Hg(II) and Hg(I) can form several inorganic and 

organic chemical compounds, but Hg(I) is less abundant due to its low stability in 

natural environments (EPA, 1997). Inorganic mercuric compounds such as mercuric 

chloride (HgCl2), mercuric hydroxide (Hg(OH)2) and mercuric sulfide (HgS) are the 

most common Hg compounds in the environment. They are white powder or crystal 

except for HgS which is red and turns black when is exposed to light. HgCl2 is 

sufficiently volatile to be transformed into inorganic Hg gas. However, due to its water 

solubility and chemical reactivity, the inorganic Hg gas is deposited faster than the 

elemental Hg, with a shorter atmosphere lifetime. When Hg is bound to carbon, the 

compounds formed are organomercurials such as methylmercuric chloride (CH3HgCl), 

methylmercuric hydroxide (CH3HgOH) or small fractions of other organomercurials 

(dimethylmercury and phenylmercury) (UNEP, 2002). Mercury is slightly soluble in 

water and trends to associate with soft bases like S (S2-, SH), I, organic S, P and N 

(Stumm and Morgan, 1981). As a result of coordination selectivity, Hg prefers S-donors 
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to O-donors as a ligand. Mercury, in contrast to other metals, tends to form covalent 

rather than ionic bonds. Under moderately oxidizing conditions above pH 5, the 

predominant Hg species in solution is non-dissociated Hg0

Mercury is considered a global pollutant because it is present in all environmental 

compartments: water, soil, sediments, atmosphere and biota. Most of the Hg that is 

present in the atmosphere is Hg

, under mildly reducing 

conditions, Hg can be precipitated as sulfide and, under strongly reducing conditions 

may increase the solubility somewhat by converting the mercuric ion to free metal 

(Schuster, 1991). 

0 vapour, where may circulate for up to one year, and 

hence can be dispersed very far away from the emission origin (Mason et al., 1994). 

However, HgS, HgCl2

 

 and methyl-Hg forms are predominant in water, soil, sediments 

and biota. Once mercury has been liberated from natural or anthropogenic sources 

(municipal waste combustors, chlor-alkali plants, coal-fired and Hg mines) the activity 

of some microorganisms and natural processes can change the oxidation state and the 

speciation of Hg in the environment. 

 

 

 

 

 

 

 

 

 

 

 

Mercury has a strong tendency to build complexes with Cl—, OH— and S-containing 

functional groups of organic ligands. Cl— and OH— anions occur in all natural soil and 

water systems, and are considered as the most mobile and persistent complexion agents 

for Hg. Moreover, the high affinity for –SH groups explain the accumulation of Hg in 

organic-rich, upper soil horizons where several processes as chelating, ionic exchange, 

adsorption, and co-precipitation may occur (Schnitzer and Kerndorff, 1981) and are 

depending on the type of humic substances and the pH. The degree of metal 

Fig 1. Shows the mercury (Hg) cycle in the biosphere, where are described the 
most abundant chemical species in each compartment. 

(http://www.ucm.es/info/crismine/HTML Almaden/Almaden contaminacion.htm) 
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immobilization is strongly dependent on complex stability, and only very stable 

complexes exist at low pH. The influence of pH becomes less important with increasing 

ligand concentration (Schuster, 1991). In general, the strong binding to organic and 

mineral materials results in a low availability and mobility of Hg in the soil. Many 

experiments concluded that plant uptake and leaching were relatively insignificant in 

topsoil with mixed organic and mineral components (Gracey and Stewart, 1974, Kloke, 

1985; Cappon, 1986). Nevertheless under certain conditions, translocation and leaching 

may occur where pH and Cl—

Distribution and speciation of Hg in plants 

 concentrations are favourable for the formation of Cl-

complexes (Frimmel, 1983; Behra, 1986). 

Since terrestrial plants can absorb Hg from the soil or the atmosphere, they play an 

important role in the Hg cycle in many natural and humanized ecosystems. In addition, 

how we will discuss in the following section, Hg accumulation in plants, especially in 

crops or forage, could exert an impact on the food chain (Ferrara et al., 1991). The 

content of Hg in plants depends on its bioavailability in the soil and on the atmospheric 

deposition. Inorganic Hg in the soil compartment is bound to the soil particles and is not 

easy bioavailable to plants or organisms. In fact, the uptake of gaseous Hg0 through 

leaves is much more efficient than the uptake of Hg2+ by roots. Generally, Hg 

accumulation in the root of natural plants is not transferred to the aerial part (Maserti 

and Ferrara, 1991). In soil, Hg uptake by plants depends on Hg concentration in soil, 

pH, clay content and types of minerals, organic matter, cation exchange capacity, redox 

conditions, CaCO3, the ambient temperature, and the plant species. All these aspects 

show the complex mechanism of Hg uptake by plants, which involve both the root and 

the leaf system. Therefore, it is necessary to consider both soil-root interaction as well 

as air-leaf interaction (Ferrara et al., 1991). Previous studies on gramineous species and 

crop plants grown in polluted areas have been performed to elucidate the origin of Hg 

accumulation, absorbed from the soil or from the atmosphere, but not clear conclusions 

were reported. Most studies revealed that Hg translocation is rather limited from roots 

to the aboveground parts of plants (Beauford et al., 1977; Cavallini et al., 1999; Patra 

and Sharma 2000). These studies found that 95–99% of the Hg taken up by the roots 

was immobilized and did not eventually reach the shoots (Beauford et al. 1977; 

Godbold & Huttermann 1986). However, other studies reported that Hg absorbed by 

leaves accumulated in shoot without translocation to root (Suszcynsky and Shann, 

1995). Therefore, Hg is an extremely immobile element that binds strongly to certain 
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cellular components, leading to its retention in the cells and tissues that get in contact 

with. 

As we will discuss in next sections, one of the most important mechanisms for Hg 

detoxification in plants is the chelating of Hg2+ by the sulfhydryl group of 

phytochelatins. For the identification of these Hg complexes in plants, it is necessary to 

ensure that the existing complexes are stable under the acidic analytical conditions used 

for complex extraction and liquid chromatography separation. Van Der Liden and Beers 

(1973) studied the complex formation of Hg(II) with the twenty essential amino acids 

(present in all proteins), in aqueous solutions in the pH range 2.7-8.5. Results showed 

that cysteine (Cys) had the highest stability constant (39.4), attributed to the binding 

with the sulfhydryl (thiol) group. Another strong bound was the amino carboxylate 

group, but was significantly more labile than Hg-S bounds. In addition, Moreover, Stary 

and Kratzer (1988) analyzed the stability constant of Hg (II)-Cys complex in the pH 

range from 2.0 to 8.4, and they reported an average value of 40.0±0.2. Also, they 

compared the stability constant of Hg2+ and CH3Hg+ bound to Cys being 2.6 times 

higher for Hg-(Cys)2

Use of Mass Spectrometry technique for the identification of Hg-containing 

compounds in plants 

 complex. From all these experiments, it was concluded that the 

Hg-thiol complex was stable in the pH range between 2.0 to 8.6. 

Mass spectrometry (MS) is an analytical technique that is used to measure the  (m/z) of 

molecular ions originating from ionized or fragmented molecules, and a plot of ion 

abundance (intensity) versus m/z is drawn. With the appropriate settings, it is capable of 

providing information of particle mass, and when is used in tandem mass spectrometry 

MS, this technique can help to elucidate the chemical composition of complex 

molecules, such as (Boggess, 2001). The identification of Hg–containing compounds in 

plants is based in obtaining a mass spectrum of the characteristic natural mixture of stable 

isotopes of this metal. Mercury exists in a fixed proportion of isotopes, consisting in seven 

peaks with constant relative abundances: 0.15% 196Hg, 10.02% 198Hg, 16.84% 199Hg, 

23.13% 200Hg, 13.22% 201Hg, 29.8% 202Hg, and 6.85% 204Hg (Fig. 2A). Normally, the m/z 

of Hg-containing substances is given respect to the 202Hg isotope signal, which is the most 

abundant one. When a molecule, such as occur with peptides, binds to Hg the resulting m/z 

comes from the addition of the ligand mass plus the Hg mass [(Hgm+ peptidem)/z]. 

Therefore, the m/z scatters following the abundance of stable isotopes, producing a 
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characteristic isotopic signature that can be used to identify unambiguously Hg-ligand 

complexes (Fig. 2B). 

 

 

 

 

 

 

 

 

 

There are three main components of a mass spectrometer: an ionization source, a mass 

analyzer and a detector. The ionization is the most important process in MS, consinting 

in the conversion analytes of interest into gas-phase ions. Nowadays, the ionization 

techniques most used are electrospray ionization (ESI) and matrix assisted laser 

desoption/ionization (MALDI; Glish, 2003). Electrospray ionization is a conservative 

technique that permits the ionization of molecules with high m/z, maintaining the 

structure of the molecule of interest without fragmentation. Therefore, ESI allows the 

analysis of complexes containing non-covalent bonds, as may occur with metal 

complexes (Smith et al., 1997; Di marco and Bombi, 2006). However, the most useful 

property of ESI is its ability to couple MS and liquid techniques (LC) to separate 

compounds from biological matrices. However, despite the powder of ESI, it has two 

shortcomings: sample is constantly being consumed and the matrix can suppress the 

ionization of the target analyte (Glish, 2003). The other component of MS is the 

analyser, and its precision in the measurement is related to the resolution that 

corresponds with the ability to resolve two adjacent peaks. Time-of-flight (TOF) 

analyser is the simplest one. Ions are all formed at the same time and place in the ion 

source and then accelerated through a fixed electric potential into the TOF drift tube. As 

all ions with the same charge obtain the same kinetic energy after acceleration, the 

Fig. 2. (A) Abundance of stable Hg isotopes in nature. (B) Experimental m/z spectra of 
homophytochelatin-2 (γGluCys-γGluCys-Ala or hPC2) ligand an Hg-hPC2 complex 
standard. The 745.1 m/z correspond to the most abundant 202Hg isotope.  
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lower m/z ions achieve higher velocities than the higher m/z ions. Thus, by measuring 

the time it takes to reach the detector after the ion is formed, the m/z of the ion of 

interest can be determined. TOF offers isotopic mass resolution and the mass range is 

theoretically unlimited. Therefore, ions that have m/z ratios higher than several hundred 

thousand can be analysed, that is significantly above the range of the other common 

mass analyser. For example, every Hg can potentially be bound to and SH group from 

one biothiol and to an SH group from another biothiol, and this me be repeated a 

number of times, generating in theory an Hgn-biothiolm

One of the most important mechanisms in heavy metal tolerance of plants is the 

chelating of reactive free metal ions to reduce toxic symptoms in the cytosol (Hall, 

2002). This role is played by phytochelatins (PCs), which are able to form stable 

complexes with several toxic metals. These molecules are a family of peptides that have 

a general structure (γ-Glu Cys)

 multicomplex, which should be 

heavy enough to be out of the m/z ranges of conventional MSs (Iglesia-Turiño et al., 

2006). However with a TOFMS analyser is possible to identify an array of Hg-

containing multicomplexes. 

n-Gly where n=2-11, and are rapidly induced in plants by 

Hg treatment among other heavy metals (Grill et al. 1989; Cobbett and Goldsbrough, 

2002). Phytochelatins are synthesized from glutathione (GSH) and homologous biothiols 

precursors in a post-translational process by the enzyme phytochelatin synthase when 

plants are exposed to heavy metals (PCS; Ha et al., 1999; Vatamaniuk et al., 1999). PCS 

condenses the γ-glutamyl-cysteine (GC) moiety of a GSH molecule with the glutamic acid 

residue of a second GSH, releasing glycine and increasing the length of the PC molecule 

(Vatamaniuk et al., 2004). The chelation of heavy metals in the cytosol by PCs ligands is 

potentially a very important mechanism of heavy metal detoxification and tolerance 

(Cobbett and Goldsbrough, 2002). It is thought that Hg2+

Several recent works have used HPLC-ESI-MS techniques to characterise Hg-biothiols 

complexes, thought to detoxify Hg. Iglesia-Turiño et al. (2006) used HPLC-MS/MS 

with a triple quadrupole analyser to identify phytochelatins (PCs) in Brassica napus 

exposed to different Hg concentrations (0-1000 µM HgCl

 is bound to PCs through the 

sulfhydryl group (–SH) of cysteine moiety. The final step in heavy metal detoxification, 

involves the storage of the heavy metal-PC complex in the vacuole, so through 

appropriate membrane transporters these complexes cross the tonoplast (Leitenmaier 

and Küpper, 2010). 

2). The identification of PCs 

in vitro and in vivo experiments was only possible after the addition of the chelating 
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agent DMPS (sodium 2,3-dimercaptopropanesulfonate monohydrate). The only PC 

identified in root was PC2, assuming that this biothiol was involved in Hg chelation 

process in rape plants. Krupp et al. (2008) developed a technique for the separation and 

molecular identification of Hg and Methyl-Hg (MeHg) complexes with cysteine (Cys) 

and glutathione (GS): Complexes, such as HgCys2, MeHgCys, HgGS2 and MeHgGS, 

were analysed in standard solutions or spiked in root and shoot extracts of Oryza sativa. 

These complexes were identified by HPLC-ESI-MS equipped with an ion trap. 

Simultaneous detection with ICP-MS was performed to Hg-selective determination after 

separation by HPLC, as the accuracy of ICP-MS over ESI-MS permits the 

quantification of Hg concentration in a particular HPLC fraction. Subsequently, HPLC-

ICP-MS and HPLC-ESI-MS were applied to identify Hg-biothiol complexes that 

accumulated in vivo in Oryza sativa and Marrubium vulgare plants exposed to 50 µM 

Hg or 50 µM. MeHg. HgPC2, Hg(des-Gly)PC2, Hg(Ser)PC2 and Hg(Glu)PC2 

complexes were identified in O. sativa roots, whereas Hg(des-Gly)PC2 and Hg(Glu)PC2 

were identified in M. vulgare roots (Krupp et al., 2009). Similar analytical approach was 

undertaken by Chen et al. (2009) to detect Hg-PC complexes in Brassica chinensis L. 

exposed to 200 µM HgCl2 or HgCys2, with and without addition of 1.5 mg g-1 humic 

acid. The detection of oxidized PC2, oxidized PC3, oxidized PC4, together with HgPC2, 

HgPC3, HgPC4 and Hg2PC4

Speciation and localization of Hg in the plant using a synchrotron source: X-ray 

absorption spectroscopy (XAS) and X-ray fluorescence (XRF) 

 in B. chinensis roots, suggests that the conditions to 

prepare plant extracts were not appropriate. We have developed a new method using 

HPLC-ESI-TOFMS that allowed the identification of a wide array of PCs bound to Hg 

in root soluble fraction of Medicago sativa, Zea mays and Hordeum vulgare (see 

chapter 3). Thanks to the superior resolution of m/z of TOF versus MS/MS quadrupole, 

we could identify several new Hg multicomplexes that previous analysis could not. The 

usage of a neutral pH extraction solution to prepare soluble fractions from roots 

permitted a better preservation of endogenous Hg-biothiol complexes, as few ligands 

and Hg-PC complexes were oxidized. 

Mercury speciation is important to understand the dynamics of this pollutant in 

organisms contaminated ecosystems, information that may prevent risks for the 

environment and human health (Harris et al., 2003). Commonly, plant analysis 

speciation is carried out by spectroscopic techniques such as flame atomic absorption 

spectrometry (FAAS), inductively coupled plasma atomic emission spectrometry (ICP-
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AES), inductively coupled plasma mass spectrometry (ICP-MS), high performed liquid 

chromatography coupled to time of flight mass spectrometry (HPLC-TOFMS). 

Nevertheless all of them require sample preparation that involves the total destruction of 

the matrix by an acidic oxidative mineralisation reaction (Marguí et al., 2009). Despite 

this disadvantage, these techniques are needed because of the high precision and 

accuracy in the analysis. 

X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) are techniques 

developed by users of synchrotron radiation light sources that provide interesting 

information about the coordination chemistry of metals, and generate 2D-image of the 

metal distribution within the plants with minimal sample pre-treatment. To this end, 

several studies of phytoremediation have used successfully these techniques (Gardea-

Torresday et al., 2003; Pickering et al., 2003; Webb et al., 2003 and De la Rosa et al., 

2004). Concretely, several studies of Hg speciation in plants have been performed 

(Riddle et al., 2002; Rajan et al., 2008; Patty et al., 2009; Carrasco-Gil et al., 2011), but 

are still a minority compared to the broad information available of other toxic metals 

like Cd or As. 

There are more than 50 synchrotron lightsources in operation around the word 

(www.lightsources.org). A synchrotron source produce X-ray of tunable energy up to 

25 keV or white light with brightnesses several orders of magnitude greater than can be 

achieved by conventional means. This results in much more rapid data collection and 

immensely increased resolution. The access to a synchrotron facility is not easily 

available to the general researcher’s community. Previously, the researcher has to 

submit a proposal of the research work that subsequently is evaluated by a scientific 

committee. After the approval of the proposal, the synchrotron facility assigns the called 

“beam time” to perform the analysis. Generally, these beam times are very short 

(between 8 hours and 3 days). Because of the collection of one elemental map of 2 x 2 

mm can consume more than 6 h, depending on the image resolution. The best option for 

a beginner user is joining to other group that is working on the same topic, and has 

experience enough to help in data acquisition and analysis. 

The main features and advantages of XAS over other techniques are the following: i) It 

is an elemental specific method that allows the focused study of selected element, 

excluding at wish others (low interference), ii), samples require in general minimal 

preparation; thus the sample analysed is close to its natural state, even samples may be 

http://www.lightsources.org/�
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analysed under in situ conditions without chemical or physical alteration; iii) the 

quantity of sample that is needed is small (< 1g) due to the beam size; and iv) the 

technique is non-destructive, so samples can be recovered after analysis (Lombi and 

Susini, 2009; Kim, 2006).  

X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine 

structure (EXAFS) 

The XAS spectrum generally is divided into three different regions based on the energy 

range of the X-ray beam compared to the absorption edge (Fig. 3). The first region is 

called the pre-edge, where no ionisation occurs, only transition to higher unfilled or half 

filled orbitals. The X-ray absorption near-edge structure (XANES) is the next region 

and the position of the edge and the assignment of peaks near or on the edge give 

information about oxidation state, covalence, molecular symmetry of the site and 

coordination number. The main feature of this region is the presence of a slight 

“shoulder” in the case of Hg compounds. Finally, the third region is called extended X-

ray absorption fine structure (EXAFS) and provides local structural information about 

the oxidation state and atomic neighbourhood of the target element such as number of 

ligands, the identity of the ligand atoms and the radial distance. The features of this 

region are in form of oscillations generated by the constructive and destructive 

interferences between the outgoing and backscattered photoelectron wave. There are 

different absorption edges called K, L and M, which depend on the core excited 

electron. Every absorption edge (K, L and M) corresponded with a principal quantum 

number (1, 2 and 3) respectively. Most XAS studies of Hg investigate the core level 

binding energy of the L3 electron located in the 2p orbital of Hg. The electron binding 

energy of the L3 electron is 12284 eV (E0). Spectra data can be collected either in 

transmission mode or using fluorescence, the later in case of low metal concentration. 

For Hg L3 edge, Lα1

The use of XANES spectra for Hg speciation analysis is less accurate than EXAFS 

analysis, since Hg XANES region is short of distinctive diagnostic pre-edge features by 

 fluorescence is usually collected at 9989 eV. Some beam lines has 

a cryostat that kept the sample frozen during the analysis. Low temperatures reduce the 

formation of free radicals by the high energy X-ray beam, which can cause 

photoreduction of the sample. Temperatures lower that 10K are used for EXAFS 

analysis, to minimize molecular movement and variation in bond length (Andrews, 

2006). 
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which to clearly identify the proportion of different oxidation states that may be present 

(Kim, 2006). However, EXAFS analysis requires high metal concentration to collect 

acceptable Hg spectra. Therefore, XANES analysis is applied to samples with relatively 

low Hg concentration, as normally occurs in many plant and biological tissues. 

 

 

 

 

 

 

 

 

 

 

 

 

The method to identify various metal species using both analytical approaches consists 

basically in the comparison of the spectrum of an unknown sample with data bases of 

reference spectra collected from homogeneous standard compounds (Kim et al., 2000). 

If the Hg concentration in the specimen under analysis is high enough (> 100 mg kg-1

On the other hand, XANES and EXAFS analysis have several limitations. The 

relatively high metal concentration in the samples, mentioned before and necessary to 

collect quality data, leave out of these kind of analysis many environmental samples. 

Moreover, the goodness of the fit will depend on the quality and the number of the 

), 

EXAFS analysis is more recommended. EXAFS analysis is normally much easier when 

larger differences in composition and structure of Hg bonds occur between the unknown 

sample and the standard. The model compounds used as standard spectra should be 

collected under the same experimental conditions as those used for the unknown 

samples, even using the same beam line whenever possible. Concretely, EXAFS 

spectrum collected from a natural sample containing multiple Hg species can be 

decomposed, using a linear least-square fitting (LSF) method, into the sum of individual 

components composing the spectrum, through direct comparison with the model 

compounds spectra. In addition, LSF method determines the relative proportion of the 

contribution of each model compound spectra in the sample. 

Fig. 3. Hg L3 X-ray absorption spectrum of Hg-glutathione complex 

indicating the three regions: the pre-edge, the X-ray absorption near edge 

structure (XANES) and X-ray absorption fine structure (EXAFS).  
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model compounds in the library: Only known Hg species present in the library will be 

identified in an unknown sample. 

Synchrotron X-ray Fluorescence microprobe (µ-SXRF) 

X-ray fluorescence is a technique with considerable potential in the field of 

phytoremediation since it can simultaneously measure the emitted X-ray fluorescence of 

multiple elements in a sample following the absorption of high energy synchrotron X-

rays (Punshon et al., 2009). The µ-SXRF analysis generates detailed elemental maps in 

relation to its oxidative state, chemical bonding and correlation plots of Hg with other 

elements. This is very useful with respect to Hg speciation since it allows distinguish 

between particulate Hg, adsorbed or complexed Hg species. The spatial-resolved XRF 

maps may provide the distribution and localization of Hg hot spots in a given sample, It 

also permits µ-XANES or µ-EXAFS analysis at the selected high intense areas of metal 

localization to avoid physical alteration (ground samples), reducing the risk of possible 

artefact that disturb the analysis (Manceau et al., 2002). There are other XRF techniques 

such as Scanning Electron Microscope with Energy Dispersive X-Ray Analysis (SEM-

EDXA) and Particle induced x-ray emission (PIXE) that also permit mapping and 

quantification of the elements present in a sample at cellular level, although they are 

less sensitive and require more aggressive pre-treatment sample than SXRF. Finally, 

synchrotron X-ray computed µ-tomography (SR-µCT) is a version of µ-SXRF that 

permits the localization and distribution of an element of interest in the internal 

structure without the need of physically sectioning. This technique is useful for 

environmental samples since do not produce neither physical nor chemical alteration, 

therefore the risk of generating artefact during the handling is reduced (Lombi and 

Susini, 2009). 

Phytoremediation technologies 

There are efficient technologies to clean soils contaminated with toxic metals, such as 

mechanical separation, isolation, containment and chemical stabilization of polluted 

horizons. However, utilization of these techniques is very expensive, labour intensive, 

and may cause serious alteration of soil structure and fertility. Using plants for metal 

extraction, degradation or immobilization is a promising alternative that can be used in 

polluted soil and water (Mulligan et al., 2001). Phytoremediation comprises a series of 

alternative procedures, and the selection of a specific technical approach would depend 

on the pollutant and the particular characteristics of the soils to clean (see Table 1). 
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Tabla 1. Phytoremediation techniques (from Yang et al., 2005) 

Techniques Mechanism involved Contaminated compartment 

Phytoextraction 
Direct accumulation of contaminants into 
plants aboveground organs with subsequent 
harvesting and disposal 

Soil 

Rhizofliltration Pollutants accumulation in roots, by 
absorption or adsoption processes Surface and groundwater 

Phytostabilization Accumulation in the rhizosphere, rendering 
the metals less soluble 

Groundwater, soil, mine 
tailings 

Phytovolatilization Plants evaporate volatile metals, possibly 
after reduction of metal ions Soil, groundwater 

Phytodegradation Degradation of the pollutant by microbial 
metabolism at the rhizosphere Soil and groundwater 

Phytotransformation Alteration of plant accumulated contaminants Surface and groundwater 

Removal of aerial 
contaminants Uptake of volatile organics by leaves Air 

 

To improve the efficiency of phytoremediation technologies, it is important to learn 

about the physiological processes involved in the plants including the metal content, 

translocation, tolerance mechanism and rhizosphere processing. The advances in XRF 

and XAS techniques will help to improve the research in this area (Gardea-Torresday et 

al., 2005). Thus, there are many studies that have identified plants capable of 

accumulating uncommonly high metal levels of Zn, Ni or Se (Salt et al., 1999; Krämer 

et al., 2000; Freeman et al., 2006). Following this singularity, many studies have been 

conducted to elucidate the physiology and the biochemistry of metal hyperaccumulation 

in plants (Yang et al., 2005). Nevertheless this technology has to overcome some 

limitations to become efficiently and cost-effective on a commercial scale (Khan et al., 

2000). A good candidate for phytorremediation has to be fast growing and easy to 

harvest, have high biomass and extensive root system and tolerate high concentrations 

of metals accumulated in their harvestable organs. To date, there no natural plant 

hyperaccumulators that fulfil such requirements for phytoremediation applications in a 

broad scale, as most heavy metal accumulating plants identified so far have poor root 

penetration in polluted soils and a small biomass. Whereby remediating a contaminated 

area within a reasonable period of time, metal uptake and plant yield have to be 

enhanced considerably (Raskin et al., 1997). In contrast, high biomass and fast growing 

non-accumulators can be engineered to achieve some of the properties of the 
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hyperaccumulators (Clemens et al., 2002). However, to achieve such goal better 

understanding about the molecular mechanism of metal uptake, tolerance, accumulation 

and translocation is needed (Yang et al., 2005). 

Concluding remarks and future perspectives 

Some recent results indicate that GSH metabolism is important for Hg tolerance, either 

as an antioxidant or as a precursor of PCs. Synchrotron X-ray fluorescence and LC-ESI-

TOFMS techniques can provide valuable data about accumulation, localization, and 

speciation of Hg, necessary to understand the dynamics of Hg and its detoxification in 

plants. Such studies should be focused to provide functional evidences about the 

relevance of GSH metabolism in Hg detoxification by using pharmacological, i.e. 

specific inhibitors of pathways (for example buthionine sulfoximine), or genetic 

approaches, i.e. mutants defective in altered components of the detoxification 

machinery under study (Arabidopsis thaliana cad1-3 or cad2-1 mutants). In parallel, 

genetic engineering could generate transgenic plants with improved characteristics, such 

as increased cellular sulphur assimilation metabolism or higher cellular concentration of 

GSH, with a similar aim. It should be noted that most of the current information about 

Hg detoxification processes comes from single pollutant assays, whereas in real soil 

contamination cases a multi-pollution problem is frequent. Therefore, future research 

should also consider the interaction between different metals, in pilot soil experiments 

where complex equilibrium with soil components would occur, affecting the dynamics 

of Hg in the plants. 
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CHAPTER 2 

Objectives 

The Almadén mining area located in the south of Spain (Ciudad Real) has been for 

centuries the largest mercury (Hg) producing region in the world. Cessation of the 

production of Hg has imposed the necessity to promote other economic activities, such 

as agriculture and farming, which are undermined by the Hg content in soil. 

Consequently, it is important to evaluate the potential risk for human health and 

environment considering the uptake and distribution of Hg in crops suitable for the 

environmental conditions existing in Almadén. To this end, we propose the use of 

Medicago sativa (alfalfa) as alternative crop in the Almadén area because of the 

following properties: is one of the most important plants used as livestock forage due to 

its high protein content, is adapted to a wide array of climate conditions, can improve 

the fertility of degraded soil, and presents a relative tolerance to Hg. In addition, its 

physiological characteristics, such as the production of large root system and the high 

biomass at harvest make this plant very interesting for phytoremediation purposes. The 

use of alfalfa as alternative crop or as plant suitable for phytoremediation technologies 

requires a set of studies to evaluate the plant behaviour under Hg stress.  

These studies will focus on the following: 

1. Localization of Hg in root, stem and leaf tissues, and identification of the Hg 

species in alfalfa. This information will broaden our knowledge with regards to 

transport mechanisms, uptake and storage of the metal. In addition, similar data 

will be collected from natural plants grown in polluted soils, such as Marrubium 

vulgare, capable of colonizing metallurgic areas in Almadén. 

2. Identification of phytochelatins (PCs) bound to Hg, since these biothiols are 

involved in heavy metal tolerance. Speciation of Hg will be carried out also in 

another crop species, such as Zea mays and Hordeum vulgare, to explore similar 

mechanisms of tolerance in other higher plants. 

3. Study the influence of nitrogen fertilization on Hg uptake and oxidative stress 

responses to evaluate the impact of adequate nutrition in the tolerance of Hg, as 

part of agronomic practices normally followed to crop alfalfa for forage uses in 

Almadén area. 
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It is foreseen that the knowledge obtained with the experiments we propose will 

enhance our knowledge on detoxification and defense mechanism exerted by alfalfa 

plants against Hg. These experiments will allow the assessment of the alfalfa as a plant 

suitable for agriculture or phytoremediation uses in soils naturally polluted by Hg in the 

area of Almadén. Finally, the information gathered will also help to design pilot field 

trials to establish important agronomic parameters such as yield and food safety. 
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CHAPTER 3 

Complexation of Hg with phytochelatins is important for 
plant Hg tolerance 

ABSTRACT 

Three-week-old alfalfa (Medicago sativa), barley (Hordeum vulgare) and maize (Zea 

mays) were exposed for 7 days to 30 µM of mercury (HgCl2

 

) to characterize the Hg 

speciation in root, with no symptoms of being poisoned. The largest pool (99%) was 

associated with the particulate fraction, whereas the soluble fraction (SF) accounted for 

a minor proportion (<1%). Liquid chromatography coupled with electro-spray/time of 

flight mass spectrometry showed that Hg was bound to an array of phytochelatins (PCs) 

in root SF, which was particularly varied in alfalfa (eight ligands and five 

stoichiometries), a species that also accumulated homophytochelatins. Spatial 

localization of Hg in alfalfa roots by microprobe synchrotron X-ray fluorescence 

spectroscopy showed that most of the Hg co-localized with sulfur in the vascular cylinder. 

Extended X-ray Absorption Fine Structure (EXAFS) fingerprint fitting revealed that Hg 

was bound in vivo to organic-S compounds, i.e. biomolecules containing cysteine. 

Albeit a minor proportion of total Hg, Hg-PCs complexes in the SF might be important 

for tolerance to Hg, as was found with Arabidopsis thaliana mutants cad2-1 (with low 

glutathione content) and cad1-3 (unable to synthesize PCs) in comparison with wild 

type plants. Interestingly, HPLC-ESI-TOFMS analysis showed that none of these 

mutants accumulated Hg-biothiol complexes. 

Abbreviations – DEAE, diethylaminoethyl; DTT, dithiothreitol; GSH, glutathione; 

hGSH, homoglutahione; hPCs, homophytochelatins; MF, microsomal fraction; PCs, 

phytochelatins; PF, particulate fraction; SF, soluble fraction. 
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INTRODUCTION 

Mercury (Hg) accumulation is considered a global environmental threat, and its trade is 

restricted due to its bioaccumulation and biomagnification in diverse ecosystems (Leonard 

et al. 1998). Mercury has no nutritional role, and exposure of biological systems to 

relatively low Hg concentrations results in serious toxicity (Nriagu, 1990). Although little 

is known about the precise mechanism of toxicity exerted by Hg in plants, cellular 

integrity and biological activity might be compromised due to its strong affinity for 

sulfhydryl residues of proteins and other biomolecules (Van Assche & Clijsters, 1990; 

Hall, 2002). Mercury has also been found to be a potent inducer of oxidative stress (Cho & 

Park, 2000; Rellán-Álvarez et al. 2006a), and an oxidative burst appeared in alfalfa root 

epidermal cells after a brief exposure to 30 µM Hg (Ortega-Villasante et al. 2007), in spite 

of its limited redox activity (Schützendübel & Polle, 2002). 

Mercury accumulates preferentially in roots (4- to 10-fold the concentration found in 

shoots) of several plant species such as Pisum sativum (Beauford et al. 1977), Brassica 

napus (Iglesia-Turiño et al. 2006), Zea mays (Rellán-Álvarez et al. 2006a), and B. 

chinensis (Chen et al. 2009). Therefore, most of the toxic effects of Hg are observed in 

roots. A large proportion of Hg was found associated with cell wall materials in P. sativum 

and Mentha spicata (Beauford et al. 1977), Nicotiana tabacum (Suszcynsky & Shann, 

1995) and Halimione portulacoides (Valega et al. 2009). Although the mobility of Hg 

within the plant may be limited by root cell walls, the distribution in root cells or tissues is 

not presently clear. This objective can be achieved using techniques such as microprobe 

synchrotron X-ray fluorescence spectrometry (µ-SXRF), which is capable of providing 

spatially-resolved metal data (Punshon et al. 2009). 

Once heavy metals enter the cell, additional defense mechanisms involve the synthesis 

of organic ligands that could form metal complexes with reduced biological activity. 

Among these compounds, phytochelatins (PCs) are known to bind Cd and other toxic 

elements by means of sulfhydryl residues (Cobbett & Goldsbrough 2002). Phytochelatins 

are synthesized from glutathione (GSH) and homologous biothiols by the enzyme 

phytochelatin synthase (PCS; Grill et al. 1989; Vatamaniuk et al. 1999; Clemens et al. 

1999 and Ha et al. 1999). When plants are exposed to heavy metals, PCS condenses the γ-

glutamyl-cysteine (GC) moiety of a GSH molecule with the glutamic acid residue of a 

second GSH, releasing glycine and increasing the length of the PC molecule (Vatamaniuk 

et al. 2004, Clemens 2006). 
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Significant amounts of free PCs were detected in Hg-treated Brassica napus plants 

with high performance liquid chromatography coupled to mass spectrometry (HPLC-MS) 

after removal of Hg with a strong Hg-specific chelator (Iglesia-Turiño et al. 2006). 

Phytochelatins were also found in maize and alfalfa plantlets grown with Hg, but in lower 

amounts than in Cd-treated plants (Rellán-Álvarez et al. 2006a; Sobrino-Plata et al. 2009). 

In vitro studies using HPLC-MS also showed that small biothiols such as GSH and 

cysteine bind Hg (Krupp et al. 2008; Chen et al. 2009). 

X-ray absorption spectroscopy (XAS) is a non-destructive technical approach that 

can be used for speciating metals in plant tissues (Aldrich et al. 2003, Gardea-Torresday 

et al. 2003; Pickering et al. 2003; De la Rosa et al. 2004). Understanding metal 

speciation is essential to clarify detoxification mechanisms in plants (Arruda & 

Azevedo 2009). Synchrotron-based techniques widely utilized to study metal chemical 

properties in a vast array of materials (i.e., composites, semiconductors, etc.), are 

increasingly being used to characterise metal speciation in biological materials such as 

plants (Salt et al. 2002). Among different methods of analysis, X-ray Absorption Near 

Edge Spectroscopy (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) 

provide information about a target atom (oxidation state, local geometry, local 

environment, co-ordination numbers and bond lengths) in close-to-natural-state plant 

tissues. Both techniques have been recently used to characterize the speciation of Hg in 

Spartina foliosa and Eichhornia crassipes (Riddle et al., 2002; Rajan et al., 2008; Patty 

et al., 2009). However, fingerprint fitting of XANES and EXAFS spectra, the method 

used in this paper, require standards of metal-ligand complexes putatively occurring in 

plant tissues (Kim et al., 2000). 

In spite of the evidence pointing towards a role for PCs in Hg complexation in higher 

plants, only a small number of Hg-PC complexes have been found using HPLC-MS, in 

root extracts of B. chinensis, Oryza sativa and Marrubium vulgare (Chen et al. 2009; 

Krupp et al. 2009). In the present study, a combined approach using both in vivo analysis 

by XAS and HPLC coupled to a high-resolution mass analyzer (time-of-flight; TOFMS) 

was used to elucidate the plant components involved in the effective defense mechanisms 

utilized by three week old alfalfa (Medicago sativa), barley (Hordeum vulgare) and 

maize (Zea mays) plants exposed for 7 days to 30 µM of mercury (Hg, as HgCl2). This 

high concentration of Hg was used in a short-term treatment to provide an adequate 

detection level of Hg with the techniques used in our studies, since the distribution and 

speciation of metals in non-hyperaccumulator plants is technically more challenging due 
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to the lower concentration of the analyte (Lombi & Susine, 2009). Moreover, a 

functional analysis with Arabidopsis thaliana mutants cad2-1, with diminished γ-

glutamylcysteine synthetase activity (Cobbett et al. 1998), and cad1-3, defective in PCS 

activity (Howden et al. 1995), were used to evaluate Hg tolerance and Hg-biothiol 

complexes formation relative to wild-type Col-0 plants. 

MATERIALS AND METHODS 

Plant material 

Alfalfa (Medicago sativa cv. Aragon), maize (Zea mays cv. Dekalb Paolo) and barley 

(Hordeum vulgare) seedlings were germinated and grown in a semi-hydroponic system 

as described by Sobrino-Plata et al. (2009) for alfalfa and as by Rellán et al. (2006a) for 

maize and barley. The plants grew for 12 days in a controlled environment chamber and 

were then treated with 30 µM Hg (as HgCl2) for 7 days. Once collected, plants were 

rinsed several times with 10 mM Na2

Tolerance to Hg assay 

 EDTA solution to remove superficial Hg, and roots 

were harvested for tissue fractionation. Another portion of plants were used to determine 

total Hg concentration in tissues. In some experiments to detect more easily Hg by atomic 

absorption spectrophotometry in diethylaminoethyl (DEAE)-eluted fractions or by XAS 

spectroscopy in intact roots (see below), several batches of maize and alfalfa plantlets were 

grown in a pure hydroponic system with continuous aeration (Ortega-Villasante et al. 

2005). 

Functional experiments of Hg-complexation by PCs were performed with Arabidopsis 

thaliana mutants with altered biothiol content. Col-0, cad2-1 and cad1-3 seeds were grown 

for 12 d in square Petri dishes in solid Murashige-Skoog nutrient medium (0.6% phyto 

agar, Duchefa Biochemie B.V., Haarlem, The Netherlands) supplemented with 2% 

sucrose. Tolerance was assessed by measuring root growth after exposure to 10 µM Hg, 

supplied in soaked 3MM filter paper (Whatman, Maidstone-Kent, UK) strips (10x1 cm) 

for 5 d in plates that were rotated 180º (roots-up position). Biothiol profile of mutant A. 

thaliana was studied in the leaves of plants (grown in a perlite-peat mixture for three 

weeks in short-days light regime), which were infiltrated under vacuum with water, 30 µM 

Cd or 30 µM Hg, and incubated for 48 h. 
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Tissue fractionation 

Root tissue fractions were prepared following the procedure described by Lozano-

Rodríguez et al. (1997). The homogenate was centrifuged at 10000 g for 30 min, and the 

pellet, consisting mainly of cell walls, intact cells and organelles, was labelled the 

Particulate Fraction (PF). The remaining supernatant was centrifuged again at 100000 g for 

30 min. The pellet contained membrane fragments and constituted the Microsomal 

Fraction (MF). The supernatant contained all soluble components of the cell, constituting 

the so-called Soluble Fraction (SF). All steps were performed at 4oC, and the fractions 

were stored at -20o

Anion exchange chromatography of root soluble fractions 

C for further analysis. 

The maize root SF was analyzed by anion exchange chromatography to determine the 

possible association of Hg to biothiols. An XK26 C-16/40 column (Phamacia Biotech, 

Uppsala, Sweden) filled with DEAE fast flow Sepharose (Sigma-Aldrich, Saint Louis, 

MO) was equilibrated with 10 mM Tris-HCl washing buffer (pH 8.6) using a peristaltic 

pump (1.8 mL/min flow; Gilson, Middleton, WI). The column was loaded with 35 mL 

of SF and washed until a baseline elution was achieved by measuring absorbance at 

λ=340 nm with a UA-5 UV detector (Teledyne ISCO, Lincoln, NE). Elution was 

achieved using washing buffer supplemented with 0.5 M NaCl. 2.3 mL fractions were 

collected until the baseline was reached and stored at -20ºC for further analysis. 

Biothiol analysis 

A 300 µL aliquot of each DEAE chromatography fraction was used to determine the total 

biothiol content. 50 µL of ice-cold 20% TCA was added to precipitate proteins, and the 

mixture was then centrifuged at 10000 g for 15 min at 4ºC. The supernatant (100 µL) 

was mixed with 400 µL of reducing solution (1 M NaOH, 1 mg mL-1 NaBH4) and 200 

µL analytical-grade type II water (miliRO, Millipore, Bedford, MA). After acidification 

with 100 µL 35% HCl, biothiols were detected after the addition of 600 µL of Ellman’s 

reagent (300 µM DTNB in 0.5 M NaH2PO4

  

, pH 7.5) by measuring the absorbance at 

412 nm (Shimadzu UV-2401PC spectrometer, Kyoto, Japan). Biothiol concentration 

was calculated using a GSH standard curve. Biothiol profile of A. thaliana plants was 

analyzed by HPLC as described by Ortega-Villasante et al. (2005). 
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Mercury analysis 

Solid samples of roots and cell wall fractions were dried at 40oC to constant weight and 

ground with mortar and pestle. Dried plant material (100 mg) was acid digested in 2 mL 

of the digestion mixture (HNO3:H2O2,:H2O, 0.6:0.4:1 v:v) in an autoclave (Presoclave-

75 Selecta, Barcelona, Spain) at 120ºC and 1.5 atm for 30 min (Ortega-Villasante et al. 

2007). Liquid samples (500 µL), including microsomal, soluble and DEAE 

chromatography fractions, were directly digested as described above after the addition of 

300 µL HNO3 and 200 µL H2O2. The digests were filtered through a polyvinylidene 

fluoride filter and diluted in miliRO water to 10 mL. Hg concentration was measured by 

Atomic Absorption Spectrophotometry, either with an Advanced Mercury Analyser 254 

Leco (St. Joseph, Michigan, MI, USA) or with a Atomic Absorption Spectrophotometer 

Model 4000 equipped with a NaBH4

Preparation of biothiol and Hg-biothiol complex standard solutions 

 cold vapor chamber MSH-20 (Perkin Elmer, 

Wellesley, MA, USA). 

Biothiol stock standard solutions containing from 2 to 4 mM of GSH (Mm 307.3; Sigma-

Aldrich, St. Louis, MO), hGSH (Mm 321.4; Bachem, Bubendorf, Switzerland), γ-(Glu-

Cys)2 (GC2; Mm 482.5; GenScript Corporation, Scotch Plains, NJ), γ-(Glu-Cys)2-Gly 

(PC2; Mm 539.6, AnaSpec, San Jose, CA), γ-(Glu-Cys)3-Gly (PC3; Mm 771.9, AnaSpec), 

γ-(Glu-Cys)4-Gly (PC4; Mm 1004.1, AnaSpec), γ-(Glu-Cys)2-Ala (hPC2; Mm 553.6, 

GenScript Corporation), γ-(Glu-Cys)3-Ala (hPC3; Mm 785.9, Peptide 2.0 Inc., Chantilly, 

VA), and γ-(Glu-Cys)4-Ala (hPC4; Mm 1018.2, Peptide 2.0 Inc.) were prepared in 

analytical-grade type I water (Milli-Q Synthesis, Millipore). Aliquots of the stock solutions 

were immediately frozen in liquid N2, lyophilized and stored at -80 °C. A 30 mM HgCl2

Biothiol and Hg-biothiol analysis by HPLC-ESI-TOFMS 

 

(Merck, Darmstadt, Germany) stock solution was prepared in Milli-Q water, protected 

from light and stored at room temperature. Hg-biothiol complexes standard solutions were 

prepared just before usage by mixing appropriate amounts of Hg and biothiol stock 

standard solutions at different ratios (in µM; 25:50, 50:50, and 50:25) in 0.1% (v/v) of 

formic acid (50%; Sigma-Aldrich). 

Chromatographic separation was performed with an HPLC system (Alliance 2795, Waters, 

Milford, MA) following the procedure described by Rellán-Álvarez et al. (2006b) with 

some modifications. A reverse-phase monolithic column (Chromolith Performance RP-
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18e, 3 x 100 mm, Merck, Darmstadt, Germany) was used. Injection volume was 50 μL for 

standard solution and 20 μL for root SF. Autosampler and column compartment 

temperatures were kept at 6 and 30ºC, respectively. The mobile phase was built using three 

eluents: A (Milli-Q water), B (acetonitrile) and C (2% formic acid in water), all chemicals 

being HPLC-MS grade (Riedel-de Haën, Seelze, Germany). Samples were eluted (flow 

rate of 400 µL min-1) with a gradient program: the initial conditions (95% A, 0% B and 5 

% C; min 0) were linearly changed to 85% A, 10% B and 5% C until min 5, and then 

changed to 45% A, 50% B and 5% C until min 6. After that, an isocratic step with the 

latter composition was applied until min 9. Then, to return to the initial conditions, a new 

linear gradient to 95% A, 0% B and 5 % C was run until min 11, followed by a 4 min re-

equilibration. The exit flow from the column was split with a T-connector (Upchurch 

Scientific, Oak Harbor, WA) that directed ca. 200 μL min-1 into the electrospray ionization 

(ESI) interface of a time-of-flight mass spectrometer (TOFMS) micrOTOF II (Bruker 

Daltonics, Bremen, Germany). The TOFMS operated in negative ion mode at -500 and 

3000 V of endplate and spray tip voltages, respectively. The orifice voltage was set at -90 

and -150 V to acquire spectra in the mass-to-charge ratio (m/z) ranges of 50-1000 and 900-

3000, respectively. In positive ion mode, endplate and spray tip voltages of -500 and 4500 

V were used. The orifice voltage was set at 100 and 270 V to acquire spectra in the 50-

1000 and 900-3000 m/z ranges, respectively. The nebulizer gas (N2) pressure, drying gas 

(N2) flow rate and drying gas temperature were 1.6 bar, 7.9 L min-1

Synchrotron X-ray fluorescence microprobe (µ-SXRF)  

 and 180 °C. The mass 

axis was calibrated externally using Li-formate adducts (10 mM LiOH, 0.2% (v/v) formic 

acid and 50% (v/v) 2-propanol). The HPLC-ESI-TOFMS system was controlled with the 

software packages MicrOTOF Control v.2.2 and HyStar v.3.2 (Bruker Daltonics). Data 

were processed with Data Analysis v.3.4 (Bruker Daltonics). Ion chromatograms were 

extracted with a precision of ± 0.05 m/z units. 

Three week-old Medicago sativa primary roots were further analyzed by microprobe at 

beamline 2-3 at the Stanford Synchrotron Radiation Lightsource (SSRL). µ-SXRF 

mapping of Hg was collected by scanning a representative intact root in the 

microfocused beam at 13,500 eV sampled in 2×2 µm pixels. Samples were rinsed 

several times with 10 mM Na2 EDTA solution to remove Hg adhered to the root surface. 

Roots were then freeze-dried to preserve root tissue, placed in large (~3×3 cm) Al 

spacers bound with kapton tape, and stored at room temperature until analysis. The Kα 

fluorescence line intensities of Hg (and other elements of interest, such as S) were 
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measured with a three-element Ge detector and normalized to the incident 

monochromatic beam intensity. HgCl2

Extended X-ray absorption fine structure (EXAFS) 

 powder was used as a standard material for 

calibration. Data analysis was carried out with the software package SMAK version 

0.45 (Webb, 2005). 

Firstly, Hg-biothiol standards were prepared in a 2:1 ratio (ligand:Hg) in Mili-Q water, 

mixing i) pure hPCs (hPC2, hPC3 or hPC4) (2 mM) and HgCl2 (1 mM), ii) PCs (PC2, 

PC3 or PC4) (0.5 mM) and HgCl2 (0.25 mM), and iii) GSH or hGSH (4 mM) and 

HgCl2 (2 mM). The aqueous solutions of Hg-biothiol complexes were mixed with 25% 

v/v glycerol to prevent the formation of ice crystals. The standard mixture was stored 

under liquid nitrogen until analysis. Spectra from the additional standard compounds: 

Hg (II) cysteine ligand (average of mercury cysteine and dicysteine), Hg acetate 

(HgAce), cinnabar (HgS red), metacinnabar (HgS black), methyl-Hg aspartate 

(MeHgAsp) and methyl-Hg methionine (MeHgMet) were also used for fit calculations 

(details can be found in Rajan et al. 2008). Hg L3 edge X-ray absorption spectra for the 

hydroponic Medicago sativa root (average of five scans) and for the standard mixtures 

(average of three scans) were collected at beamline 9-3 at SSRL by monitoring the Hg 

Lα1 fluorescence at 9988 eV. The tissue sample was ground in liquid nitrogen and 

placed in aluminium spacers. A 200 µl aliquot of the aqueous standard solution was 

placed in a Lucite sample holder. All samples were bound by kapton type and stored in 

liquid nitrogen. During the analysis, the samples were maintained at ≈ 10 K in a liquid 

helium flow cryostat and positioned at 45º to the incident beam. Calibration was 

accomplished by simultaneous collection of HgCl2 with first edge inflection at 12284.4 

eV. Data analysis was carried out with the software package SixPACK version 0.63 

(Webb, 2005) following a standard method that consisted of preliminary examination of 

fluorescence channels and energy calibration of individual scans using a smoothed first 

derivative, followed by averaging of data. A linear background function was subtracted, 

and data were normalized to a unit step edge. To quantify the percentage of each Hg 

species present in alfalfa roots using the fingerprinting method, a least squares fit (LSF) 

was performed to fit the EXAFS (chi) of the experimental data to linear combinations of 

standard reference compounds, which were divided into four Hg coordination 

environments: inorganic sulphur bonding (Hg-S red and Hg-S black), organic sulphur 

bonding (Hg-PCs and Hg-Cys), oxygen-rich ligand bonding (carboxylic groups) (Hg-

Ace) and methyl-Hg forms (Me-Hg-Asp and Me-Hg-Met). Single-component fits to the 
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data were carried out to exclude those contributing less than 1 %, and selected 

candidates of each group were fitted to get the relative proportion of Hg species. The 

reduced chi-square value (goodness of fit χ2

Statistical analysis 

) provides information as to the quality of 

the standard fit to the spectra data (Kim et al. 2000). 

Statistical significance was calculated by the Duncan's test of analysis of variance (at 

p<0.05), using the SAS statistical software package. 

RESULTS 

Plant growth and Hg distribution in tissues  

The growth of roots was not affected significantly in plants treated with 30 µM Hg for 7 

days in a semi-hydroponic culture (Table 1), and no visual symptoms of toxicity appeared. 

Total root Hg concentrations were approximately 1,600, 500 and 800 µg g-1 FW in barley, 

maize and alfalfa plants treated with Hg, respectively, whereas control plants had Hg 

concentrations below the detection limit (< 0.05 µg g-1

Table 1. Fresh weight (mg plant

 FW). Shoot Hg concentration 

values were only approximately 2% of those found in roots (data not shown), in agreement 

with the known allocation of this toxic metal in plants grown under similar conditions 

(Sobrino-Plata et al. 2009; Válega et al. 2009). Therefore, we focused on Hg fractionation, 

speciation and allocation in root tissues. 

-1), and total and subcellular Hg concentration (µg g-1 fresh weight) of roots 
from 3-week-old barley, maize and alfalfa plants treated with 0.0 (control) or 30 µM Hg (+Hg) for 7 days. In 
parentheses, the percentage of Hg distribution relative to the total is shown. Particulate Fraction, PF; 
Microsomal Fraction, MF; Soluble Fraction, SF. Data are average of three independent replicates (± SD). 
Data for MF and SF were originally measured on a total metal basis and then transformed into a µg g-1

 

 fresh 
weight basis. 

Root fresh weight  a  Hg concentration 
Control +Hg Total PF  MF SF  b 

Barley  21 ± 9  24 ± 7 1599 ± 217 1047 ± 222 (66) < 0.03 1.01 ± 0.06 (0.06) 
Maize 118 ± 27 102 ± 25 517 ± 40 320 ± 121 (61) < 0.03 0.32 ± 0.02 (0.06) 
Alfalfa 500 ± 204 440 ± 133 816 ± 184 757 ± 36 (92) < 0.03 0.69 ± 0.01 (0.08) 
aMercury concentration in roots and subcellular fractions from control plants were below detection limits. 
b

Subcellular fractionation and association of soluble Hg with biothiols in roots 

Only traces of Hg (slightly below the quantification limit) were found in the microsomal fraction. 

Three subcellular fractions were isolated from root tissue: a particulate (PF), a microsomal 

(MF) and a soluble fraction (SF), and the Hg concentration of each fraction were 
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measured. The vast majority of Hg (approximately 99.9% in barley, maize and alfalfa) was 

found associated with the PF, which contains mainly cell walls (Table 1). A much smaller 

portion (approximately 0.1% in all cases) of Hg was found in the SF, whereas the Hg 

detected in the MF was just below the quantification limit (below 0.01%). Mercury 

concentrations were in the SF equivalent to approximately 1.0, 0.3 and 0.7 µg g-1 

 

FW of 

barley, maize and alfalfa respectively. Anion exchange DEAE-chromatography of SF 

revealed that Hg co-eluted with a peak containing most of the biothiols from maize root SF 

(Fig. 1); the amount of Hg recovered represents approximately 70% of the total Hg SF. 

 

 

 

 

 

 

 

 

 

 

Detection of Hg-biothiol complexes by HPLC-ESI-TOFMS 

Mass spectrometry-based analyses were carried out to identify the Hg species occurring in 

root SF, using an approach similar to that used recently by Krupp et al. (2008, 2009) and 

Chen et al. (2009). Hg–containing compounds were identified by the characteristic natural 

Hg isotopic composition (196Hg, 198Hg, 199Hg, 200Hg, 201Hg; 202Hg, and 204Hg) using ESI-

TOFMS (Chen et al. 2009). An array of biothiol and Hg-biothiol standard solutions was 

used to establish the HPLC-ESI-TOFMS analytical conditions, prepared at three 

concentration ratios (1:2, 1:1 and 2:1), with the following ligands: GSH, hGSH, (γ-Glu-

Cys)2 (GC2), (γ-Glu-Cys)2-Gly (PC2), (γ-Glu-Cys)2-Ala (hPC2), (γ-Glu-Cys)3-Gly (PC3), 

and (γ-Glu-Cys)3-Ala (hPC3). Acidic chromatographic conditions were used, similar to 

 

Fig. 1. FPLC-DEAE anion exchange chromatography of the Soluble Fraction from maize roots 
treated with 30 µM Hg. Samples collected were analyzed for biothiols reacting with Ellman´s 
reagent (continuous line) or for Hg (dashed line) and plotted against elution volume. Data are 
representative of three independent experiments. 
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those established for the determination of reduced and oxidized GSH and hGSH (Rellán-

Álvarez et al. 2006b), based on the fact that Hg-biothiol complexes are stable at pH 2.0 

(Chen et al. 2009). Most biothiol ligands and Hg-biothiol complexes were detected both in 

negative and positive ionization. Since the ionization polarity could affect sensitivity to 

detect each Hg-biothiol complex, positive and negative ionizations were always used. 

Moreover, to detect the full array of possible Hg-complexes, TOFMS mass spectra were 

acquired in two different mass-to-charge ratio (m/z) ranges: 100-1000 and 1000-3000. 

Therefore, a total of four individual HPLC-ESI-TOFMS runs were carried out per sample 

(negative and positive mode, in two mass-to-charge ratios each), with high-resolution mass 

spectra acquired to obtain three-dimensional (time, m/z, and intensity) chromatograms. 

 The ion chromatograms of free biothiols were extracted at the exact m/z values of the 

[M+H]+ and [M–H]— ions corresponding to the monoisotopic signals (Fig. 2A), and the 

ion chromatograms of Hg-biothiol complexes (Figs. 2B and 2C) were extracted at the 

exact m/z values of the [M+H]+ and [M–H]— ions corresponding to the 202Hg (most 

abundant isotope) signal. Results show that the HPLC-ESI-TOFMS method adequately 

resolved free biothiols and Hg-biothiol complexes (Fig. 2). Differences in retention times 

between the free and Hg-complexed biothiols were only found in the case of small 

biothiols such as GSH and hGSH. For instance, GSH eluted at 2.5 min (Fig. 2A) whereas 

Hg(GSH)2 eluted at 4.8 min (Fig. 2B). Fig. 2D shows an example of ESI-TOFMS spectra 

in the positive mode of one of the standards tested (Hg:hPC2; 25:50 µM). When data were 

acquired in the 100-1000 m/z range, two main ions at m/z 554.1 and 754.1 were found. A 

close-up of the mass spectrum of the ion at m/z 554.1 shows that it corresponds to free 

[hPC2+H]+ (inset in Fig. 2D). However, the ion at m/z 754.1 and isotopic signature fit well 

with a single charged ion containing one Hg atom complex ([HghPC2+H]+; inset in Fig. 

2D). When mass spectra were acquired in the 1000-3000 m/z range, two further ions at m/z 

1307.2 and 1505.1 were found (Fig. 2E), with signal intensities one order of magnitude 

lower than that of [HghPC2+H]+. The ion at m/z 1307.2 had an isotopic signature 

characteristic of a single charged ion containing one Hg atom, and the m/z fit well with 

[Hg(hPC2)2+H]+. 
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The ion at m/z 1505.1 showed an isotopic signature characteristic of a single charged ion 

containing two Hg atoms, and the m/z fit well with [Hg2(hPC2)2+H]+ (Fig. 2E). The 

existence of two or more Hg atoms changes the fingerprint of the complex, as observed by 

comparing the isotopic signatures of [Hg(hPC2)2+H]+ and [Hg2(hPC2)2+H]+ ions. A wide 

array of Hg-biothiol complexes was found in standard solutions prepared at three Hg-to-

biothiol concentration ratios (1:2; 1:1 and 2:1) by HPLC-ESI-TOFMS. The m/z and 

retention time values of all free biothiol and Hg-biothiol ions detected are presented in 

Supplementary Table 1 (Appendix I). Independent of the proportions of Hg and PCs used 

in the standard preparation, the most frequent Hg-biothiol ions found corresponded to Hg-

complexes with a 1:1 stoichiometry. Phytochelatins with a higher number of sulfhydryl 

residues such as PC3 and hPC3 also formed complexes with higher stoichiometries (4:2 or 

2:1 Hg:ligand) in the case of the Hg-richest mixtures (e.g. the [Hg4(hPC3)2-2H]2— ion; 

Fig. 2. HPLC-ESI-TOFMS analysis of biothiol ligands (50 µM) and Hg-biothiol complexes (mixture 
of Hg:biothiol; 25 µM:50 µM) standard solutions in 0.1% formic acid. Peaks corresponding to different 
biothiol ligands (A) and Hg-biothiol complexes of low m/z (50-1000 range; B) and high m/z (900-3000 
range; C) are shown. Mass spectra of a Hg:hPC2 mixture standard solution (25:50 µM in 0.1% formic 
acid) acquired in the 50-1000 (D) and 900-3000 (E) m/z ranges. Experimental and theoretical isotopic 
signatures of the identified ions are shown in insets. 
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Supplementary Table 1; appendix I). These heavily Hg-loaded complexes showed higher 

retention times than those of Hg-biothiol complexes with lower stoichiometries. 

 When the root SF of alfalfa, maize and barley plants treated with 30 µM Hg was 

analyzed using HPLC-ESI-TOFMS, a total of 28 Hg-containing ions were detected 

corresponding to 17 different Hg-complexes (ions were detected in positive mode, 

negative mode or in both), formed with up to six different biothiols (GC2, PC2, hPC2, 

hPC3, PC4, and hPC4

 

; summarized in Table 2).  

Table 2. Mercury-containing ions detected in positive and negative mode HPLC-ESI-TOFMS analysis of 
root soluble fractions from 3-week-old barley, maize, and alfalfa plants treated with 30 µM HgCl2 for 7 
days. The identification of the ions detected along with their mass-to-charge ratio (m/z) and 
chromatographic retention times (tR; in minutes) are indicated. Data were obtained from 3 independent 
biological replicates. 

Plant species Formula species complex t Ion positive mode R Ion negative mode m/z 
Barley Hg-GC 6.2 2 [HgGC2+H]  + 683.1 

  6.2  [HgGC2–H] 681.1 — 
 Hg-PC 6.3 2 [HgPC2+H]  + 740.1 
  6.3  [HgPC2–H] 738.1 — 
 Hg-PC 8.3 4  [HgPC4ox–H] 1200.2 — 

Maize Hg-GC 6.2 2 [HgGC2+H]  + 683.1 
  6.2  [HgGC2–H] 681.1 — 
 Hg2-(GC2) 6.2 2  [Hg2(GC2)2–H] 1361.2 — 

Alfalfa CH3-Hg-hPC 6.0 2  [CH3HghPC2–H] 768.1  — 
 Hg-GC 6.2 2  [HgGC2–H] 681.1 — 
 Hg-PC 6.2 2  [HgPC2–H] 738.1 — 
 Hg-Unknown 6.7  [Hg Unknown] 1084.2 — 
  6.7  [Hg Unknown] 1165.2 — 
  6.7  [Hg Unknown] 1834.3 — 
 Hg-hPC 6.8 2 [HghPC2+H]  + 754.1 
 Hg2-(hPC2) 6.8 2  [Hg2(hPC2)2–H] 1503.2 — 
 Hg3-(hPC2) 6.8 3  [Hg3(hPC2)3–H] 2255.3 — 

 Hg-(hPC2ox) 7.7 2 
[Hg(hPC2ox)2+2H]  

2

+ 653.1 

  7.7 [Hg(hPC2ox)2+H]  + 1305.2 
 Hg-hPC 8.0 3  [HghPC3–H] 984.2 — 
 Hg-PC 8.3 4ox [HgPC4ox+H]  + 1202.2 
  8.3  [HgPC4ox–H] 1200.2 — 
 Hg-hPC 8.3 4ox [HghPC4ox+H]  + 1216.2 
  8.3  [HghPC4ox–H] 1214.2  — 
 Hg-(hPC3ox) 8.4 2 [Hg(hPC3ox)2+H]  + 1767.3 
 Hg2-(hPC3ox) 8.4 2 [Hg2(hPC3ox)2+H]  + 1967.3 
 Hg2-PC 8.5 4ox  [Hg2PC4ox–H] 1400.2 — 
 Hg2-hPC 8.5 4ox  [Hg2hPC4ox–H] 1414.2 — 
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Fig. 3. Experimental and theoretical isotopic signatures of the identified Hg-containing ions found in 
the HPLC-ESI/TOFMS analysis of the root soluble fraction from 3-week-old alfalfa (A-R), barley 
(S-U) and maize (V-Z) plants treated with 30 µM HgCl2 for 7 days.  
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 Fourteen of the 17 Hg-containing complexes were unequivocally identified based on 

retention time, exact m/z, and isotopic signature (see fits between experimental and 

theoretical isotopic signatures in Fig. 3). In barley, three 1:1 Hg-complexes were found, 

one each with GC2, PC2 and PC4. In maize, Hg formed only two complexes with GC2, 

having 1:1 and 2:2 stoichiometry. In alfalfa, up to 14 different Hg-biothiol complexes were 

found, one each with GC2 (HgGC2) and PC2 (HgPC2), four with hPC2 (HghPC2, 

Hg(hPC2)2, Hg2(hPC2)2 and Hg3(hPC2)3), three with hPC3 (HghPC3, Hg(hPC3)2 and 

Hg2(hPC3)2), two with hPC4 (HghPC4 and Hg2hPC4), and two more with PC4 (HgPC4 

and Hg2PC4). Additionally, we could detect a complex formed with methyl-Hg and hPC2 

(CH3-Hg-hPC2) in alfalfa SF, not previously described in the literature. Therefore, the 

most abundant Hg-to-ligand stoichiometry found was 1:1. Moreover, some of the Hg-

biothiol complexes having thiol groups not bound to Hg were found to occur in oxidized 

forms (Hg(hPC2ox)2, Hg(hPC3ox)2, Hg2(hPC3ox)2 and Hg(hPC4ox), and eluted with a delay 

of approximately one min as compared with their reduced counterparts. Finally, three more 

Hg-containing ions were found in alfalfa at m/z 1084.2, 1165.2 and 1834.3, which could 

not be identified (Table 2). As an example, some chromatographic and MS data obtained 

for the three plant species are shown in Fig. 4. Barley root SF showed (in positive mode) 

two single charged ions containing one Hg atom at m/z 683.1 and 740.1, both eluting at 6.2 

min, that had m/z and isotopic signatures matching those of [HgGC2H]+ and [HgPC2+H]+ 

ions, respectively (Fig. 4A). Maize root SF only showed two single charged Hg-containing 

ions, at m/z 683.1 (in positive mode) and 1361.2 (in negative mode), eluting at 6.2 min and 

with m/z and isotopic signatures fitting well with those of [HgGC2+H]+ and [Hg2(GC2)2-

H]— ions, respectively (Fig. 4B). Alfalfa root SF showed (in negative mode) two single 

charged ions containing one Hg atom, at m/z 1503.2 (at 6.8 min) and 2255.3 (at 6.7 min), 

that were identified as [Hg2(hPC2)2-H]— and [Hg3(hPC2)3-H]—

 

, respectively (Fig. 4C). 
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Fig. 4. Analysis of some Hg-phytochelatin complexes found in the root soluble fraction of 3-week-old 
barley (A), maize (B), and alfalfa (C) plants treated with 30 µM HgCl2 for 7 days. HPLC-ESI-
TOFMS analyses were carried out in negative and positive modes, and data were acquired at different 
m/z ranges. On the left panels, chosen mass spectra extracted at the retention times indicated in the 
chromatograms shown on the right panels are displayed. Insets highlight experimental and theoretical 
isotopic signatures of the identified ions as well as a schematic diagram of the putative Hg-S bonds. 
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In vivo X-ray spectroscopy of Hg in alfalfa roots 

The spatial localization of Hg and S was studied in alfalfa roots treated with 30 µM Hg 

using µ-SXRF (Fig. 5A and 5B). The most intense Hg signals were found in the inner 

tissues, possibly at the vascular cylinder. At this location, there was significant overlap 

with Hg and sulfur (S; Fig. 5B; see overlay in Fig. 5C). The correlation between intensities 

of Hg and S was highly significant (r2

 To undertake the in vivo speciation of Hg in roots of 30 µM Hg-treated alfalfa plants, 

we performed XAS, which permits non-disruptive analysis in frozen root material. 

Confidence in the accuracy of the fit was increased by using a diverse standard library, 

taking into account the most probable Hg coordination environments in plants, since the 

goodness of the LSF approach depends on the standard compounds selected a priori 

(Beauchemin et al. 2002). A first LSF was performed in each group of standard 

mixtures (inorganic sulphur-Hg forms, biothiol and cysteine Hg ligand bonding, 

oxygen-rich ligand bonding and methyl-Hg forms) in order to exclude those standard 

compounds contributing less than 5 % in the fit. This preliminary survey showed that 

the spectra of the different HgPCs, and also the HgCys complexes were 

indistinguishable from each other. Therefore, we opted to use HghPC

 of 0.84; see Fig. 5D).  

2 and HgCys as 

representative standards for Hg-biothiol or Hg-organic sulphur (also protein) complexes. 

The Hg L3 EXAFS spectra of the Hg model compounds plus the current sample are 

shown in Fig. 5E. Organic Hg-S coordination (HgCys and HghPC2

  

) and methyl-Hg 

forms (MeHgMet) accounted for 79% and 21%, respectively, of the total Hg in alfalfa 

roots (reduced chi-square 0.0909). The best LSF of the EXAFS spectra to the standards 

HgCys, HghPC and MeHgMet that represents the different Hg forms in alfalfa roots is 

shown in Fig. 5F. 
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Fig. 5. X-ray spectroscopy to study Hg distribution and ligand association in three-week-old 
Medicago sativa roots treated with 30 µM Hg for 7 days in a pure-hydroponic system. (A) Elemental 
2-D SXRF distribution of Hg; (B) distribution of sulfur; and (C) overlapping of Hg (red) and S 
(green); white scale bars equal 50 µm. (D) Correlation diagram of S relative to Hg, obtained from Fig. 
5C as fluorescence line intensity (counts s―1), after analysis by µ-SXRF (E) Hg L3 EXAFS spectra of 
the Hg model compounds plus alfalfa root. (F) Linear fitting results for alfalfa root (black line: data, 
gray line: fit), showing the Hg L3 EXAFS k3 weighted spectra (reduced chi-square 0.0909). The 
components that contributed to the linear fit were HgCys (33.8%), HghPC (45.2%) and MeHgMet 
(21%).  
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Tolerance analysis of A. thaliana cad1-3 and cad2-1 mutants 

To evaluate the relevance of Hg-PC complex formation for Hg detoxification and 

tolerance root growth inhibition, a biothiol profile was studied in Arabidopsis thaliana 

mutants with altered biothiol metabolism. cad2-1 and cad1-3 mutants were clearly less 

tolerant than the wild-type when exposed to 10 µM Hg for 4 d: root growth inhibition 

was over 80% in the mutants, whereas WT was inhibited by only 35% (Fig. 6).  

 

 

 

 

 

 

 

 

  

Fig. 6. Tolerance to Hg assay with Arabidopsis thaliana mutants altered in biothiol metabolism: Wild-
type (Col-0), cad2-1 (altered -glutamyl cysteine synthase activity), and cad1-3 (lacking PCS activity). 
Seven-days-old seedlings were turned roots-up and exposed to control (0) or 10 µM Hg by placing a 
3MM filter paper strip close to the root apical tip. Close-ups of the root tips (insets in black rectangle) 
highlight the remarkable sensitivity of both mutants compared with the WT. Out-growth root length 
was measured from the blue mark and growth inhibition calculated after 5 d exposure (see graph on the 
right). Results are the average of 10 replicates, and different letters denote significant differences with 
p<0.05. 
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The biothiol profile of each plant was analyzed by conventional HPLC in leaves 

infiltrated with 30 µM Cd or Hg for 48 h (Fig. 7). Cd-treated leaves of cad2-1 mutant 

accumulated a lower amount of GSH (40%) and PCs (<31%) than Col-0, and no PCs 

were detected in leaves exposed to 30 µM Hg (Table 3). As expected, cad1-3 did not 

accumulate PCs under Cd nor Hg stress, although a remarkable increase in GSH level 

was detected, over 150% the concentration found in Col-0 (Table 3).  

 

HPLC-ESI-TOFMS analysis revealed that Hg-PC2 complexes were only detected in 

Col-0 leaves ([HgPC2+H]+), whereas no traces of Hg-biothiol complexes could be 

detected in cad2-1 or in cad1-3 (data not shown). HPLC-ESI-TOFMS sensitivity was 

checked by the addition of Hg-GSH spikes to Col-0 leaves infiltrated with 30 µM Hg. 

We could only detect [Hg(GSH)2–H]–

 

 at m/z 813.1 with the highest spike concentration 

(25 µM Hg:50 µM GSH; Fig. 8B), whereas this ion was not detected in Col-0 leaves 

spiked with 2.5 µM Hg:5 µM GSH (Fig. 8C) nor in non-spiked 30 µM Hg-treated 

leaves (Fig. 8D). 

  

Table 3. Concentration of biothiols (nmol g-1 FW) in Arabidopsis thaliana leaves infiltrated with 30 
µM Cd or Hg for 48 h. In parentheses is the percentage of concentration relative to wild-type. 
Values are the mean of four independent replicates ± standard deviation (p<0.05).  

Biothiol Wild type cad2-1 cad1-3 

Control    
Cys 23.4a 21.5 ± 4.8  a 22.6 ± 4.7 (92) a ± 9.7 (96) 
GSH 153.8a 50.1 ± 8.4  b 142.1 ± 10.3 (33) a ± 14.3 (92) 
30 µM Cd    
Cys 19.7a 36.6 ± 6.5  ab 46.1 ± 5.8 (186) b ± 12.8 (234) 
GSH 142.5a 80.0 ± 22.8  c 316.1 ± 22.4 (56) d

PC
 ± 29.9 (222) 

168.72 a 52.5 ± 38.7  b n.d.  ± 18.9 (31) 
PC 346.73 a 41.0 ± 38.6  b n.d.  ± 14.7 (12) 
PC 283.64 a 25.6 ± 48.6  b n.d.  ± 8.8 (9) 
PC 73.95 a n.d.  ± 12.7  n.d. 
30 µM Hg    
Cys 25.0a 44.1 ± 3.6  b 65.6 ± 2.2 (177) c ± 10.1 (263) 
GSH 175.5a 52.0 ± 12.4  b 257.4 ± 7.2 (30) d

PC
 ± 21.9 (147) 

60.42 a n.d.  ± 22.4  n.d. 
PC 32.33 a n.d.  ± 9.3  n.d. 
aDifferent letters denote significant differences compared with control wild-type samples. 
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Fig. 7. Biothiol profile of Arabidopsis thaliana Col-0, cad2-1 and cad1-3 leaves infiltrated with control 
(0), 30 µM Cd or 30 µM Hg for 48 h. Peaks were identified by the elution of commercially available 
standards. Concentration was calculated by the integration of the internal standard N-acetyl-cysteine 
(Peak 3): Cys (1), GSH (2), PC2 (4). PC3 (5), PC4 (6), and PC5

  

 (7). 
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Fig.8 Assay to identify Hg-GSH complexes with respect to the detection limit of the HPLC-ESI-
TOFMS analysis. Theoretical (A) isotopic signature of [Hg(GSH)2–H]– ion at m/z 813.1 found 
detected in A. thaliana Col-0 leaves infiltrated with 30 µM Hg for 48 h and spiked with 25 µM Hg:50 
µM GSH (B), 2.5 µM Hg:5 µM GSH (C), and with deionized water (D). 
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DISCUSSION 

Although plants examined in this study were treated with a high dose of Hg (30 µM), they 

were not poisoned and effective defense mechanism(s) were exerted in agreement with our 

previous results (Sobrino-Plata et al. 2009). Roots were the major sink for Hg, as already 

described in these plant species (Rellán-Álvarez et al. 2006a; Sobrino-Plata et al. 2009). 

Several subcellular fractions were prepared from roots of Hg-treated alfalfa, maize, and 

barley plants. The largest amount of Hg accumulated in the root PF (up to 99%), with the 

SF representing a secondary pool, was in agreement with the distribution described in 

Halimione portulacoides using a similar experimental approach (Valega et al. 2009). 

Retention of heavy metals by materials associated with the cell wall and/or via 

complexation in the intracellular space has been described as important tolerance 

mechanisms to avoid its accumulation in cytosol and organelles (Hall, 2002). Thus, Hg has 

been found associated with the cell wall of different plant species (Pisum sativum and 

Mentha spicata, Beauford et al. 1977; Nicotiana tabacum, Suszcynsky & Shann, 1995). 

The chromatographic separation of maize SF by DEAE-FPLC revealed that the major 

proportion of soluble Hg was associated with biohiols, which agrees with the reported 

recovery of Cd in maize (Rauser & Meuwly 1995) and Sedum alfredii (Zhang et al. 2010) 

after a similar chromatographic separation of soluble Cd. These results highlight the 

relevance of biothiol ligands in Hg speciation in plants. 

 To identify the biothiol ligands involved in Hg complexation, root SFs of barley, 

maize and alfalfa plants exposed to 30 µM Hg were analyzed in depth by HPLC-ESI-

TOFMS. The HPLC-ESI-TOFMS analysis of the root SF of barley, maize and alfalfa 

plants exposed to 30 µM Hg revealed that Hg was only found associated with PCs. No 

other Hg-containing substances were identified with our experimental settings, although 

other bioligands such as organic acids, nicotianamine or amino acids can be important in 

metal homeostasis (Sharma & Dietz, 2006). A wide array of Hg-PC complexes was found: 

three in barley, two in maize (one of them also present in barley), and 14 in alfalfa (two of 

them also present in barley). Ten novel Hg-PCs complexes formed with hPCs were 

unequivocally identified in alfalfa, a leguminous species capable of synthesizing GSH and 

hGSH, which has been reported to produce several kinds of PCs and hPCs in the presence 

of toxic metals, including Hg (Sobrino-Plata et al. 2009). The synthesis of hPCs depends 

apparently on the availability of hGSH as substrate, because phytochelatin synthase (PCS) 

does not distinguish between GSH or hGSH (Loscos et al. 2006). 
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 The most common Hg-PC complexes detected in the three plant species studied were 

those formed with PCs having two γ-glutamylcysteine units (i.e. PC2, hPC2 and GC2; 

Table 2), although up to 7 different Hg-PC complexes with hPC3, PC4 and hPC4 were also 

found in alfalfa. Similarly, HgPC2, HgGC2, Hg(Ser)PC2 and Hg(Glu)PC2 were found to 

accumulate in O. sativa, whereas in M. vulgare only Hg(Glu)PC2 was found by HPLC-

ESI-MS/MS (Krupp et al. 2009). Although PC3 and PC4 were detected in root tissue 

extracts from Brassica napus, the major pool of biothiols corresponded to PC2 (Iglesia-

Touriño et al. 2006). Interestingly, the maize SF only contained the biothiol ligand GC2

 Among the array of Hg-PC complexes detected in alfalfa, barley and maize, the SF 

mostly had 1:1 Hg to biothiol stoichiometry, as described in B. chinensis (Chen et al. 

2009) and O. sativa and M. vulgare (Krupp et al. 2009). However, we also found Hg-PC 

complexes with higher stoichiometry such as 2:1, 2:2 and 3:3, mainly in alfalfa root SF 

(Table 2). Interestingly, there were several complexes that appeared in oxidized forms, 

such as Hg-(hPC

, 

which is essentially in agreement with the findings of Meuwly et al. (1995), who reported 

that monocotyledonous plants such as maize preferentially accumulate GCs or des-Gly-

phytochelatins after exposure to Cd. 

3ox)2 or Hg2-hPC4ox, that were more hydrophobic due to the loss of H, 

with an elution time delayed by one min relative to their reduced counterparts (Table 2). 

Similarly, Rellán-Álvarez et al. (2006b) observed that oxidized GSH and oxidized hGSH 

eluted approximately one minute later than GSH and hGSH. Nevertheless, the signal of the 

Hg-hPC2ox and Hg-hPC3ox was much weaker than Hg-hPC2 or Hg-hPC3

 It is known that plants can reduce Hg

 (Fig. 3). Chen et 

al. (2008) could detect only oxidized free PCs, whereas we could clearly find the free 

reduced ligands when conducting the experiment at nearly neutral pH and in the presence 

of reducing substances (data not shown). These precautions together with our enhanced 

detection capabilities by HPLC-ESI-TOFMS permitted us to detect up to 28 Hg-containing 

ions, particularly abundant in the alfalfa root SF (Table 2). 

2+ and accumulate methyl-Hg (Göthberg & 

Greger 2006). Spinach plants subjected to 0.2 µM accumulated a relatively low proportion 

of methyl-Hg in roots and shoots (approximately 0.01% of total Hg), which suggests that 

some methylation may occur (Greger & Dabrowska 2010). Interestingly, a novel complex 

formed in vivo between methyl-Hg and hPC2 was detected in the SF of alfalfa root (Table 

2), albeit with a low MS signal intensity (Fig. 3). Despite the fact that we could not detect 

free methyl-Hg, it feasible that methyl-Hg forms readily complexes with PCs, although 
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Krupp et al (2009) could not detect methyl-Hg-PCs complexes in O. sativa and M. vulgare 

plants treated with 45 µM CH3

 The distribution of Hg was studied in alfalfa roots by µ-SXRF. The most intense Hg 

signal was located in the inner tissues of the vascular cylinder, and co-localised with S 

in the inner tissues (Fig. 5). Similarly, Patty et al. (2009) observed in Hg-treated 

Spartina spp. root tips that the inner tissues had the strongest signal. A high overlap of 

Hg and S localization was observed in alfalfa root, indicating that cells accumulating 

Hg also contained substances rich in S. Cadmium was also found to co-localize with S 

at the vascular bundle in A. thaliana roots (Isaure et al. 2006). X-ray fluorescence 

mapping of As and S in rice grains also showed that both elements were localized in the 

same embryo region, suggesting that As accumulated preferentially in protein and 

nutrient rich parts of the grain (Lombi et al. 2009). These studies suggest that S-

containing metabolites might be important for the detoxification of toxic elements in 

plants. 

Hg. 

 Riddle et al. (2002) reported that Hg was coordinated mainly to organic S ligands 

using XANES in E. crassipes. In another study, Rajan et al. (2008) investigated Hg 

methylation in E. crassipes, and Patty et al. (2009) analyzed Hg binding in S. foliosa 

and S. alterniflora. In both cases, the authors concluded that most of the Hg was bound 

to S in a form similar to Hg-cysteine, and a smaller part (3-36%) was in a methylated-

Hg form. Overall, these results are in agreement with our data because more than 79% 

of the Hg in alfalfa was found bound to organic S and 21% was methyl-Hg. Within the 

current technological limits of EXAFS and XANES, HgCys, HgGSH, HghGSH, HgPCs 

and HghPCs show very similar spectra because all of these compounds are bound to Hg 

via a sulfhydryl cysteine group of the biothiols and/or proteins, comparative spectral 

analysis that was undertaken for the first time in the present study. The more distant atoms 

in the molecule have limited influence on spectral properties (Beauchemin et al., 2002). 

These results are in accordance with the detection of CH3HgHPC2

 The analysis of tolerance with Cd-sensitive A. thaliana mutants highlighted the 

importance of Hg-PC complexes for Hg homeostasis. Plants unable to accumulate PCs 

under Hg exposure, i.e. cad2-1 and cad1-3, were much more sensitive, in agreement with 

Ha et al. (1999). The cad2-1 mutant contains a defective γ-glutamylcysteine synthetase, 

which causes a severe depletion in GSH and PCs concentration upon Cd-stress (Cobbett et 

al. 1998), essentially following the same behavior as observed under Hg stress (Table 3 

 by HPLC-ESI-TOFMS 

in alfalfa root SF, as previously discussed. 
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and Fig. 6). Interestingly, the concentration of GSH in cad1-3 leaves was much higher 

under Cd and Hg stress than in Col-0, following the pattern described by Howden et al. 

(1995). However, no Hg-GSH complexes could be detected in Hg-treated cad1-3, in 

agreement with our previous observations that neither Hg-GSH nor Hg-hGSH complexes 

could be found in the SF of barley, maize and alfalfa roots, and with the findings in Hg-

treated B. chinensis, O. sativa and M. vulgare (Chen et al. 2008; Krupp et al. 2009). We 

tested the sensitivity of our HPLC-ESI-TOFMS method by analyzing samples of A. 

thaliana Col-0 spiked with a 25 µM Hg:50 µM GSH mixture, and we observed the 

characteristic [Hg(GSH)2–H]– ion at m/z 813.1. The Hg(GSH)2 complex was not detected 

in vivo, in spite of being the endogenous GSH concentration found in 30 µM Hg-treated 

Col-0 leaves (257.4 nmol g-1

 Phytochelatins are synthesized by the condensation of a molecule of γ-

glutamylcysteine on GSH that could contain the thiol group blocked by the transpeptidase 

activity of phytochelatin synthase (Vatamaniuk et al. 2000). Taking into account the strong 

affinity of Hg for thiol residues, an alteration of PCs and GSH metabolism catalysed by 

phytochelatin synthase might explain the restricted variety of PCs or hPCs variants found 

in plants exposed to Hg in comparison with those treated with Cd or As (Table 3; Cobbett 

& Goldsbrough, 2002, Haydon & Cobbett, 2007). In this sense, the absence of Hg-(GSH)

 FW) 5-fold higher than the concentration of spiked GSH 

(Fig. 8). The absence of Hg-GSH complexes could be partially explained by the fact that 

PCs containing a larger number of sulfhydryl residues than GSH or hGSH will bind Hg 

more strongly, as Mehra et al. (1996) showed in vitro by circular dichroism and HPLC-

UV/visible spectroscopy. These results imply that despite GSH accumulation under Hg 

stress, PCs are the biothiols that contribute to Hg detoxification in plants. 

2 

in all root SF and Hg-PC3

 In summary, plants accumulated several classes of Hg-PC complexes. Biothiols 

may constitute a sink of soluble Hg, although the major proportion of the toxic metal 

was found associated with the particulate fraction. Albeit a minor proportion of plant Hg, 

 in barley root SF, which should be expected in the canonical 

series of Hg-biothiol complexes, could also depend on the particular molecular stability 

(i.e. strength of bonds or susceptibility to oxidative modifications), and sub-cellular 

compartmentalization (i.e. vacuolar sequestration) occurring during the detoxification of 

Hg. Therefore, future work should be directed to characterize the dynamics of Hg-biothiol 

complexes formation using isotopic labeling and HPLC-ICPMS to quantify precisely their 

cellular concentration, information necessary to understand the contribution of each Hg 

species to detoxification. 
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Hg-PCs in the SF contribute to the ultimate fate of Hg in plants. It is plausible that Hg is 

mainly retained in the roots, interacting with cell wall components, and only when this 

barrier is overridden, soluble Hg binds to biothiols. EXAFS fingerprint fits suggest that 

the bulk of Hg is associated with thiols or cysteine, corresponding to cysteine-related 

components (probably proteins), which is in agreement with the data from µ-SXRF. 

Incidentally, the major structural protein in cell walls is extensin, a highly glycosylated 

protein which contains several residues of cysteine in a so-called Cys-rich domain 

(Baumberger et al. 2003). Therefore, as most Hg accumulates in the particulate fraction, 

speciation of Hg in cell wall components could be the major task for future work. The 

precise contribution of each compartment to the tolerance of plants is still in debate, and 

more sensitive and accurate techniques are needed to analyze the distribution of Hg at the 

subcellular level and to quantify the amount of Hg bound to the different ligands that 

accumulate in the plants. 
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CHAPTER 4 

Mercury localization and speciation in hydroponic culture 
and natural plants 

 
ABSTRACT 

The distribution and speciation of mercury (Hg) in roots, stems and leaves of plants was 

studied by X-ray absorption spectroscopy using a synchrotron light source. X.-Ray 

Absorption Fine Structure (EXAFS) permitted the determination of Hg speciation by 

comparing the Hg L3 edge EXAFS spectra of the samples with several reference ligands 

known to bind to this metal. We studied two kinds of plant materials, i) Medicago sativa 

treated in a pure hydroponic system with 30 µM HgCl2

Key-words:  mercury, SXRF, EXAFS, micro-tomography, X-ray absorption spectroscopy. 

; and ii) Marrubium vulgare 

collected in a naturally polluted soil in the Almadén Hg-mining area (Ciudad Real, Spain). 

Microprobe synchrotron X-ray fluorescence (µ-SXRF) showed that Hg accumulated 

principally at the root tip, whereas at the maturation zone Hg localized in the inner tissues. 

These results suggest that the root tip might be most permeable area to Hg. In stems and 

leaves Hg moved apparently following the vascular tissues. Speciation analysis showed 

that a high proportion of Hg was found associated with cysteine containing ligands, 

possibly biothiols and/or proteins. Transmission electron microscopy showed that dense 

particles accumulated in the cell walls of epidermal and vascular cells in root sections of 

M. sativa. In M. vulgare plants most Hg was accumulated in the epidermis of roots. 

XANES analysis indicated that most Hg was in a inorganic form (HgSred) or cinnabar, 

indicating that Hg in natural samples would be less available, and it is possible that most 

Hg found in this plants occurred as adhered particles of soil or dust. The localization of 

some nutrients was also studied by µ-SXRF, showing that copper (Cu) was the nutrient 

that co-localized with Hg. On the other hand, iron (Fe) and calcium (Ca) content 

decreased, possibly due to alterations in their uptake in Hg stressed plants. 

 

Abbreviations: a.s.l. above sea level 
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INTRODUCTION 

Mercury and most of its compounds are highly toxic to humans and ecosystems, 

appearing naturally (i.e. of lithological origin) or as an introduced contaminant. Mercury 

is considered as a global pollutant because it is highly mobile and extremely persistent in 

the environment. The bioaccumulation and biomagnification properties of Hg lead to its 

concentration in the food chain, which can pose a serious threat to several human 

populations, as occurred in the Minamata disaster (Naito, 2008). Therefore, many national 

and international agencies and organizations, such as the United Nations Environment 

Programme, have targeted Hg for strict extraction, emission and trade controls (UNEP, 

2011). In the environment, Hg can be found in several metal ores (e.g. cinnabar; HgS); as 

ions in solution forming inorganic (Hg+, Hg2+) and organic (R-Hg2+) salts; or in the 

monatomic metallic form (Hg0

Several quantitative studies have shown rather conclusively that most of the Hg taken up 

by plants accumulated in roots, as measured by atomic absorption spectrophotometry (Du 

et al., 2005; Millán et al., 2006; Skinner et al., 2007; Esteban et al., 2008; Sierra et al., 

2009). Transport and accumulation of metals in plants are regulated by several 

physiological processes involving transport of metals across the plasma membrane of root 

cells, xylem loading and translocation from root to shoot, detoxification and sequestration 

of metals at the vacuole (Hall, 2002). However, there is limited experimental data are 

currently available regarding Hg transport through plant membranes. It was described 

that the inorganic form of Hg (Hg

). The chemical speciation of Hg affects the availability, and 

subsequently, the internal distribution in the organism and toxicity (UNEP, 2011). 

Therefore, the characterisation of Hg localization, concentration, and chemical speciation 

will provide valuable information about the detoxification pathways in plants (Punshon et 

al., 2009). 

2+) is less permeable to plasma membranes, which 

would be the first cellular component affected; whereas methyl-Hg would permeate and 

affect cell organelles (Godbold and Huttermann, 1986). To this respect, it is well known 

the high affinity of Hg cations for sulfhydryl groups (-SH), contained in many proteins and 

important metabolites like glutathione (GSH), which might be critical to understand the 

toxic effects of Hg in plants (Clarkson, 1972). This chemical property may impose 

limitations in the mobility of Hg within plant tissues, as it might tend to bind different 

proteins located in the apoplast and plasma membrane, where Hg accumulates (Beaudford 

et al., 1977). 
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Mercury absorption by plants may occur also via leaves possibly after surface adsorption 

of water soluble Hg forms and particulate Hg (Lindberg et al., 1992; Rea et al., 2001) or 

Hg0 uptake through the stomata (Iverfeldt 1991; Munthe et al., 1995). However, the 

mechanisms involved in atmospheric Hg uptake by leaves are not completely understood. 

Recent studies suggested that nonstomatal uptake was an important pathway by which Hg0 

could be incorporated into leaf tissue (Stamenkovic and Gustin, 2009), so not all the 

atmospheric Hg is entirely controlled by stomata. An unspecific process, possible of 

biochemical nature, was proposed to be a principal limitation for the Hg0 uptake into 

leaves (Browne and Fang, 1983). Atmospheric Hg (Hg0

In any case, more information is needed to improve our current knowledge. In particular, 

little is known regarding the distribution and the accumulation of Hg within the plant. 

Spatially resolved synchrotron source X-ray spectrometry can provide key knowledge 

about control uptake, transport and storage of essential and non-essential metals by plants 

(McNear et al., 2005; Isaure et al., 2006). SXRF have been demonstrated as potent 

analytical tool for localisation of metals in plant tissues since late 1990s. So far, there are 

only two studies focused on the localization of Hg at the tissues and cellular levels: Patty et 

al. (2009) used µ-SXRF mapping and TXM image in Spartina spp. and showed that the 

highest concentration of Hg in the root was localized in the tip area and in the inner 

tissues. At the cellular level, De Filippies and Pallaghy (1975) used scanning electron 

microscope (SEM) coupled to energy dispersive X-ray analysis (EDXA) to localize Hg in 

Hordeum vulgare root cells, revealing that Hg was localized almost entirely within the 

nucleus. 

) could diffuse through the cuticle 

similar to volatile lipophilic compounds (i.e. dimethyl-Hg; Liu, 2007). 

With respect to Hg speciation, X-ray absorption spectroscopy (XAS) analysis has been 

used to identify Hg coordination environment in plants. Riddle et al. (2002) concluded that 

Hg was bound ionically to oxygen ligands in roots, most likely to carboxylate groups 

corresponding to organic acid, and covalently to sulfur groups in shoot. However, Rajan et 

al. (2008) and Patty et al. (2009) found that Hg was mostly bound to S-containing ligands. 

This was indeed the case in alfalfa roots, where most Hg was found associated with Cys 

residues of proteins or phytochelatins (Carrasco-Gil et al. 2011). 

The aim of this work was to study the localization and speciation of Hg in Medicago sativa 

and Marrubium vulgare grown under hydroponic and natural conditions, respectively. We 

used Synchrotron X-ray Fluorescence Microprobe (µ-SXRF) for Hg localization and 

Extended X-Ray Absorption Fine Structure (EXAFS) for Hg speciation; combination of 
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techniques used successfully to understand the dynamics of metals in plants used for 

phytoremediation (Gardea-Torresday et al., 2005). Transmission Electron Microscopy 

(TEM) analysis was also used to study Hg accumulation in M. sativa roots at the 

subcellular scale. 

MATERIALS AND METHODS 

Plant material 

Alfalfa (Medicago sativa cv. Aragon) seedlings were germinated and grown in a pure 

hydroponic system (Fig. 1) with continuous aeration (Ortega-Villasante et al., 2005). The 

plants grew for 12 days in a controlled environment chamber and were then treated with 

30 µM Hg (as HgCl2) for 7 days following the conditions described by Carrasco-Gil et al. 

(2011). Once collected, plants were rinsed several times with 10 mM Na2

Marrubium vulgare plants were collected from an abandoned metallurgic plant located 

in Almadenejos village, 12 km from Almadén (Cuidad Real, Spain) where six pairs of 

abandoned roasting furnaces are found in ruins (Fig 2). These furnaces were used to 

obtain primary mercury from cinnabar. Samples were collected at three points (P2, P4 

and P6, see Fig. 2A) at 20 m spacing initiating from the highest point at 501 m a.s.l. and 

moving down the slope to the lowest point at 486 m a.s.l. from the furnaces 

corresponding to areas A1, A2 and A3. All the plant samples had the same age and 

 EDTA solution 

to remove superficial Hg. Another portion of plants were frozen under -80ºC for EXAFS 

analysis or freeze-drying to preserve plant structure for SXRF analysis. 

 

 
 

Fig 1. Pure hydroponic system for M. sativa. 
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biomass in order to compare the results. This plant specie was chosen due to its 

dominance within the area of the abandoned metallurgic plant. 

Mercury analysis 

Plant samples were air-dried and ground to homogeneity with mortar and pestle. 100 mg of 

dried sample was acid digested in 2 mL of the digestion mixture (HNO3:H2O2,:H2O, 

0.6:0.4:1 v:v) in an autoclave (Presoclave-75 Selecta, Barcelona, Spain) at 120ºC and 1.5 

atm for 30 min (Ortega-Villasante et al. 2007). The digests were filtered through a 

polyvinylidene fluoride filter and diluted in miliRO water to 10 mL. Mercury 

concentration was measured using an Advanced Mercury Analyser 254 Leco (St. Joseph, 

Michigan, MI, USA) with a detection limit of 0.5 µg kg-1

 

. Certified reference materials 

(CRM) were used to determine the accuracy of the measurements and validation. 

 

 

 

 

Fig. 2. Abandoned metallurgic plant 
located in Almadenejos (Ciudad 
Real, Spain). A) Aerial image of the 
experimental field plot showing the 
sampling points (red circles) in 
which the samples were collected; B) 
view of the experiment field plot; 
and C) collected Marrubium vulgare 
plants. 
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Synchrotron X-ray fluorescence microprobe (µ-SXRF) and X-ray computed 
micro-tomography (SR-µCT) 

M. sativa and M. vulgare plants were analyzed by microprobe at beamline 2-3 at 

Stanford Synchrotron Radiation Lightsource (SSRL). µ-SXRF mapping of Hg was 

collected by scanning a representative intact root, stem and leaf in the microfocused 

beam above (12,300 eV) and below (12,250 eV) the edge of Hg sampled in 2.5×2.5 µm. 

Samples were freeze dried to preserve the tissue structure (Punshon et al. 2009). For root 

and stem cross section, freeze dried samples were cut to pieces of ~ 1 cm and placed in 

a silicon mold covered by the EPO-TEK 301-2FL resin that is a two component epoxy 

resin (A and B) and particularly adequate to maintain the redox state. The resin was 

prepared mixing A and B component in a 40.2:12.6 ratio respectively. Once the tissue 

pieces were embedded in the resin, silicon molds were put in the desiccator for 

degassing and full drying of the resin for 3 days at 24ºC. After that, the pieces were 

taken out of the mold and thin sections (60 µm) were cut using a Leica cryo-microtome. 

Samples were placed in 3×3 cm Al spacers, bound with kapton tape, and stored at room 

temperature until analysis. The Kα fluorescence line intensities of Hg (and other 

elements of interest, such as Fe, Ca, Mn, S, K and Zn) were measured with a three-

element Ge detector and normalized to the incident monochromatic beam intensity. 

HgCl2

Extended X-ray absorption fine structure (EXAFS) and X-ray Absorption Near 
Edge Structure (XANES) 

 powder was used as a standard material for calibration. Fluorescence 

microtomography data were collected as a function of a X axis position and a rotation 

angle using 3 µm translation step, 1º angular step and dwell times of 125 ms, resulting 

in a fluorescence sinogram image. Data analysis was carried out with the software 

package SMAK version 0.45 (Webb, 2005). 

Mercury-biothiol standards were prepared in a 2:1 ratio (ligand:Hg) in Mili-Q water, 

mixing i) pure hPCs (hPC2, hPC3 or hPC4) (2 mM) and HgCl2 (1 mM), ii) PCs (PC2, 

PC3 or PC4) (0.5 mM) and HgCl2 (0.25 mM), and iii) GSH or hGSH (4 mM) and 

HgCl2 (2 mM). The aqueous solutions of Hg-biothiol complexes were mixed with 25% 

v/v glycerol to prevent the formation of ice crystals. The standard mixture was stored 

under liquid nitrogen until analysis. Spectra from the additional standard compounds: 

Hg cysteine (HgCys), Hg acetate (HgAce), cinnabar (HgS red), metacinnabar (HgS 

black), methyl-Hg aspartate (MeHgAsp) and methyl-Hg methionine (MeHgMet) were 

also used for fit calculations (details can be found in Rajan et al. 2008). Hg-nitrate, Hg-
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oxide and Hg-sulfate were purchased from Alfa Aesar’s Puratronic (trace metal grade); 

~15 mg reference material were diluted with ~70 mg boron nitride, mounted in a Teflon 

sample holder, and sealed with Kapton tape. The fresh tissue sample was ground in 

liquid nitrogen with acid-washed mortar and pestle, placed in Al spacers sealed with 

kapton tape, and stored in liquid nitrogen until analysis. A 200 µl aliquot of the aqueous 

standard solution was placed in a Lucite sample holder. Samples were bound by kapton 

tape and stored in liquid nitrogen. Hg L3 edge X-ray absorption spectra for the 

hydroponic M. sativa root (average of five scans) and for the Hg-biothiols standard 

mixtures (average of three scans) were collected at beamline 9-3 at SSRL by monitoring 

the Hg Lα1 fluorescence at 9988.9 eV. During the analysis, the samples were maintained 

at ≈ 10 K  in a liquid helium flow cryostat and positioned at 45º to the incident beam. 

Spectra for the hydroponic M. sativa stem (average of 25 scans) and leaf (average of 16 

scans), and M. vulgare root and leaf (average of 20 scans) were collected at beamline 

11-2 at SSRL under similar conditions. Calibration was accomplished by simultaneous 

collection of HgCl2 with first edge inflection set to 12284.4 eV. Data analysis was 

carried out with the software package SixPACK version 0.63 (Webb, 2005) following a 

standard method that consisted of preliminary examination of fluorescence channels and 

energy calibration of individual scans using a smoothed first derivative, followed by 

averaging of scans. A linear background function was subtracted, and data were 

normalized to a unit step edge. To quantify the percentage of each Hg species present in 

alfalfa roots using the fingerprinting method, a least squares fit (LSF) was performed to 

fit the EXAFS (chi) of the experimental data to linear combinations of the above 

mentioned standard reference compounds, which were divided into four Hg 

coordination environments: inorganic sulphur bonding (Hg-S red and Hg-S black), 

organic sulphur bonding (Hg-PCs and Hg-Cys), oxygen-rich ligand bonding (carboxylic 

groups; Hg-Ace) and methyl-Hg forms (Me-Hg-Asp and Me-Hg-Met). Single-

component fits to the data were carried out to exclude those contributing less than 5 %, 

and selected candidates of each group were fitted to get the relative proportion of Hg 

species. The reduced chi-square value (goodness of fit χ2

Transmission X-ray Microscopy (TXM) 

) provides information as to the 

quality of the standard fit to the spectra data (Kim et al. 2000). 

A cross section (60 µM of thickness) of M. vulgare root was mounted in windows 

anchored by Kapton tape for TXM analysis. Images were obtained with the Xradia 
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NanoXCT full-field X-ray microscope at beamline 6-2 at SSRL, at 5.4 keV in 

absorption contrast.  

Transmission Electronic Microscopy analysis (TEM) 

Tissue samples were prepared following the procedure of vacuum-microwave 

combination for processing plant tissues for electron microscopy described by Giberson 

and Demaree (2001), with some modifications. The mature area of the fresh root, 5 cm 

from the tip, was cut into pieces of ~ 1 cm and placed in 2 mL Eppendorf tubes filled 

with 1000 µl of fixative solution (2.5% glutaraldehyde in 50 mM sodium cacodylate 

buffer, pH 6. The samples were placed in a vacuum chamber for 5 h to improve the 

penetration of the fixative solution. Once the fixative solution was removed, the 

samples were rinsed with sodium cacodylate buffer three times, and dehydrated in a 

graded series of acetone (10, 30, 50, 70, 95, 100%), incubating the samples 30 min in 

each step. Dehydrated material was embedded in Spurr´s resin, by incubating for 1 h in 

different mixtures with increased concentration of the resin (1:2, 2:1 and 1:0 

resin:acetone v:v). In each embedding step, the samples were subjected to vacuum for 

15 min, the the solution was changed twice. Completely embedded roots were placed in 

silicon molds to polymerize the resin in an oven at 70ºC overnight. 

RESULTS 

Plant growth and Hg concentration in tissue 

There was a significant inhibition of growth in roots and shoots, measured as organ length 

and fresh weight (Fig. 3). Also some visual symptoms of toxicity appeared, as a certain 

degree of leaf chlorosis (Fig. 1). The total concentration of Hg in plants treated with 30 µM 

Hg was: 2,611.0 ± 273.0, 38.3 ± 0.45, and 67.7 ± 0.5 µg g-1 FW in roots, stems and leaves 

respectively. Control plants accumulated, as expected, much less Hg: < 0.1, 2.0 ± 0.5, and 

8.0 ± 2.2 µg g-1 FW in roots, stems and leaves respectively. It should be noted that the 

concentration of Hg measured in control roots was below the detection limit of the 

equipment used (< 0.05 µg g-1

The total Hg concentration of M. vulgare natural plants increased from sampling point P2 

to point P6, following the concentration gradient found in soil samples due to cinnabar 

furnace proximity (data not shown). Mercury concentration in roots was positively 

correlated to Hg concentration in shoots in samples collected in points P4 and P6, which 

was approximately three times higher than in shoot (Table 1). These plants did not 

displayed visual symptoms of toxicity (Fig. 2C). 

 FW). 
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Localization of Hg and other elements in Medicago sativa 

The spatial localization of Hg within the plant tissue was studied in root, stem and leaf of 

M. sativa plants using µ-SXRF. In roots, the most intense Hg signal was found in the inner 

tissue, at the vascular cylinder, and at the epidermis as observed in Fig. 4A. This spatial 

distribution was confirmed by transversal micro-tomography (SR-µCT) imaging (Fig. 4B), 

which showed clearly that the strongest Hg signal was detected in the vascular cylinder. In 

addition, a third area with slightly less signal intensity was observed in the SR-µCT image, 

which corresponded possibly with the endodermis.  

A cross section of stems showed that Hg was located in circular areas of Hg around of the 

stem corresponding with the vascular bundles (Fig. 5A). In the stem, xylem and phloem 

packed together in these bundles, but the µ-SXRF resolution is not good enough to 

discriminate between phloem (outer layers of cells) and xylem (inner layers). A 

longitudinal image illustrated that the most intense Hg signal was found again in the 

vascular system (Fig. 5C). In leaves Hg accumulated in the veins (Fig. 5F). Interestingly, 

Table 1. Total Hg concentration (mg kg-1 DW) in leaf and root and ratio between Hg concentration 
in leaf and Hg concentration in root of Marrubium vulgare collected in a abandoned metallurgical 
plant in three different points (P2, P4 and P6) 

 P2 P4 P6 

Leaf 32.8±1.0 60.7±8.7 183.4±7.1 

Root 36.7±0.7 203.5±4.7 501.9±3.2 

Ratio 0.89 0.29 0.36 

 
Fig 3. Length (cm plant-1) and fresh weight (g plant-1) of shoots and roots of three-week-old M. sativa 
grown in a pure-hydroponic system, treated with 0 µM (control) and 30 µM Hg for 7 days. Data are 
average of four independent assays (± SD). Different letters denote significant differences between 
treatments at p < 0.05. 
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there was some high Hg signal in little spots along the ribbing of the leaf (indicated by 

white narrows). 

For a better understanding of root Hg and translocation in M. sativa plants, new µ-SXRF 

analysis was performed in different parts of the root tip in plants exposed to 30 µM Hg for 

different intervals. Results showed that in primary root tip (Fig. 6B), the most intense Hg 

signal was located in the region just behind the meristem, where cells are under division 

and elongation. Hg signal decayed in tissues located farther from the tip, but a certain high 

intensity signal was observed at the vascular cylinder. Therefore, more mature and 

differentiated cells accumulated less Hg (Fig. 4A). This Hg distribution was also observed 

in the secondary root tips, and also showed an intense Hg signal in the connection between 

primary and secondary root at the vascular cylinder (white arrows in Figs. 6A, 6C, 6D). 

Interestingly, Hg did not accumulate at the root cap (or calyptra) formed of dead cells 

(large white arrow, Fig. 6B). We also tested distribution of Hg in three-day-old M. sativa 

seedlings after a short-term exposure to 30 µM Hg for 5h and 24 h. XRF scanning showed 

that in the first hours Hg seemed to be distributed at the epidermis, as there was a intense 

signal over the root tip surface (Fig. 7A). However, Hg started to penetrate to the inner 

 
 
 
 

Fig 4. Hg distribution in three-week-old M. 
sativa primary root treated with 30 µM Hg for 
7 days in a pure-hydroponic system using µ-
SXRF. A) Elemental 2D mapping of Hg 
distribution from a longitudinal section taken 
at 2.5 µm steps. B) micro-tomography of the 
same root showing a transversal analysis of 
Hg distribution. 

Fig 5. XRF Hg map (A,C,F) and visible (B,D, 
E) images of three-week-old M. sativa shoot 
treated with 30 µM Hg for 7 days in a pure-
hydroponic system. A,B) Transversal 60 µm 
thick stem section. C, D) longitudinal image of 
the same stem; E, F) leaf. The red square in the 
optical images shows the region selected for 
XRF imaging. 
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tissues after 24 hours, and more intense signal was detected following the pattern described 

previously (Fig. 7B). 

The distribution of several essential nutrients: iron (Fe), zinc (Zn), calcium (Ca), copper 

(Cu), manganese (Mn) and potassium (K), was studied in alfalfa plants exposed to 30 µM 

Hg. The distribution of these nutrients can be affected by Hg, as it is feasible that Hg entry 

plant cells through transporters or channels involved in their uptake, as has been shown for 

Cd (Küpper and Kochian, 2010). µ-SXRF mapping showed that Fe was localized in the 

external part of the root (Figs. 8A and 8B). However, Zn and Ca were distributed in the 

inner tissue at the vascular cylinder, and co-localized in part with an intense Hg signal. 

This information was confirmed with the µ-SXRF mapping of a cross section mature 

primary root (Fig. 8C). Moreover, X-ray fluorescence analysis in M. sativa root revealed 

that in the presence of Hg, the content of some nutrients like Fe, Mn, K and Ca were 

altered (Table 2). Plants treated with 30 µM Hg suffered an increase in Fe counts s-1, but a 

decrease in Mn and K, in different areas of the M. sativa root. Exposure to Hg also led 

 
 
 
Fig. 6. µ-SXRF analysis to visualize distribution of 
Hg in three-week-old M. sativa root tips treated 
with 30 µM Hg for 7 days in a pure-hydroponic 
system using. 2D mapping of Hg distribution in 
secondary root tips (A, C, D) and in a primary root 
tip (B). 

Fig. 7. Hg X-ray fluorescence (XRF) 
elemental map of three-day-old M. sativa 
primary root treated with 30 µM Hg for 5 h 
(A) and 24 h (B). 
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to a notable increase in Ca counts s-1 in the root tip (Table 2). In stems, Zn, Ca and K were 

localized in the external part; possibly at epidermis, and also in the internal pith. However, 

Cu was localized with Hg at the vascular cylinder but they did not overlap (Fig. 9). Iron 

 
 
Fig. 8. X-ray fluorescence map of Hg (in red) overlapping with iron (Fe), zinc (Zn) and calcium (Ca) 
(in green) in emerged secondary root (A), a primary root tip (B) and a cross-section of a mature 
primary root (C), of three-week-old M. sativa root treated with 30 µM Hg for 7 days. Areas of the root 
were numbered to identify vascular cylinder (1), endodermis (2), and epidermis (3). 

Fig. 9. A, B) X-ray fluorescence map of 
Hg (in red) overlapping with zinc (Zn, 
in green), calcium (Ca, in green), 
copper (Cu, in blue), and potassium (K, 
in blue) in a stem longitudinal section; 
C, D) Stem cross section (60 µm 
thickness), of three-week-old M. sativa 
treated with 30 µM Hg for 7 days. 
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signal was low to get its map of distribution. In leaves, Mn and K were co-localized with 

Hg in the veins, but Ca and Fe were distributed in spots around of the main veins and 

along the leaf area, respectively (Fig. 10). 

Transmission electronic microscopy (TEM) analysis was performed on M. sativa root 

samples treated with 0 (control) and 30 µM Hg for 7 days in three-week-old plants to 

locate Hg at the subcellular level. Under Electron-dense grains resulting from the metal 

presence were visible, especially on root treated with Hg (Fig. 11), in comparison with root 

plants grown in control conditions (Fig. 12). Distinctive granular deposits were observed in 

the intercellular space, in the cortical tissue of roots treated with 30 µM Hg (Fig. 11B, C, 

D). Likewise, intracellular granular deposits in the cortical parenchyma cell were observed 

(Fig. 11E, F). However, Hg accumulation seemed to be symplastic in the cortical 

parenchyma cell in secondary root tip (Fig. 11G, H, I). Moreover, Hg was precipitated in 

the cytoplasm as large deposits located near the cell walls in the endodermis (Fig. 11J) and 

in the xylem (Fig. 11L, M, N). In addition, granular deposits were present in the 

intracellular space in the xylem (Fig. 11N). On the other hand, the root samples grown 

without Hg, did not showed distinctive deposits in none of these tissues (Fig. 12). 

Table 2. Maximum counts s-1

counts s

 of Mn, K, Fe and Ca of the intensities extracted from each pixel in µ-
SXRF mapping analysis of different areas of three-week-old M. sativa root treated with 0 µM 
(control) and 30 µM Hg for 7 days. 

 -1 Mature root  Emerged secondary root  Root tip 

  Control 30µM Hg  Control 30µM Hg  Control 30µM Hg 

Mn  319 13  914 12  53 12 

K  446 108  825 146  794 89 

Fe  182 676  371 734  117 764 

Ca  86 128  135 164  106 1106 

 
Fig. 10. X-ray fluorescence (XRF) map of Hg (in red) overlapping with manganese (Mn, in green) and 
iron (Fe, in blue) A), and calcium (Ca, in green), and potassium (K, in blue) B) in a leaf of three-week-
old M. sativa treated with 30 µM Hg for 7 days in a pure-hydroponic system. 
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Fig. 11. (A) Visible microscopy to show typical transversal root section subjected to transmission electron 
microscopy study. (B-N) of a cross section M. sativa primary root treated with 30 µM Hg for 7 days. TEM images 
show granular deposits corresponding to Hg accumulation in the intercellular space between epidermis and cortex 
(B, C, D); in the cortical symplast (E, F); cortical symplast of secondary root tip (G, H, I), in the cytoplasm near 
the cell wall in the endodermis (J) and in the xylem (L, M, N). c, cytoplasm; Cw, cell wall; En, endodermis; Ep, 
epidermis; IS, intercellular space; P, parenchyma cortical; Ph, phloem; Xy, xylem. 
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Mercury speciation in Medicago sativa 

The chemical form of Hg in the bulk of M. sativa root, stem and leaf was investigated by 

Hg L3-edge EXAFS spectroscopy. We selected spectrum references of putative ligands 

that would represent the most probable Hg coordination environments in plants: biothiols, 

(cysteine bonding), organic acids (oxygen-rich bonding), methyl-Hg (carbon bonding), 

and inorganic Hg (i.e. sulphides-Hg forms). A single LSF was performed in each 

standard mixture to exclude those standard compounds contributing less than 5 % in the 

fit. These preliminary measurements showed that the spectra of the different HgPCs, 

and also the HgCys complexes were indistinguishable from each other at the noise-to-

signal ratio of the natural samples. Therefore, we opted to use HghPC2

 

 and HgCys as 

representative standards for Hg-biothiol or Hg-organic sulphur (including proteins) 

complexes. Moreover, the mayor contribution in the first single LSF was for HgAce as  

Fig. 12. (A) Visible microscopy of a cross section M. sativa primary root control used for 
transmission electron microscopy (B-F). TEM images show the absence of granular deposits in the 
different subcellular compartments studied: intercellular space between epidermis and cortex (B, C), 
cortical symplast (D), and xylem (E, F). Abbreviations are as shown in Fig. 11. 
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Fig. 13. Hg L3 EXAFS spectra of the references used for the least square fitting of the samples (A) 
and linear fitting results for root (B), stem (C), and leaf (D) of three-week-old M. sativa treated with 
30 µM Hg, showing the Hg L3 EXAFS K3 weighted spectrum (black line), the linear combination fit 
(gray line), and the components that contribute to the linear fit (% in parenthesis). 
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representative of oxygen-rich ligand bonding, CH3HgMet and CH3HgAsp as 

representative of methyl-Hg forms and HgSred and HgSblack as the most abundant 

inorganic Hg forms. The Hg L3 EXAFS spectra of the Hg references used in the final 

LSF is shown in Fig. 13A, and the best fitting of roots, stems and leaves bulk-EXAFS 

spectra were displayed in Fig 13B, C and D respectively. This analysis revealed that in 

roots, stems and leaves the dominant forms of Hg were similar to HgPC2 and HgCys, 

which corresponded to Hg-biothiol or Hg-organic sulphur complexes. This Hg 

coordination environment accounted for 79% in roots, 95% in stems and 85% in leaves 

of the total Hg in M. sativa plants. A minor percentage of Hg (5-21%) corresponded to 

methyl-Hg forms, CH3HgMet in roots and leaves, and CH3

Table 3. Relative proportion (%) of Hg species in three-week-old M. sativa root treated with 30 µM Hg 
for 7 days, using Hg L3 EXAFS k

HgAsp in stem. The reduced 

chi-square that represents the goodness of the fit was 0.090, 0.441 and 0.128 for root, 

stem and leaf, respectively (Table 3). 

3

 

 weighted as Least-Square Fitting method (Xmin= 3, Xmax= 9.5 for 
root and, Xmax= 10 for leaf and stem). 

Root Stem Leaf 

Hg-S organic (%) 79 95 85 

Me-Hg (%) 21 5 15 

Goodness of fit (χ2) 0.0909 0.441 0.128 

 

Localization of Hg in Marrubium vulgare 

The spatial localization of Hg was studied in a cross section of a M. vulgare root by µ-

SXRF and TXM analysis. The sample was collected in the point P4 of the experimental 

plot. The most intense Hg signal in root using µ-SXRF was found in the external part, at 

the epidermis (crust) (Fig 14.B). However, Hg could not be observed in the inner tissue 

with the exception of a hot spot in the edge of the vascular cylinder. To complement this 

information, a mosaic TXM image of a delimited area of the root cross section was taken 

in absorption contrast showing dark areas in the epidermis at both sides assumably due to 

Hg (Fig. 14C). Moreover, a dark particle was co-localized with the hot spot of Hg in the µ-

SXRF image. Other elements like iron (Fe), sulphur (S), manganese (Mn), potassium (K) 

and calcium (Ca) were studied by µ-SXRF mapping showing that they were mainly 

localized in the epidermis and also in the inner tissue, in the case of Ca (Fig. 14). µ-SXRF 

mapping of S was not possible due to the low counts s-1

 

. 



CHAPTER 4: Distribution and Speciation of Mercury in Plants 

 

74 
 

 
Fig. 14. Distribution of Hg, Fe, K, Mn and Ca in a 60 µm of thickness root cross section of 
Marrubium vulgare grown in an abandoned metallurgic plot. A) Optical image, B) X-ray fluorescence 
(TMX) map showing Hg distribution. C) TXM mosaic image taken at 5.4 KeV in absorption contrast 
shows dark areas due to the absorption by Hg. X-ray fluorescence imaging showing the distribution of 
D) Fe, E) K, F) Mn, and G) Ca.The red squares in (A) represent the mapped area in XRF image, and 
the grey square in (B) represents the mapped area in TXM image. Number 1 in (B) refers to the 
position where µ-EXAFS and µ-XANES spectra were collected (spectra shown in Fig. 16). 
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Mercury speciation in Marrubium vulgare 

Hg L3 EXAFS spectroscopy was used to identify the Hg species present in leaves and 

roots of M. vulgare plants collected in the points P2, P4 and P6 from the Hg-polluted soils. 

Several reference spectra representing the most probable Hg coordination environments in 

plants (biothiol and cysteine Hg and oxygen-rich bonding, methyl-Hg and inorganic 

sulphur-Hg forms) were fitted individually to each standard spectrum to exclude those 

standard compounds contributing less than 5 % in the fit. The final reference candidates 

used for the LSF were HghPC2 and HgCys, as representative standards for Hg-biothiol or 

Hg-organic sulphur complexes (proteins). HgAce was used as a representative of oxygen-

rich ligand bonding, CH3HgMet and CH3HgAsp as representative of methyl-Hg forms, 

and HgSred and HgSblack as representative of inorganic sulphur-Hg species (Fig. 15A). 

The best fitting of roots and leaves bulk-EXAFS spectra are displayed in Fig 15B. The 

Hg L3

Table 4. Relative proportion (%) of mercury (Hg) species in Marrubium vulgare collected in a 
abandoned metallurgical plant in two different points (P6 and P4), using Hg L

 EXAFS spectra of M. vulgare roots and leaves collected in P2 was very weak 

and very noisy, due to the lower Hg concentration in these samples were not analysed 

further. The mayor Hg form (60-80%) present in roots and leaves adjusted well with to 

HgSred and HgSblack, representing inorganic sulphur-Hg forms. A minor proportion of 

Hg was bound to organic S of biothiols or proteins (12-36%) and bound to methylated 

forms (3-10%). The proportion of Hg species was similar in roots from plants collected 

at points P4 and P6. Regarding leaves, P6 plants had similar proportion as found in 

roots, but there was a notable increase in the Hg-S organic forms in P4 plants, with a 

parallel diminution in the proportion of methylated Hg-forms. The µ-XANES and µ-

EXAFS spectra obtained from spot 1 in the cross-section subjected also to µ-SXRF 

analysis (see Fig. 14B), bear a strong resemblance to the XANES and EXAFS spectra 

obtained from HgSred (cinnabar; Figs. 16A and 16B). 

3 EXAFS k3

Relative proportion (%) 

 weighted as 
Least-Square Fitting method (Xmin= 3, Xmax= 12). 

Root P6 Leaf P6 Root P4 Leaf P4 

Hg-PC - 12.5 13.2 13.2 
Hg-Cys ligand 16.5 - - 23.5 
Hg-S red 30 38.3 34.7 39 
Hg-S black 44.3 42.2 42.3 21.1 
Me-Hg-Asp 9.2 7 9.8 3.3 
Hg-S organic 16.5 12.5 13.2 36.7 
Hg-S inorganic 74.3 80.5 77 60.1 
Me-Hg 9.2 7 9.8 3.3 
Goodness of fit (χ2) 0.53 0.824 0.553 0.479 
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Fig. 15. Hg L3 EXAFS spectra of the references used for the least square fitting of the samples A) and 
linear fitting results for leaf P4, root P4, leaf P6 and leaf P6, B) of Marrubium vulgare grown in an 
abandoned metallurgic plant showing the Hg L3 EXAFS K3 weighted spectrum (black line), the linear 
combination fit (gray line). 

 
Fig 16. Overlays of normalized Hg L3 µ-XANES (A) and µ-EXAFS (B) 
spectra collected in spot 1 of the root cross-section from Marrubium 
vulgare plants harvested in P6 subjected to µ-SXRF in Fig. 5 with 
normalized XANES and EXAFS spectra obtained from HgSred reference 
(cinnabar). 
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DISCUSSION 

M. sativa plants treated with 30 µM Hg suffered visual symptoms of toxicity as reduction 

of organ growth, as was also described by Cho and Park (2000) and Sobrino-Plata et 

al.(2009). The high Hg concentration in root of M. sativa plants (2,611±273 mg kg-1DW 

equivalent to 44.5 µmol g-1 DW) can be explained by the fact that these plants were grown 

in pure-hydroponic system where Hg is in direct contact with the root tissue. This value is 

in the same order as the value of 89.65±5.11 µmol g-1

Exposure to Hg altered the distribution of Fe, Mn, K and Ca in M. sativa roots. These 

results are in agreement with Godbold (1991), who observed that in the root tips of Picea 

abies seedlings exposed to Hg, the levels of K and Mn decreased dramatically and Fe 

levels increased due to an accumulation of Fe in cell walls of the root cortex. Shieh and 

Barber (1973) and De Filippis (1979) observed a K efflux in Chlorella exposed to Hg and 

methyl-Hg, in accordance with the lower K values observed in alfalfa seedlings treated 

with (Table 2). Godbold (1991) found that Hg may affect directly the plasma membrane 

integrity, which would cause an increase of Ca uptake. Therefore, changes in membrane 

integrity, or binding to membrane proteins (i.e. transporters) may impair their 

functionality, affecting the transport of other nutrients, such as K, Mn and Mg in roots. 

 DW obtained by Rellán-Álvarez et 

al. (2006) in roots of Zea mays exposed to 30 µM Hg. Leaf and stem Hg concentration 

values were 1.4% and 2.6% respectively of those found in roots of M. sativa. This is in 

agreement with the known allocation of this toxic metal in roots of alfalfa plants grown 

under similar conditions (Ortega-Villasante et al., 2005). It is well known that Hg is a 

rather immobile element that binds strongly with different cell components at the cell 

wall and biological membranes mainly (proteins and carbohydrates; Hall 2002), 

precluding the Hg translocation to the shoot as occur with other heavy metals (Beauford 

et al., 1976; Siegel et al., 1987). The small accumulation of Hg observed in stems and 

leafs of control plants might be due to a potential Hg volatilization from the nutrient 

solution containing of nearby plants which was absorbed by leaves without 

translocation to root (Suszcynsky and Shann, 1995). 

The distribution of Hg was studied in the tissue of M. sativa roots, stems and leaves 

using µ-SXRF mapping. The most intense Hg signals detected in root were located in 

the tips and in the inner tissue, at the vascular cylinder. These results are in agreement 

with those observed by Patty et al. (2009) in Spartina spp., where the most concentrated 

area of Hg was localized in the tips and inner tissues of the root. Though the resolution 
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of µ-SXRF images is not enough to discern if Hg in root is localized in the xylem or in 

the phloem, it is feasible that Hg would be translocated to the areal part through the 

xylem, as Hg was also localized in the vascular tissues of the stems and in the veins of 

leaves. However, phloem cannot be discarded, as it is known the recycling of organic 

and inorganic substances between both conducts (Peuke, 2010). 

It is probable that Hg use the water flow to enter in the root tissues through the tips of the 

roots. The cells just behind the apical meristem are dividing and elongating, forming the 

different root tissues following a radial pattern. These immature cells are less suberized, 

being more permeable to water. Therefore, the water together with different elements in 

solution, such as Hg2+

Cell walls constitute a large reservoir of metals in plant cells (Hall, 2002). By using a sub-

cellular fractionation similar to the procedure described by Lozano-Rodriguez et al., (1997) 

for pea and maize treated with Cd, it was found that Hg was associated with cell walls of 

Halimione portulacoides (Valega et al., 2009), maize, barley and alfalfa (Carrasco-Gil et 

al., 2011). These results showed that up to a 90% of total Hg accumulated in the cell wall 

of roots. TEM images show that in M. sativa roots there were distinctive granular deposits 

in the intracellular space of epidermal cells and xylem, supporting the finding with the 

subcellular fractionation. The pattern of Hg distribution in root tissues resembles that of 

Cd, which was localized in the cell wall of cortical parenchyma in Thlaspi caerulescens 

(Vazquez et al., 1992a) and Arabidopsis halleri (Küpper et al., 2000), and in the 

intracellular space of Phaseolus vulgaris (Vazquez et al., 1992b). 

, can enter without any barrier throughout the root tip. Therefore, a 

large proportion of Hg reaches presumably the xylem via the root apoplast, whereas the 

symplasmic movement would be more difficult (Clemens et al., 2002). Recent studies have 

shown quite clearly that the movement of toxic metals, like Cd, depends on root structure. 

Developmental and physiological factors can affect greatly metal uptake, as was shown in 

plants grown in pure hydroponic, soil or aeroponic cultures, where different degree of 

suberisation modified the pattern of metal uptake and translocation (Redjala et al., 2010). 

The Casparian band in the endodermis cell walls is chemically different from the rest of 

the cell wall and is blocking the apoplastic diffusion of water and solutes into the vascular 

system. In general the solutes have to be taken up into the root symplast before they can 

enter the xylem (Tester and Leigh, 2001). TEM images showed significant Hg 

accumulation in the cytoplasm of endodermis and xylem cells near the cell wall (Fig 11J), 

suggesting that those cells constituted a barrier to Hg. Indeed, transversal SR-µCT imaging 

showed that Hg accumulated in this location (Fig. 4B). 
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Toxic metal ions are thought to enter the cells by the same uptake mechanisms involved in 

the transport of essential nutrients (Patra et al., 2004). In the case of Cd, Fe and Zn 

transporters and Ca channels may be used to allow Cd ions enter the root cells (Connolly et 

al., 2002; Perfus-Barbeoch et al., 2002). However, very little is known about possible 

transporters or channels involved in Hg uptake in plant cells. Our co-localisation analysis 

might help to focus future research to study specific transporters. For example, Cu 

localized in the same areas as Hg did in the stem of M. sativa. (Fig. 9C). This metal shares 

some chemical properties with Hg. Our data suggest that both metals could be transported 

in the same manner, implying that Cu transporters would be possible candidates to 

promote Hg uptake (Esteban et al., 2008). The rest of nutrients studied (Fe, Zn and Ca) did 

not apparently overlap, indicating that Hg would not compete with them for the uptake 

mechanisms. 

There were some interesting “hot spots” accumulating metals in the leaves, according to 

the µ-SXRF image of Hg distribution in leaves (Fig. 5F). Trichomes apparently play a 

major role in storage and detoxification; in a study carried out by Salt (1995b) with 

Brassica juncea exposed to Cd, trichomes accumulated 40 times more Cd compared to the 

total leaf. The trichomes in M. sativa are distributed following the ribbing pattern of the 

leaf, implying that could play a similar role than Cd in Hg detoxification, as was observed 

in the trichomes of Arabidopsis thaliana plants exposed to Cd (Isaure et al., 2006). 

However, better resolution is needed to confirm these findings, and X-ray fluorescence 

should be captured in smaller steps (of at least 1 µm width) to distinguish these epidermal 

structures (Punshon et al., 2009). 

To date few studies have been focus to understand Hg speciation using X-ray 

synchrotron fluorescence spectroscopy. Riddle et al. (2002) used XANES to investigate 

the accumulation of Hg by E. crassipes and reported that Hg was coordinated mainly to 

organic S ligands in shoot. In other XANES studies, Rajan et al. (2008) studied Hg 

methylation in E. crassipes, and Patty et al. (2009) analysed Hg binding in S. foliosa 

and S. alterniflora. Both authors concluded that the major proportion of Hg was bound 

to S in a form similar to Hg-cysteine ,and a smaller part (3-36%) was in a methylated 

form. This was in agreement with the results found in M. sativa, since more than 79% of 

the Hg was bound to organic S and 5-21% was in methyl Hg forms. 

The bulk-EXAFS analysis of Hg coordination environments in the root did not revealed 

oxygen-rich ligand bonding corresponding with carboxyl groups of the cell wall. 

However, high proportion of Hg was associated with cysteine residues, possibly 
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corresponding to proteins and/or biothiols, in agreement with previous results (Carrasco-

Gil et al., 2011). Several studies using mass spectrometry coupled with liquid 

chromatography showed that Hg occurred partially in roots as an array of Hg-PCs 

complexes in alfalfa, barley and maize (Carrasco-Gil et al., 2011), B. chinensis (Chen et al. 

2009), O. sativa and M. vulgare (Krupp et al. 2009). It is possible that Hg bound to 

biothiols represents a minor proportion albeit important for Hg tolerance (Carrasco-Gil et 

al., 2011), so the major amount would be bound to proteins in the apoplast. Phytochelatins, 

and their precursor glutathione, constitute a group of biothiols that are thought to be 

involved in metal detoxification by means of their transport into plant cell vacuoles (Salt et 

al., 1995a). However, recent studies have shown that PCs also have the ability to undergo 

long-distance transport in the root-to-shoot and shoot-to-root directions (Chen et al., 2006; 

Gong et al., 2003). Therefore, it is a matter of discussion whether PCs may be involved in 

the long-distance transport of Hg, studies that will require more invasive techniques like 

mass spectrometry associated with isotopic labelling for accurate quantification. On the 

other hand, it is known the high affinity of Hg for the sulfhydryl residues of proteins (-SH 

or dithiol bridges; Clarkson, 1972), although few proteins interacting with Hg have so far 

being identified, and would be the target of future research. 

With regards to Marrubium vulgare plants, Millan et al. (2011) carried out a study of 

the Hg concentration in the soil located in the abandoned metallurgic plant. They 

observed that soil concentration in that area was in the range of 5-1400 mg kg-1 , 10-

7500 mg kg-1 and 60-40000 mg kg-1 corresponding to A1, A2 and A3 respectively (Fig. 

2A). These workers observed that there was a significant high correlation between soil 

Hg concentration and Hg concentration in M. vulgare plants (Table 1), being the highest 

concentration near the furnaces where the cinnabar was stockpiled, and eventually ashes 

and waste mineral produced from roasting processes were dumped (Millan et al., 2011). 

Hg X-ray fluorescence analysis of M. vulgare root cross-sections showed that Hg was 

localized only in the epidermis tissue, concretely at the crust. Although we do not have 

spatial resolution image by µ-SXRF, EXAFS analysis suggest that also the Hg 

accumulated at the surface comes from soil particles deposition. The roughness of M. 

vulgare leaves, provide a reservoir chamber for deposition of particles of soil carried by 

the wind or atmospheric Hg (Hg0) that can be oxidized to Hg2+ in the outer tissue layers of 

the leaves. Several studies reported that a 90% of the Hg accumulated in the shoot of 

terrestrial originated from atmospheric depositions, whereas Hg translocation from root to 

shoot was less than <5% (Bishop et al., 1998; Ericksen et al, 2003; Lindberg et al., 1979; 
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Mosbaek et al., 1988). In general, Hg in leaf is located in epidermal and stomata cell walls, 

or adsorbed to the leaf surface, and rarely found in mesophyll or vascular tissue (Beauford 

et al., 1977; Cavallini et al., 1999; Amado Filho et al., 2002). The values of atmospheric 

Hg in Almadén area were larger than the concentration found in Hg mines in the Northern 

of Europe, possibly due to warmer Mediterranean climate that facilitates the vaporization 

of Hg0

XANES analysis revealed that more than 60% of the total Hg in M. vulgare was bound to 

inorganic S, similar to cinnabar (HgSred) and metacinnabar (HgSblack). This chemical 

species of Hg was found in the soils were the studied plants were collected (Millán et al., 

2011). It is possible that part of the Hg signal from the µ-SXRF mapping of the root cross-

section comes from soil particles containing HgSred adhered to the epidermis surface. In 

fact, the µ-EXAFS and µ-XANES analysis performed on the hot spot localized at the 

vascular cylinder edge revealed also the presence of HgSred. It is feasible that during the 

preparation of samples for synchrotron analyses some soil particles remained adhered, and 

were spread in the sample. Moreover, the most intense signal of Fe and Mn seems to be 

co-localized with Hg in the M. vulgare root. Soil analysis in the sampling area showed that 

between 3-30% of the total Hg was associated to crystalline Fe-Mn oxyhydroxides (Millán 

et al. (2011), so this confirms that part of the Hg accumulated in the epidermis comes from 

soil particles. 

 (Higueras et al., 2006). In Almadén there are many ore deposits, mineral dumps and 

contaminated soils that are significant sources of gaseous Hg scattered in the area, which 

must be considered in further studies (Gustin, 2003; Ferrara, 1998). 

CONCLUSIONS 

µ-SXRF showed that Hg was uptaken principally at the root tips, possibly following the 

water flow. More detailed study is required, like microtomography, to identify the tissues 

accumulating Hg. In addition, alternative techniques like X-ray (EDXA) coupled with 

scanning electron microscopy could help to dissect Hg localisation at the cellular level. 

The behavior of plants cultured hydroponically was consistent with a transport process 

involving uptake of Hg by roots, transport through the stem xylem to the soot, where it 

is then distributed through the veins to the epidermis. However, Hg transport in natural 

plants seems to be quite different, since Hg is mainly retained in root without 

translocation from root to shoot, and apparently was due to inorganic Hg adhered to the 

surface. In addition, atmospheric Hg0 could be a relevant source of Hg accumulated in 
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leaves. New experiments should be directed to improve resolution and to augment the 

array of ligand references to understand the dynamics of Hg in plants. 
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CHAPTER 5 

Attenuation of mercury phytotoxicity with a high nutritional 
level of nitrate in alfalfa plants grown in a semi-hydroponic 
system 

ABSTRACT 

Mercury (Hg) is one of the most dangerous pollutant heavy metals to the environment. 

Its accumulation in plants causes several negative effects, among them the induction of 

oxidative stress. Nitrogen (N) is one of the most limiting macronutrient for plants, 

which is fundamentally assimilated as NO3
─ after its reduction to NO2

─ by the enzyme 

nitrate reductase (NR), key step prior the formation of NH4
+. We studied the 

physiological effects of Hg (0, 6 and 30 µM) in alfalfa plants grown with low NO3
─

 

 (2 

mM; LN) and high (12 mM; HN) concentrations. Several parameters of oxidative stress 

such as lipid peroxidation, chlorophyll content, biothiol concentration and, ascorbate 

peroxidise (APX) and glutathione reductase (GR) activity were analysed, and showed 

that HN plants were less affected by Hg. Our results highlight the importance of the 

nitrogen nutritional status to improve tolerance to heavy metal stress. 
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INTRODUCTION 

Almadén (Ciudad Real, Spain) has been for centuries the largest mercury (Hg) mining 

area of the World. Cessation of the production of Hg has imposed the necessity to 

impulse other economic activities, such as agriculture and farming, which are 

undermined by the accumulation of Hg in local soils. Plants are able to extract metals, 

property that has been exploited to clean up polluted soils by using phytoremediation 

technologies. Intense research is conducted to understand tolerance mechanism in plants 

that might help to optimise such promising clean techniques (Clemens et al., 2002). 

Depending on the chemical form, Hg may become extremely hazardous for the 

environment. The main species of Hg present in the environment are HgS, Hg2+, Hg0 

and methyl-Hg. However, the ionic oxidized form (Hg2+) is predominant in agricultural 

soils (Han et al., 2006). The accumulation of Hg can induce visible injuries and 

physiological disorders in plants (Zhou et al., 2007), such as obstruction of water flow 

through the inhibition of plasma membrane aquaporins, alteration of mitochondrial 

activity, disruption of lipid membranes, alteration of photosynthesis and growth 

inhibition (Zhang and Tyerman, 1999, Patra and Sharma, 2000; Israr and Sahi, 2006; 

Cargnelutti et al., 2006). One of the earliest phytotoxic responses of plant cells to Hg 

exposure is the induction of oxidative stress, characterised by the oxidation of 

membrane lipids and proteins (Ortega-Villasante et al., 2005), and eventually causes 

cell poisoning and death (Ortega-Villasante et al., 2007). To cope with the oxidative 

stress induced by Hg, plant cells exposed to Hg concentration of 1-10 mg L-1 showed an 

increase in the activity of antioxidant enzymes (Cho and Park, 2000). However when 

the concentration of Hg rose up to 50 mg L-1, the protection effect disappeared (Ma, 

1998). Plants have a complex antioxidant system, composed of antioxidant enzymes 

like ascorbate peroxidase (APX) and glutathione reductase (GR), and antioxidant 

metabolites like glutathione (GSH) and ascorbic acid (AA). In the presence of Hg, the 

activity of these antioxidant enzymes may be altered (Ortega-Villasante et al., 2007; 

Zhou et al., 2007; Sobrino-Plata et al., 2009; Elbaz et al., 2010). On the other hand, the 

accumulation of phytotoxic amounts of Hg and other metals in plants can produce 

inhibition of several enzymes through its binding to sulfhydryl groups, that may exist in 

catalytic domains or affect the structural integrity of the enzymes (Van and Clijsters, 

1990). On the other hand, under oxidative stress some of these enzymes may increase 

their activity helping to maintain the redox balance of the cell (Foyer et al., 1997). Thus, 

the changes in enzymatic activity can be used to evaluate the heavy metal toxicity of 
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polluted soils. In particular, GR was extremely sensitive to Hg accumulated in the roots 

of alfalfa, and has been proposed as biomarker of Hg phytotoxicity (Sobrino-Plata et al., 

2009). 

On the other hand, nitrogen (N) is a very limiting macronutrient, which is normally 

assimilated as nitrate (NO3
─). The assimilation of NO3

─ comprises its reduction in a 

two step process, firstly it is reduced to NO2
─ by the action of the cytosolic enzyme 

nitrate reductase (NR), and then the reduction to NH4
+ thanks to the plastidial enzyme 

nitrite reductase (NiR; Wang et al. 2001). NH4
+ is then incorporated to organic acids to 

form aminoacids. Within this complex process, NR is the first and limiting step 

(Campbell, 1999). Heavy metal polluted areas are commonly waste land with low N 

availability, so nitrogen fertilizer must by applied to improve the biomass yield of plants 

cultivated in this areas for phytoremediation purposes (Wong, 2003). A common 

agricultural practice is the addition of organic matter and NPK inorganic fertilizers 

containing NO3
─ (Barrutia et al., 2009). Therefore it is important to study the relation 

between NO3
─ nutritional status and heavy metals toxicity. Heavy metals may disturb N 

metabolic system with a significant decrease in the activities, as occurred to NR under 

Cd stress in pea plants (Hernández et al., 1996). Indeed, in pea plants treated with 50 

µM Cd there was a severe diminution in NO3
─ assimilation, affecting NO3

─ and K 

uptake and NO3
─ reduction by NR (Hernández et al., 1997). Similar results were 

obtained in bean and tomato plants exposed to Cd, where the assimilation of NO3
─ and 

NH4
+

On the other hand, recent studies have been carried out to evaluate the effects of N 

supply on Cd concentration in plants, showing the beneficial effect of N fertilization on 

metal uptake in plants grown in polluted soils (Du et al., 2009; Gao et al., 2010). 

Finkemeier et al. (2003) studied the inter-relation between N status and Cd toxicity in 

Hordeum vulgare roots and showed that the gene expression of phytochelatin synthase 

(PCS) and NRAMP metal transporters were up-regulated under N starvation. It is 

feasible that under N deficiency the detoxification mechanisms (for example production 

of phytochelatins) are over induced to prevent cellular damages, as stronger phytotoxic 

effects occurred under nutritional limiting conditions. 

 was compromised (Gouia et al., 2000; Chaffei et al., 2004;). 

Prior to test the modulation of NO3
─ nutrition on plant performance in 

phytoremediation applications (i.e. tests in Almadén polluted soils), the effects of NO3
─ 

fertilization on Hg tolerance must be tested under controlled environment conditions. 

The objective of the present work was to study the effects of growing alfalfa plants 
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under two NO3
─ conditions (low and high) on Hg toxicity in a semi-hydropoinic system 

using perlite as inert substrate. Hg distribution in plant, oxidative stress and N 

assimilation parameters were analysed. It should be noted that the information available 

about the interaction between NO3
─

MATERIAL AND METHODS 

 nutrition status and Hg phytotoxicity is almost null. 

Plant material, growth conditions and treatments 

Alfalfa (Medicago sativa cv. Aragon) seedlings were surface sterilized for 5 min in 5% 

(v/v) commercial bleach. After rinsing several times with sterile water, seeds were 

soaked overnight at 4ºC and germinated on 1.5% (w/v) agar in square Petri dishes (10 x 

10 mm), in complete darkness for 48 h at 28ºC. Homogeneous selected seedlings were 

transferred to a semi-hydroponic system using a perlite inert substrate in plastic trays 

submerged in two modified Hoagland nutrient solution (Ortega-Villasante et al., 2005), 

one of them with low NO3
— concentration (LN; 2 mM): (macronutrients [mM]: 1.0 

KH2PO4, 0.5 MgSO4, 0.1 NaCl, 0.9 Ca(NO3)2, 0.63 KNO3, 0.47 Mg(NO3)2, and 

micronutrients [µM]: 45.0 Fe (EDDHA), 18.0 MnSO4, 3.0 ZnSO4, 6.0 CuSO4, 23.5 

H3BO3, 2.0 Mo7O24(NH4)6) and the other one with high NO3
— concentration (HN; 12 

mM): (macronutrients [mM]: 1.0 KH2PO4, 0.5 MgSO4, 0.1 NaCl, 5.4 Ca(NO3)2, 3.8 

KNO3, 2.8 Mg(NO3)2, and micronutrients [µM]: 45.0 Fe (EDDHA), 18.0 MnSO4, 3.0 

ZnSO4, 6.0 CuSO4, 23.5 H3BO3, 2.0 Mo7O24(NH4)6). The plants grew for 12 days in a 

controlled environment chamber (16 h light (lamps of 120 Wm-2)/8 h darkness) at 

25/18ºC respectively and relative humidity, 75%. 0, 6 and 30 µM Hg was then supplied 

as HgCl2, and plants were collected after 7 days and rinsed several times with 10 mM Na2

Mercury Analysis 

 

EDTA solution to remove superficial Hg. Then length and fresh weight of roots and 

shoots were measured and stored at -80ºC until analysis. 

Solid samples of roots and shoots were air dried and ground with mortar and pestle. 

Dried plant material (100 mg) was acid digested in 2 mL of the digestion mixture 

(HNO3:H2O2,:H2O, 0.6:0.4:1 v:v) in an autoclave (Presoclave-75 Selecta, Barcelona, 

Spain) at 120ºC and 1.5 atm for 30 min (Ortega-Villasante et al., 2007). Hg concentration 

was measured by Atomic Absorption Spectrophotometry using the Advanced Mercury 

Analyser 254 Leco (St. Joseph, Michigan, MI, USA) with a detection limit of 0.5 µg kg-1. 

Certified Reference Materials (CRM) were used to determine the accuracy of the 

measurements and validation. 



Sandra Carrasco Gil 

 91 

Nitrogen in plants 

The nitrogen (N) in plant tissue was determined by Kjeldahl digestion, which converts 

organic N (proteins and nucleic acids) to inorganic ammonium (NH4
+) with its posterior 

determination. The digestion was performed in a wet digestor system B-440 (Buchi, 

Switzerland). Dry plant material was ground to powder using a mortar and pestle, and 

0.05 g was transferred to the digestion tubes together with 10 ml of 98% H2SO4 (v/v) 

and 10 g of K2SO4. The solution was heated at 410 ºC for 1:30 h, and cooled for 30 

min. NH4
+

NH

 was distilled after the addition of 25 ml of 32% NaOH (v/w) in a K-355 

distillation unit (Buchi, Switzerland). The concentration of 3 released in the resulting 

alkaline mixture was calculated by back titration of 2% H3BO3

Oxidative stress indexes 

 (v/v) buffer adjusted to 

pH 4.65 with 0.02 M HCl, following the specifications of a KF Titrino Plus 870 

equipment (Metrohm, Switzerland). 

Lipid peroxidation was estimated by measuring the concentration of the by-product  

malondialdehyde, which reacts with thiobarbituric acid. The resulting chromophore 

absorbs at 535 nm, and the concentration was calculated directly from the extinction 

coefficient of 155 mM−1 cm−1

For chlorophyll (Chl) determination, 0.05 g of frozen leaves were homogenized with 10 

ml 80% (v/v) acetone using a mortar and pestle. Homogenates were filter through a 

paper filter and absorbance was measured in a UV-2401 PC spectrophotometer 

(Shimadzu Corporation, Kyoto, Japan) at 645 and 663 nm. Total chlorophyll 

concentration was calculated according to the formula by Arnon (Porra, 2002): 

. Ground frozen tissue (0.1 g) was transferred to a screw-

capped 1.5 ml Eppendorf tube, and homogenized following addition of 1 ml of TCA–

TBA–HCl reagent (15% (w/v) trichloroacetic acid (TCA), 0.37% (w/v) 2-thiobarbituric 

acid (TBA), 0.25 M HCl, and 0.01% buthylated hydroxytoluene). After homogenization, 

the samples were incubated at 90 ºC for 30 min in a heating block, then chilled in ice, and 

centrifuged at 12,000 g for 10 min. Absorbance was measured in a UV-2401 PC 

spectrophotometer (Shimadzu Corporation, Japan) at 535 nm and 600 nm, the 

absorbance at last wavelength to correct non-specific turbidity. 

 

Total Chl (mg g-1 FW) = Chla + Chlb, where: 

http://en.wikipedia.org/wiki/Ammonia�
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Preparation of non-protein thiol standard solutions 

Biothiol stock standard solutions containing 50 mM of glutathione (GSH), 

homoglutathione (hGSH), cysteine (Cys), N-acetyl cysteine (N-AcCys), and 2 mM of γ-

(Glu-Cys)2-Ala (hPC2), and γ-(Glu-Cys)3-Ala (hPC3) were prepared in analytical-grade 

type I water (Milli-Q Synthesis, Millipore). Aliquots of the stock solutions were 

immediately frozen in liquid N2, lyophilized and stored at -80 °C. Standards of 0.5 mM 

GSH, Cys and N-AcCys and standards of 0.1 mM hPC2 and hPC3

Analysis on non-protein thiols 

 were injected in the 

HPLC to set the retention times.  

Non protein thiols were analysed by High Performance Liquid Chromatography 

(HPLC) following the procedure described by Ortega-Villasante et. (2005). 0.1 g of 

frozen tissue was ground in liquid N2 and 15 µl of 5 mM N-acetyl cysteine (N-AcCys) 

was spiked as internal standard (Howden et al. 1995) prior homogenization with 300 µl 

of 0.25 N HCl to quantify the thiols. The homogenate was centrifuged twice for 15 min 

at 12 000 g and 4ºC in Eppendorf tubes. The clear supernatant was transferred to a 

boron-silica glass injection vial. Separation and detection of the thiols was carried out 

using the method described by Meuwly et al. (1995) with some modifications. Extracts 

(100 µl) were injected in a Mediterranea Sea18 column (5 µm, 250 x 4.6 mm; 

Teknokroma, Spain), using an Agilent 1200 HPLC system (Santa Clara, CA, USA). The 

mobile phase was built using two eluents: A (dH2O: acetonitrile (v/v) in 98:2 ratio plus 

0.01 % TFA) and, B (dH2

 

O: acetonitrile (v/v) in 2:98 ratio plus 0.01 % TFA). The gradient 

program, as for % solvent B, was: 2 min, 0%; 25 min; 25%; 26 min, 50%; 30 min, 50%; 

35 min, 0%; 45 min, 0% Thiols were detected after post-column derivatization with 

Ellman´s reagent (1.8 mM DTNB (5,5-dithio-bis (2 nitrobenzoic acid) in 300 mM K-

phosphate, 15 mM EDTA at pH 7.0), in a thermostatic 1.8 ml reactor at 38ºC, as 

described by Rauser (1991). The derivative compound, 5-mercapto-2-nitrobenzoate, had 

and absorbation maximum at 412 nm. 
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Determination of nitrate reductase activity in vitro 

The in vitro nitrate reductase (NR) activity was analysed following the procedure 

described by Ramón et al. (1989). Intact frozen tissue (0.5 g) was homogenised in 1 ml or 

0.5 ml extraction solution for shoot and root respectively, freshly prepared by mixing 10 

ml extraction buffer-30mM MOPS at pH 7.5, 5 mM Na2-EDTA, 10 mM DTT, 10 mM 

ascorbic acid, 0.6% PVP, 10 µl 100 mM PMSF and 1 ml protease inhibitors cocktail. 

After centrifugation (14,000g) for 15 min at 4ºC, the supernatant was kept at ice-cold 

the until enzymatic activity assay. NR activity was measured by adding 0.1 ml 100 mM 

KNO3, 0.5 ml reaction buffer (100 mMKH2PO4/K2HPO4, 1 mM EDTA, pH 7.5) and 

0.1 ml 1 mg ml-1 NADH. The reaction was started by adding 0.1 ml of enzymatic 

extract and incubated for 15 min at 28ºC. NO2
-

Glutathione reductase and ascorbate peroxidase 

 was analysed by the addition of 2 ml of 

freshly prepared colorimetric reagent (1% (v/v) sulphanilamide in 3 M HCl and 0.02% 

(w/v) N-(1-naphthyl) ethylenediamide dihydrochloride mixed in a 1:1 ratio). 

Homogenates were centrifuged at 1,000 x g for 15 min and absorbance was measured at 

540 nm in a UV-2401 PC spectrophotometer (Shimadzu Corporation, Kyoto, Japan). 

Glutathione reductase (GR) and ascorbate peroxidise (APX) activities were determined 

in gel after separation of protein extracts by non-denaturing electrophoresis in 10% 

polyacrylamide gels. Extracts were prepared from 0.5 g of intact frozen samples in 1 ml 

extraction solution, freshly prepared by mixing 10 ml extraction buffer-30mM MOPS at 

pH 7.5, 5mM Na2-EDTA, 10 mM DTT, 10mM ascorbic acid, 0.6% PVP, 10 µl 100mM 

PMSF and 1 ml protease inhibitors cocktail. After centrifugation (14,000g) for 15 min 

at 4ºC, the supernatant was stored as single use 100-200 µl aliquots at 80ºC. Protein 

concentration in the extracts was preliminarily determined with the BioRad Protein 

Assay reagent, and the final loading for activity staining was adjusted after denaturing 

gel electrophoresis and Coomassie-blue staining (Laemmli, 1970). Protein loading for 

GR and APX analysis was 15 µg and 5 µg of shoot and root extracts, respectively. Gel 

slabs were incubated in GR staining solution (250mM Tris-HCl buffer at pH 7.5, 

supplemented with 0.2 mg ml-1 thizolyl blue tetrazolium bromide, 0.2 mg ml-1 2,6-

dichlorophenol indophenol, 0.5 mM NADPH and 3.5 mM oxidised glutathione (Kaplan, 

1969). APX was detected as described by Jimenez et al. (1998). Gel slabs were 

incubated for 20 min with 2 mM ascorbate and 2 mM H2O2 in 50 mM Na-phosphate 

buffer at pH 7.0. The APX activity was detected with 0.5 mM nitroblue tetrazolium 

(NBT) and 10 mM TEMED in 50 mM phosphate buffered at pH 7.8. A digital camera 
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(Kodak 290, USA) was used to take the gel pictures and they were processed by Kodak 

1D Image Analysis Software (ver. 3.6). Selected regions of interest were of the same 

area and pixel intensity measured against the background. Data were given relative to 

the intensity of control samples. Only relevant differences are presented, and gels 

representative of three independent assays are shown. 

Statistical analysis 

Statistical analysis was performed using SPSS software for Windows (version 15.0), by 

using an ANOVA with Tukey test when the signification in Levene test was > 0.05 or 

Welch with Games-Howell test when the signification in Levene test was < 0.05. 

Results were mean of at least three independent replicates ± standard deviation, with 

significant differences between treatments at p<0.05. 

RESULTS 

Mercury concentration and biometric parameters 

Root Hg concentration was between 10 and 30 times higher than in shoot (Fig. 1). The 

treatments with Hg caused significant accumulation of Hg in shoot and root, increasing 

concomitantly with the higher doses of Hg in the nutrient solution. In addition, nitrate 

status affected the concentration of Hg in the organs, increasing with low NO3
― supply. 

Significant differences were presented in root. It should be noted that shoot control 

accumulated between 7 and 10 µg g-1

 

 of Hg. 

 

 

 

 

 

 

 

 

 

Fig. 1. Total Hg (µg g-1 DW) in shoot and root from 3-week-old Medicago sativa grown in low NO3
― 

(LN; 2 mM) and high NO3
― (HN; 12 mM) treated with 0 µM (control), 6 µM and 30 µM of Hg for 7 

days. Data are average of five independent replicates (± SD). Different letters denote significant 
differences between treatments at p<0.05. (Regular letter for LN and italics for HN). 
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Treatments with Hg had not appreciable effect on shoot biomass. However root length 

decreased with 6 and 30 µM Hg (c.a. 45%; data not shown). Regarding NO3
― 

nutritional status, there were significant differences in shoot fresh weight between the 

LN and HN plants under control and 6 µM Hg conditions, whereas in plants treated 

with 30 µM Hg differences were minimal. However, the effects of NO3
―

 

 on root fresh 

weight under Hg exposure were not significant in any of the combinations (Fig. 2). 

Similar pattern was observed by measuring shoot and root length, where the clearest 

differences in size between LN and HN occurred in plants treated with 6 µM Hg (data 

not shown). 

 

 

 

 

 

 

 

Nitrogen assimilation 

In shoot, the accumulation of NH4
+ increased as expected in plants grown with higher 

NO3
― concentration. The exposure to 6 µM Hg did not varied substantially N 

assimilation, and only diminishes slightly in plants treated with 30 µM Hg (Fig. 3). A 

stronger diminution was found however in the roots of plants grown with 6 µM Hg with 

low NO3
― supply, values that were similar in 30 µM Hg-treated plants (Fig. 3). 

Interestingly, plants grown in high NO3
― supply suffered a more moderated decrease 

(Fig. 3). It should be noted that similar values of NH4
+

NR activity reflected a similar behaviour as was observed for NH

 concentration were found when 

expressed as a percentage per dry matter. This was expected, since there is an almost 

linear correlation of plant biomass relative to concentration of N in the nutrient solution. 

4
+ content in plants, 

being higher in plants grown with NO3
―. Shoot NR activity was three-times greater 

than in root, indicating that in alfalfa the largest proportion of NO3
― was assimilated in 

 

Fig. 2. Fresh weight (mg plant-1) in shoot and root from 3-week-old Medicago sativa grown in low 
NO3

― (LN; 2 mM) and high NO3
― (HN; 12 mM) treated with 0 µM (control), 6 µM and 30 µM of Hg 

for 7 days. Data are average of at least three independent assays (± SD). Different letters denote 
significant differences between treatments at p<0.05. (Regular letter for LN and italics for HN). 
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the shoot (Fig. 4). None of the Hg-treatments affected NR activity in the shoot. 

However, in root some remarkable changes were detected: root NR activity augmented 

in plants exposed to 6 µM Hg, with c.a. two-fold higher activity in plants treated with 

high NO3
―

Stress indexes 

 (Fig. 4). Finally, root NR activity decreased almost to control values with 

30 µM Hg, showing a typical homeostasis response. 

Lipid peroxidation was evaluated by malondialdehide (MDA) content in alfalfa plants. 

ANOVA analysis did not find differences or relation in shoot regarding to Hg and NO3
─ 

treatments. On the contrary, Hg treatments caused a clear increase in the MDA content 

 

Fig. 3. Nitrogen accumulation (mg NH4
+ plant-1) and nitrogen percentage (%; in parenthesis) in shoot 

and root of 3-week-old Medicago sativa grown in low NO3
― (LN; 2 mM) and high NO3

― (HN; 12 mM) 
treated with 0 µM (control), 6 µM and 30 µM of Hg for 7 days. Data are average of at least three 
independent assays (± SD). Different letters denote significant differences between treatments at 
p<0.05. (Regular letter for LN and italics for HN). 

 

Fig. 4. Nitrate reductase activity (NR) (nmol NO2 g-1 FW h) in shoot and root of 3-week-old Medicago 
sativa grown in low NO3

― (LN; 2 mM) and high NO3
― (HN; 12 mM) treated with 0 µM (control), 6 

µM and 30 µM of Hg for 7 days. Data are average of at least three independent replicates (± SD). 
Different letters denote significant differences between treatments at p<0.05. (Regular letter for LN and 
italics for HN). 
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in root, which augmented in a metal concentration manner in plants supplied with high 

NO3
― (Fig. 5). Moreover, in the absence of Hg low NO3

― supply caused a significant 

increase in lipid peroxidation compared with high NO3
― plants (Fig. 5). The 

concentration of chlorophyll was not affected by Hg exposure in plants treated with 

high NO3
― concentration (Fig. 6). However, plants exposed 30 µM Hg and grown in 

low NO3
―

 

 suffered a slight diminution in chlorophyll content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Lipid peroxidation (nmol MDA g-1 FW) in shoot and root of 3-week-old Medicago sativa 
grown in low NO3

― (LN; 2 mM) and high NO3
― (HN; 12 mM) treated with 0 µM (control), 6 µM and 

30 µM of Hg for 7 days. Data are average of five independent replicates (± SD). Different letters 
denote significant differences between treatments at p<0.05. (Regular letter for LN and italics for 
HN).  

 

 

Fig. 6. Chlorophyll concentration (mg g-1 FW) in leaves of 3-week-old 
Medicago sativa grown in low NO3

― (LN; 2 mM) and high NO3
― (HN; 

12 mM) treated with 0 µM (control), 6 µM and 30 µM of Hg for 7 days. 
Data are average of five independent replicates (± SD). Different letters 
denote significant differences between treatments at p<0.05. (Regular 
letter for LN and italics for HN). 
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APX activity increased only slightly under Hg stress in shoot and root, independently of 

the level of NO3
― (Fig. 7). Similarly, shoot GR activity did not vary appreciably. 

However, root GR activity of plants with high NO3
─ decreased with 6 µM Hg until it 

was completely inhibited with 30 µM Hg (Fig. 7). Additionally, plants grown with high 

NO3
―

Biothiols 

 the inhibition of GR activity was more attenuated when treated with 6 µM Hg 

(Fig. 7). 

The concentration of biothiols was determined to assess the effects of NO3
─ nutrition. 

As shown in Table 1, hGSH was the major biothiol in alfalfa and its concentration in 

shoot was between 2 and 3 times higher than in root. The exposition of plant to Hg 

increased slightly the content of hGSH in root. Differences in NO3
─ concentration did 

not produced differences in the biothiol content, except for root exposed to 6 µM Hg 

where a high NO3
─ supply caused an increase in hGSH content. ANOVA analysis did 

not find differences in the rest of thiols content with respect to Hg and NO3
─ treatments. 

Cysteine (Cys) in shoot, phytoquelatins (PC) or homophytoquelatins (hPC) in root and 

shoot were not detected in the plant extracts. 

 

Fig. 7. Effect of Mercury on in gel Glutathione reductase (GR) and Ascorbate peroxidise (APX) 
activity in shoot and root of 3-week-old Medicago sativa grown in low NO3

― (LN; 2 mM) and high 
NO3

― (HN; 12 mM) treated with 0 µM (control), 6 µM and 30 µM of Hg for 7 days. a, d) coomassie-
blue general staining of proteins to show equivalent loading of proteins, b, e) GR activity; and c, f) 
APX activity. To improve the visualization of differences between treatments, numbers below the band 
represent the relative fold-change against the LN control 
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Table 1. Non-protein thiols content (nmol g-1 FW) in shoot and root of 3-week-old Medicago sativa 
grown in low NO3

― (LN; 2 mM) and high NO3
― (HN; 12 mM) treated with 0µM (control), 6µM and 

30µM of Hg for 7 days. Concentration of each thiol peptide was calculated equivalent to the internal 
standard of N-Ac-Cys. Data are average of three independent replicates (± SD). 

  ROOT SHOOT 

Thiol NO3
─ Control 6 µM Hg 30 µM Hg Control 6 µM Hg 30 µM Hg 

Cys 
LN 21.6±12.2 16.1±3.1 25.0±6.8 nd nd nd 

HN 17.4±2.8 16.8±4.5 25.5±7.1 nd nd nd 

hGSH 
LN 64.3±10.4a 64.1±18.3a 93.7±21.5a,b 192.7±63.5 178.6±64.3 192.8±61.4 

HN 69.4±33.0a 127.7±44.1b 102.6±19.5a,b 193.9±38.9 205.1±69.7 224.7±92.5 

GSH 
LN 31.7±15.7 29.0±9.9 39.8±9.7 27.9±10.9 25.8±9.5 18.9±5.4 

HN 27.9±12.2 29.5±11.5 29.9±9.9 41.3±6.2 21.1±7.2 18.8±3.5 

n.d: no detected 
Different letters denote significant differences between treatments at p<0.05. 

DISCUSSION 

The concentration of Hg increased in plants following the concentration of Hg in the 

nutrient solution, being accumulated basically in the root. These results are in agreement 

with previous studies carried out with plants exposed to Hg (Beauford et al., 1976; 

Sinha et al., 1996; Rellán-Álvarez et al., 2006). The lower Hg content in shoot may be 

due to the fact that alfalfa plant is prone to restrict the movement of Hg to shoot by Hg 

immobilization in root, showing typical excluder behaviour (Briat and Lebrun, 1999). It 

is well known that Hg is a rather immobile element that binds strongly with different 

cell components at the cell wall and biological membranes (proteins and carbohydrates 

mainly; Hall 2002), precluding the Hg translocation to the shoot (Beauford et al., 1976; 

Siegel et al., 1987). Control plants grown with low and high NO3
─

The higher content of NH

 accumulated a 

detectable level of Hg in shoot, result that could be explained by the potential 

volatilization of Hg from the nutrient solutions and its absorption by the leaves without 

translocation to root (Suszcynsky and Shann, 1995). 

4
+ in shoots than in roots (c.a. 5-times higher) and higher NR 

activity in shoots (also c.a. 5-times higher) indicate that alfalfa plants assimilate NO3
― 

mostly in the shoot. These results were in agreement with the described behaviour of 

alfalfa plants at a vegetative development stage (Vance and Heichel, 1981). This 

decrease in shoot N content was reflected in the higher chlorophyll concentration of 

high NO3
― plants. It is well known that chlorophylls are a good index of N nutritional 

status, as a severe depletion causes chlorosis (Evans, 1983; Bojovic and Marcovic, 

2009). Under Hg exposure there were no changes in the amount of NH4
+ in shoots, 
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although NH4
+ content was significantly lower in plants treated with low NO3

―. As 

already commented, this could be due to the higher NO3
― assimilation ratio in leaves. 

Hg would not affect NO3
― metabolism and assimilation in shoot since Hg accumulates 

to a much less extend in this organ. With respect to the roots, under 6 µM Hg, alfalfa 

roots suffer a clear diminution of NH4
+ content with low NO3

― supply. Similarly, 

Lycopersicon esculentum plants treated with Cd suffered also a clear diminution of 

accumulation of NH4
+ in plants treated with 50 µM Cd (Chaffei et al., 2004). Moreover, 

Hernández et al. (1997) found a rapid impairment of NO3
―

It has been shown that NR activity was differently affected by Cd stress. In studies 

performed with Silene cucubalus exposed to less than 5 µM Cd (Mathys, 1975) and 

Phaseolus vulgaris exposed to the range of 10-100 µM Cd (Gouia, 2000), NR activity 

decreased with the concentration of Cd. However, Chugh et al. (1992) reported that NR 

activity was not affected by exposure to Cd concentrations below to 50 µM in Pisum 

sativum. In our case, NR activity augmented remarkably in the root of plants exposed to 

6 µM Hg with high NO

 uptake and assimilation, 

reflected in a remarkable inhibition of NR under Cd stress. 

3
―. This activation could be also detected in plants with low 

NO3
―, but to a lesser degree. It is feasible that the presence of Hg altered the balance of 

NO3
― in the plant, causing that a higher proportion of NO3

― would be assimilated in 

the root. Only at the highly toxic dose of 30 µM Hg NR activity decreased to control 

values, possibly as a consequence of cell poisoning (Van and Clijsters, 1990). This 

interesting results should be studied using more sensitive analytical procedures to trace 

the uptake and assimilation of NO3
― in the plants, perhaps by monitoring isotopically 

labelled NO3
― (15

To our knowledge, our study is the first describing the influence of different NO

N), which would allow a dynamic study of the process under Hg 

stress. 

3
─ 

nutritional levels on the phytotoxic effects caused by Hg in higher plants. The only 

available information about the effect of NO3
― nutrition on heavy metals uptake and 

accumulation describes the behaviour of Cd in several crop plants. Thus, Finkemeier et 

al. (2003) found that Cd accumulation was not affected in barley plants by the absence 

of NO3
― in the growth medium. Hassan et al., (2005) evaluated the effect of different N 

species on Cd accumulation and phytotoxic effects in rice plants, and found that only 

plants fed with (NH4)2SO4 accumulated less Cd and were more tolerant, possibly due to 

a decrease in Cd availability imposed by the lower solubility of CdSO4 salts. However, 

these authors did not study the responses in plants depleted of N. More recent studies 
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showed that the concentration of Cd in two rice genotypes decreased in shoots but 

increased in roots under high N nutritional status (Du et al., 2009). On the contrary, a 

high NO3
―

The significant higher accumulation of Hg in the roots of low NO

 concentration in the nutrient solution produced a decrease of Hg 

concentration in plants, being this effect stronger in roots. 

3
― plants could not be 

explained completely in terms of a dilution effect, as there were not significant 

differences in biomass compared with high NO3
― grown plants. Indeed, the only 

significant differences in biomass were found in shoot, where Hg accumulated to a 

lesser extent. Therefore, some tolerance mechanisms should be active to promote a 

diminution in Hg uptake in high NO3
― treated alfalfa. One possibility might be the 

larger accumulation of hGSH in the roots of high NO3
― plants exposed to 6 µM Hg: 

c.a. two-fold increase compared low NO3
― plants (Table 1). Biothiols, and in particular 

phytochelatins are important ligands in Hg detoxification, as we described in our recent 

work (Carrasco-Gil et al., 2011). Although we tried to detect phytochelatins, we were 

unable to detect them in our experiment. We know that storage for a prolonged period 

of samples at -80ºC causes a dehydration that affects the stability of phytochelatins, as 

occurred with our samples. To confirm this hypothesis we have planned new 

experiments to detect biothiols in fresh material, which will also allow us the detection 

of Hg-biothiol complexes in under low and high NO3
―

About the stress symptoms evaluated, plants grown with low NO

 levels. 

3
― were slightly more 

affected than plants treated with high NO3
―. Thus, root lipid peroxidation was higher in 

plants exposed to 6 µM Hg, but at the higher dose of Hg there were no different 

between both NO3
―

On the other hand, the chlorophyll content was not affected by Hg exposition. This is in 

agreement with Cargnelutti et al. (2006) which reported that the presence of 0.5 and 50 

µM Hg in Cucumis sativus L. seedling grown in a solid medium did not exert effect on 

the chlorophyll content. However, Cho and Park (2000) observed a decrease in the 

chlorophyll content of Lycopersicon esculentum exposed to 10 and 50 µM Hg for 10 

 levels. Several studies show the negative Hg effects on plant 

development and the induction of oxidative stress (Ortega-Villasante et al., 2005; Israr 

and Sahi, 2006; Israr et al., 2006; Rellán-Álvarez et al., 2006). The lipid peroxidation 

was similar in root and shoot, whereas in other studies carried out in Lycopersicom 

esculentum exposed to 10 and 50 µM Hg (Cho and Park, 2000) or in alfalfa exposed to 

30 µM Hg (Ortega-Villasante et al., 2005) grown in pure hydroponic conditions, the 

lipid peroxidation in root was higher than in shoot. 
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and 20 days under pure-hydroponic conditions. It is feasible that the differences in the 

behaviour of stress parameters depend on the growth conditions, as was observed 

previously by Sobrino-Plata et al. (2009). Redjala et al. (2010) studied the relationship 

between root structure and Cd uptake in Zea mays. They reported that different 

cultivation methods, such as soil or hydroponic, produces differences in the maturation 

of root exodermis and endodermis with impact in Cd uptake. In a hydroponic system, 

the formation of root apoplastic barriers occurred farther from the root tip than in soil 

grown plants. Thus, root surfaces without suberization facilitate ion infflux causing a 

higher Cd uptake rate, which in turn increased its phytotoxicity in a pure hydroponic 

system. Therefore, different root architecture may affect greatly the uptake and transport 

characteristics of metals under certain growth conditions and cultivation systems, as 

occurred in studies performed with a semi-hydroponic system. 

There was not a clear effect of Hg on APX activity in alfalfa plants grown either in low 

or high NO3
―. These results were basically in agreement with those described by 

Sobrino-Plata et al. (2009), who found a modest induction of APX in alfalfa plants 

grown in semi-hidroponic conditions. Again, only when plants were grown in a pure 

hydroponic system remarkable changes in APX was observed, as reported in maize 

roots grown under hydroponic conditions. These plants suffered an increase of activity 

with 6 µM Hg, but then it was inhibited with 30 µM Hg (Rellán-Álvarez et al., 2006). 

On the other hand, GR activity decreased considerably in roots with 6 µM Hg, and it 

was inhibited with 30 µM Hg. This enzyme contains a key cysteine rich domain prone 

to be blocked by Hg, rendering the enzyme inactive in the presence of Hg (Sobrino-

Plata et al., 2009). This inhibition was also metal specific, since with Cd this effect was 

not observed. By contrast, in a study carried out by Israr (2006) with Sebania 

drummondi seedlings exposed to a range from 0 to 500 µM Hg, GR activity increased 

slightly with the Hg concentration. Interestingly, roots supplied with low NO3
─ showed 

lower GR activity than those with high NO3
─, that was inhibited but to a lesser extent. 

This could be related to the concentration of Hg in plants, since roots with low NO3
─ 

accumulated higher Hg level, and thus the toxic effect of Hg would be more acute. 

Therefore, GR follows the general trend that low NO3
― plants were more affected than 

high NO3
―

The plant ability to increase the antioxidant protection and then cope with the negative 

impact of the stress produced by heavy metals, seems to be more limited in low NO

 plants when treated with 6 µM Hg. 

3
― 

plants. Studies of heavy metal exposition such as Cu and Cd performed with Pisum 
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sativum (Bielawski and Joy, 1986) or with Helianthus annuus (Gallego et al., 1996) 

reported that the decrease of GR activity could be related to the reduction of the GSH 

levels. Indeed, in the present study we observed a remarkable increase in hGSH 

concentration in high NO3
―

CONCLUSIONS 

 plants, which could prevent oxidative damages as pointed 

out by lower lipid peroxidation observed in these plants. Our findings would imply a 

possible better redox adjustment of well-nourished plants exposed to a moderate dose of 

Hg. 

The NO3
― nutritional status of plants might be important to improve their tolerance to 

Hg. Oxidative stress indexes as lipid peroxidation and chlorophyll content together with 

GR antioxidant enzymatic activity were less affected with the high NO3
―
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CHAPTER 6 

Influence of nitrate fertilisation on Hg uptake and oxidative 
stress parameters in alfalfa plants cultivated in a Hg-polluted 
soil 

ABSTRACT 

The Almadén area (Spain) holds one of the biggest deposits of mercury (Hg) in the 

world, where cinnabar and other mineral ores had been extracted in the last two 

millenniums. The study was carried out in a green house with soil from an agricultural 

land plot located in Almadén, which contained an average Hg concentration of 12.4 mg 

kg-1. We compared physiological stress parameters sensitive to Hg in alfalfa plants 

grown in Hg-polluted soils that were amended with two different fertilizers: without 

NO3
─ (PK) or with NO3

─

 

 (NPK). Several parameters of oxidative stress, such as 

antioxidative enzymatic activities, lipid peroxidation, and chlorophyll content were 

analysed. Our results suggest that nitrogen supply prevents oxidative stress in roots, but 

may improve root development and increase the uptake of Hg from the soil above safety 

consumption limits. This work opens new perspectives towards phytoremediation 

applications with alfalfa plants, highlighting the importance of proper nitrogen 

fertilization to improve tolerance to the pollutant. 
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INTRODUCTION 

Mercury poses a serious threat to the environment and to human health, and as a result 

of more strict environmental policies its ore extraction, metal processing and trade are 

under severe restrictions in the European Union (European Commission, 2008). 

Amalgamation of gold with Hg in mining, chlor-alkali industry, dye production, 

elaboration of lamps and electronic equipment are examples of uses of Hg responsible 

of severe environmental problems in many regions of the World (UNEP, 2011). The 

accumulation of Hg in several ecosystems is aggravated by its long-term persistence, 

which led to dramatic human health problems as occurred in Minamata Bay (Japan), 

caused by the bioaccumulation and biomagnification of Hg in the food chain 

(Dushenkov et al., 1997). Soils are the sink of Hg in polluted urban and agricultural 

areas, accumulation that may result in structure degradation, crop yield reduction, and 

poor quality of agricultural products (Long et al., 2002). 

The present study was performed using soil from Almadén area (Ciudad Real, Spain), 

which constitutes the largest and most unusual natural concentration of Hg in the 

World, where mining activities had been carried out from Roman times to the present 

(Higueras et al., 2003). According to Huckabee et al. (1983) and Higueras et al. (1999, 

2000), the major proportion of Hg existing in Almadén originates from bed rock 

weathering and erosion, anthropogenic dispersion from abandoned mineral dumps and 

metal extraction and refining. Hg is predominantly found in cinnabar form (HgS) but 

elemental Hg (Hg0) is also presented, which might disperse long distances via the 

atmosphere after volatilisation (Higuera at al., 2000). In spite of the low solubility of 

HgS, Hg may be mobilised and absorbed by plants and animals, as some studies have 

shown. Thus, the degree of Hg accumulation in the natural vegetation collected from 

Almadén ranges from 0.12 to more than 65 mg kg-1 dry weight (DW; Huckabee et al. 

1983). Millán et al. (2006) found that there was a high correlation between available Hg 

in soil and Hg accumulation in plants sampled in ten different locations in the Almadén 

mining area. For example, Hg accumulation in Rumex induratus and Marrubium 

vulgare was a function of Hg availability in tested plots (Moreno-Jimenez et al. 2006). 

Plants capable of surviving in areas with a high metal content need to develop tolerance 

strategies (Levitt, 1980). Exclusion is the most common mechanism of plant adaptation 

to metal toxicity, and is the common strategy of plants grown in Hg-polluted soils 

(Moreno-Jimenez et al., 2006). Nevertheless, Hg can accumulate in the aerial parts of 

the plants by several ways: i) translocation from the roots once Hg is taken up from the 
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soil normally as Hg2+, ii) via the stomata from the atmosphere as volatile Hg0 (or even 

as Hg2+

Due to changes in land usage after the banning of mining activities in Almadén, several 

crop plants are being introduced to develop new economic activities based on 

agriculture in polluted soils. Consequently, it is important to evaluate the potential risk 

for human health and the environment considering the uptake and distribution of Hg in 

suitable crops (Ferrara et al., 1998; Berzas et al., 2003, Higueras et al., 2003). With this 

aim, some studies were performed growing plants under greenhouse conditions in pots 

containing polluted soil from Almadén sites (Sierra et al., 2008a, 2008b, 2009). These 

studies revealed that crops like Solanum melongea or Lavandula stoechas should not 

represent a risk for consumers, whereas Vicia sativa, which is used as forage for 

livestock was near the established safety limit. Therefore, crops grown in Almadén soils 

may accumulate Hg in the harvested parts. Whenever alternative crops are introduced in 

the area it is mandatory a detailed evaluation of Hg translocation to avoid a possible 

impact to human population or animal through the food chain. 

), iii) through by adsorption of particulate Hg deposited on leaves or stem 

surfaces (Lindberg et al., 1979; Frescholtz et al., 2003). 

The accumulation of Hg in plants is influenced greatly by the Hg available in soils. 

Mercury is absorbed by the root system and is translocated to the shoot (Patra et al., 

2004), although most portion of Hg absorbed remain immobilised in roots as has been 

observed by a number of studies (Rellán-Álvarez et al., 2006; Sobrino-Plata et al., 2009; 

Carrasco-Gil et al., 2011). It is thought that the high toxicity of Hg is mainly due to the 

high affinity for sulfhydryl groups (–SH) of proteins and other S-containing molecules 

(i.e. biothiols). Once Hg binds proteins, their tertiary and quaternary structures are 

disturbed, losing their function (Clarkson, 1972). Also, Hg affects the membranes of 

higher plants cells producing aquaporins inhibition, increasing in lipid peroxidation, 

modifying solute permeability, and even disrupting their structural integrity (Ma, 1998). 

Several visual symptoms develop under Hg stress: stunned seedling growth, reduction 

in the root growth; decrease in the stem length, and diminution in chlorophyll content 

(Patra and Sharma, 2000). 

The induction of oxidative stress is one of the several phytotoxic effects of Hg that 

occur rapidly in plants exposed to Hg. Accumulation of moderate to high levels of Hg 

in the plants may stimulate the production of reactive oxygen species (ROS), which 

leads to damage of proteins and membrane lipids (Rellán-Álvarez et al., 2006; Ortega-

Villasante et al., 2005). In addition, the onset of oxidative stress may produce the 
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alteration in the concentration of glutathione (GSH), an important antioxidant that forms 

part of the ascorbate-glutathione ROS scavenging pathway (Mittler, 2002). The toxic 

action of Hg compounds may also be related to an alteration of antioxidant enzyme 

activities such as superoxide dismutase (SOD), ascorbate peroxidise (APX), glutathione 

reductase (GR; Ortega-Villasante et al., 2005; Rellán-Álvarez et al., 2006; Zhou et al., 

2007). Of these stress parameters, we have studied the responses of GR, enzyme very 

sensitive to Hg accumulation in alfalfa roots (Sobrino-Plata et al. 2009). 

The use of soil amendments, some times are necessary to revegetate a degraded area or 

to establish a crop, but these treatments may influence metal bioavailability and 

phytoextraction processes (Cunningham and Ow, 1996). The information available 

about agronomic practices and Hg availability in soils is rather scarce. Studies showed 

that the additions of nitrogen alter soil solution equilibrium (Alloway, 1995), and root 

morphological parameters (Barber, 1995) increasing the potential Hg uptake. To our 

knowledge, there is only one report that evaluated the interactive effect of nitrogen 

fertilizers on Cd concentration in the grain of durum wheat in real conditions (Gao et 

al., 2010). Therefore, more information about this respect is needed to determine how 

nitrogen fertilization modify the ability of crops to uptake and translocate Hg, which 

depends greatly on species or cultivars. 

Alfalfa (Medicago sativa) has been cultivated in Almadén for decades, used as forage 

for livestock feed because of its high levels of proteins (Llorca et at., 1999). Alfalfa is a 

leguminous plant that has the ability to assimilate atmospheric nitrogen (N2) thanks to 

the association with symbiotic N2

In the present work, we compared physiological stress parameters sensitive to Hg in 

alfalfa plants grown in Hg-polluted soils obtained from Almadén, that were amended 

with two different fertilizers: without NO

-fixing bacteria (i.e. Sinorhizobium meliloti). 

Therefore, these plants are normally able to obtain their own nitrogen requirements, and 

are able to grown in poor soils. In fact, these plants are used to improve soil fertility, 

and decreases fertilization needs. 

3
─ (PK) or with NO3

─

  

 (NPK). Thus, the Hg 

accumulation, chlorophyll concentration, non-protein thiols content, lipid peroxidation 

level and activity of GR and APX antioxidant enzymes were assessed. 
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MATERIAL AND METHODS 

Physical and chemical soil analysis 

The soil for this study was collected from “Castilseras”, a site where agricultural 

activities have been carried out. This plot is in the area of influence of “El Entredicho” 

mine located in Almadén (Ciudad Real, Spain). The soil was sampled in ten points 

along the plot collecting every sample from the first 30 cm. The soil was air dried and 

sieved to 2 mm. The texture of the soil was analysed according to UNE norms: 103-101 

(1995) and 103-102 (1995). The soil pH was determined with a pH-meter Orion 525a in 

2:1 distilled water:soil (v/v). Electrical conductivity was determined in 2:1 (v/v) 

extraction ratio of soil and distilled water using a Crison-MICRO CM 2200 

conductivity/temperature meter. Organic matter was measured according to Walkey-

Black (1934). The CEC was carried out according to Sierra et al. (2008b) using 

ammonium acetate. Total C/H/N was analysed using an Elemental Analyzer CHN-600 

Leco (St. Joseph, Michigan, MI, USA) based on a dry combustion method. Available 

macronutrients were extracted with the procedure described by Soltampour and Schwab 

(1977) and analysed using inductively coupled plasma-mass spectroscopy (ICP-MS). 

Experimental design, plants and growth conditions 

The experiment was performed under greenhouse conditions. The soil sieved to 2 mm 

was mixed with perlite and sand in equal proportions (v/v) and placed in 48 pots with a 

total volume of 3 L. and then, they were watered with 0.5 L of water to initiate the 

drainage. Inorganic fertilisation was applied according to the nutritional requirements of 

irrigated alfalfa crops (Del Pozo, 1983). Half of the plants (24 pots) were fertilized with 

a NPK mixture (30:110:100; adequate NO3
─), where nitrogen was added as NH4NO3. 

A second batch (24 pots) was only fertilized with a PK mixture (110:100, poor NO3
─). 

Phosphate and potassium were also added as K2HPO4 and KH2PO4 forms. Following 

the agronomic practices in Almadén area (MAPA, 1998), plants were sown in April. 

Two weeks before sowing, the pots were ground fertilized with phosphate and 

potassium doses. Nitrogen was applied at the moment alfalfa seedlings were sown to 

avoid excess drainage due to the high solubility of NH4NO3

Alfalfa (Medicago sativa cv. Aragon) seedlings were surface sterilized for 5 min in 5% 

(v/v) commercial bleach. After rinsing several times with distilled water, seeds were 

soaked overnight at 4ºC. Fifteen homogeneous selected seedlings were transferred to 

. 
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each pot where they were germinated. Periodic irrigations with tap water was performed 

according to the water requirements of the culture. 

Sampling 

Sampling was performed at two different growth stages: seedling (three weeks after 

sowing) and elongation (seven weeks after sowing), which was close to the first “cut in 

green” for forage uses. Soil and plants were collected in 12 pools formed by the mixing 

of four pots (see Fig.1). Plants were divided in shoot and root and placed into beakers 

and rinsed several times with 10 mM Na2

Mercury determination 

 EDTA solution to remove superficial Hg. Then 

length and fresh weight of roots and shoots were measured and stored at -80ºC or air dried 

until analysis. The soils were air dried and stored at room temperature until analysis. 

Solid samples of soil and plants (roots and shoot) were air dried and ground with mortar 

and pestle. Available Hg was extracted following the procedure described by Soltampour 

and Schwab (1977). Hg concentration was measured using an Advanced Mercury 

Analyser 254 Leco (St. Joseph, Michigan, MI, USA) with a detection limit of 0.5 µg kg-1

 

. 

Certified reference materials (CRM) were used to determine the accuracy of the 

measurements and validation: SRM 2709 (San Joaquin agricultural soil, 1.40 ± 0.08 mg 

Fig. 1. Pots distribution in the greenhouse with respect to the fertilization applied and the growth stages 
sampled 
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kg-1 of Hg), BCR-CRM 62 (olive leaves, 0.28 ± 0.02 mg kg-1 of Hg), BCR-CRM 150 

(spiked skim mild powder, 0.0094 ± 0.0017 mg kg-1 of Hg). The experimental value 

determined for 5 measurements of each BCR was: 1.34 ± 0.05 mg kg-1, 0.30 ± 0.01 mg 

kg-1, and 0.0102 ± 0.0009 mg kg-1

To evaluate the alfalfa capacity to uptake the Hg from the soil, bioaccumulation factor 

(BAF) was calculated as an index of Hg accumulation in plants. According to Tu and 

Ma (2002), the BAF factor is the ratio between the total Hg concentration in shoot or 

root and Hg available in soil. To study the mobility of Hg inside the plant the ratio 

between Hg concentration in shoot and Hg concentration in root was calculated 

according to Baker (1981). 

 respectively. 

Nitrogen in plants 

The nitrogen (N) in plant tissue was determined by Kjeldahl digestion, which converts 

organic N (proteins and nucleic acids) to inorganic ammonium (NH4
+) with its posterior 

determination. The digestion was performed into the wet digestor system B-440 (Buchi, 

Switzerland). Dry plant material was ground to powder using a mortar and pestle, and 

0.05 g was transferred to the digestion tubes together with 10 ml of 98 %H2SO4 (v/v) 

and 10 g of K2SO4. The solution was heated at 410 ºC for 1:30 h, cooled for 30 min. 

NH4
+

NH

 was distilled after the addition of 25 ml of a 32% NaOH (v/w) solution in a K-355 

distillation unit (Buchi, Switzerland). The concentration of 3 released in the resulting 

alkaline mixture was calculated by back titration of a 2% H3BO3

Metal stress indexes 

 (v/v) buffer adjusted 

to pH 4.65 with 0.02 M HCl, following the specifications of a KF Titrino Plus 870 

(Metrohm, Switzerland). 

Lipid peroxidation was estimated by the formation of malondialdehyde, a by-product of 

lipid peroxidation that reacts with thiobarbituric acid. The resulting chromophore absorbs 

at 535 nm, and the concentration was calculated directly from the extinction coefficient of 

1.563105 M cm-1. Ground frozen tissue (0.1g) was transferred to a screw-capped 1.5 ml 

Eppendorf tube, and homogenized following addition of 1 ml of TCA–TBA–HCl reagent 

(15% (w/v) trichloroacetic acid (TCA), 0.37% (w/v) 2-thiobarbituric acid (TBA), 0.25 M 

HCl, and 0.01% butylated hydroxytoluene). After homogenization, samples were 

incubated at 90 ºC for 30 min in a hot block, then chilled in ice, and centrifuged at 12 000 

g for 10 min. Absorbance was measured in a UV-2401 PC spectrophotometer (Shimadzu 

http://en.wikipedia.org/wiki/Ammonia�
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Corporation, Japan) at 535 nm and 600 nm, the last one to correct the non-specific 

turbidity. 

Chlorophylls were extracted from 0.05 g of frozen leaves with 10 ml 80% (v/v) acetone 

using a mortar and pestle. Homogenates were filter and absorbance was measured in a 

UV-2401 PC spectrophotometer (Shimadzu Corporation, Kyoto, Japan) at 645 and 663 

nm. Total chlorophyll concentrations were calculated according to the formula by 

Arnon (Porra, 2002): 

Total Chlorophyll (mg g-1 FW) = Chlorophyll a + Chlorophyll b, where: 

 

 

 

Glutathione reductase and ascorbate peroxidise 

Glutathione (GR) and ascorbate peroxidise (APX) activities were determined in gel 

after separation of protein extracts by non-denaturing electrophoresis in 10% 

polyacrylamide gels. Extracts were prepared from 0.5 g of intact frozen samples in 1 ml 

extraction solution, freshly prepared by mixing 10 ml extraction buffer-30mM MOPS at 

pH 7.5, 5mM Na2-EDTA, 10 mM DTT, 10mM ascorbic acid, 0.6% PVP, 10 µl 100mM 

PMSF and 1 ml protease inhibitors cocktail. After centrifugation (14,000g) for 15 min 

at 4ºC, the supernatant was stored as single use 100-200 µl aliquots at 80ºC. Protein 

concentration in the extracts was preliminarily determined with the BioRad Protein 

Assay reagent, and the final loading for activity staining was adjusted after denaturing 

gel electrophoresis and Coomassie-blue staining (Laemmli, 1970). Protein loading for 

GR analysis was 15 µg and 10 µg of seedling and elongation shoot extract, and 5 µg 

and 3 µg. of seedling and elongation root extract, respectively. Protein loading for APX 

detection was 30 µg of seedling and elongation shoot extract and 7 µg of seedling and 

elongation root extract. GR activity was revealed with the procedure developed by 

Kaplan (1969), with minor modifications. Gel slabs were incubated in GR staining 

solution (250mM Tris-HCl buffer at pH 7.5, supplemented with 0.2 mg ml-1 thizolyl 

blue tetrazolium bromide, 0.2 mg ml-1 2,6-dichlorophenol indophenol, 0.5 mM NADPH 

and 3.5 mM oxidised glutathione; GSSG). Bands corresponding to diaphorase activity 

(higher electrophoretic mobility than GRs), were identified by incubating a second gel 

in a staining solution without GSSG. The direct effect of Hg on GR activity was 
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evaluated by in vitro incubation of purified S. cerevisiae GR or leaf enzymatic crude 

extract. Samples were diluted to the appropriate activity (4-6 mU of purified GR) or 

extract protein content (15 µg), exposed to Hg (up to 1.0 mM), and incubated at room 

temperature for 1 h. Then, the proteins were separated by non-denaturing 

polyacrylamide gel electrophoresis, and GR activity was assayed in gel as described 

above. 

APX was detected as described by Jimenez et al. (1998). Gel slabs were incubated for 

20 min with 2 mM ascorbate and 2mM H2O2

Preparation of non-protein thiol standard solutions 

 in 50 mM Na-phosphate buffer at pH 7.0. 

The APX activity was detected with 0.5 mM nitroblue tetrazolium (NBT) and 10 mM 

TEMED in 50 mM phosphate buffered at pH 7.8. A digital camera (Kodak 290, USA) 

was used to take the gel pictures that were processed with Kodak 1D Image Analysis 

Software (version 3.6). Regions of interest (ROIs) were selected with the same surface 

and pixel intensity was adjusted to the background. Data were given relative to the 

intensity of control samples. 

Biothiol stock standard solutions containing 50 mM of glutathione (GSH), 

homoglutathione (hGSH), cysteine (Cys), N-acetyl cysteine (N-AcCys), and 2 mM of γ-

(Glu-Cys)2-Ala (hPC2), and γ-(Glu-Cys)3-Ala (hPC3) were prepared in analytical-grade 

type I water (Milli-Q Synthesis, Millipore). Aliquots of the stock solutions were 

immediately frozen in liquid N2, lyophilized and stored at -80 °C. Standards of 0.5 mM 

GSH, Cys and N-AcCys and standards of 0.1 mM hPC2 and hPC3

Analysis on non-protein thiols  

 were injected in the 

HPLC to set the retention times. 

Non-protein thiols were analysed by High Performance Liquid Chromatography 

(HPLC) following the procedure described by Ortega-Villasante et al. (2005). 0.1 g of 

frozen tissue was ground in liquid N2 and 15 µl of 5 mM N-acetyl cysteine (N-AcCys) 

was spiked as internal standard (Howden et al. 1995) prior homogenization with 300 µl 

of a extraction buffer (0.1 M HCl, 1 M EDTA, 5% MPA, 1% PVPP) to quantify the 

thiols. The homogenate was centrifuged twice for 15 min at 12 000 g and 4ºC in 

Eppendorf tubes. The clear supernatant was transferred to a boron-silica glass injection 

vial. Separation and detection of the thiols was carried out using the method described 

by Meuwly et al. (1995) with some modifications. Extracts (100 µl) were injected in a 

Mediterranea Sea18 column (5 µm, 250 x 4.6 mm; Teknokroma, Spain), using an 
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Agilent 1200 HPLC system (Santa Clara, CA, USA). The mobile phase was built using 

two eluents: A (dH2O: acetonitrile (v/v) in 98:2 ratio plus 0.01 % TFA) and, B (dH2O: 

acetonitrile (v/v) in 2:98 ratio plus 0.01 % TFA). The gradient program, as for % solvent 

B, was: 2 min, 0%; 25 min; 25%; 26 min, 50%; 30 min, 50%; 35 min, 0%; 45 min, 0% 

Thiols were detected after post-column derivatization with Ellman´s reagent (1.8 mM 

5,5-dithio-bis, 2 nitrobenzoic acid in 300 mM K-phosphate, 15 mM EDTA at pH 7.0), 

in a thermostatic 1.8 ml reactor at 38ºC, as described by Rauser (1991). The derivative 

compound, 5-mercapto-2-nitrobenzoate, had and absorbation maximum at 412 nm. To 

identify the retention time of non-protein thiols of extract tissue before quantification, 

commercial biothiol standards (Cys, GSH, hGSH, hPC2 and hPC3

Statistical analysis 

) were run previously. 

Data were processed with the Agilent Chemstation software. 

Statistical analysis was performed with the software package SPSS for Windows 

(version 15.0), by using an ANOVA with Tukey test when the signification in Levene 

test was > 0.05 or Welch with Games-Howell test when the signification in Levene test 

was < 0.05. Results were mean of at least three independent replicates ± standard 

deviation, with significant differences between treatments at p<0.05. 

RESULTS 

Soil 

According to the physical and chemical parameters showed in Table 1, the soil collected 

from Almadén had a loamy sand texture according to the USDA. This soil had pH 6.5 

and a very low electric conductivity (EC); thus was classified as moderately acid and no 

saline (Porta et al., 1999). The organic matter content, the C/N ratio, the total nitrogen 

(N) and the cation exchange capacity (CEC) were low for agricultural soils. The content 

of Mg+2, Na+ and K+ were low but the Ca2+ concentration was adequate for most 

agronomical crops (Tisdale et al., 1985). The total Hg concentration in the soil was 

12.48 mg kg-1 in average, being 0.007 mg kg-1

According to the experimental design used, total Hg concentration in the soil pots 

(Table 2) was within the range of 2.7-4.0 mg kg

 the concentration of available Hg. 

-1, whereas available Hg was within the 

range of 2.2-6.6 µg kg-1

 

, representing less than 0.2% of the total Hg. After the 

experiment, NPK and PK did not alter both levels of Hg, remaining stable during the 

stages of growth (data not shown). 
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Mercury concentration and distribution in alfalfa plants 

According to the data showed in Table 3, the Hg concentration in root was 5-7 times 

higher than in shoots at the seedling stage. This difference was attenuated in alfalfa at 

the elongation phase, being the Hg concentration in roots over 2.5-fold higher than in 

shoots. The Hg concentration decreased in roots and shoots during the elongation stage, 

possibly caused by a dilution effect due to the augment in plant biomass. It should be 

noted that nitrogen fertilization affected roots Hg concentration at the seedling stage, 

being significantly higher with NPK fertilization. However, the nitrogen status did not 

affect the Hg concentration in seedling shoots, and elongation shoot and root. To study 

the mobility of Hg inside the plant, the ratio between Hg concentration in shoots and 

roots was calculated. In all cases, the ratio was low (<0.5), confirming that Hg is mainly 

accumulated in the root (Table 3). 

The bioaccumulation factor (BAF) was used as an index of Hg accumulation in plants 

to evaluate the alfalfa capacity to uptake Hg from the soil. BAF was calculated as a 

ration between the concentration of Hg in each organ and the concentration of Hg 

available in the soil (Table 3). As already stated, alfalfa plants showed a remarkable 

Table 1 Physical and chemical parameters of soil before start the experiment 
(texture, pH, OM and EC: n=5; rest of parameters: n=10) 

Texture (%) Clay/Silt/Sand 12/15/72 
pH 6.5 
Electrical conductivity (EC) (µS cm-1) 135.4 
Organic matter (OM) (%) 1.38 
C:H:N (%)  0.87:0.25:0.11 
C/N ratio 7.9 
Cation exchange capacity (CEC) (cmolc kg-1) 11 
Nutrients (mg kg-1)  
 Ca2+ 

Mg2+ 
Na+ 
K+ 

2720 ± 215 
180 ± 24.1 
28.2 ± 5.6 
40.3 ± 3.8 

Total Hg (mg kg-1)  12.48 ± 4.82  
Available Hg (mg kg-1)  0.007 ± 0.001 

 

Table 2 Total Hg (mg kg-1), available Hg (µg kg-1) and available Hg (%) in the soil of 
the pots treated with a PK fertilizer (without NO3

─) or a NPK fertilizer (with NO3
─) after 

harvesting the alfalfa plants at different stage of growth (seedling and elongation). Data 
are average of three independent replicates (± SD). 

Stage of growth  Fertilization Total Hg 
 (mg kg-1) 

Available Hg  
(µg kg-1) 

Available Hg  
(%) 

Seedling PK 3.1 ± 0.5 2.6 ± 0.6 0.08 
NPK 4.0 ± 0.3 2.2 ± 0.1 0.06 

Elongation PK 2.7 ± 0.8 6.6 ± 1.2 0.24 
NPK 3.3 ± 0.2 2.4 ± 0.1 0.07 
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preference to accumulating Hg in roots, since BAF values were in the range of 2-7 times 

higher than in shoot depending on the stage of growth. With respect to fertilization, 

BAF values were much higher in alfalfa plants grown with the NPK fertilization, value 

that decreased in the elongation stage. 

Biometric parameters 

Plants did not show external symptoms of toxicity due to Hg exposure (i.e. chlorosis or 

darkened roots; Fig. 2C). However, nitrogen fertilization affected the length of plants: 

plants grown with NPK were significantly larger than plants grown with PK 

fertilization. However, in the elongation stage, the growth of PK treated plants almost 

Table 3 Total Hg (mg kg-1) in root and shoot, ratio ([Hg shoot]/[Hg root]), and bioaccumulation factor 
BAF ([Hg organ]/[Hg soil available]) of alfalfa plants harvested at seedling and elongation growth 
stages, fertilized with NO3

─ (NPK) or without NO3
─ (PK). Data are average of three independent 

replicates (± SD), and different letters denote significant differences at p<0.05. 

Growth stage Treatment Hg (mg kg-1) Ratio BAF 
  Root Shoot Shoot/root Shoot/soil Root/soil 

Seedling 
PK 1.28 ± 0.41a 0.24 ± 0.02a 0.19 92.3 492.3 

NPK 2.12 ± 0.37b 0.31 ± 0.04a 0.14 140.9 963.6 

Elongation 
PK 0.28 ± 0.09c 0.12 ± 0.02b 0.43 18.9 42.4 

NPK 0.36 ± 0.03c 0.12 ± 0.04b 0.33 50.0 150.0 

 

 
Fig. 2. Length (cm plant-1) (A) and fresh weight (g plant-1) (B) of roots and shoots of alfalfa plants 
harvested at seedling and elongation growth stages, fertilized with NO3

─ (NPK) or without NO3
─ 

(PK). (C) Detail of alfalfa plants collected at the seedling stage. Data are average of three independent 
replicates (± SD), and different letters denote significant differences at p<0.05. 
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reached the size of NPK treated plants, when differences became not significant (Fig 

2A, 2C). The same trend was observed in the fresh weight of shoots and roots, which 

were higher alfalfa with NPK fertilization. However, this parameter was significantly 

different when shoots were compared (Fig. 2B, 2C). 

Nitrogen content in alfalfa plants 

Plants fertilized with NPK accumulated a significant higher amount of NH4
+ per plant 

than those cultivated in soils only fertilized with PK at the seedling stage (Fig. 3A). 

However, in the elongation stage there were no differences in the amount of NH4
+ per 

plant. When roots were sampled at the elongation stage, we observed that they were 

completely nodulated, with pinkish nodules possibly harbouring an effective nitrogen-

fixation metabolism. Apparently, the collected soils had enough Sinorhizobium meliloti 

inoculum to allow the establishment of symbiotic N2

Oxidative stress parameters 

-fixation, which would provide 

sufficient organic N to maintain the requirements for alfalfa plants in the absence of N 

fertilizer. 

The nitrogen fertilization did not affect significantly the concentration of chlorophyll in 

alfalfa plants, although there was a slightly diminution in the chlorophyll content of at 

the seedling stage with the PK treatment (Fig. 4). Malondialdehyde (MDA) content was 

determined as an index of lipid peroxidation in alfalfa root (Fig. 5). Results showed that 

MDA content was higher in plants fertilized with PK at the seedling stage. However, 

the differences in the MDA content between plants treated with or without NO3
─

 

 were 

Fig. 3. Nitrogen content (mg NH4
+ plant-1) and nitrogen percentage (%; between parenthesis) in root 

and shoot of Medicago sativa harvested at seedling and elongation growth stages, fertilized with NO3
─ 

(NPK) or without NO3
─ (PK). Data are average of three independent replicates (± SD), and different 

letters denote significant differences at p<0.05. 
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lower at the elongation stage, indicating that the oxidative stress decreased in plants 

fertilized with PK when their biomass augmented. 

The activity of APX and GR antioxidant enzymes was determined by in gel staining 

after non-denaturing polyacrylamide gel electrophoresis. Under the experimental 

conditions used, there was no difference in shoot of GR and APX activity with respect 

the fertilization at both growth stages (Fig. 6A). However, GR and APX activity in roots 

was remarkably higher in plants that were fertilized without NO3
─ (PK) compared with 

those that were fertilized with NO3
─

 

 (Fig. 6B). This difference was better detected at the 

seedling growth stage (Fig. 6B). 

Fig. 4. Chlorophyll concentration (mg g-1 FW) in leaves of Medicago sativa harvested at seedling and 
elongation growth stages, fertilized with NO3

─ (NPK) or without NO3
─ (PK). Data are average of three 

independent replicates (± SD), and different letters denote significant differences at p<0.05. 

 
Fig. 5. Malondialdehyde content (nmol MDA g-1 FW) in root of Medicago sativa harvested at 
seedling and elongation growth stages, fertilized with NO3

─ (NPK) or without NO3
─ (PK). Data are 

average of three independent replicates (± SD), and different letters denote significant differences at 
p<0.05. 
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Analysis of non-protein thiols 

The non-protein thiol content was analysed in shoots and roots of alfalfa seedling 

considering the different nitrogen nutritional status of the plants, as it is know the effect 

of adequate nitrogen fertilization in the assimilation and metabolisation of sulphur 

containing metabolites in the plants (Kopriva and Rennenberg, 2004). Alfalfa plants 

accumulated homoglutathione (hGSH), a GSH homologous non-protein thiol that 

occurs in certain legume plants (Matamoros et al., 1999). At the seedling growth stage, 

shoot concentration of hGSH in plants treated with NPK was 384 ± 85 nmol g-1 FW, 

while in plants treated with PK was 347 ± 33 nmol g-1 FW. Therefore, it was slightly 

higher in plants fertilized with NO3
─, although not significantly different (p < 0.05). 

hGSH content in roots was three times lower (100 nmol g-1

 

 FW), and no differences 

were observed between NPK and PK fertilized plants. At the elongation stage, there 

were no differences between treatments, and the concentration was of the same order as 

in plants at the seedling stage (data not shown). There were no phytochelains (nor the 

homologous non-protein thiols homophytochelatins) at any growth stage. 

 

 
Fig. 6. Glutathione reductase (GR) and Ascorbate peroxidise (APX) in gel activity in shoot (A) and 
root (B) of Medicago sativa harvested at seedling and elongation growth stages, fertilized with NO3

─ 
(NPK) or without NO3

─ (PK). Numbers correspond to the pools sampled (see Fig 1). a, d) Coomassie-
blue general staining of proteins to show equivalent loading of protein; b, e) GR activity; and c, f) 
APX activity. 
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DISCUSSION 

The physical and chemical characteristic of the soil obtained from Castilseras 

(Almadén, Spain) was adequate to sustain a crop of alfalfa, as this plant prefers slightly 

acidic and well-aerated soils. In addition, the low organic mater content, low C/N ratio 

and low CEC did not limit the growth of alfalfa (Ortega and Corvalan, 2004). The low 

content of nutrients, such as N, Mg2+, Na+ and K+

Hg is usually found in natural soil at levels ranging from 0.01 to 0.5 mg kg

, detected was probably due to losses 

caused by previous agricultural activities. Prior to soil collection for our experiments, 

cereals were cultivated for several seasons, causing a general depletion of nutrients in 

the area. It is well known that cereal exhaust the nutrients of soil, and supply of 

fertilizers and amendments is required for proper crop yield (Mengel and Kirby, 2001). 

The low N background found in the collected soil (0.11%), was then considered 

appropriated for our experiment to reproduce the conditions of a soil poor in nitrogen. 

-1 (Alloway, 

1995). However the total Hg content of the initial soil used in this study was twenty five 

times higher. Taking into account that the study area belongs to a region rich in Hg 

deposits and with an intense and prolonged mining activities, the value of 12.48 mg kg-1 

would be considered normal, even moderate as there are plots in the Almadén that 

accumulates up to 34,000 mg kg-1

The range of total Hg concentration (2.7-4 mg kg

 (Gray et al., 2004; Bernaus et al., 2006). The 

concentration of available Hg in the initial soil was approximately 0.06% of the total 

Hg. These values were in agreement with previous studies, where available Hg 

represents 0.1% of total Hg in soils from Almadén (Moreno-Jimenez et al., 2006; Sierra 

et al., 2008b). 

-1) and available Hg (2.2-6.6 µg kg-1) 

measured in the soil used for the experiments contained in pots, was three times lower 

than the total Hg (12.48 mg kg-1) and the Hg available (7 µg kg-1

The application of soil amendments to correct low fertility in polluted soils by mining 

activities may actually increase soluble Hg. These observations, however, are dependent 

on the amendment application rate, type of amendment and soil properties (Heeraman et 

al., 2001). By contrast, soil fertilization may decrease the Hg concentration in plants due 

to an increase in the biomass. 

) in the initial soil. This 

was due to the dilution of the original soil after it was mixed with perlite and sand in 

equal proportions (1:1:1), to avoid clogging and compaction. These results were similar 

to those found in a similar study performed by Sierra et al. (2008a) under greenhouse 

conditions with soil from Almadén. 
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Interestingly, the addition of nitrogen fertilizer augmented significantly the 

concentration of Hg in alfalfa roots at the seedling stage, when the addition of NO3
─ led 

to a significant increase in biomass. This result is in agreement with Barrutia et al. 

(2009) who studied the influence of the fertilization (NPK+B) on metal up take in 

Rumex acetosa L. and Rumex accessions grown in a metalliferous soil with high levels 

of Zn, Pb and Cd. They observed that plants grown with fertilization accumulated more 

Zn and Cd than plants grown without fertilization. BAF parameter highlighted the 

increase effectiveness of NPK fertilized plants to remove Hg from the soil, as occurred 

with other metals (Tu and Ma 2002). Gao et al. (2010) evaluated the effect of nitrogen 

fertilizers on Cd concentration in the grain of durum wheat under field conditions, and 

found also that the supply of nitrogen fertilizer increased Cd uptake and accumulation in 

different parts of the plant, such as in the grain. In spite of the dilution effect related 

with an increase in biomass, common when plants are fed with NO3
─, the increase in 

Hg accumulation should be explain in other basis. Well-nourished plants have an 

improved development of root architecture, which allows better extraction of nutrients 

and water (Lynch, 1995). In particular, nitrate availability induces lateral root 

elongation permitting in turn a higher capacity to uptake more NO3
─

Differences in biomass yield and Hg accumulation decreased (were in most cases not 

significant) between plants fertilized with NO

 (Mantelin and 

Touraine, 2004). Therefore, it is feasible that under adequate nutritional status plants 

would be able to augment Hg concentration. 

3
─ or without NO3

─ at the elongation 

stage. This could be explained by the appearance of nodules in alfalfa roots, formed by 

the symbiotic interaction with an endogenous Sinorhizobium meliloti existing in the 

collected soil from Almadén. Consequently, N was not a limiting factor in PK-treated 

plants. This was indeed measured by the amount of NH4
+

Mercury accumulated to a higher extent in roots, as found in many wild and crop plants 

(Patra et al., 2004). The ratio between Hg concentration in shoot and Hg concentration 

in root, in all cases, was less than 0.5. According to Baker (1981), a ratio lower than 1, 

means that alfalfa presents excluder behaviour. Alfalfa is widely grown as forage for 

 measured in the plants: At the 

seedling stage NPK-treated plants showed a significantly higher content of organic N, 

differences that were attenuated in the elongation stage. 

cattle. The alfalfa culture is harvested between the elongation and the 10 % of flowering 

because the protein content is optimum in those growth stages (Broderick, 1985). 

Regarding forage use, the accepted maximum Hg concentration relative to the feeding 

http://en.wikipedia.org/wiki/Cattle�
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stuff is less that 0.1 mg kg-1

With respect to the stress parameters measured in NPK and PK fertilized plants, lipid 

peroxidation was only higher in the roots of plants grown in the absence of NO

 (EC Directive 2002). According to this legislation, the 

concentration of Hg in shoots at elongation stage surpass the legal limit, so precautions 

should be imposed to guarantee a safe consumption of edible parts of the plants. 

3
─ at the 

seedling growth stage. Therefore, under N starvation an oxidative stress would be 

induced. In agreement with this observation, the activity of the antioxidant enzymes 

APX and GR was remarkably higher in the roots of PK-fertilized plants at the seedling 

stage. When the level of N was recovered in PK plants thanks to N2

CONCLUSIONS 

-symbiotic fixation 

at the elongation stage, both MDA concentration and APX and GR enzymatic activity 

were more similar to NPK-treated plants. It has been described that in the early stages of 

Rhizobium bacteria infection and nodule formation, leguminous roots experience a 

cellular redox imbalance. In such conditions, the antioxidant defence system is 

triggered, resulting in the over-expression of genes coding antioxidant enzymes, 

modulation of their enzymatic activity and accumulation of antioxidant metabolites 

(Gogorcena et al., 1997; Pauli et al., 2006). 

The soil collected form Almadén is suitable for alfalfa crop cultivation. Despite the high 

total Hg concentration of the soil, only the 0.2 % is available for plants. Fertilisation 

with NO3
─ augmented plant biomass at the earliest developmental stages, but thanks to 

symbiotic N2-fixation plants without NO3
─

 

 could also obtain sufficient N for an 

adequate normal biomass production. The largest pool of Hg was found retained in 

roots, with a rather low translocation to shoots, showing typical excluder behaviour. 

Nitrogen supply prevents oxidative stress in roots, but may improve root development 

and increase the uptake of Hg from the soil above safety consumption limits. It would 

be necessary to achieve a balance between the crop management and the accumulation 

of heavy metals. To confirm these results and provide a safe economic alternative to use 

Almadén plots for agricultural proposes, further studies should be performed at a pilot 

field scale in real conditions, playing special attention in the Hg accumulation in shoots 

during elongation and first steps of flowering stage. 
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CONCLUSIONES 

1. El Hg absorbido por las plantas de alfalfa, maíz y cebada expuestas a 30 µM fue 

acumulado principalmente en la raíz, concretamente más del 90% quedó retenido en la 

fracción particulada correspondiente con la pared celular. El análisis llevado a cabo 

mediante HPLC-ESI-TOFMS de la fracción soluble de los tres cultivos reveló que el 

Hg estaba asociado con fitoquelatinas. En total se identificaron 19 complejos Hg-PC, 

14 de ellos en alfalfa, de los cuales 11 no habían sido descritos anteriormente en la 

literatura. 

2. La síntesis de PCs parece importante para la tolerancia a Hg, como pudo mostrarse en 

plantas mutantes de Arabidopsis thaliana deficientes en la producción de 

fitoquelatinas, cad1-3, y con menor contenido de GSH, cad2-1. 

3.  El análisis EXAFS para determinar la especiación in vivo de Hg en plantas de alfalfa 

expuestas a 30 µM Hg mostró que un 79% estaba unido a Cys, y el 21% estaba en 

forma de metil-Hg. Las imágenes de la distribución espacial obtenidas mediante µ-

SXRF revelaron que el Hg fue acumulado principalmente en los conductos 

vasculares de raíz, tallo y hoja. A nivel subcelular las imágenes de TEM apoyan la 

noción de que el Hg se acumula preferentemente en la pared celular de las células 

de la raíz. 

4. Las plantas de alfalfa crecidas en un sistema hidropónico presentaron un 

comportamiento diferente en relación a la absorción de Hg de plantas silvestres de 

marrubio. El análisis mediante µ-SXRF indican que en alfalfa el Hg es absorbido 

principalmente a través de los ápices de las raíces, posiblemente siguiendo el flujo del 

agua. Sin embargo, en el marrubio el Hg es retenido en la epidermis de la raíz, 

concretamente en la corteza. El análisis EXAFS realizado en raíz y hoja indicó que 

más del 60% del Hg estaba unido a S inorgánico en forma de cinabrio y metacinabrio, 

posiblemente procedente de partículas de suelo adherida a la epidermis. 

5. El estado nutricional del nitrato (NO3
―) de las plantas podría ser importante para 

mejorar su tolerancia al Hg. Plantas de alfalfa que crecieron con altos niveles de 

NO3
―, sufrieron un menor estrés oxidativo medido por un menor efecto en la 

peroxidación lipídica de raíz y un menor efecto inhibitorio sobre la actividad de 

GR. El estado nutricional de N se vio afectado, sobre todo en la raíz donde se 

apreció un aumento importante de la actividad de NR en plantas con alto NO3
―

6. El suelo muestreado en Almadén presentó condiciones adecuadas para el cultivo de 

la alfalfa. A pesar del alto contenido de Hg total en estos suelos, solo el 0.2% estaba 

. 
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disponible para las plantas, el cual fue reflejado en la ausencia de síntomas de 

toxicidad en las plantas. La aplicación de un fertilizante NPK supuso un mayor 

crecimiento de la planta en la fase inicial de desarrollo (estadio de plántula). En esta 

fase, la aplicación de NO3
― 

 

disminuyó los síntomas de estrés oxidativo ligados a un 

aumento de actividad de APX y GR, pero supuso una mayor acumulación de Hg 

que llegó a sobrepasar el límite legal de seguridad permitido. 
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Supplementary Table 1. Species observed, mass charge ratio (m/z) and retention time for LC―ESI/MS(TOF) analysis with positive and negative ionization modes of 
biothiols and Hg biothiols complexes standard solutions. The ratio Hg:ligand was (µM) 10:10; 10:20; 20:10. Identity of each complex was confirmed by the simulation of 
theoretical spectra with the MicrOtof Data Analysis Software. Ions are ordered by increasing m/z value. 
 

m
/z

 r
an

ge
 Hg:hPC

t
2 

R POSITIVE MODE 
1:2 1:1 2:1 

Species m/z Species m/z Species m/z 

0-
10

00
 

[HghPC2+2H+K] 396.5 2+ [HghPC2+2H+K] 396.5 2+ [HghPC2+2H+K] 396.5 2+ 6.3 
[hPC2+H] 554.1 + [hPC2+H] 554.1 +   6.3 
[HghPC2+H] 754.1 + [HghPC2+H] 754.1 + [HghPC2+H] 754.1 + 6.3 
    [HghPC2+H+Na] 776.1 + 6.3 
    [HghPC2+H+K] 792.0 + 6.3 

        

10
00

-3
00

0 
 

[(hPC2)2+H] 1107.2 +     6.3 
[(hPC2)2+H+Na] 1129.2 +     6.3 
[(hPC2)2+H+K] 1145.2 +     6.3 
[Hg (hPC2)2+H] 1307.1 + [Hg (hPC2)2+H] 1307.2 +   6.3 
[Hg (hPC2)2+H+Na] 1329.1 + [Hg (hPC2)2+H+Na] 1329.2 +   6.3 
[Hg (hPC2)2+H+K] 1345.1 +     6.3 
[Hg2(hPC2)2+H] 1505.2 + [Hg2(hPC2)2+H] 1505.1 + [Hg2(hPC2)2+H] 1505.1 + 6.3 
  [Hg2(hPC2)2+H+Na] 1527.2 + [Hg2(hPC2)2+H+Na] 1527.1 + 6.3 
[Hg2(hPC2)2+H+K] 1543.1 + [Hg2(hPC2)2+H+K] 1543.1 +   6.3 

 NEGATIVE MODE  

0-
10

00
 [hPC2-H] 552.1 — [hPC2-H] 552.2  — [hPC2-H] 552.1  — 6.4 

[HghPC2-H] 752.1  — [HghPC2-H] 752.1  — [HghPC2-H] 752.1  — 6.4 
    [HghPC2+Na-H] 774.1  — 6.4 
  [HghPC2+2Na-H] 796.1  —   6.5 

        

10
00

-3
00

0 

[(hPC2)2-H] 1105.2  —     6.4 
[Hg(hPC2)2-H] 1305.1  —     6.4 
[Hg(hPC2)2+Na-H] 1327.1  —     6.4 
[Hg2(hPC2)2-H] 1503.1  — [Hg2(hPC2)2-H] 1503.1  — [Hg2(hPC2)2-H] 1503.1  — 6.4 
[Hg2(hPC2)2+Na-H] 1525.1  — [Hg2(hPC2)2+Na-H] 1525.1  — [Hg2(hPC2)2+Na-H] 1525.1  — 6.5 
  [Hg2(hPC2)2+2Na-H] 1547.1  — [Hg2(hPC2)2+2Na-H] 1547.1  — 6.5 
  [Hg3(hPC2)3-H] 2255.1  —   6.5 
  [Hg3(hPC2)3+Na-H] 2277.1  —   6.5 

 
  



ii 
 

m
/z

 r
an

ge
 Hg:PC

t
2 

R POSITIVE MODE 
1:2 1:1 2:1 

Species m/z Species m/z Species m/z 
0-

10
00

 [HgPC2+Na+2H] 381.1 2+ [HgPC2+Na+2H] 381.1 2+ [HgPC2+Na+2H] 381.5 2+ 6.1 
[PC2+H] 540.1 + [PC2+H] 540.1 + [PC2+H] 540.1 + 6.1 
[HgPC2+H] 740.0 + [HgPC2+H] 740.1 +   6.1 
[HgPC2+Na+H] 762.0 +     6.1 

        

10
00

-
30

00
    [Hg2(PC2)+H] 1477.1 +   6.2 

[Hg2(PC2)+Na+H] 1499.1 +     6.2 
[Hg2(PC2)+K+H] 1515.0 + [Hg2(PC2)+K+H] 1515.1 +   6.2 

 NEGATIVE MODE  

0-
10

00
 [PC2-H] 538.1  — [PC2-H] 538.1  — [PC2-H] 538.1 - 6.0 

[HgPC2-H] 738.1  — [HgPC2-H] 738.1  — [HgPC2-H] 738.1 - 6.2 
[HgPC2+Na-H] 760.1  — [HgPC2+Na-H] 760.1  — [HgPC2+Na-H] 760.1 - 6.2 
    [HgPC2+2Na-H] 782.1 - 6.2 

        

10
00

-3
00

0 

[PC2-H] 1077.2  —     6.0 
[PC2+Na-H] 1099.0  —     6.0 
[Hg(PC2)2-H] 1277.1  —     6.1 
[Hg2(PC2)2-H] 1475.1  — [Hg2(PC2)2-H] 1475.1  — [Hg2(PC2)2-H] 1475.1  — 6.2 
[Hg2(PC2)2+Na-H] 1497.1  — [Hg2(PC2)2+Na-H] 1497.1  — [Hg2(PC2)2+Na-H] 1497.0  — 6.2 
[Hg2(PC2)2+2Na-H] 1519.1  — [Hg2(PC2)2+2Na-H] 1519.0  — [Hg2(PC2)2+2Na-H] 1519.0  — 6.2 

 
  



iii 
 

m
/z

 r
an

ge
 Hg:hPC

t
3 

R POSITIVE MODE 
1:2 1:1 2:1 

Species m/z Species m/z Species m/z 
0-

10
00

 [HghPC3+2H] 493.5 2+   [Hg(hPC3)+2H] 493.6 2+ 7.8 
[HghPC3+Na+2H] 504.5 2+   [Hg(hPC3)+Na+2H] 504.6 2+ 7.8 
[hPC3+H] 786.1 +   [hPC3+H] 786.2 + 7.8 
[HghPC3+H] 986.1 + [HghPC3+H] 986.1 + [HghPC3+H] 986.1 + 7.8 

        

10
00

-
30

00
  [HghPC3+H] 986.1 + [HghPC3+H] 986.1 + [HghPC3+H] 986.1 + 7.8 

[Hg2hPC3+H] 1184.0 + [Hg2hPC3+H] 1184.1 +   7.8 
  [Hg2hPC3+H+Na] 1206.1 +   7.8 
[Hg(hPC3)2+H] 1771.2 +     7.9 

 NEGATIVE MODE  

0-
10

00
 

[HghPC3-2H] 491.6 2— [HghPC3-2H] 491.6 2—   7.8 
  [HghPC3+Na-2H] 502.6 2—   7.8 
  [HghPC3+Na-2H] 513.6 2—   7.8 
[hPC3-H] 784.2  — [hPC3-H] 784.2  —   7.9 
[hPC3+Na-H] 806.16  —     7.9 
[HghPC3-H] 984.2  — [HghPC3-H] 984.2  —   7.9 
[Hg(hPC3)2-H] 1769.3  —     7.9 
[Hg(hPC3)2+Na-H] 1791.3  —     7.9 
[Hg(hPC3)2+2Na-H] 1813.2  —     7.9 

        

10
00

-3
00

0 

[HghPC3-H] 984.1  — [HghPC3-H] 984.1  — [HghPC3-H] 984.1  — 7.8 
  [HghPC3+Na-H] 1006.1  — [HghPC3+Na-H] 1006.1  — 7.8 
  [HghPC3+2Na-H] 1028.1  —   7.8 
  [Hg4(hPC3)2-2H] 1082.1 2— [Hg4(hPC3)2-2H] 1082.6 2— 8.4 
  [Hg4(hPC3)2+Na-2H] 1093.5 2— [Hg4(hPC3)2+Na-2H] 1093.1 2— 8.4 
  [(Hg)2hPC3-H] 1182.0  — [(Hg)2hPC3-H] 1182.0  — 8.4 

 
 
 
 
 
 
 
 
 
 



iv 
 

m
/z

 r
an

ge
 Hg:PC

t
3 

R POSITIVE MODE 
1:2 1:1 2:1 

Species m/z Species m/z Species m/z 
0-

10
00

 

[PC3+2H] 386.6 2+     7.6 
[PC3+Na+2H] 397.6 2+     7.6 
[HgPC3+2H] 486.6 2+ [HgPC3+2H] 486.6 2+   7.6 
[HgPC3+Na2+H] 497.5 2+ [HgPC3+Na2+H] 497.6 2+   7.6 
  [PC3+H] 772.2 + [PC3+H] 772.2 + 7.6 
[HgPC3+H] 972.1 +   [HgPC3+H] 972.1 + 7.6 

        

10
00

-3
00

0 
 

[HgPC3+H] 972.1 + [HgPC3+H] 972.1 +   7.5 
[HgPC3+Na+H] 994.1 + [HgPC3+Na+H] 994.1 + [HgPC3+Na+H] 994.1 + 7.6 
[HgPC3+Na+K+H] 1010.0 +     7.5 
  [HgPC3+2Na+H] 1016.1 +   7.5 
  [HgPC3+3Na+H] 1038.0 +   7.5 
  [HgPC3+4Na+H] 1060.0 + [HgPC3+4Na+H] 1060.0 + 7.5 
  [Hg2PC3+H] 1170.1 +   8.4 
  [Hg2PC3+Na+H] 1192.1 +   8.4 

 NEGATIVE MODE  

0-
10

00
 

[PC3-2H] 384.6 2—     7.4 
  [HgPC3-2H] 486.6 2— [HgPC3-2H] 484.6 2— 7.6 
[PC3-H] 770.2  — [PC3-H] 770.2  —   7.4 
[PC3+Na-H] 792.2  —     7.5 
[HgPC3-H] 970.1  — [HgPC3-H] 970.1  — [HgPC3-H] 970.1  — 7.5 
[HgPC3+Na-H] 992.1  — [HgPC3+Na-H] 992.1  — [HgPC3+Na-H] 992.1  — 7.5 

        

10
00

-3
00

0 

[HgPC3-H] 970.1  — [HgPC3-H] 970.1  — [HgPC3-H] 970.1  — 7.6 
[HgPC3+Na-H] 992.1  — [HgPC3+Na-H] 992.1  — [HgPC3+Na-H] 992.1  — 7.5 
  [HgPC3+2Na-H] 1014.1  — [HgPC3+2Na-H] 1014.1  — 7.5 
  [HgPC3+3Na-H] 1036.0  —   7.6 
  [HgPC3+4Na-H] 1058.0  —   7.6 
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m
/z

 r
an

ge
 Hg:GC

t
2 

R POSITIVE MODE 
1:2 1:1 2:1 

Species m/z Species m/z Species m/z 

0-
10

00
     [HgGC2+2H+K] 361.0 2+ 6.1 

  [GC2+H] 483.1 + [GC2+H] 483.1 + 6.1 

[HgGC2+H] 683.0 + [HgGC2+H] 683.1 + [HgGC2+H] 683.1 + 6.2 

        

10
00

-
30

00
    [Hg2(GC2)2+H] 1363.1 +   6.2 

  [Hg2(GC2)2+Na+H] 1385.0 +   6.2 

 NEGATIVE MODE  

0-
10

00
 [GC2-H] 481.1  — [GC2-H] 481.1  — [GC2-H] 481.1  — 6.0 

[HgGC2-H] 681.1  — [HgGC2-H] 681.1  — [HgGC2-H] 681.1  — 6.1 
[HgGC2+Na-H] 703.0  — [HgGC2+Na-H] 703.0  — [HgGC2+Na-H] 703.0  — 6.2 

        

10
00

-3
00

0 

[Hg(GC2)2-H] 1163.1  — [Hg(GC2)2-H] 1163.1  —   6.1 
[Hg(GC2)2+Na-H] 1185.1  —     6.1 
[Hg(GC2)2+2Na-H] 1207.1  —     6.1 
[Hg2(GC2)2-H] 1361.1  — [Hg2(GC2)2-H] 1361.0  — [Hg2(GC2)2-H] 1361.0  — 6.2 
[Hg2(GC2)2+Na-H] 1383.1  — [Hg2(GC2)2+Na-H] 1383.0  — [Hg2(GC2)2+Na-H] 1383.0  — 6.2 
[Hg2(GC2)2+2Na-H] 1405.0  —     6.2 
  [Hg2(GC2)2+3Na-H] 1427.0  —   6.2 
  [Hg3(GC2)3-H] 2042.0  —   6.2 

 
  



vi 
 

m
/z

 r
an

ge
 Hg:GSH 

tR POSITIVE MODE 
1:2 1:1 2:1 

Species m/z Species m/z Species m/z 
0-

10
00

 [GSH+H] 308.1 +   [GSH+H] 308.1 + 2.4 
  [Hg(GSH)2+2H] 408.1 2+ [Hg(GSH)2+2H] 408.1 2+ 4.9 
  [HgGSH+H] 508.1 + [HgGSH+H] 508.0 + 4.8 
  [Hg(GSH)2+H] 815.1 + [Hg(GSH)2+H] 815.1 + 4.9 

 NEGATIVE MODE  

0-
10

00
 

[GSH-H] 306.1  — [GSH-H] 306.1  — [GSH-H] 306.9  — 2.3 
    [HgGSH-H] 506.0  — 2.7 
    [HgGSH+Na-H] 528.0  — 2.7 
[Hg(GSH)2-H] 813.1  — [Hg(GSH)2-H] 813.1  — [Hg(GSH)2-H] 813.1  — 4.8 
[Hg(GSH)2+Na-H] 835.1  — [Hg(GSH)2+Na-H] 835.1  — [Hg(GSH)2+Na-H] 835.1  — 4.8 
  [Hg(GSH)2+2Na-H] 857.1  — [Hg(GSH)2+2Na-H] 857.1  — 4.8 
  [Hg(GSH)2+3Na-H] 879.1  — [Hg(GSH)2+3Na-H] 879.0  — 4.8 

        

10
00

-
30

00
 [Hg2(GSH)4-H] 1625.1  —     4.9 

[Hg2(GSH)4+Na-H] 1647.1  —     4.9 
 

m
/z

 r
an

ge
 Hg:hGSH 

tR POSITIVE MODE 
1:2 1:1 2:1 

Species m/z Species m/z Species m/z 

0-
10

00
 [hGSH+H] 322.1 + [hGSH+H] 322.1 +   3.3 

[Hg(hGSH)2+2H] 422.1 2+ [Hg(hGSH)2+2H] 422.1 2+   5.6 
[HghGSH+H] 522.1 + [HghGSH+H] 522.1 + [HghGSH+H] 522.0 + 5.7 
  [Hg(hGSH)2+H] 843.1 + [Hg(hGSH)2+H] 843.1 + 5.8 

 NEGATIVE MODE  

0-
10

00
 

[hGSH-H] 320.1  —   [hGSH-H] 320.1  — 3.4 
  [HghGSH-H] 520.1  — [HghGSH-H] 520.1  — 5.7 
  [Hg(hGSH)2-H] 841.1  — [HghGSH+Na-H] 841.1  — 5.7 
  [Hg(hGSH)2+Na-H] 863.1  — [Hg(hGSH)2+2Na-H] 863.1  — 5.8 
  [Hg(hGSH)2+2Na-H] 885.1  — [Hg(hGSH)2+3Na-H] 885.1  — 5.8 

        

10
00

-
30

00
 

  [Hg(hGSH)2+3Na-H] 907.1  —   5.7 
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